TWI505468B - 閘極堆疊結構及包含其之金屬氧化物半導體元件及閘極堆疊結構之製造方法 - Google Patents

閘極堆疊結構及包含其之金屬氧化物半導體元件及閘極堆疊結構之製造方法 Download PDF

Info

Publication number
TWI505468B
TWI505468B TW101145311A TW101145311A TWI505468B TW I505468 B TWI505468 B TW I505468B TW 101145311 A TW101145311 A TW 101145311A TW 101145311 A TW101145311 A TW 101145311A TW I505468 B TWI505468 B TW I505468B
Authority
TW
Taiwan
Prior art keywords
layer
gate
stack structure
oxide
semiconductor layer
Prior art date
Application number
TW101145311A
Other languages
English (en)
Other versions
TW201423989A (zh
Inventor
Yuehchin Lin
Edward Yi Chang
Tingwei Chuang
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW101145311A priority Critical patent/TWI505468B/zh
Priority to CN201210543673.2A priority patent/CN103855195B/zh
Priority to US13/789,690 priority patent/US20140151710A1/en
Publication of TW201423989A publication Critical patent/TW201423989A/zh
Application granted granted Critical
Publication of TWI505468B publication Critical patent/TWI505468B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate

Description

閘極堆疊結構及包含其之金屬氧化物半導體元件及閘極堆疊結構之製造方法
本發明係關於一種閘極堆疊結構,特別是關於一種具有由氧化鉿及氧化鑭所組成之介電層的閘極堆疊結構。
閘極介電層的效能和穩定度一直都是互補式金屬氧化物半導體之製程中需要考量的重要因素,尤其是利用所謂的高介電常數介電材料(介電常數大於3.9,例如氧化矽),以得到比傳統氧化矽層更薄的等效氧化物厚度(equivalent oxide thickness,EOT)。隨著積體電路對於單位電容量的需求提升,具有更高介電係數的介電材料的研發未曾間斷。然而,在高介電常數介電材料與下層半導體材料之間會出現不樂見的擴散作用而影響載子的漂移率,因此在習知製作閘極介電層的技術中,除了利用一高介電常數介電材料之外,仍會再形成一矽氧化物層於高介電常數介電材料與下層半導體材料之間,以避免擴散作用的產生。
一方面,為保持較高的介電常數,上述習知的製作方法無法同時降低閘極介電層之等效氧化層厚度(EOT)。另一方面,若上述矽氧化物層之厚度不足,則仍會產生高介電常數介電材料與下層半導體材料之間的擴散作用,而造成半導體元件的電性失效。因此,亟需一種改良的閘極結構及其製造方法,以解決上述習知技術所造成之缺失。
