TWI494531B - Flat heat pipe and method for manufacturing the same - