TWI494730B - Circuit for generating boosted voltage and method for operating the same - Google Patents
Circuit for generating boosted voltage and method for operating the same Download PDFInfo
- Publication number
- TWI494730B TWI494730B TW099137827A TW99137827A TWI494730B TW I494730 B TWI494730 B TW I494730B TW 099137827 A TW099137827 A TW 099137827A TW 99137827 A TW99137827 A TW 99137827A TW I494730 B TWI494730 B TW I494730B
- Authority
- TW
- Taiwan
- Prior art keywords
- voltage
- boost
- rate
- boost rate
- input
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/62—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using bucking or boosting dc sources
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/06—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
- H02M3/07—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/06—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
- H02M3/07—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
- H02M3/073—Charge pumps of the Schenkel-type
- H02M3/076—Charge pumps of the Schenkel-type the clock signals being boosted to a value being higher than the input voltage value
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Amplifiers (AREA)
- Dc-Dc Converters (AREA)
Description
以下描述係關於一種用於產生一高於一輸入電壓之增壓電壓的電路,及一種用於操作該增壓電壓產生電路之方法。The following description relates to a circuit for generating a boost voltage higher than an input voltage, and a method for operating the boost voltage generating circuit.
本申請案主張2009年12月17日申請之韓國專利申請案第10-2009-0126071號及2010年4月19日申請之韓國專利申請案第10-2010-0035631號之權利,該等專利申請案中之每一者的整體揭示內容出於所有目的以全文引用之方式併入本文中。The present application claims the rights of the Korean Patent Application No. 10-2009-0126071, filed on Dec. 17, 2009, and the Korean Patent Application No. 10-2010-003563, filed on Apr. 19, 2010. The entire disclosure of each of the examples is hereby incorporated by reference in its entirety for all purposes.
不同半導體器件藉由自外部供應之電壓來操作內部電路。由於不同位準之電壓用於半導體器件之內部構成元件中,因此難以自器件外部供應待在半導體器件內部使用之所有電壓。因此,半導體器件配備有一內部電壓產生電路以在器件內部產生不同位準之電壓。Different semiconductor devices operate internal circuits by voltages supplied from the outside. Since voltages of different levels are used in the internal constituent elements of the semiconductor device, it is difficult to supply all voltages to be used inside the semiconductor device from outside the device. Therefore, the semiconductor device is equipped with an internal voltage generating circuit to generate voltages of different levels inside the device.
特定言之,當自電池供應之電源電壓之位準為低的且待在器件內部使用之驅動電壓之位準高於輸入電源電壓之位準時,使用電池電源之器件應能夠產生位準高於自外部輸入之輸入電源電壓之位準的電壓。將產生位準高於輸入電壓之位準的電壓DC-DC轉換器分為使用電感器之切換模式電源供應器(SMPS)類型及使用電容器之電荷泵類型。在行動器件之狀況下,由於電流消耗並不大,因此行動器件通常具有電荷泵類型。In particular, when the level of the power supply voltage supplied from the battery is low and the level of the driving voltage to be used inside the device is higher than the level of the input power supply voltage, the device using the battery power supply should be able to generate a higher level. The voltage at the level of the input supply voltage from the external input. A voltage DC-DC converter that generates a level higher than the input voltage is classified into a switched mode power supply (SMPS) type using an inductor and a charge pump type using a capacitor. In the case of mobile devices, mobile devices typically have a charge pump type because current consumption is not large.
不同於線性電源供應器,SMPS之傳遞型電晶體(pass transistor)在全通狀態與全斷狀態之間極快速地(通常在50 kHz與1 MHz之間)切換,此使所浪費之能量最小化。藉由改變接通時間與斷開時間之比率來提供電壓調節。相比之下,線性電源供應器必須耗散過量電壓以調節輸出。此較高效率為SMPS之主要優點。當需要較高效率、較小大小及/或較輕重量時,使用切換調節器來替換線性調節器。Unlike linear power supplies, the SMPS's pass transistor switches very fast (typically between 50 kHz and 1 MHz) between the all-on state and the fully-off state, which minimizes wasted energy. Chemical. Voltage regulation is provided by varying the ratio of on time to off time. In contrast, a linear power supply must dissipate excess voltage to regulate the output. This higher efficiency is the main advantage of SMPS. When a higher efficiency, smaller size, and/or lighter weight is required, a switching regulator is used to replace the linear regulator.
圖1為展示增壓電壓產生電路之電壓、信號及輸出電壓的方塊圖。1 is a block diagram showing the voltage, signal, and output voltage of a boost voltage generating circuit.
將輸入電壓VCIN及增壓率BT[a:0]輸入至增壓電壓產生電路100中。增壓電壓產生電路100基於由增壓率BT[a:0]表示之增壓率來使輸入電壓VCIN增壓,並產生增壓電壓VOUT。舉例而言,當增壓率BT[a:0]為2時(其意謂兩倍或雙倍),增壓電壓產生電路100使輸入電壓VCIN增壓兩倍(亦即,使電壓加倍),並產生增壓電壓VOUT。The input voltage VCIN and the supercharging rate BT[a:0] are input to the boost voltage generating circuit 100. The boost voltage generating circuit 100 boosts the input voltage VCIN based on the boost rate indicated by the boost rate BT[a:0], and generates the boost voltage VOUT. For example, when the boost rate BT[a:0] is 2 (which means double or double), the boost voltage generating circuit 100 boosts the input voltage VCIN by two times (ie, doubles the voltage) And generate a boost voltage VOUT.
儘管增壓電壓VOUT之目標值為相同的,但在增壓電壓產生電路100中可存在不同之輸入電壓VCIN及增壓率BT[a:0]。舉例而言,當增壓電壓VOUT之目標值為3 V時,(a) 3 V之增壓電壓VOUT可藉由使1.5 V之輸入電壓VCIN增壓兩倍(亦即,加倍)來產生,或(b) 3 V之增壓電壓VOUT可藉由使1 V之輸入電壓VCIN增壓三倍(亦即,增至三倍)來產生。然而,儘管產生同一增壓電壓VOUT,但增壓電壓產生電路100所消耗之電流的量基於如何設定輸入電壓VCIN及增壓率BT[a:0]而可大大不同。Although the target value of the boost voltage VOUT is the same, there may be different input voltages VCIN and boost rates BT[a:0] in the boost voltage generating circuit 100. For example, when the target value of the boost voltage VOUT is 3 V, the boost voltage VOUT of (a) 3 V can be generated by boosting (ie, doubling) the input voltage VCIN of 1.5 V. Or (b) 3 V boost voltage VOUT can be generated by boosting the input voltage VCIN of 1 V by three times (ie, by three times). However, although the same boost voltage VOUT is generated, the amount of current consumed by the boost voltage generating circuit 100 may be greatly different based on how the input voltage VCIN and the boost rate BT[a:0] are set.
然而,習知電源供應器並不根據增壓電壓VOUT之目標位準而使輸入至增壓電壓產生電路100中之輸入電壓VCIN及增壓率BT[a:0]最佳化。However, the conventional power supply does not optimize the input voltage VCIN and the boost rate BT[a:0] input to the boost voltage generating circuit 100 in accordance with the target level of the boost voltage VOUT.
在一一般態樣中,提供一種增壓電壓產生電路,其包括:一增壓電路,其經組態以:基於一增壓率使一輸入電壓增壓,及輸出一增壓電壓;一增壓率設定單元,其經組態以:接收關於該輸入電壓之一位準之一回饋,及設定該增壓率;及一輸入電壓位準設定單元,其經組態以回應於以下各項而設定該輸入電壓之該位準:該增壓電壓之一目標位準及該增壓率。In a general aspect, a boost voltage generating circuit is provided, comprising: a boosting circuit configured to: boost an input voltage based on a boost rate, and output a boost voltage; a pressure rate setting unit configured to: receive one of a feedback level of one of the input voltages, and set the boost rate; and an input voltage level setting unit configured to respond to the following The level of the input voltage is set: a target level of the boost voltage and the boost rate.
在該增壓電壓產生電路中,該輸入電壓位準設定單元可經進一步組態以根據以下之一值來設定該輸入電壓之一目標位準:(該增壓電壓之該目標位準/該增壓率)。In the boost voltage generating circuit, the input voltage level setting unit may be further configured to set a target level of the input voltage according to one of the following values: (the target level of the boost voltage / the Supercharge rate).
在該增壓電壓產生電路中,該增壓率設定單元可經進一步組態以回應於該輸入電壓之該目標位準超出該輸入電壓之一位準範圍而增大該增壓率。In the boost voltage generating circuit, the boost rate setting unit may be further configured to increase the boost rate in response to the target level of the input voltage exceeding a level of the input voltage.
在該增壓電壓產生電路中,該增壓率設定單元可經進一步組態以回應於在減小該增壓率時該輸入電壓之該目標位準屬於該輸入電壓之該位準範圍而減小該增壓率。In the boost voltage generating circuit, the boost rate setting unit may be further configured to respond to the target level of the input voltage falling within the level range of the input voltage when the boost rate is decreased The boost rate is small.
在該增壓電壓產生電路中,該輸入電壓位準設定單元可包括:一輸出電壓分壓器,其經組態以:將該增壓電壓除以基於該增壓率判定之一比率,及輸出經分壓之電壓;一輸入參考電壓選擇器,其經組態以基於該增壓率而在基於該增壓電壓之該目標位準所產生之複數個電壓中選擇一輸入參考電壓;一比較器,其經組態以:比較該輸出電壓分壓器之一輸出電壓與該輸入參考電壓選擇器之一輸出電壓,及產生一初步輸入電壓;及一放大器,其經組態以:放大該初步輸入電壓,及產生該輸入電壓。In the boost voltage generating circuit, the input voltage level setting unit may include: an output voltage divider configured to: divide the boost voltage by a ratio based on the boost rate determination, and Outputting a divided voltage; an input reference voltage selector configured to select an input reference voltage based on the boost rate and a plurality of voltages generated based on the target level of the boost voltage; a comparator configured to: compare an output voltage of the output voltage divider with an output voltage of the input reference voltage selector, and generate a preliminary input voltage; and an amplifier configured to: amplify The preliminary input voltage and the generation of the input voltage.
在該增壓電壓產生電路中,該放大器包含:一比較器,其經組態為一線性調節器;及複數個電阻器。In the boost voltage generating circuit, the amplifier includes: a comparator configured as a linear regulator; and a plurality of resistors.
在該增壓電壓產生電路中,該輸出電壓分壓器可經進一步組態以按以下之一比率對該增壓電壓進行分壓:1/(該增壓率*該放大器之一放大率)。In the boost voltage generating circuit, the output voltage divider can be further configured to divide the boost voltage by a ratio of: 1/(the boost rate * one of the amplifiers) .
在該增壓電壓產生電路中,該輸入參考電壓選擇器可經進一步組態以根據下式選擇為該目標位準之一輸入參考電壓:該增壓電壓/(該增壓率*該放大器之一放大率)。In the boost voltage generating circuit, the input reference voltage selector may be further configured to input a reference voltage for one of the target levels according to the following formula: the boost voltage / (the boost rate * the amplifier a magnification).
在該增壓電壓產生電路中,該輸入電壓位準設定單元進一步包括一電壓箝,該電壓箝經組態以防止該初步輸入電壓過度增大或減小。In the boost voltage generating circuit, the input voltage level setting unit further includes a voltage clamp configured to prevent the preliminary input voltage from excessively increasing or decreasing.
在該增壓電壓產生電路中,該電壓箝可包括一類比多工器,其經組態以回應於該增壓率而在輸入之電壓中選擇一下箝位電壓。In the boost voltage generating circuit, the voltage clamp can include an analog multiplexer configured to select a clamp voltage among the input voltages in response to the boost rate.
在該增壓電壓產生電路中,該輸入電壓位準設定單元可進一步包括一補償電路,其經組態以使該初步輸入電壓之位準穩定。In the boost voltage generating circuit, the input voltage level setting unit may further include a compensation circuit configured to stabilize the level of the preliminary input voltage.
在該增壓電壓產生電路中,該補償電路包含:一電阻器;及一電容器。In the boost voltage generating circuit, the compensation circuit includes: a resistor; and a capacitor.