本發明係提供一種使用高介電常數介電材料做為閘極介電層的閘極堆疊結構及其製造方法,用以解決習知技術的缺失以及達到較佳的效能。
本發明之一目的在於提供一種閘極堆疊結構。上述閘極堆疊結構包含一基板;一半導體層,設置於基板上;一閘極介電層,設置於半導體層上,其中閘極介電層係包含由氧化鑭(La2 O3 )及氧化鉿(HfO2 )所組成之複合氧化物層;以及一閘極電極層,設置於閘極介電層上。
本發明之另一目的在於提供一種閘極堆疊結構的製造方法。上述閘極堆疊結構的製造方法,包含提供一半導體層,其具有一第一表面及一第二表面;形成複數個氧化鉿層及複數個氧化鑭層於半導體層之第一表面上;快速退火法諸氧化鉿層及諸氧化鑭層,以形成一複合氧化物層之閘極介電層;形成一閘極電極層於閘極介電層上;形成一歐姆接觸層,其與半導體層之第二表面接觸;以及形成一背金屬層,其與歐姆接觸層接觸,但不與半導體層接觸。
在下文中會列舉本發明之較佳實施例以說明本發明之閘極堆疊結構及其製造方法,但非用以限制本發明。在圖式或描述中,相似或相同的部分係使用相同之符號或編號。並且本發明之應用非侷限於下文中的實施例,習知技藝者當可據以應用於相關領域。
本發明係提供一種使用高介電常數介電材料做為閘極介電層的閘極堆疊結構及其製造方法,其中閘極介電層係 包含氧化鑭(La2 O3 )及氧化鉿(HfO2 )所組成之複合氧化物層。
表1列舉習知氧化物之介電係數與能間隙(energy bandgap,Eg(eV))值。由於氧化鋁(Al2 O3 )有不錯的能間隙與較二氧化矽高的介電係數,故氧化鋁材料多應用於第III-V族半導體元件中。氧化鉿(HfO2 )之介電係數則有25,且擁有之能間隙可達5.7 eV;而氧化鑭(La2 O3 )擁有更高達30之介電係數,而其能間隙為4.3 eV。
第1圖係根據本發明之一實施例所繪示的閘極堆疊結構100剖面圖。在第1圖中,半導體層120設置於基板110上。閘極介電層130設置於半導體層120,其中閘極介電層130係包含氧化鑭(La2 O3 )及氧化鉿(HfO2 )所組成之複合氧化物層。以及閘極電極層140設置於閘極介電層130上。根據本發明之一實施例,上述基版110更包含背金屬層112,以及歐姆接觸層114夾置於背金屬層112以及半導體層120之間。
根據本發明之一實施例,上述半導體層120為第III-V族半導體。根據本發明之另一實施例,上述半導體層120之材料包含砷化銦鎵(InGaAs)、砷化銦(InAs)、砷化銦鋁 (InAlAs)、磷化銦(InP)、砷化鎵(GaAs)、銻化銦(InSb)、銻化銦鎵(InGaSb)、氮化鎵(GaN)或砷化鋁鎵(AlGaAs)。
根據本發明之一實施例,上述閘極介電層130之介電常數為大於27。根據本發明之另一實施例,上述閘極介電層120之厚度為約4奈米至約15奈米,較佳為約6奈米至約12奈米,更佳為約8奈米至約10奈米。
根據本發明之一實施例,上述閘極電極層140之材料係選自由下列材料組成之群組:鎳(Ni)、金(Au)、鈦(Ti)、鉑(Pt)、銅(Cu)、鋁(Al)、氮化鉭(TaN)及其組合。
根據本發明之一實施例,上述閘極堆疊結構100係用於電容器或場效電晶體。