在該增壓電壓產生電路中,該增壓率設定單元可包括:一分壓器,其經組態以產生:一增壓率遞增參考電壓,及一增壓率遞減參考電壓;一旗標信號產生器,其經組態以:回應於該初步輸入電壓高於該增壓率遞增參考電壓而啟用一增壓率遞增旗標信號,及回應於該初步輸入電壓低於該增壓率遞減參考電壓而啟用一增壓率遞減旗標信號;及一增壓率控制器,其經組態以回應於該增壓率遞增旗標信號及/或該增壓率遞減旗標信號而設定該增壓率。In the boost voltage generating circuit, the boost rate setting unit may include: a voltage divider configured to generate: a boost rate increment reference voltage, and a boost rate decrement reference voltage; a flag a signal generator configured to: responsive to the initial input voltage being higher than the boost rate increment reference voltage to enable a boost rate increment flag signal, and responsive to the preliminary input voltage being lower than the boost rate decrement a boost rate decrement flag signal is enabled with reference to the voltage; and a boost rate controller configured to set the boost rate increase flag signal and/or the boost rate down flag signal in response to the boost rate flag signal Supercharging rate.
在該增壓電壓產生電路中,該增壓率設定單元可進一步包括一初始值判定器,其經組態以向該增壓率控制器提供關於該增壓率之一初始值的資訊。In the boost voltage generating circuit, the boost rate setting unit may further include an initial value determiner configured to provide the boost rate controller with information regarding an initial value of the boost rate.
在該增壓電壓產生電路中,該初始值判定器可包括複數個比較器,該複數個比較器經組態以比較各別輸入參考電壓值與一初始參考電壓。In the boost voltage generating circuit, the initial value determiner can include a plurality of comparators configured to compare the respective input reference voltage values with an initial reference voltage.
在該增壓電壓產生電路中,該增壓率控制器可經進一步組態以:回應於該增壓率遞增旗標信號經啟用歷時長於一參考時間而增大該增壓率,及回應於該增壓率遞減旗標信號經啟用歷時長於一參考時間而減小該增壓率。In the boost voltage generating circuit, the boost rate controller may be further configured to: increase the boost rate in response to the boost rate increment flag signal being enabled for longer than a reference time, and in response to The boost rate decrement flag signal is reduced by the enablement duration for longer than a reference time.
在該增壓電壓產生電路中,該增壓率控制器可包括:複數個計數器、複數個比較器、複數個正反器、一初始值解碼器,及一可預設之遞增/遞減計數器。In the boost voltage generating circuit, the boost rate controller may include: a plurality of counters, a plurality of comparators, a plurality of flip-flops, an initial value decoder, and a preset up/down counter.
在該增壓電壓產生電路中,該可預設之遞增/遞減計數器可經組態以將輸入至該可預設之遞增/遞減計數器中之一初始增壓率信號設定為該增壓率之一初始值;回應於為邏輯高之該增壓率遞增旗標信號,該複數個計數器中之一第一計數器可經組態以對一時脈計數從而增大一遞增計數值;及回應於該增大之遞增計數值收斂至該增壓率遞增參考電壓,該可預設遞增/遞減計數器可經進一步組態以啟用該增壓率之一增大。In the boost voltage generating circuit, the preset up/down counter may be configured to set an initial boost rate signal input to the preset up/down counter to the boost rate An initial value; in response to the boost rate increment flag signal being a logic high, one of the plurality of counters can be configured to count a clock to increase an up count value; and in response to the The increased up count value converges to the boost rate increment reference voltage, and the preset up/down counter can be further configured to enable one of the boost rates to increase.
在該增壓電壓產生電路中,該可預設之遞增/遞減計數器可經組態以將輸入至該可預設之遞增/遞減計數器中之一初始增壓率信號設定為該增壓率之一初始值;回應於為邏輯高之該增壓率遞減旗標信號,該複數個計數器中之一第二計數器可經組態以對一時脈計數從而增大一遞減計數值;及回應於該增大之遞增計數值收斂至該增壓率遞減參考電壓,該可預設遞增/遞減計數器可經進一步組態以啟用該增壓率之一減小。In the boost voltage generating circuit, the preset up/down counter may be configured to set an initial boost rate signal input to the preset up/down counter to the boost rate An initial value; in response to the boost rate decrement flag signal being a logic high, one of the plurality of counters is configurable to count a clock to increase a countdown value; and responsive to the The increased incremental count value converges to the boost rate decrementing reference voltage, and the pre-settable up/down counter can be further configured to enable one of the boost rate reductions.
在該增壓電壓產生電路中,該可預設之遞增/遞減計數器可經組態以將輸入至該可預設之遞增/遞減計數器中之一初始增壓率信號設定為該增壓率之一初始值;及回應於為邏輯高之該增壓率遞減旗標信號,該複數個計數器中之一第二計數器可經組態以對一時脈計數從而增大一遞減計數值,該增壓率遞減旗標信號在增大該遞減計數值時經轉變至邏輯低,使得該遞減計數值不進一步增大,使得該可預設之遞增/遞減計數器不啟用該增壓率之一改變。In the boost voltage generating circuit, the preset up/down counter may be configured to set an initial boost rate signal input to the preset up/down counter to the boost rate An initial value; and in response to the boost rate decrement flag signal being logic high, one of the plurality of counters can be configured to count a clock to increase a decrement count value, the boost The rate decrement flag signal transitions to a logic low when the down count value is increased such that the down count value does not increase further such that the preset up/down counter does not enable one of the boost rate changes.
在該增壓電壓產生電路中,該增壓率遞增參考電壓之一位準可根據下式來判定:一電源電壓/(該放大器之一放大率),且該增壓率遞減參考電壓之一位準可根據下式來判定:該電源電壓*(該增壓率-一增壓率改變之一單位)/(該放大器之該放大率*該增壓率)。In the boost voltage generating circuit, one of the boost rate increment reference voltage levels can be determined according to the following equation: a power supply voltage / (one of the amplifier amplification factors), and the boost rate is decremented by one of the reference voltages The level can be determined according to the following equation: the power supply voltage * (the boost rate - a unit of pressure change rate) / (the amplification factor of the amplifier * the boost rate).
在另一一般態樣中,提供一種用於操作一增壓電壓產生電路之方法,該增壓電壓產生電路藉由基於一增壓率使一輸入電壓增壓來產生一增壓電壓,該方法包括:產生目標為以下之一位準的該輸入電壓:(該增壓電壓之一目標電壓/一增壓率);回應於該輸入電壓之該目標位準超出該輸入電壓之一位準範圍而增大該增壓率;及回應於在該增壓率減小時該輸入電壓之該目標位準屬於該輸入電壓之該位準範圍而減小該增壓率。In another general aspect, a method for operating a boost voltage generating circuit for generating a boosted voltage by boosting an input voltage based on a boost rate is provided. The method includes: generating the input voltage whose target is one of the following: (one target voltage of the boost voltage / a boost rate); and the target level in response to the input voltage exceeds a level of the input voltage And increasing the boost rate; and decreasing the boost rate in response to the target level of the input voltage falling within the level range of the input voltage when the boost rate is decreased.
在該方法中,該輸入電壓不可具有一高於一電源電壓之位準。In the method, the input voltage may not have a level higher than a power supply voltage.
在該方法中,該增壓率之該減小可回應於該輸入電壓之該目標位準低於以下之一值而執行:(該增壓率-一增壓率改變之一單位)/該增壓率。In the method, the decrease in the boost rate may be performed in response to the target level of the input voltage being lower than one of: (the boost rate - a unit of pressure change rate) / Supercharging rate.
在另一一般態樣中,提供一種產生一增壓電壓之方法,該方法包括:基於一增壓率使一輸入電壓增壓;輸出一增壓電壓;接收關於該輸入電壓之一位準之一回饋;設定該增壓率;及回應於以下各項而設定該輸入電壓之該位準:該增壓電壓之一目標位準及該增壓率。In another general aspect, a method of generating a boost voltage is provided, the method comprising: boosting an input voltage based on a boost rate; outputting a boost voltage; receiving a level with respect to the input voltage a feedback; setting the boost rate; and setting the level of the input voltage in response to: a target level of the boost voltage and the boost rate.
該方法可進一步包括根據以下之一值來設定該輸入電壓之一目標位準:(該增壓電壓之該目標位準/該增壓率)。The method can further include setting a target level of the input voltage based on one of: (the target level of the boost voltage / the boost rate).
該方法可進一步包括回應於該輸入電壓之該目標位準超出該輸入電壓之一位準範圍而增大該增壓率。The method can further include increasing the boost rate in response to the target level of the input voltage exceeding a level of the input voltage.
該方法可進一步包括回應於在該增壓率減小時該輸入電壓之該目標位準屬於該輸入電壓之該位準範圍而減小該增壓率。The method can further include reducing the boost rate in response to the target level of the input voltage being within the level of the input voltage as the boost rate decreases.
該方法可進一步包括:將該增壓電壓除以基於該增壓率判定之一比率;輸出經分壓之電壓;基於該增壓率而在基於該增壓電壓之該目標位準所產生之複數個電壓中選擇一輸入參考電壓;比較一輸出電壓與一輸入參考電壓;產生一初步輸入電壓;放大該初步輸入電壓;及產生該輸入電壓。The method may further include: dividing the boosted voltage by a ratio based on the boost rate determination; outputting the divided voltage; generating the target level based on the boosted voltage based on the boosting rate Selecting an input reference voltage among the plurality of voltages; comparing an output voltage with an input reference voltage; generating a preliminary input voltage; amplifying the preliminary input voltage; and generating the input voltage.
該方法可進一步包括按以下之一比率對該增壓電壓進行分壓:1/(該增壓率*一放大率)。The method may further comprise dividing the boost voltage by one of: 1/(the boost rate * a magnification).
該方法可進一步包括根據下式選擇一係該目標位準之輸入參考電壓:該增壓電壓/(該增壓率*一放大率)。The method can further include selecting an input reference voltage for the target level according to the following equation: the boost voltage / (the boost rate * a magnification).
該方法可進一步包括防止該初步輸入電壓過度增大或減小。The method can further include preventing the preliminary input voltage from excessively increasing or decreasing.
該方法可進一步包括回應於該增壓率而在輸入之電壓中選擇一下箝位電壓。The method can further include selecting a clamp voltage in the input voltage in response to the boost rate.
該方法可進一步包括使該初步輸入電壓之位準穩定。The method can further include stabilizing the level of the preliminary input voltage.
該方法可進一步包括:產生:一增壓率遞增參考電壓,及一增壓率遞減參考電壓;回應於該初步輸入電壓高於該增壓率遞增參考電壓而啟用一增壓率遞增旗標信號;回應於該初步輸入電壓低於該增壓率遞減參考電壓而啟用一增壓率遞減旗標信號;及回應於該增壓率遞增旗標信號及/或該增壓率遞減旗標信號而設定該增壓率。The method may further include: generating: a boost rate increment reference voltage, and a boost rate decrementing reference voltage; and in response to the preliminary input voltage being higher than the boost rate increment reference voltage, enabling a boost rate increment flag signal Transmitting a boost rate decrement flag signal in response to the preliminary input voltage being lower than the boost rate decrementing reference voltage; and responding to the boost rate increment flag signal and/or the boost rate down flag signal Set the boost rate.
該方法可進一步包括提供關於該增壓率之一初始值的資訊。The method can further include providing information regarding an initial value of the boost rate.
該方法可進一步包括比較各別輸入參考電壓值與一初始參考電壓。The method can further include comparing the respective input reference voltage values to an initial reference voltage.
該方法可進一步包括:回應於該增壓率遞增旗標信號經啟用歷時長於一參考時間而增大該增壓率,及回應於該增壓率遞減旗標信號經啟用歷時長於一參考時間而減小該增壓率。The method may further include: increasing the boost rate in response to the boost rate increment flag signal being enabled for longer than a reference time, and in response to the boost rate down flag signal being enabled for longer than a reference time Reduce the boost rate.
在該方法中,該增壓率遞增參考電壓之一位準可根據下式來判定:一電源電壓/(放大器之一放大率);且該增壓率遞減參考電壓之一位準根據下式來判定:該電源電壓*(該增壓率-一增壓率改變之一單位)/(該放大器之該放大率*該增壓率)。In the method, the boost level increment reference voltage level can be determined according to the following formula: a power supply voltage / (one of the amplifier amplification); and the boost rate decrementing one of the reference voltage levels according to the following formula To determine: the power supply voltage * (the boost rate - a unit of pressure change rate) / (the amplification rate of the amplifier * the boost rate).
其他特徵及態樣可自以下[實施方式]、圖式及申請專利範圍而顯而易見。Other features and aspects can be apparent from the following [embodiments], drawings, and claims.