第2A圖至第2G圖係根據本發明之一實施例所繪示之製作閘極堆疊結構之剖面圖。首先提供半導體層210,其具有第一表面211及第二表面212,如第2A圖所示。接著形成複數個氧化鉿層及複數個氧化鑭層於半導體層之第一表面上,其中諸氧化鉿層及諸氧化鑭層係彼此交錯堆疊。根據本發明之一實施例,先形成一氧化鉿層222a於半導體層210之第一表面211上,再形成一氧化鑭層224a於氧化鉿層222a上,依此順序形成複數個氧化鉿層222a及複數個氧化鑭層224a彼此交錯堆疊的氧化物層220a,如第2B圖所示。根據本發明之另一實施例,先形成一氧化鑭層222b於半導體層210之第一表面211上,再形成一氧化鉿層224b於氧化鑭層222b上,依此順序形成複數個氧化鑭層222b及複數個氧化鉿層224b彼此交錯堆疊的氧化物層220b,如第2C圖所示。
在第2B圖或第2C圖中,氧化物層220a或220b的形成方法可為遙式化學氣相沉積(RPCVD)、電漿輔助化學氣相沉積(PECVD)、原子層沉積(ALD)、有機金屬化學氣相磊晶法(MOCVD)、分子束磊晶法(MBE)、物理氣相沉積(PVD)、濺鍍法或是其他已知方法。
根據本發明之一實施例,上述氧化鉿層222a或224b之厚度為0.5奈米至2奈米。根據本發明之另一實施例,上述氧化鉿層222a或224b之厚度為0.8奈米至1.5奈米。
根據本發明之一實施例,上述氧化鑭層224a或222b之厚度為0.5奈米至2奈米。根據本發明之另一實施例,上述氧化鑭層224a或222b之厚度為0.8奈米至1.5奈米。
在第2D圖中,利用一熱退火法(PDA),讓第2B圖或第2C圖中的氧化物層220a或220b與半導體層210之上表面作用,形成複合氧化物層。其中複合氧化物層係做為閘極介電層220。根據本發明之一實施例,上述閘極介電層220之厚度為約4奈米至約15奈米,較佳為約6奈米至約12奈米,更佳為約8奈米至約10奈米,以維持低閘極漏電流以及較薄的等效氧化物厚度(EOT)。根據本發明之另一實施例,利用熱退火法(PDA)形成複合氧化物層之溫度為約500℃。
在第2E圖中,形成閘極電極層230於閘極介電層220之上。根據本發明之一實施例,閘極電極層230係利用電子束法(E-gun),以包含鎳(Ni)、金(Au)、鈦(Ti)、鉑(Pt)、銅(Cu)、鋁(Al)、氮化鉭(TaN)或其組合之金屬材料製成。
接著形成歐姆接觸層240與半導體層210之第二表面212接觸,如第2F圖所示。根據本發明之一實施例,歐姆接觸層240之材料包含磷化銦(InP)。
在第2G圖中,形成背金屬層250與歐姆接觸層240接觸,但不與半導體層210接觸,以形成閘極堆疊結構200。根據本發明之一實施例,背金屬層250之材料係選自由金(Au)、鍺(Ge)、鎳(Ni)及其組合所組成之群組。
表2係比較根據本發明之不同實施例,其不同閘極介電層之氧化物組成及熱退火溫度對於閘極堆疊結構之影響。
在比較例1中,閘極介電層之氧化物層為氧化鉿,其總厚度為8 nm。其中,閘極介電層係於500℃下熱退火形成,其於1 kHz時之電容等效厚度為2.7 nm,擴散率為5.1%,漏電流為24.0×1011 cm-2 eV-1
在實施例1中,閘極介電層之氧化物組成係如第2B圖所示,先形成氧化鉿於半導體層上,再形成氧化鑭層於氧化鉿層上,依此順序形成氧化鉿層及氧化鑭層各五層彼此交錯堆疊的複合氧化物層。其中氧化鉿(厚度0.8 nm)/氧化鑭(厚度0.8 nm)共10層,其總厚度為8 nm。由表2之結果可知,實施例1於500℃下熱退火,由上述之複合氧化物層形成之閘極介電層具有最小的漏電流(7.2×1011 cm-2 eV-1 ),且其於1 kHz時之電容等效厚度為2.2 nm,擴散率為3.5%。
在實施例2中,閘極介電層之氧化物組成係如第2C圖所示,先形成氧化鑭於半導體層上,再形成氧化鉿層於氧化鑭鉿層上,依此順序形成氧化鑭層及氧化鉿層各五層彼此交錯堆疊的複合氧化物層。其中氧化鑭(厚度0.8 nm)/氧化鉿(厚度0.8 nm)共10層,其總厚度為8 nm。由表2之結果可知,實施例2於500℃下熱退火,由上述之複合氧化物層形成之閘極介電層,其具有最小的漏電流(9.7×1011 cm-2 eV-1 ),且其於1 kHz時之電容等效厚度為2.3 nm,擴散率為2.8%。
比較表2中之比較例1、實施例1及實施例2可知,該些氧化物所組成之閘極結構皆具有較小的漏電流,可提升半導體元件的效能。然而,相較於比較例1,實施例1及實施例2之擴散率皆較低。所以,雖然氧化鑭之能間隙較氧化鉿低,但根據本發明由氧化鉿及氧化鑭所組成之複合氧化物層,其所形成之閘極結構卻比單獨氧化鉿構成之閘極結構,具有更低的擴散率而不易擴散至半導體層中,也因此令使半導體元件具有更高的電性穩定度。另外,實 施例1及實施例2亦具有較薄的等效電容厚度(於1 kHz),用以降低半導體元件之整體厚度。再者,從實施例1及實施例2的結果可知,氧化鉿及氧化鑭的形成順序對根據本發明之複合氧化物層的擴散率沒有影響。
第3A圖係為實施例2於500℃下熱退火形成之閘極介電層之閘極電壓對電容值之折線圖,其中橫軸為閘極電壓(V),縱軸為電容值(μF/cm2 )。而第3B圖係為實施例3於500℃下熱退火形成之閘極介電層之閘極電壓對電容值之折線圖,其中橫軸為閘極電壓(V),縱軸為電容值(μF/cm2 )。比較第3A圖及第3B圖可知,第3A圖與第3B圖具有相似的閘極電壓對電容值關係,此結果亦顯示,氧化鉿及氧化鑭的形成順序不影響閘極堆疊結構的電性關係。
第4A圖係為實施例1於500℃下熱退火形成之閘極堆疊結構之SEM影像(左圖)及元素分布圖(右圖),其中比例尺為2 nm。第4B圖係為實施例2於500℃下熱退火形成之閘極堆疊結構之SEM影像(左圖)及元素分布圖(右圖),其中比例尺為5 nm。相較於第4A圖,第4B圖之閘極堆疊結構之元素分佈較集中,此結果表示閘極介電層之元素不容易擴散到半導體層中,且半導體層之元素亦不容易擴散之閘極介電層中,具有最好的結構穩定性,以提升半導體元件之效能。
雖然本發明之實施例已揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可做些許之更動與潤飾,因此本發明之保護範圍當以後附之申請專 利範圍所界定為準。
100、200‧‧‧閘極堆疊結構
110‧‧‧基板
112、250‧‧‧背金屬層
140、230‧‧‧閘極電極層
211‧‧‧第一表面
212‧‧‧第二表面
114、240‧‧‧歐姆接觸層
120、210‧‧‧半導體層
130、220‧‧‧閘極介電層
220a、220b‧‧‧氧化物層
222a、224b‧‧‧氧化鉿層
224a、222b‧‧‧氧化鑭層
為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之詳細說明如下:第1圖係根據本發明之一實施例所繪示的閘極堆疊結構100剖面圖;第2A圖至第2G圖係根據本發明之一實施例所繪示之製作閘極堆疊結構之剖面圖;第3A圖係根據本發明之一實施例之閘極介電層之閘極電壓對電容值之折線圖,其中橫軸為閘極電壓(V),縱軸為電容值(mF/cm2 );第3B圖係根據本發明之一實施例之閘極介電層之閘極電壓對電容值之折線圖,其中橫軸為閘極電壓(V),縱軸為電容值(mF/cm2 );第4A圖係根據本發明之一實施例之閘極堆疊結構之SEM影像(左圖)及元素分布圖(右圖),其中比例尺為2 nm;以及第4B圖係根據本發明之一實施例之閘極堆疊結構之SEM影像(左圖)及元素分布圖(右圖),其中比例尺為5 nm。
100‧‧‧閘極堆疊結構
110‧‧‧基板
112‧‧‧背金屬層
114‧‧‧歐姆接觸層
120‧‧‧半導體層
130‧‧‧閘極介電層
140‧‧‧閘極電極層