提供以下[實施方式]以輔助讀者獲得對本文中所描述之方法、裝置及/或系統之全面理解。因此,將向一般熟習此項技術者建議本文中所描述之系統、裝置及/或方法之各種改變、修改及等效物。所描述之處理步驟及/或操作之進展為一實例;然而,步驟及/或操作之順序並不限於本文中所闡述之順序,且除有必要以特定次序發生之步驟及/或操作外,步驟及/或操作之順序可如此項技術中所知地進行改變。又,為了增強清晰度及簡明度,可省略對熟知功能及構造之描述。The following [embodiments] are provided to assist the reader in obtaining a comprehensive understanding of the methods, devices, and/or systems described herein. Accordingly, various changes, modifications, and equivalents of the systems, devices and/or methods described herein will be suggested to those skilled in the art. The described processing steps and/or the progress of the operations are an example; however, the order of steps and/or operations is not limited to the order set forth herein, and unless the steps and/or operations that occur in a particular order are necessary, The order of steps and/or operations can be varied as known in the art. Also, descriptions of well-known functions and constructions may be omitted for the purpose of enhancing clarity and conciseness.
圖2為說明根據一實施例之一增壓電壓產生電路的方塊圖。2 is a block diagram illustrating a boost voltage generating circuit in accordance with an embodiment.
參看圖2,增壓電壓產生電路包括一增壓電路200、一增壓率設定單元210,及一輸入電壓位準設定單元220。Referring to FIG. 2, the boost voltage generating circuit includes a boosting circuit 200, a boost rate setting unit 210, and an input voltage level setting unit 220.
增壓電路200可基於一增壓率BT[a:0]使一輸入電壓VCIN增壓,且可輸出一係輸出電壓的增壓電壓VOUT。因此,增壓電壓VOUT可為輸入電壓VCIN乘以增壓率BT[a:0]的乘積。舉例而言,當增壓率BT[a:0]為「2」且輸入電壓VCIN為1 V時,增壓電壓VOUT可變為2 V。當增壓率BT[a:0]為「3」且輸入電壓VCIN為0.8 V時,增壓電壓VOUT可變為2.4 V。The boost circuit 200 can boost an input voltage VCIN based on a boost rate BT[a:0] and can output a boost voltage VOUT of a series of output voltages. Therefore, the boost voltage VOUT can be the product of the input voltage VCIN multiplied by the boost rate BT[a:0]. For example, when the boost rate BT[a:0] is "2" and the input voltage VCIN is 1 V, the boost voltage VOUT can be changed to 2 V. When the boost rate BT[a:0] is "3" and the input voltage VCIN is 0.8 V, the boost voltage VOUT can be changed to 2.4 V.
輸入電壓位準設定單元220可回應於增壓電壓VOUT之目標位準及增壓率BT[a:0]而設定輸入電壓VCIN之位準。舉例而言,輸入電壓位準設定單元220可設定藉由將增壓電壓VOUT之目標位準除以增壓率BT[a:0](例如,增壓電壓VOUT之目標位準/增壓率BT[a:0])所獲得之值作為輸入電壓VCIN的目標位準。儘管輸入電壓VCIN之目標位準可為增壓電壓VOUT之目標位準除以增壓率BT[a:0],但輸入電壓VCIN之位準可能低於藉由將增壓電壓VOUT之目標位準除以增壓率BT[a:0](例如,增壓電壓VOUT之目標位準/增壓率BT[a:0])所獲得之值。因為輸入電壓VCIN之目標位準可能超出電源電壓VDD之位準,所以輸入電壓VCIN不可高於電源電壓VDD。The input voltage level setting unit 220 can set the level of the input voltage VCIN in response to the target level of the boost voltage VOUT and the boost rate BT[a:0]. For example, the input voltage level setting unit 220 can be configured to divide the target level of the boost voltage VOUT by the boost rate BT[a:0] (eg, the target level/boost rate of the boost voltage VOUT). The value obtained by BT[a:0]) is used as the target level of the input voltage VCIN. Although the target level of the input voltage VCIN may be the target level of the boost voltage VOUT divided by the boost rate BT[a:0], the level of the input voltage VCIN may be lower than the target of the boost voltage VOUT. The value obtained by dividing the supercharge rate BT[a:0] (for example, the target level/boost rate BT[a:0] of the boost voltage VOUT). Since the target level of the input voltage VCIN may exceed the level of the power supply voltage VDD, the input voltage VCIN may not be higher than the power supply voltage VDD.
[等式1][Equation 1]
VCIN=增壓電壓VOUT之目標位準/增壓率BT[a:0]VCIN = target level/boost rate of boost voltage VOUT BT[a:0]
增壓率設定單元210可接收關於輸入電壓VCIN之位準之回饋,且可設定增壓率BT[a:0]。增壓率設定單元210可回應於輸入電壓VCIN之目標位準處於輸入電壓VCIN不可具有之位準而增大增壓率BT[a:0]。輸入電壓VCIN之目標位準可判定為藉由將增壓電壓VOUT之目標位準除以增壓率BT[a:0](增壓電壓VOUT之目標位準/增壓率BT[a:0])所獲得的值。回應於藉由將增壓電壓VOUT之目標位準除以增壓率BT[a:0](例如,增壓電壓VOUT之目標位準/增壓率BT[a:0])所獲得的值高於電源電壓VDD,輸入電壓VCIN不可收斂至其目標位準。在此狀況下,增壓率設定單元210可增大增壓率BT[a:0]。可僅在需要提高增壓率BT[a:0]時提高增壓率BT[a:0]。由於輸入電壓VCIN之目標位準為藉由將增壓電壓VOUT之目標位準除以增壓率BT[a:0](例如,增壓電壓VOUT之目標位準/增壓率BT[a:0])所獲得的值,因此回應於經增大之增壓率BT[a:0],輸入電壓VCIN之目標位準亦可減小。The boost rate setting unit 210 can receive feedback on the level of the input voltage VCIN, and can set the boost rate BT[a:0]. The boost rate setting unit 210 may increase the boost rate BT[a:0] in response to the target level of the input voltage VCIN being at a level that the input voltage VCIN cannot have. The target level of the input voltage VCIN can be determined by dividing the target level of the boost voltage VOUT by the boost rate BT[a:0] (the target level of the boost voltage VOUT/boost rate BT[a:0] ]) The value obtained. In response to a value obtained by dividing the target level of the boost voltage VOUT by the boost rate BT[a:0] (eg, the target level/boost rate BT[a:0] of the boost voltage VOUT) Above the supply voltage VDD, the input voltage VCIN cannot converge to its target level. In this case, the boost rate setting unit 210 can increase the boost rate BT[a:0]. The boost rate BT[a:0] can be increased only when it is necessary to increase the supercharging rate BT[a:0]. Since the target level of the input voltage VCIN is obtained by dividing the target level of the boost voltage VOUT by the boost rate BT[a:0] (for example, the target level of the boost voltage VOUT/boost rate BT[a: 0]) The value obtained, so in response to the increased boost rate BT[a:0], the target level of the input voltage VCIN can also be reduced.
儘管增壓率BT[a:0]可減小一個步長,但增壓率設定單元210可回應於輸入電壓VCIN之目標位準處於輸入電壓VCIN可具有之位準而減小增壓率BT[a:0]。由於輸入電壓VCIN之目標位準為藉由將增壓電壓VOUT之目標位準除以增壓率BT[a:0](例如,增壓電壓VOUT之目標位準/增壓率BT[a:0])所獲得的值,因此回應於經減小之增壓率BT[a:0],輸入電壓VCIN之目標位準可增大。若減小增壓率BT[a:0]並增大輸入電壓VCIN之目標位準,且輸入電壓VCIN之經增大之目標位準變為高於電源電壓VDD,則可再次增大增壓率BT[a:0]。Although the boost rate BT[a:0] can be reduced by one step, the boost rate setting unit 210 can decrease the boost rate BT in response to the target level of the input voltage VCIN being at a level that the input voltage VCIN can have. [a:0]. Since the target level of the input voltage VCIN is obtained by dividing the target level of the boost voltage VOUT by the boost rate BT[a:0] (for example, the target level of the boost voltage VOUT/boost rate BT[a: 0]) The obtained value, therefore in response to the reduced boost rate BT[a:0], the target level of the input voltage VCIN can be increased. If the boost rate BT[a:0] is decreased and the target level of the input voltage VCIN is increased, and the increased target level of the input voltage VCIN becomes higher than the power supply voltage VDD, the boost can be increased again. Rate BT[a:0].
增壓率設定單元210可執行所有上述操作。換言之,增壓率設定單元210可僅在需要增大增壓率BT[a:0]時增大增壓率BT[a:0],且增壓率設定單元210可試圖執行用於使增壓率BT[a:0]減小與可准許之量一樣多的一操作。The supercharging rate setting unit 210 can perform all of the above operations. In other words, the boost rate setting unit 210 may increase the boost rate BT[a:0] only when it is required to increase the boost rate BT[a:0], and the boost rate setting unit 210 may attempt to perform the increase The pressure rate BT[a:0] reduces an operation as much as the allowable amount.
增壓操作為用於產生位準高於輸入電壓之位準之電壓的操作。增壓率變得愈高,則可能消耗愈多電流。因此,回應於產生具有同一位準的電壓,可藉由減小增壓率來減少增壓操作所消耗之電流的量。舉例而言,藉由使2 V增壓1.5倍來產生3 V電壓所消耗的電流較少於藉由使1 V增壓三倍來產生3 V電壓消耗的電流。根據一實施例,由於經由增壓率設定單元210及輸入電壓位準設定單元220之操作將增壓率BT[a:0]設定為最小值,因此可使增壓電壓產生電路之電流消耗最小化。The boost operation is an operation for generating a voltage having a level higher than the level of the input voltage. The higher the boost rate becomes, the more current may be consumed. Therefore, in response to generating a voltage having the same level, the amount of current consumed by the boosting operation can be reduced by reducing the boost rate. For example, generating a 3 V voltage by boosting 2 V by 1.5 times consumes less current than generating a 3 V voltage by three times the 1 V boost. According to an embodiment, since the boost rate BT[a:0] is set to a minimum value by the operation of the boost rate setting unit 210 and the input voltage level setting unit 220, the current consumption of the boost voltage generating circuit can be minimized. Chemical.
圖3為說明圖2之增壓電壓產生電路的詳細方塊圖。FIG. 3 is a detailed block diagram illustrating the boost voltage generating circuit of FIG. 2. FIG.
參看圖3,增壓率設定單元210可包括一分壓器311、一旗標信號產生器312、一增壓率控制器313,及一初始值判定器314。輸入電壓位準設定單元220可包括一輸出電壓分壓器321、一輸入參考電壓選擇器322、一比較器323、一放大器324、一下箝位電壓選擇器325、一電壓箝326,及一補償電路327。Referring to FIG. 3, the boost rate setting unit 210 may include a voltage divider 311, a flag signal generator 312, a boost rate controller 313, and an initial value determiner 314. The input voltage level setting unit 220 can include an output voltage divider 321 , an input reference voltage selector 322 , a comparator 323 , an amplifier 324 , a lower clamp voltage selector 325 , a voltage clamp 326 , and a compensation Circuit 327.
分壓器311可產生一增壓率遞增參考電壓BTUP_REF及一增壓率遞減參考電壓BTDN_REF。回應於初步輸入電壓VCIN_F高於增壓率遞增參考電壓BTUP_REF,旗標信號產生器312可啟用增壓率遞增旗標信號BTUP_FG。回應於初步輸入電壓VCIN_F低於增壓率遞減參考電壓BTDN_REF,旗標信號產生器312可啟用增壓率遞減旗標信號BTDN_FG。增壓率控制器313可回應於增壓率遞增旗標信號BTUP_FG及增壓率遞減旗標信號BTDN_FG而設定增壓率BT[a:0]。初始值判定器314可向增壓率控制器313提供關於增壓率BT[a:0]之初始值的信號BT_INI[m:0]。The voltage divider 311 can generate a boost rate increment reference voltage BTUP_REF and a boost rate decrease reference voltage BTDN_REF. In response to the initial input voltage VCIN_F being higher than the boost rate increment reference voltage BTUP_REF, the flag signal generator 312 can enable the boost rate increment flag signal BTUP_FG. In response to the preliminary input voltage VCIN_F being lower than the boost rate decrement reference voltage BTDN_REF, the flag signal generator 312 can enable the boost rate decrement flag signal BTDN_FG. The boost rate controller 313 can set the boost rate BT[a:0] in response to the boost rate increase flag signal BTUP_FG and the boost rate down flag signal BTDN_FG. The initial value determiner 314 can provide the boost rate controller 313 with a signal BT_INI[m:0] regarding the initial value of the boost rate BT[a:0].