Claims (13)

  1. 一種電晶體之閘極堆疊結構,包含:一基板;一半導體層,設置於該基板上;一閘極介電層,設置於該半導體層上,其中該閘極介電層係包含由氧化鑭(La2O3)、氧化鉿(HfO2)及包含氧化鑭/氧化鉿之該半導體層之一上表面層所組成之複合氧化物層;以及一閘極電極層,設置於該閘極介電層上。
  2. 如請求項1所述之閘極堆疊結構,其中該半導體層為第III-V族半導體。
  3. 如請求項1所述之閘極堆疊結構,其中該半導體層之材料包含砷化銦鎵(InGaAs)、砷化銦(InAs)、砷化銦鋁(InAlAs)、磷化銦(InP)、砷化鎵(GaAs)、銻化銦(InSb)、銻化銦鎵(InGaSb)、氮化鎵(GaN)或砷化鋁鎵(AlGaAs)。
  4. 如請求項1所述之閘極堆疊結構,其中該閘極介電層之介電常數為大於27。
  5. 如請求項1所述之閘極堆疊結構,其中該閘極介電層之厚度為約4奈米至約15奈米。
  6. 如請求項1所述之閘極堆疊結構,其中該閘極介電層之厚度為約6奈米至約12奈米。
  7. 如請求項1所述之閘極堆疊結構,其中該閘極電極層之材料係選自由下列材料所組成之群組:鎳(Ni)、金(Au)、鈦(Ti)、鉑(Pt)、銅(Cu)、鋁(Al)、氮化鉭(TaN)及其組合。
  8. 一種電晶體之閘極堆疊結構的製造方法,包含下列步驟:提供一半導體層,其具有一第一表面及一第二表面;形成複數個氧化鉿層及複數個氧化鑭層於該半導體層之該第一表面上;快速退火該些氧化鉿層及該些氧化鑭層,以形成一複合氧化物層之閘極介電層;形成一閘極電極層於該閘極介電層上;形成一歐姆接觸層,其與該半導體層之該第二表面接觸;以及形成一背金屬層,其與該歐姆接觸層接觸,但不與該半導體層接觸。
  9. 如請求項8所述之製造方法,其中該複數個氧化鉿層及複數個氧化鑭層係交錯堆疊形成於該半導體層之該第一表面上。
  10. 如請求項8所述之製造方法,其中該些氧化鉿層之厚度為0.5奈米至2奈米。
  11. 如請求項8所述之製造方法,其中該些氧化鉿層之厚度為0.8奈米至1.5奈米。
  12. 如請求項8所述之製造方法,其中該些氧化鑭層之厚度為0.5奈米至2奈米。
  13. 如請求項8所述之製造方法,其中該些氧化鑭層之厚度為0.8奈米至1.5奈米。
TW101145311A 2012-12-03 2012-12-03 閘極堆疊結構及包含其之金屬氧化物半導體元件及閘極堆疊結構之製造方法 TWI505468B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW101145311A TWI505468B (zh) 2012-12-03 2012-12-03 閘極堆疊結構及包含其之金屬氧化物半導體元件及閘極堆疊結構之製造方法
CN201210543673.2A CN103855195B (zh) 2012-12-03 2012-12-13 栅极堆迭结构的制造方法
US13/789,690 US20140151710A1 (en) 2012-12-03 2013-03-08 Stacked Gate Structure, Metal-Oxide-Semiconductor Including the Same, and Method for Manufacturing the Stacked Gate Structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101145311A TWI505468B (zh) 2012-12-03 2012-12-03 閘極堆疊結構及包含其之金屬氧化物半導體元件及閘極堆疊結構之製造方法

Publications (2)

Publication Number Publication Date
TW201423989A TW201423989A (zh) 2014-06-16
TWI505468B true TWI505468B (zh) 2015-10-21

Family

ID=50824588

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101145311A TWI505468B (zh) 2012-12-03 2012-12-03 閘極堆疊結構及包含其之金屬氧化物半導體元件及閘極堆疊結構之製造方法

Country Status (3)

Country Link
US (1) US20140151710A1 (zh)
CN (1) CN103855195B (zh)
TW (1) TWI505468B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013109357A1 (de) * 2013-08-29 2015-03-05 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Ionensensitive Schichtstruktur für einen ionensensitiven Sensor und Verfahren zur Herstellung derselben
TWI652820B (zh) 2018-03-21 2019-03-01 漢民科技股份有限公司 半導體結構的製造方法及半導體裝置
TWI685970B (zh) * 2018-03-21 2020-02-21 漢民科技股份有限公司 半導體結構

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090004881A1 (en) * 2007-06-30 2009-01-01 George Chen Hybrid high-k gate dielectric film
TW201239962A (en) * 2010-12-22 2012-10-01 Intel Corp Improving transistor channel mobility using alternate gate dielectric materials

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7037862B2 (en) * 2001-06-13 2006-05-02 Micron Technology, Inc. Dielectric layer forming method and devices formed therewith
US6642573B1 (en) * 2002-03-13 2003-11-04 Advanced Micro Devices, Inc. Use of high-K dielectric material in modified ONO structure for semiconductor devices
US7393733B2 (en) * 2004-12-01 2008-07-01 Amberwave Systems Corporation Methods of forming hybrid fin field-effect transistor structures
US20070018259A1 (en) * 2005-07-21 2007-01-25 Taiwan Semiconductor Manufacturing Co., Ltd. Dual gate electrode metal oxide semciconductor transistors
US20090008725A1 (en) * 2007-07-03 2009-01-08 International Business Machines Corporation Method for deposition of an ultra-thin electropositive metal-containing cap layer
CN101752410A (zh) * 2008-12-15 2010-06-23 北京有色金属研究总院 一种用于高介电常数栅介质的外延薄膜及其制备方法
US8952462B2 (en) * 2010-02-05 2015-02-10 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus of forming a gate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090004881A1 (en) * 2007-06-30 2009-01-01 George Chen Hybrid high-k gate dielectric film
TW201239962A (en) * 2010-12-22 2012-10-01 Intel Corp Improving transistor channel mobility using alternate gate dielectric materials

Also Published As

Publication number Publication date
US20140151710A1 (en) 2014-06-05
CN103855195B (zh) 2017-07-11
TW201423989A (zh) 2014-06-16
CN103855195A (zh) 2014-06-11

Similar Documents

Publication Publication Date Title
JP5185341B2 (ja) 半導体装置及びその製造方法
JP6341077B2 (ja) 半導体装置の製造方法
US20140346568A1 (en) Low Temperature Ohmic Contacts for III-N Power Devices
US9559218B2 (en) Semiconductor device and method of manufacturing the same
JP2009238955A (ja) 半導体基板、半導体装置、および半導体装置の製造方法
US9349668B2 (en) Semiconductor device
Ramanan et al. Properties of atomic layer deposited dielectrics for AlGaN/GaN device passivation
JP7067702B2 (ja) 窒化ガリウム系の半導体装置及びその製造方法
TWI565055B (zh) 具有應力補償之裝置及其製造方法
US9929239B2 (en) Semiconductor device and method of fabricating the same
US11107736B1 (en) Gate structures for semiconductor devices
US9105571B2 (en) Interface engineering to optimize metal-III-V contacts
Reddy et al. Electrical properties of Au/Bi0. 5Na0. 5TiO3-BaTiO3/n-GaN metal–insulator–semiconductor (MIS) structure
TWI505468B (zh) 閘極堆疊結構及包含其之金屬氧化物半導體元件及閘極堆疊結構之製造方法
US9275854B2 (en) Compound semiconductor integrated circuit and method to fabricate same
US11923365B2 (en) Integrated circuit devices including transistor stacks having different threshold voltages and methods of forming the same
JP6327139B2 (ja) 半導体装置およびその製造方法
TWI685970B (zh) 半導體結構
TW201216363A (en) Dielectric structure, transistor and manufacturing method thereof with praseodymium oxide
TWI652820B (zh) 半導體結構的製造方法及半導體裝置
TW201324587A (zh) 半導體元件及其製作方法
TW201830526A (zh) 製造半導體裝置的方法
WO2023008308A1 (ja) 半導体装置
TWI691078B (zh) 半導體裝置
US9953839B2 (en) Gate-stack structure with a diffusion barrier material