輸出電壓分壓器321可將增壓電壓VOUT除以基於增壓率BT[a:0]判定之比率,且可輸出至少一經分壓之電壓。輸入參考電壓選擇器322可基於增壓率BT[a:0]在複數個電壓VR_REF[m:0]中選擇一輸入參考電壓VC_REF0,該複數個電壓VR_REF[m:0]可基於增壓電壓VOUT之目標位準而產生。比較器323可比較輸出電壓分壓器321之輸出電壓VOUT_F與輸入參考電壓選擇器322之輸出電壓VC_REF0,且可產生初步輸入電壓VCIN_F。放大器324可放大初步輸入電壓VCIN_F,且可產生輸入電壓VCIN。下箝位電壓選擇器325可選擇一下箝位電壓VCMP_DN0,且可輸出一經選擇之下箝位電壓。電壓箝326可將初步輸入電壓VCIN_F控制為不高於上箝位電壓VCMP_UP0且不低於下箝位電壓VCMP_DN0,使得初步輸入電壓VCIN_F不會變得過高或過低。補償電路327可有助於使初步輸入電壓VCIN_F之位準穩定。將參看隨附圖式詳細描述構成元件之結構及操作。The output voltage divider 321 divides the boost voltage VOUT by a ratio determined based on the boost rate BT[a:0], and may output at least one divided voltage. The input reference voltage selector 322 may select an input reference voltage VC_REF0 among the plurality of voltages VR_REF[m:0] based on the boost rate BT[a:0], and the plurality of voltages VR_REF[m:0] may be based on the boost voltage The target level of VOUT is generated. The comparator 323 can compare the output voltage VOUT_F of the output voltage divider 321 with the output voltage VC_REF0 of the input reference voltage selector 322, and can generate a preliminary input voltage VCIN_F. Amplifier 324 can amplify preliminary input voltage VCIN_F and can generate input voltage VCIN. The lower clamp voltage selector 325 can select the lower clamp voltage VCMP_DN0 and can output a selected clamp voltage. The voltage clamp 326 can control the preliminary input voltage VCIN_F to be not higher than the upper clamp voltage VCMP_UP0 and not lower than the lower clamp voltage VCMP_DN0 such that the preliminary input voltage VCIN_F does not become too high or too low. The compensation circuit 327 can help stabilize the level of the preliminary input voltage VCIN_F. The structure and operation of the constituent elements will be described in detail with reference to the accompanying drawings.
圖4為說明根據一實施例之一分壓器311的示意圖。FIG. 4 is a schematic diagram illustrating a voltage divider 311 in accordance with an embodiment.
參看圖4,分壓器311可包括耦接至電源電壓VDD及接地之複數個電阻器,及一類比電壓多工器(MUX)401。在以下實例(A)至(D)中,詳細描述由分壓器311產生之增壓率遞增參考電壓BTUP_REF、增壓率遞減參考電壓BTDN_REF、上箝位電壓VCMP_UP0及一初始參考電壓BTINI_REF。Referring to FIG. 4, the voltage divider 311 can include a plurality of resistors coupled to the supply voltage VDD and ground, and an analog multiplexer (MUX) 401. In the following examples (A) to (D), the boost rate increment reference voltage BTUP_REF generated by the voltage divider 311, the boost rate decrement reference voltage BTDN_REF, the upper clamp voltage VCMP_UP0, and an initial reference voltage BTINI_REF are described in detail.
(A)增壓率遞增參考電壓BTUP_REF為用於增大增壓率BT[a:0]之一參考電壓。可比較增壓率遞增參考電壓BTUP_REF與初步輸入電壓VCIN_F。比較結果可用以判定是否增大增壓率BT[a:0]。初步輸入電壓VCIN_F為可具有(例如)輸入電壓VCIN之位準之一半的電壓。回應於與電源電壓VDD相同之輸入電壓VCIN,不論初步輸入電壓VCIN_F變得多高,輸入電壓VCIN皆不可能變得更高。簡言之,當初步輸入電壓VCIN_F具有為電源電壓VDD/2之位準時,即使將初步輸入電壓VCIN_F之位準提高成更高,增壓電壓VOUT亦不可能進一步增大。因此,該點之電壓可成為增壓率遞增參考電壓BTUP_REF之位準。增壓率遞增參考電壓BTUP_REF之位準可設定為電源電壓VDD/2,此係因為放大器324之增壓率可為2。因此,為了以一般等式表示增壓率遞增參考電壓BTUP_REF,增壓率遞增參考電壓BTUP_REF之位準可變為電源電壓VDD/放大器324之增壓率。(A) The boost rate increment reference voltage BTUP_REF is a reference voltage for increasing the boost rate BT[a:0]. The boost rate increment reference voltage BTUP_REF and the preliminary input voltage VCIN_F can be compared. The comparison result can be used to determine whether to increase the supercharging rate BT[a:0]. The preliminary input voltage VCIN_F is a voltage that can have, for example, one-half of the level of the input voltage VCIN. In response to the same input voltage VCIN as the power supply voltage VDD, the input voltage VCIN cannot become higher regardless of how high the initial input voltage VCIN_F becomes. In short, when the preliminary input voltage VCIN_F has a level of the power supply voltage VDD/2, even if the level of the preliminary input voltage VCIN_F is raised to be higher, the boosted voltage VOUT cannot be further increased. Therefore, the voltage at this point can be the level of the boost rate increment reference voltage BTUP_REF. The level of the boost rate increment reference voltage BTUP_REF can be set to the power supply voltage VDD/2 because the boost rate of the amplifier 324 can be 2. Therefore, in order to express the boost rate increment reference voltage BTUP_REF in a general equation, the level of the boost rate increment reference voltage BTUP_REF may be changed to the power supply voltage VDD/the boost rate of the amplifier 324.
[等式2][Equation 2]
BTUP_REF=VDD/放大器之增壓率BTUP_REF=VDD/amplifier boost rate
(B)增壓率遞減參考電壓BTDN_REF為用於減小增壓率BT[a:0]之參考電壓。可比較增壓率遞減參考電壓BTDN_REF與初步輸入電壓VCIN_F。比較之決定結果可用以判定是否減小增壓率BT[a:0]。在本文中,m'表示增壓步長,且m自步長0開始。又,n'表示在0.5與1.5之間的增壓率。換言之,m之初始值為「0」,且0.5n'1.5。(B) The boost rate decrement reference voltage BTDN_REF is a reference voltage for reducing the boost rate BT[a:0]. The boost rate decrementing reference voltage BTDN_REF and the preliminary input voltage VCIN_F can be compared. The result of the comparison decision can be used to determine whether to reduce the boost rate BT[a:0]. In this context, m' denotes the boost step size and m starts from step 0. Also, n' represents a supercharging rate between 0.5 and 1.5. In other words, the initial value of m is "0" and 0.5 n' 1.5.
以下表1表示增壓步長m'及增壓率n'。輸入電壓VCIN與等於增壓率n'之因數相乘。Table 1 below shows the supercharging step m' and the supercharging rate n'. The input voltage VCIN is multiplied by a factor equal to the boost rate n'.
自表1可見,增壓步長m'與增壓率n'具有根據等式3之關係。As can be seen from Table 1, the boost step m' and the boost rate n' have a relationship according to Equation 3.
[等式3][Equation 3]
n'=(m'+3)/2n'=(m'+3)/2
儘管增壓率n'變低一個步長,但基於一點來設定增壓率遞減參考電壓BTDN_REF,在該點處,初步輸入電壓VCIN_F之位準低於為電源電壓VDD/2之值。因此,當由增壓步長m'表示增壓率遞減參考電壓BTDN_REF時,可根據等式4設定增壓率遞減參考電壓BTDN_REF。Although the boost rate n' is lowered by one step, the boost rate decrementing reference voltage BTDN_REF is set based on a point at which the level of the preliminary input voltage VCIN_F is lower than the value of the power supply voltage VDD/2. Therefore, when the boost rate decrement reference voltage BTDN_REF is represented by the boost step m', the boost rate decrement reference voltage BTDN_REF can be set according to Equation 4.
[等式4][Equation 4]
BTDN_REF(m')=VDD(m'+2)/((2*m')+6)BTDN_REF(m')=VDD(m'+2)/((2*m')+6)
當由增壓率(n')表示增壓率遞減參考電壓BTDN_REF時,可根據等式5設定增壓率遞減參考電壓BTDN_REF。When the boost rate decrement reference voltage BTDN_REF is represented by the boost rate (n'), the boost rate decrement reference voltage BTDN_REF can be set according to Equation 5.
[等式5][Equation 5]
BTDN_REF(n')=VDD(n'-0.5)/(2*n')BTDN_REF(n')=VDD(n'-0.5)/(2*n')
基於放大器324之放大率為2且一個增壓步長之差值為0.5之假設來獲得等式5中所使用之值。可如以下等式6表示此等值:The value used in Equation 5 is obtained on the assumption that the amplification factor of the amplifier 324 is 2 and the difference of one boost step is 0.5. This value can be expressed as Equation 6 below:
[等式6][Equation 6]
BTDN_REF(n')=VDD(n'-增壓率改變之單位)/(放大器之放大率*n')BTDN_REF(n')=VDD(n'-unit of change in boost rate)/(magnification of amplifier*n')
可選擇增壓率遞減參考電壓BTDN_REF之類比電壓多工器401可操作以基於放大率BT[a:0]來選擇上述增壓率遞減參考電壓BTDN_REF(BTDN_REF[m:0]),該放大率BT[a:0]為具有關於放大率n'之資訊的碼。The analog voltage multiplexer 401, which may select the boost rate decrement reference voltage BTDN_REF, is operable to select the above-described boost rate decrement reference voltage BTDN_REF (BTDN_REF[m:0]) based on the amplification factor BT[a:0], the amplification factor BT[a:0] is a code having information on the magnification n'.
(C)上箝位電壓VCMP_UP0可輸入至電壓箝326中以便防止增大在初步輸入電壓VCIN_F之位準不必要地增大且負載條件或增壓率BT[a:0]改變時初步輸入電壓VCIN_F收斂至目標值可能花費之時間的問題。初步輸入電壓VCIN_F滿足以下一點為重要的:(C) The upper clamp voltage VCMP_UP0 may be input to the voltage clamp 326 to prevent an increase in the initial input voltage when the level of the preliminary input voltage VCIN_F is unnecessarily increased and the load condition or the boost rate BT[a:0] is changed. The problem that VCIN_F can converge to the target value may take time. It is important that the initial input voltage VCIN_F meets the following:
[等式7][Equation 7]
VCIN_F=VDD/2。VCIN_F=VDD/2.
然而,初步輸入電壓VCIN_F可高於該點,且上箝位電壓VCMP_UP0可用以防止初步輸入電壓VCIN_F增大到高於該點。因此,可根據等式8設定上箝位電壓VCMP_UP0。However, the preliminary input voltage VCIN_F may be higher than this point, and the upper clamp voltage VCMP_UP0 may be used to prevent the preliminary input voltage VCIN_F from increasing above this point. Therefore, the upper clamp voltage VCMP_UP0 can be set according to Equation 8.
[等式8][Equation 8]
VCMP_UP0=VDD/2+aVCMP_UP0=VDD/2+a
本文中,「a」表示可(例如)不大於大約50 mV之容限。As used herein, "a" means a tolerance of, for example, no more than about 50 mV.
(D)初始參考電壓BTINI_REF為用以在初始增壓操作期間判定適當增壓率BT[a:0]的參考電壓。在初始操作中,由於可能需要輸入電壓VCIN以與電源電壓VDD之狀態相同的狀態開始,因此初始參考電壓BTINI_REF可設定為係電源電壓VDD/2的值。若考慮到增壓電壓產生電路之操作電流而給定某一容限,則初始參考電壓BTINI_REF可設定為係(電源電壓VDD/2+β)之值,其中β為大約50 mV之值。(D) The initial reference voltage BTINI_REF is a reference voltage used to determine the appropriate boost rate BT[a:0] during the initial boost operation. In the initial operation, since the input voltage VCIN may be required to start in the same state as the state of the power supply voltage VDD, the initial reference voltage BTINI_REF may be set to a value of the power supply voltage VDD/2. If a certain tolerance is given in consideration of the operating current of the boost voltage generating circuit, the initial reference voltage BTINI_REF can be set to a value of the system (power supply voltage VDD / 2 + β), where β is a value of about 50 mV.
圖5為說明根據一實施例之一旗標信號產生器312的示意圖。FIG. 5 is a diagram illustrating a flag signal generator 312 in accordance with an embodiment.
參看圖5,旗標信號產生器312可包括兩個比較器501及502。第一比較器501可比較初步輸入電壓VCIN_F與增壓率遞減參考電壓BTDN_REF,且可產生增壓率遞減旗標信號BTDN_FG。第二比較器502可比較初步輸入電壓VCIN_F與增壓率遞增參考電壓BTUP_REF,且可產生增壓率遞增旗標信號BTUP_FG。Referring to FIG. 5, the flag signal generator 312 can include two comparators 501 and 502. The first comparator 501 can compare the preliminary input voltage VCIN_F with the boost rate decrement reference voltage BTDN_REF, and can generate the boost rate decrement flag signal BTDN_FG. The second comparator 502 can compare the preliminary input voltage VCIN_F with the boost rate increment reference voltage BTUP_REF, and can generate the boost rate increase flag signal BTUP_FG.
回應於初步輸入電壓VCIN_F低於增壓率遞減參考電壓BTDN_REF,可啟用增壓率遞減旗標信號BTDN_FG以減小增壓率BT[a:0]。回應於初步輸入電壓VCIN_F高於增壓率遞增參考電壓BTUP_REF,可啟用增壓率遞增旗標信號BTUP_FG以增大增壓率BT[a:0]。In response to the initial input voltage VCIN_F being lower than the boost rate decrement reference voltage BTDN_REF, the boost rate down flag signal BTDN_FG may be enabled to reduce the boost rate BT[a:0]. In response to the initial input voltage VCIN_F being higher than the boost rate increment reference voltage BTUP_REF, the boost rate increment flag signal BTUP_FG may be enabled to increase the boost rate BT[a:0].
回應於初步輸入電壓VCIN_F高於增壓率遞減參考電壓BTDN_REF且低於增壓率遞增參考電壓BTUP_REF,可皆停用增壓率遞增旗標信號BTUP_FG及增壓率遞減旗標信號BTDN_FG。在一實例中,其意謂當前增壓率BT[a:0]為適當的。In response to the initial input voltage VCIN_F being higher than the boost rate decrement reference voltage BTDN_REF and lower than the boost rate increment reference voltage BTUP_REF, the boost rate increment flag signal BTUP_FG and the boost rate down flag signal BTDN_FG may be disabled. In an example, it means that the current boost rate BT[a:0] is appropriate.
圖6為說明根據一實施例之一輸入參考電壓選擇器322的示意圖。FIG. 6 is a diagram illustrating an input reference voltage selector 322 in accordance with an embodiment.
參看圖6,輸入參考電壓選擇器322可包括一類比電壓多工器(MUX)601。Referring to FIG. 6, the input reference voltage selector 322 can include an analog voltage multiplexer (MUX) 601.
輸入參考電壓VC_REF0為初步輸入電壓VCIN_F之目標值。因此,輸入參考電壓VC_REF0可設定為值VOUTtar /(2n'),其中VOUTtar 表示增壓電壓VOUT之目標值。此係基於放大率為兩倍之假設。可根據等式9來計算輸入參考電壓VC_REF0。The input reference voltage VC_REF0 is the target value of the preliminary input voltage VCIN_F. Therefore, the input reference voltage VC_REF0 can be set to the value VOUT tar /(2n'), where VOUT tar represents the target value of the boost voltage VOUT. This is based on the assumption that the magnification is twice. The input reference voltage VC_REF0 can be calculated according to Equation 9.
[等式9][Equation 9]
VC_REF0=VOUTtar /(放大器之放大值n')VC_REF0=VOUT tar / (amplifier value n')
當等式9轉換為基於n'及m'之值以獲得輸入至類比電壓多工器(MUX)601中之值VC_REF[m']時,根據等式10來設定VC_REF[m']。When Equation 9 is converted to a value based on n' and m' to obtain a value VC_REF[m'] input to the analog voltage multiplexer (MUX) 601, VC_REF[m'] is set according to Equation 10.
[等式10][Equation 10]
VC_REF[m']=VOUTtar /(m'+3)。VC_REF[m']=VOUT tar /(m'+3).
因此,可如上設定VC_REF[m:0],且類比電壓多工器(MUX)601可選擇適於相應增壓率BT[a:0]之電壓作為輸入參考電壓VC_REF0。Therefore, VC_REF[m:0] can be set as above, and the analog voltage multiplexer (MUX) 601 can select a voltage suitable for the corresponding boost rate BT[a:0] as the input reference voltage VC_REF0.
圖7為說明根據一實施例之一初始值判定器314的示意圖。FIG. 7 is a schematic diagram illustrating an initial value determiner 314 in accordance with an embodiment.
參看圖7,初始值判定器314可包括m+1個比較器701,該等比較器701可比較各別VC_REF[m:0]值與初始參考電壓BTINI_REF。該m+1個比較器701可輸出關於增壓率BT[a:0]之初始值的信號BT_INI[m:0]。儘管比較器701在圖式中說明為一構成元件,但比較器701之數目可為m+1或在適當時可為另一數目。第一比較器可比較VC_REF[0]與初始參考電壓BTINI_REF,且可輸出BT_INI[0]。最後比較器可比較VC_REF[m]與初始參考電壓BTINI_REF,且可輸出BT_INI[m]。Referring to FIG. 7, the initial value determiner 314 can include m+1 comparators 701 that can compare respective VC_REF[m:0] values with an initial reference voltage BTINI_REF. The m+1 comparators 701 can output a signal BT_INI[m:0] regarding the initial value of the supercharging rate BT[a:0]. Although the comparator 701 is illustrated as a constituent element in the drawings, the number of comparators 701 may be m+1 or may be another number as appropriate. The first comparator can compare VC_REF[0] with the initial reference voltage BTINI_REF and can output BT_INI[0]. Finally, the comparator compares VC_REF[m] with the initial reference voltage BTINI_REF and can output BT_INI[m].
由於在分壓器311中產生之初始參考電壓BTINI_REF為(VDD/2+β)(參見以上實例(D)),因此關於初始值之資訊可變為關於VC_REF[m:0]是否高於值(VDD/2+β)的資訊。如以下表2中所示,可基於VC_REF[m:0]中高於(VDD/2+β)之電壓的數目來判定初始增壓率。Since the initial reference voltage BTINI_REF generated in the voltage divider 311 is (VDD/2+β) (see the above example (D)), the information about the initial value can be changed as to whether the VC_REF[m:0] is higher than the value. (VDD/2+β) information. As shown in Table 2 below, the initial boost rate can be determined based on the number of voltages higher than (VDD/2+β) in VC_REF[m:0].
表2展示,當BT_INI[m:0]為(2m+1 -1)(例如,在表2之最後列處)時,當BT_INI[m:0]之所有值為邏輯高時,可採用最低增壓率(1.5)作為初始增壓率。當BT_INI[m:0]為(2*m)(例如,在表2之第一列處)時,當僅BT_INI[m]之值為邏輯高時,可採用最高增壓率(n)作為初始增壓率。Table 2 shows that when BT_INI[m:0] is (2 m+1 -1) (for example, at the last column of Table 2), when all values of BT_INI[m:0] are logic high, The lowest supercharging rate (1.5) is taken as the initial supercharging rate. When BT_INI[m:0] is (2*m) (for example, at the first column of Table 2), when only the value of BT_INI[m] is logic high, the highest boost rate (n) can be used as Initial boost rate.
圖8為說明根據一實施例之一增壓率控制器313的示意圖。FIG. 8 is a schematic diagram illustrating a boost rate controller 313 in accordance with an embodiment.
增壓率控制器313可回應於增壓率遞增旗標信號BTUP_FG經啟用歷時長於一參考時間而增大增壓率BT[a:0]。增壓率控制器313可回應於增壓率遞減旗標信號BTDN_FG經啟用歷時長於一參考時間而減小增壓率BT[a:0]。The boost rate controller 313 may increase the boost rate BT[a:0] in response to the boost rate increment flag signal BTUP_FG being enabled for longer than a reference time. The boost rate controller 313 may decrease the boost rate BT[a:0] in response to the boost rate decrement flag signal BTDN_FG being enabled for longer than a reference time.
增壓率控制器313可包括計數器801及802、比較器803及804、D型正反器805及806、一初始值解碼器807,及一可預設之遞增/遞減計數器808。稍後將詳細描述增壓率控制器313之元件。The boost rate controller 313 can include counters 801 and 802, comparators 803 and 804, D-type flip-flops 805 and 806, an initial value decoder 807, and a preset up/down counter 808. The components of the boost rate controller 313 will be described in detail later.
圖9說明計數器801及802之操作。Figure 9 illustrates the operation of counters 801 and 802.
計數器801及802可在輸入至啟用EN端子之信號BTUP_FG或BTDN_FG為邏輯高之週期中在時脈CK之上升緣處執行增大輸出至輸出端子OUT[b:0]之碼值BTUP_CNT[b:0]或BTDN_CNT[b:0]的操作。BTUP_CNT[b:0]為遞增計數信號;BTDN_CNT[b:0]為遞減計數信號。又,回應於輸入至重設RST端子中之為邏輯高之初始化信號P_ST,輸出至端子OUT[b:0]之碼的所有位元可初始化為0。參看圖9,可理解計數器801及802之操作。輸入至RST端子中之信號為週期信號P_ST,且週期信號P_ST可在增壓率控制器313改變增壓率BT[a:0]之一週期期間被啟用一次。The counters 801 and 802 can perform the increase of the output value to the output terminal OUT[b:0] code value BTUP_CNT[b: at the rising edge of the clock CK in the period in which the signal BTUP_FG or BTDN_FG input to the enable EN terminal is logic high. 0] or BTDN_CNT[b:0] operation. BTUP_CNT[b:0] is an up counting signal; BTDN_CNT[b:0] is a down counting signal. Further, in response to the initialization signal P_ST input to the logic high in the reset RST terminal, all the bits output to the code of the terminal OUT[b:0] can be initialized to 0. Referring to Figure 9, the operation of counters 801 and 802 can be understood. The signal input to the RST terminal is the periodic signal P_ST, and the periodic signal P_ST can be enabled once during one of the periods in which the boost rate controller 313 changes the boost rate BT[a:0].
回看圖8,比較器803可比較自計數器801輸出之BTUP_CNT[b:0]與增壓率遞增參考值BTUP_R[b:0]。回應於BTUP_CNT[b:0]值大於增壓率遞增參考值BTUP_R[b:0],比較器803可輸出處於邏輯高之增壓遞增啟用信號BTUP_PEN。回應於BTUP_CNT[b:0]值小於增壓率遞增參考值BTUP_R[b:0],比較器803可輸出處於邏輯低之信號BTUP_PEN。Referring back to FIG. 8, the comparator 803 can compare the BTUP_CNT[b:0] output from the counter 801 with the boost rate increment reference value BTUP_R[b:0]. In response to the BTUP_CNT[b:0] value being greater than the boost rate increment reference value BTUP_R[b:0], the comparator 803 can output a boost boost enable signal BTUP_PEN at a logic high. In response to the BTUP_CNT[b:0] value being less than the boost rate increment reference value BTUP_R[b:0], the comparator 803 can output the signal BTUP_PEN at a logic low.
比較器804可比較BTDN_CNT[b:0]與增壓率遞減參考值BTDN_R[b:0]。回應於BTDN_CNT[b:0]值大於增壓率遞減參考值BTDN_R[b:0],比較器804可輸出處於邏輯高之信號BTDN_PEN。回應於BTDN_CNT[b:0]值小於增壓率遞減參考值BTDN_R[b:0],比較器804可輸出處於邏輯低之信號BTDN_PEN。The comparator 804 can compare the BTDN_CNT[b:0] with the boost rate decrement reference value BTDN_R[b:0]. In response to the BTDN_CNT[b:0] value being greater than the boost rate decrement reference value BTDN_R[b:0], the comparator 804 can output the signal BTDN_PEN at logic high. In response to the BTDN_CNT[b:0] value being less than the boost rate decrement reference value BTDN_R[b:0], the comparator 804 can output the signal BTDN_PEN at a logic low.
隨著增壓率遞增參考值BTUP_R[b:0]及增壓率遞減參考值BTDN_R[b:0]增大,增壓率遞增旗標信號BTUP_FG及增壓率遞減旗標信號BTDN_FG之啟用時間變長。As the boost rate increment reference value BTUP_R[b:0] and the boost rate decrease reference value BTDN_R[b:0] increase, the boost rate increment flag signal BTUP_FG and the boost rate down flag signal BTDN_FG enable time lengthen.
初始值解碼器807可改變在初始值判定器314中產生之BT_INI[m:0]之格式。以下表3表示BT_INI[m:0]及D_BT_INI[a:0]與藉由前述兩者表示之初始增壓率之間的關係。The initial value decoder 807 can change the format of BT_INI[m:0] generated in the initial value determiner 314. Table 3 below shows the relationship between BT_INI[m:0] and D_BT_INI[a:0] and the initial supercharging rate expressed by the foregoing two.
圖10說明可預設之遞增/遞減計數器808之操作。回應於輸入至UP端子中之為邏輯高之信號BTUP_EN,可預設之遞增/遞減計數器808可在CK端子信號之上升緣處使端子OUT[a:0]之碼BT[a:0]值增大一,該CK端子信號為P_ST信號之逆信號。回應於輸入至DN端子中之為邏輯高之信號BTDN_DN,可預設之遞增/遞減計數器808可在CK端子信號之上升緣處使端子OUT[a:0]之碼BT[a:0]值減小一。FIG. 10 illustrates the operation of a preset up/down counter 808. In response to the logic high signal BTUP_EN input to the UP terminal, the preset up/down counter 808 can make the code BT[a:0] of the terminal OUT[a:0] at the rising edge of the CK terminal signal. Increasing one, the CK terminal signal is the inverse of the P_ST signal. In response to the signal BTDN_DN input to the logic high in the DN terminal, the preset up/down counter 808 can make the code BT[a:0] of the terminal OUT[a:0] at the rising edge of the CK terminal signal. Decrease one.
又,回應於啟用端子PEN之為邏輯高之DC轉換開始信號DCC_ST,P[a:0]端子之碼D_BT_INI[a:0]可成為OUT[a:0]端子之碼BT[a:0]。簡言之,回應於PEN端子之為邏輯高之信號,增壓率可初始化為D_BT_INI[a:0]之值。Further, in response to the DC conversion start signal DCC_ST of the enable terminal PEN being logic high, the code D_BT_INI[a:0] of the P[a:0] terminal can be the code of the OUT[a:0] terminal BT[a:0] . In short, in response to the logic high signal of the PEN terminal, the boost rate can be initialized to the value of D_BT_INI[a:0].
輸入至PEN端子中之DCC_ST信號可為回應於正起始之增壓電壓產生電路之操作而啟用至邏輯高的信號。The DCC_ST signal input to the PEN terminal can be enabled to a logic high signal in response to the operation of the boosted voltage generating circuit that is starting.
以下表4表示增壓率碼BT[a:0](其表示增壓率)與初始增壓率之間的關係。Table 4 below shows the relationship between the supercharging rate code BT[a:0] (which indicates the supercharging rate) and the initial supercharging rate.
圖11至圖14說明增壓速率控制器313之操作。圖11說明增壓率控制器313之初始操作。圖12說明增壓率控制器313之在初始操作之後增大增壓率的操作。圖13說明增壓率控制器313之在初始操作之後減小增壓率的操作。圖14說明增壓率控制器313之維持在初始操作期間設定之增壓率的操作。11 through 14 illustrate the operation of the boost rate controller 313. FIG. 11 illustrates the initial operation of the boost rate controller 313. FIG. 12 illustrates an operation of the boost rate controller 313 to increase the boost rate after the initial operation. FIG. 13 illustrates an operation of the boost rate controller 313 to reduce the boost rate after the initial operation. FIG. 14 illustrates the operation of the boost rate controller 313 to maintain the boost rate set during the initial operation.
參看圖11,描述增壓率控制器313之初始操作。Referring to Figure 11, the initial operation of the boost rate controller 313 is described.
在起始增壓電壓產生電路之操作之後,可將DCC_ST信號啟用至邏輯高。接著,可預設之遞增/遞減計數器808可將輸入至其P[a:0]端子中之D_BT_INI[2:0]設定為增壓率BT[2:0]之初始值。圖11展示D_BT_INI[2:0]之值為2,且因此表示增壓率之碼BT[2:0]的值在此實例中為2,且將對應於BT[2:0]值(2)之增壓率(2.5)設定為增壓率。換言之,在該所說明實例中增壓率為2.5。應瞭解,給出之值係僅為了實例目的,且其他輸入值可提供不同輸出值。The DCC_ST signal can be enabled to a logic high after operation of the initial boost voltage generating circuit. Then, the preset up/down counter 808 can set D_BT_INI[2:0] input to its P[a:0] terminal to the initial value of the boost rate BT[2:0]. Figure 11 shows that the value of D_BT_INI[2:0] is 2, and therefore the value of the code BT[2:0] representing the boost rate is 2 in this example and will correspond to the BT[2:0] value (2 The boost rate (2.5) is set to the boost rate. In other words, the boost rate is 2.5 in the illustrated example. It should be understood that the values given are for example purposes only, and that other input values may provide different output values.
圖12說明增壓率控制器313之在初始操作之後增大增壓率的操作。作為一實例,增壓率遞增參考值BTUP_R[9:0]及增壓率遞減參考值BTDN_R[9:0]可設定為600。FIG. 12 illustrates an operation of the boost rate controller 313 to increase the boost rate after the initial operation. As an example, the boost rate increment reference value BTUP_R[9:0] and the boost rate decrease reference value BTDN_R[9:0] may be set to 600.
在啟用P_ST信號且P_ST信號經歷遮没週期(porch period)之後,時脈CK可開始進行雙態觸發。回應於為邏輯高之增壓率遞增旗標信號BTUP_FG,計數器801可對時脈CK計數,且可逐漸增大BTUP_CNT[9:0]值。回應於收斂至增壓率遞增參考值(例如,BTUP_R[9:0]=600)的增大之BTUP_CNT[9:0]值,可將BTUP_PEN信號啟用至邏輯高。BTUP_EN信號可藉由可經啟用至邏輯高之BTUP_PEN信號來啟用。回應於可再次啟用之P_ST信號,可預設之遞增/遞減計數器808可將表示增壓率之碼BT[2:0]值自2增大至3。因此,增壓率可自2.5增大至3。After the P_ST signal is enabled and the P_ST signal experiences a porch period, the clock CK can begin to toggle. In response to the logic high boost rate increment flag signal BTUP_FG, the counter 801 can count the clock CK and can gradually increase the BTUP_CNT[9:0] value. The BTUP_PEN signal can be enabled to a logic high in response to an increased BTUP_CNT[9:0] value that converges to a boost rate increment reference value (eg, BTUP_R[9:0]=600). The BTUP_EN signal can be enabled by a BTUP_PEN signal that can be enabled to logic high. In response to the re-enabled P_ST signal, a preset up/down counter 808 can increase the value of the code BT[2:0] representing the boost rate from 2 to 3. Therefore, the boost rate can be increased from 2.5 to 3.
圖13說明增壓率控制器313之在初始操作之後減小增壓率的操作。作為一實例,增壓率遞增參考值BTUP_R[9:0]及增壓率遞減參考值BTDN_R[9:0]可設定為600。FIG. 13 illustrates an operation of the boost rate controller 313 to reduce the boost rate after the initial operation. As an example, the boost rate increment reference value BTUP_R[9:0] and the boost rate decrease reference value BTDN_R[9:0] may be set to 600.
在啟用P_ST信號且P_ST信號經歷遮没週期之後,時脈CK可開始進行雙態觸發。回應於為邏輯高之增壓率遞減旗標信號BTDN_FG,計數器802可對時脈CK計數,且可逐漸增大BTDN_CNT[9:0]值。回應於收斂至增壓率遞減參考值(例如,BTDN_R[9:0]=600)之增大之BTDN_CNT[9:0]值,可將BTDN_PEN信號啟用至邏輯高。BTUP_EN信號可藉由可經啟用至邏輯高之BTDN_PEN信號來啟用。回應於可再次啟用之P_ST信號,可預設之遞增/遞減計數器808可將表示增壓率之增壓率碼BT[2:0]值自2減小至1。因此,增壓率可自2.5減小至2。After the P_ST signal is enabled and the P_ST signal experiences an occlusion period, the clock CK can begin to toggle. In response to the logic high decrement flag signal BTDN_FG, the counter 802 can count the clock CK and can gradually increase the BTDN_CNT[9:0] value. The BTDN_PEN signal can be enabled to a logic high in response to an increase in the BTDN_CNT[9:0] value that converges to a boost rate decrement reference value (eg, BTDN_R[9:0]=600). The BTUP_EN signal can be enabled by a BTDN_PEN signal that can be enabled to logic high. In response to the re-enabled P_ST signal, the preset up/down counter 808 may decrease the boost rate code BT[2:0] value representing the boost rate from 2 to 1. Therefore, the boost rate can be reduced from 2.5 to 2.
圖14說明增壓率控制器313之維持在初始操作期間設定之增壓率的操作。作為一實例,增壓率遞增參考值BTUP_R[9:0]及增壓率遞減參考值BTDN_R[9:0]可設定為600。FIG. 14 illustrates the operation of the boost rate controller 313 to maintain the boost rate set during the initial operation. As an example, the boost rate increment reference value BTUP_R[9:0] and the boost rate decrease reference value BTDN_R[9:0] may be set to 600.
在啟用P_ST信號且P_ST信號經歷遮没週期之後,時脈CK可開始進行雙態觸發。回應於為邏輯高之增壓率遞減旗標信號BTDN_FG,計數器802可對時脈CK計數,且可逐漸增大BTDN_CNT[9:0]值。在增大BTDN_CNT[9:0]值時,增壓率遞減旗標信號BTDN_FG可轉變至邏輯低。因此,例如,BTDN_CNT[9:0]值自值413起可能不再增大。由於BTDN_CNT[9:0]可能並不收斂至增壓率遞減參考值(例如,BTDN_R[9:0]=600),因此可不啟用BTUP_PEN信號及BTUP_EN信號。結果,可預設之遞增/遞減計數器808可不改變表示增壓率之碼BT[2:0]值。因此,增壓率可維持於2.5。After the P_ST signal is enabled and the P_ST signal experiences an occlusion period, the clock CK can begin to toggle. In response to the logic high decrement flag signal BTDN_FG, the counter 802 can count the clock CK and can gradually increase the BTDN_CNT[9:0] value. When the BTDN_CNT[9:0] value is increased, the boost rate decrement flag signal BTDN_FG can transition to a logic low. Thus, for example, the BTDN_CNT[9:0] value may no longer increase from value 413. Since BTDN_CNT[9:0] may not converge to the boost rate decrement reference value (eg, BTDN_R[9:0]=600), the BTUP_PEN signal and the BTUP_EN signal may not be enabled. As a result, the preset up/down counter 808 may not change the value of the code BT[2:0] indicating the boost rate. Therefore, the supercharging rate can be maintained at 2.5.
在展示於圖14中之實例中,由於啟用增壓率遞減旗標信號BTDN_FG所在之時間並不收斂至參考時間(例如,600個時脈循環),因此可能不改變增壓率。換言之,在圖14之實例中,甚至在600個時脈循環處,BTDN_CNT[9:0]值停留在413,且將從不到達600,因此將無改變增壓率之信號產生。In the example shown in FIG. 14, since the time at which the boost rate decrement flag signal BTDN_FG is enabled does not converge to the reference time (eg, 600 clock cycles), the boost rate may not be changed. In other words, in the example of Figure 14, even at 600 clock cycles, the BTDN_CNT[9:0] value stays at 413 and will never reach 600, so there will be no signal to change the boost rate.
圖15為說明下箝位電壓選擇器325之方塊圖。FIG. 15 is a block diagram illustrating the lower clamp voltage selector 325.
下箝位電壓選擇器325可包括一類比多工器(MUX)1501,且可回應於增壓率BT[a:0]在輸入之電壓VCMP_DN[m:0]中選擇一下箝位電壓VCMP_DN0。The lower clamp voltage selector 325 may include an analog multiplexer (MUX) 1501 and may select the clamp voltage VCMP_DN0 in the input voltage VCMP_DN[m:0] in response to the boost rate BT[a:0].
回應於過低之初步輸入電壓VCIN_F及改變之負載條件或增壓率BT[a:0],下箝位電壓VCMP_DN0可輸入至電壓箝326中以防止初步輸入電壓VCIN_F收斂至目標值所花費之時間增加。In response to the low initial input voltage VCIN_F and the changed load condition or boost rate BT[a:0], the lower clamp voltage VCMP_DN0 can be input to the voltage clamp 326 to prevent the preliminary input voltage VCIN_F from converge to the target value. The time increases.
可根據等式11產生輸入至下箝位電壓選擇器325中之輸入電壓VCMP_DN[m:0]。The input voltage VCMP_DN[m:0] input to the lower clamp voltage selector 325 can be generated according to Equation 11.
[等式11][Equation 11]
VCMP_DN[m']=VC_REF[m']-a,VCMP_DN[m']=VC_REF[m']-a,
其中a50 mVWhere a 50 mV
下箝位電壓選擇器325可選擇適於增壓率BT[a:0]之輸入電壓VCMP_DN[m:0]作為下箝位電壓VCMP_DNO。The lower clamp voltage selector 325 can select the input voltage VCMP_DN[m:0] suitable for the boost rate BT[a:0] as the lower clamp voltage VCMP_DNO.
圖16為說明電壓箝326之方塊圖。FIG. 16 is a block diagram showing the voltage clamp 326.
電壓箝326可包括一上箝1601及一下箝1602。The voltage clamp 326 can include an upper clamp 1601 and a lower clamp 1602.
上箝1601可回應初步輸入電壓VCIN_F於變得高於上箝位電壓VCMP_UPO而自初步輸入電壓VCIN_F在接地端子之間產生吸收電流(sinking current),從而防止初步輸入電壓VCIN_F變得高於上箝位電壓VCMP_UPO。The upper clamp 1601 can generate a sinking current between the ground terminals from the preliminary input voltage VCIN_F in response to the preliminary input voltage VCIN_F becoming higher than the upper clamp voltage VCMP_UPO, thereby preventing the preliminary input voltage VCIN_F from becoming higher than the upper clamp Bit voltage VCMP_UPO.
下箝1602可回應於初步輸入電壓VCIN_F變得低於下箝位電壓VCMP_DNO而自初步輸入電壓VCIN_F在電源電壓VDD之間產生驅動電流,從而防止初步輸入電壓VCIN_F變得高於上箝位電壓VCMP_DNO。The lower clamp 1602 can generate a drive current between the power supply voltage VDD from the preliminary input voltage VCIN_F in response to the preliminary input voltage VCIN_F becoming lower than the lower clamp voltage VCMP_DNO, thereby preventing the preliminary input voltage VCIN_F from becoming higher than the upper clamp voltage VCMP_DNO .
圖17為說明輸出電壓分壓器321之方塊圖。FIG. 17 is a block diagram showing the output voltage divider 321 .
輸出電壓分壓器321可包括經串列耦接以對增壓電壓VOUT進行分壓之複數個電阻器,及一類比電壓多工器(MUX)1701。The output voltage divider 321 can include a plurality of resistors coupled in series to divide the boost voltage VOUT, and an analog voltage multiplexer (MUX) 1701.
回應於為n'之當前增壓率BT[a:0],可根據等式12計算自輸出電壓分壓器321輸出之增壓電壓VOUT_F的位準。In response to the current boost rate BT[a:0] for n', the level of the boost voltage VOUT_F output from the output voltage divider 321 can be calculated according to Equation 12.
[等式12][Equation 12]
VOUT/(2*n')。VOUT/(2*n').
此係因為在此實例中放大器324之放大率為2。可根據以下等式13更一般地表示該關係。This is because the amplification factor of the amplifier 324 is 2 in this example. This relationship can be expressed more generally according to Equation 13 below.
[等式13][Equation 13]
VOUT_F=(VOUT/(n'*放大器之放大率)VOUT_F=(VOUT/(n'* amplifier magnification)
當VOUT/(2*n')表示為基於m'之值時,可根據等式14來表達VOUT/(2*n')。When VOUT/(2*n') is expressed as a value based on m', VOUT/(2*n') can be expressed according to Equation 14.
[等式14][Equation 14]
VOUT_F=VOUT/(m'+3)。VOUT_F=VOUT/(m'+3).
類比電壓多工器(MUX)1701可操作以基於增壓率BT[a:0]選擇適當輸出電壓VOUT_F。The analog voltage multiplexer (MUX) 1701 is operable to select an appropriate output voltage VOUT_F based on the boost rate BT[a:0].
圖18為說明補償電路327之方塊圖。FIG. 18 is a block diagram illustrating the compensation circuit 327.
補償電路327可包括一電阻器Rc及一電容器Cc。補償電路327可確保一回饋迴路之穩定性,該回饋迴路可藉由將一極點及/或一零點添加至迴路來產生初步輸入電壓VCIN_F。The compensation circuit 327 can include a resistor Rc and a capacitor Cc. The compensation circuit 327 can ensure the stability of a feedback loop that can generate a preliminary input voltage VCIN_F by adding a pole and/or a zero to the loop.
返回參看圖3,比較器323可比較輸出電壓分壓器321之輸出電壓VOUT_F與輸入參考電壓選擇器322之輸出電壓VC_REF0,且可產生初步輸入電壓VCIN_F。Referring back to FIG. 3, the comparator 323 can compare the output voltage VOUT_F of the output voltage divider 321 with the output voltage VC_REF0 of the input reference voltage selector 322, and can generate a preliminary input voltage VCIN_F.
回應於輸出電壓分壓器321之輸出電壓VOUT_F高於輸入參考電壓VC_REF0,比較器323可減少初步輸入電壓VCIN_F之位準。回應於輸出電壓分壓器321之輸出電壓VOUT_F低於輸入參考電壓VC_REF0,比較器323可提高初步輸入電壓VCIN_F之位準。In response to the output voltage VOUT_F of the output voltage divider 321 being higher than the input reference voltage VC_REF0, the comparator 323 can reduce the level of the preliminary input voltage VCIN_F. In response to the output voltage VOUT_F of the output voltage divider 321 being lower than the input reference voltage VC_REF0, the comparator 323 can increase the level of the preliminary input voltage VCIN_F.
回應於輸出電壓分壓器321之輸出電壓VOUT_F高於輸入參考電壓VC_REF0,可減小初步輸入電壓VCIN_F之位準。因此,可減小輸入電壓VCIN之位準。此減小可反映至輸出電壓VOUT中,且輸出電壓分壓器321之輸出電壓VOUT_F亦可減小。初步輸入電壓VCIN_F之位準可收斂至輸入參考電壓VC_REF0。In response to the output voltage VOUT_F of the output voltage divider 321 being higher than the input reference voltage VC_REF0, the level of the preliminary input voltage VCIN_F can be reduced. Therefore, the level of the input voltage VCIN can be reduced. This decrease can be reflected in the output voltage VOUT, and the output voltage VOUT_F of the output voltage divider 321 can also be reduced. The level of the initial input voltage VCIN_F converges to the input reference voltage VC_REF0.
回應於輸出電壓分壓器321之輸出電壓VOUT_F低於輸入參考電壓VC_REF0,可提高初步輸入電壓VCIN_F之位準。因此,可增大輸入電壓VCIN之位準。此增大可反映至輸出電壓VOUT中,且輸出電壓分壓器321之輸出電壓VOUT_F亦可增大。初步輸入電壓VCIN_F之位準可收斂至輸入參考電壓VC_REF0。In response to the output voltage VOUT_F of the output voltage divider 321 being lower than the input reference voltage VC_REF0, the level of the preliminary input voltage VCIN_F can be increased. Therefore, the level of the input voltage VCIN can be increased. This increase can be reflected in the output voltage VOUT, and the output voltage VOUT_F of the output voltage divider 321 can also be increased. The level of the initial input voltage VCIN_F converges to the input reference voltage VC_REF0.
放大器324可包括作為線性調節器之比較器328及兩個電阻器R。放大器324可使初步輸入電壓VCIN_F放大兩倍(例如,以2進行放大),且可產生輸入電壓VCIN。應瞭解,可將放大器324之放大率改變為除兩倍外之放大率。Amplifier 324 can include a comparator 328 as a linear regulator and two resistors R. Amplifier 324 can amplify preliminary input voltage VCIN_F by two times (eg, with 2) and can generate input voltage VCIN. It will be appreciated that the amplification of amplifier 324 can be changed to a magnification other than twice.
現將描述增壓電壓產生電路之總體操作。The overall operation of the boost voltage generating circuit will now be described.
輸入電壓位準設定單元220可產生目標為(目標輸出電壓/增壓率)之位準的輸入電壓VCIN。換言之,其可根據等式15控制輸入電壓VCIN之位準。The input voltage level setting unit 220 can generate an input voltage VCIN whose target is at a level of (target output voltage/boost rate). In other words, it can control the level of the input voltage VCIN according to Equation 15.
[等式15][Equation 15]
VCIN=VOUTtar /n'VCIN=VOUT tar /n'
增壓率設定單元210可回應於輸入電壓VCIN之目標位準(VOUTtar /n')處於輸入電壓VCIN不可具有之位準(例如,回應於目標位準VOUTtar /n'超出電源電壓)而增大增壓率BT[a:0]。即使可將增壓率BT[a:0]減小一個步長,但若輸入電壓VCIN之目標位準為輸入電壓VCIN不可具有之位準(例如,輸入電壓VCIN之目標位準低於電源電壓),則增壓率設定單元210仍可減小增壓率BT[a:0]。The boost rate setting unit 210 can respond to the target level of the input voltage VCIN (VOUT tar /n') at a level that the input voltage VCIN cannot have (for example, in response to the target level VOUT tar /n' exceeding the power supply voltage) Increase the boost rate BT[a:0]. Even if the boost rate BT[a:0] can be reduced by one step, if the target level of the input voltage VCIN is a level that the input voltage VCIN cannot have (for example, the target level of the input voltage VCIN is lower than the power supply voltage) The boost rate setting unit 210 can still reduce the boost rate BT[a:0].
經由輸入電壓位準設定單元220及增壓率設定單元210之操作,增壓率BT[a:0]可變得儘可能准許地低,且輸入電壓VCIN在使得輸入電壓VCIN不可超出電源電壓之位準的範圍內增加至儘可能准許地高。Through the operation of the input voltage level setting unit 220 and the boost rate setting unit 210, the boost rate BT[a:0] may become as low as possible, and the input voltage VCIN is such that the input voltage VCIN cannot exceed the power supply voltage. The range of levels is increased to as high as possible.
增壓率BT[a:0]變得愈高,增壓電壓產生電路就可消耗愈多電流。根據一實施例,經由增壓率設定單元210及輸入電壓位準設定單元220之操作,可使增壓率BT[a:0]儘可能准許地減小,且增壓電壓產生電路之電流消耗可減小。The higher the boost rate BT[a:0] becomes, the more current the boost voltage generating circuit can consume. According to an embodiment, the operation of the boost rate setting unit 210 and the input voltage level setting unit 220 can reduce the boost rate BT[a:0] as permitted as possible, and the current consumption of the boost voltage generating circuit Can be reduced.
根據一實施例製造之增壓電壓產生電路可使輸入電壓最大化,且可使增壓率最小化以便產生具有目標位準之增壓電壓。因此,增壓電壓產生電路可藉由以最小增壓率使輸入電壓增壓來產生具有目標位準的增壓電壓。The boost voltage generating circuit fabricated in accordance with an embodiment maximizes the input voltage and minimizes the boost rate to produce a boost voltage having a target level. Therefore, the boost voltage generating circuit can generate a boost voltage having a target level by boosting the input voltage with a minimum boost rate.
結果,增壓電壓產生電路可維持最小電流消耗。As a result, the boost voltage generating circuit can maintain a minimum current consumption.
上文已描述了若干實例。然而,將理解可進行各種修改。舉例而言,在以不同次序執行所描述技術的情況下及/或在所描述系統、架構、器件或電路中之組件以不同方式進行組合及/或藉由其他組件或其等效物替換或補充的情況下,可達成合適結果。舉例而言,在適當時,所描述硬體器件及/或其組件可經組態以充當一或多個軟體模組以便執行上文所描述之操作及過程,或反之亦然。過程、功能、方法及/或軟體可記錄、儲存或固定於一或多個電腦可讀儲存媒體上,該一或多個電腦可讀儲存媒體包括程式指令,該等程式指令待由電腦實施以使處理器實行或執行該等程式指令。該等媒體亦可包括(單獨或與程式指令組合)資料檔案、資料結構及其類似者。因此,其他實施在以下申請專利範圍之範疇內。Several examples have been described above. However, it will be understood that various modifications can be made. For example, where the described techniques are performed in a different order and/or components in the described systems, architecture, devices, or circuits are combined in various ways and/or replaced by other components or equivalents thereof In the case of supplementation, a suitable result can be achieved. For example, as described, the described hardware devices and/or components thereof can be configured to function as one or more software modules to perform the operations and processes described above, or vice versa. The processes, functions, methods and/or software may be recorded, stored or fixed on one or more computer readable storage media, the one or more computer readable storage media comprising program instructions to be executed by a computer Causes the processor to execute or execute the program instructions. Such media may also include (individually or in combination with program instructions) data files, data structures and the like. Accordingly, other implementations are within the scope of the following claims.
100...增壓電壓產生電路100. . . Boost voltage generating circuit
200...增壓電路200. . . Booster circuit
210...增壓率設定單元210. . . Supercharging rate setting unit
220...輸入電壓位準設定單元220. . . Input voltage level setting unit
311...分壓器311. . . Voltage divider
312...旗標信號產生器312. . . Flag signal generator
313...增壓率控制器313. . . Boost rate controller
314...初始值判定器314. . . Initial value determiner
321...輸出電壓分壓器321. . . Output voltage divider
322...輸入參考電壓選擇器322. . . Input reference voltage selector
323...比較器323. . . Comparators
324...放大器324. . . Amplifier
325...下箝位電壓選擇器325. . . Lower clamp voltage selector
326...電壓箝326. . . Voltage clamp
327...補償電路327. . . Compensation circuit
328...比較器328. . . Comparators
401...類比電壓多工器(MUX)401. . . Analog voltage multiplexer (MUX)
501...比較器501. . . Comparators
502...比較器502. . . Comparators
601...類比電壓多工器(MUX)601. . . Analog voltage multiplexer (MUX)
701...比較器701. . . Comparators
801...計數器801. . . counter
802...計數器802. . . counter
803...比較器803. . . Comparators
804...比較器804. . . Comparators
805...D型正反器805. . . D-type flip-flop
806...D型正反器806. . . D-type flip-flop
807...初始值解碼器807. . . Initial value decoder
808...可預設之遞增/遞減計數器808. . . Presettable increment/decrement counter
1501...類比多工器(MUX)1501. . . Analog multiplexer (MUX)
1601...上箝1601. . . Upper clamp
1602...下箝1602. . . Lower jaw
BT[2:0]...增壓率BT[2:0]. . . Supercharging rate
BT[a:0]...增壓率BT[a:0]. . . Supercharging rate
BTDN_CNT[9:0]...值BTDN_CNT[9:0]. . . value
BTDN_CNT[b:0]...碼值BTDN_CNT[b:0]. . . Code value
BTDN_EN...信號BTDN_EN. . . signal
BTDN_FG...增壓率遞減旗標信號BTDN_FG. . . Supercharge rate decrement flag signal
BT_INI[m:0]...關於增壓率之初始值的信號BT_INI[m:0]. . . Signal about the initial value of the boost rate
BTDN_PEN...增壓率遞減啟用信號BTDN_PEN. . . Pressurization rate decrement enable signal
BTDN_R[b:0]...增壓率遞減參考值BTDN_R[b:0]. . . Pressurization rate decrement reference value
BTDN_REF...增壓率遞減參考電壓BTDN_REF. . . Pressurization rate decrementing reference voltage
BTDN_REF[m:0]...增壓率遞減參考電壓BTDN_REF[m:0]. . . Pressurization rate decrementing reference voltage
BTINI_REF...初始參考電壓BTINI_REF. . . Initial reference voltage
BTUP_CNT[9:0]...值BTUP_CNT[9:0]. . . value
BTUP_CNT[b:0]...碼值BTUP_CNT[b:0]. . . Code value
BTUP_EN...信號BTUP_EN. . . signal
BTUP_FG...增壓率遞增旗標信號BTUP_FG. . . Supercharge rate increasing flag signal
BTUP_PEN...增壓遞增啟用信號BTUP_PEN. . . Boost increment enable signal
BTUP_R[b:0]...增壓率遞增參考值BTUP_R[b:0]. . . Pressurization rate increment reference value
BTUP_REF...增壓率遞增參考電壓BTUP_REF. . . Pressurization rate increment reference voltage
Cc...電容器Cc. . . Capacitor
CK...時脈/端子CK. . . Clock / terminal
D_BT_INI[2:0]...碼D_BT_INI[2:0]. . . code
D_BT_INI[a:0]...碼D_BT_INI[a:0]. . . code
DCC_ST DC...轉換開始信號DCC_ST DC. . . Conversion start signal
DN...端子DN. . . Terminal
EN...啟用端子EN. . . Enable terminal
OUT[a:0]...端子OUT[a:0]. . . Terminal
OUT[b:0]...輸出端子OUT[b:0]. . . Output terminal
P[a:0]...端子P[a:0]. . . Terminal
P_ST...初始化信號P_ST. . . Initialization signal
PEN...啟用端子PEN. . . Enable terminal
R...電阻器R. . . Resistor
Rc...電阻器Rc. . . Resistor
RST...重設端子RST. . . Reset terminal
UP...端子UP. . . Terminal
VC_REF0...輸入參考電壓/輸出電壓VC_REF0. . . Input reference voltage / output voltage
VCIN...輸入電壓VCIN. . . Input voltage
VCIN_F...初步輸入電壓VCIN_F. . . Preliminary input voltage
VCMP_DN[m:0]...輸入電壓VCMP_DN[m:0]. . . Input voltage
VCMP_DN0...下箝位電壓VCMP_DN0. . . Lower clamp voltage
VCMP_UP0...上箝位電壓VCMP_UP0. . . Upper clamp voltage
VDD...電源電壓VDD. . . voltage
VOUT...增壓電壓VOUT. . . Boost voltage
VOUT_F...輸出電壓VOUT_F. . . The output voltage
VR_REF[m:0]...電壓VR_REF[m:0]. . . Voltage
圖1為展示增壓電壓產生電路之電壓、信號及輸出電壓的方塊圖。1 is a block diagram showing the voltage, signal, and output voltage of a boost voltage generating circuit.
圖2為說明根據一實施例之一增壓電壓產生電路的方塊圖。2 is a block diagram illustrating a boost voltage generating circuit in accordance with an embodiment.
圖3為說明圖2之增壓電壓產生電路的詳細方塊圖。FIG. 3 is a detailed block diagram illustrating the boost voltage generating circuit of FIG. 2. FIG.
圖4為說明根據一實施例之一分壓器的示意圖。4 is a schematic diagram illustrating a voltage divider in accordance with an embodiment.
圖5為說明根據一實施例之一旗標信號產生器的示意圖。FIG. 5 is a schematic diagram illustrating a flag signal generator in accordance with an embodiment.
圖6為說明根據一實施例之一輸入參考電壓選擇器的示意圖。6 is a schematic diagram illustrating an input reference voltage selector in accordance with an embodiment.
圖7為說明根據一實施例之一初始值判定器的示意圖。FIG. 7 is a schematic diagram illustrating an initial value determiner according to an embodiment.
圖8為說明根據一實施例之一增壓率控制器的示意圖。FIG. 8 is a schematic diagram illustrating a boost rate controller in accordance with an embodiment.
圖9說明計數器之操作。Figure 9 illustrates the operation of the counter.
圖10說明可預設之遞增/遞減計數器之操作。Figure 10 illustrates the operation of a preset up/down counter.
圖11至圖14說明增壓率控制器之操作。11 to 14 illustrate the operation of the boost rate controller.
圖15為說明下箝位電壓選擇器之方塊圖。Figure 15 is a block diagram illustrating the lower clamp voltage selector.
圖16為說明電壓箝之方塊圖。Figure 16 is a block diagram showing a voltage clamp.
圖17為說明輸出電壓分壓器之方塊圖。Figure 17 is a block diagram illustrating an output voltage divider.
圖18為說明補償電路之方塊圖。Figure 18 is a block diagram showing the compensation circuit.
貫穿圖式及[實施方式],除非另外描述,否則相同之圖式參考數字將理解為指代相同元件、特徵及結構。可為了清楚、說明及便利而誇示此等元件之相對大小及描繪。Throughout the drawings, the same reference numerals will be understood to refer to the same elements, features and structures. The relative size and depiction of such elements may be exaggerated for clarity, illustration, and convenience.
200...增壓電路200. . . Booster circuit
210...增壓率設定單元210. . . Supercharging rate setting unit
220...輸入電壓位準設定單元220. . . Input voltage level setting unit
BT[a:0]...增壓率BT[a:0]. . . Supercharging rate
VCIN...輸入電壓VCIN. . . Input voltage
VOUT...增壓電壓VOUT. . . Boost voltage
Claims (39)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20090126071 | 2009-12-17 | ||
KR1020100035631A KR101128690B1 (en) | 2009-12-17 | 2010-04-19 | Circuit for generating boosted voltage and operatrion method of the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201140273A TW201140273A (en) | 2011-11-16 |
TWI494730B true TWI494730B (en) | 2015-08-01 |
Family
ID=44401457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW099137827A TWI494730B (en) | 2009-12-17 | 2010-11-03 | Circuit for generating boosted voltage and method for operating the same |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR101128690B1 (en) |
CN (1) | CN102183985B (en) |
TW (1) | TWI494730B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112311378B (en) * | 2019-10-12 | 2022-06-03 | 成都华微电子科技股份有限公司 | Single-port mode selection circuit and multi-working mode integrated circuit |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200428773A (en) * | 2003-05-16 | 2004-12-16 | Triquint Semiconductor Inc | Boost circuit |
TW200634846A (en) * | 2005-03-31 | 2006-10-01 | Hynix Semiconductor Inc | Voltage booster circuit |
US7285939B2 (en) * | 2004-03-17 | 2007-10-23 | Denso Corporation | DC-DC converter for boosting input voltage at variable frequency |
TW200810331A (en) * | 2006-08-02 | 2008-02-16 | G Time Electronic Co Ltd | Circuit of charge pump |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3656495B2 (en) * | 2000-01-25 | 2005-06-08 | セイコーエプソン株式会社 | DC-DC boosting method and power supply circuit using the same |
JP2003295830A (en) | 2002-03-29 | 2003-10-15 | Hitachi Ltd | Liquid crystal driving device and liquid crystal display system |
KR100438786B1 (en) * | 2002-04-23 | 2004-07-05 | 삼성전자주식회사 | LCD driving voltage generation circuit having low power, high efficiency and Method there-of |
WO2006080364A1 (en) * | 2005-01-25 | 2006-08-03 | Rohm Co., Ltd | Power supply device, electronic device, and a/d converter used for them |
TW200728954A (en) * | 2006-01-20 | 2007-08-01 | Arques Technology Taiwan Inc | Charge pump circuit for constant current output |
KR100761842B1 (en) | 2006-04-07 | 2007-09-28 | 삼성전자주식회사 | Voltage boosting circuit and voltage boosting method which boosts the voltage using the voltage boosting clock with varying frequency |
TW200838109A (en) * | 2007-03-02 | 2008-09-16 | Richtek Techohnology Corp | Soft shutdown circuit of voltage regulator and corresponding method thereof |
US8242762B2 (en) * | 2008-05-12 | 2012-08-14 | Cosmic Circuits Private Limited | Transient recovery circuit for switching devices |
-
2010
- 2010-04-19 KR KR1020100035631A patent/KR101128690B1/en active IP Right Grant
- 2010-11-03 TW TW099137827A patent/TWI494730B/en active
- 2010-12-15 CN CN201010617808.6A patent/CN102183985B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200428773A (en) * | 2003-05-16 | 2004-12-16 | Triquint Semiconductor Inc | Boost circuit |
US7285939B2 (en) * | 2004-03-17 | 2007-10-23 | Denso Corporation | DC-DC converter for boosting input voltage at variable frequency |
TW200634846A (en) * | 2005-03-31 | 2006-10-01 | Hynix Semiconductor Inc | Voltage booster circuit |
TW200810331A (en) * | 2006-08-02 | 2008-02-16 | G Time Electronic Co Ltd | Circuit of charge pump |
Also Published As
Publication number | Publication date |
---|---|
KR20110069674A (en) | 2011-06-23 |
CN102183985A (en) | 2011-09-14 |
TW201140273A (en) | 2011-11-16 |
CN102183985B (en) | 2014-12-31 |
KR101128690B1 (en) | 2012-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5901635B2 (en) | Switched mode power converter using bridge topology and switching method thereof | |
TWI479788B (en) | Switching regulator controller and method of controlling switching regulator | |
EP2979354B1 (en) | A voltage modulator | |
JP5464695B2 (en) | DC-DC converter, DC voltage conversion method | |
US7279869B2 (en) | PFM control circuit for DC regulator | |
US9389628B2 (en) | Digitally controlled buck-boost regulator having a custom mapping controller | |
US8450990B2 (en) | Dynamic control loop for switching regulators | |
US7489118B2 (en) | Method and apparatus for high-efficiency DC stabilized power supply capable of effectively reducing noises and ripples | |
US7986134B2 (en) | Power supplies, power supply controllers, and power supply controlling methods | |
US9158314B2 (en) | Voltage regulator, and control circuit and control method thereof | |
JP2009022093A (en) | Multi-output power supply unit | |
TW201034363A (en) | Buck-boost power converter and its control method | |
JP5474988B2 (en) | Fast recovery control circuit | |
TW201431261A (en) | Current limiting scheme for a converter | |
JP2008113499A (en) | Power supply circuit, power supply control circuit and power supply control method | |
US20130293210A1 (en) | Coupled voltage converters | |
US9906122B2 (en) | Methods to reduce current spikes in capacitive DC-DC converters employing gain-hopping | |
WO2011127685A1 (en) | Boost dc/dc converter and logic controlling circuit thereof | |
US20140327421A1 (en) | Switching regulator and method for controlling the switching regulator | |
JP2010028951A (en) | Switching power supply circuit | |
US10948934B1 (en) | Voltage regulator with piecewise linear loadlines | |
JP5937442B2 (en) | DC-DC converter | |
JP2008243728A (en) | Power supply circuit device | |
US8461810B2 (en) | Circuit for generating boosted voltage and method for operating the same | |
TWI494730B (en) | Circuit for generating boosted voltage and method for operating the same |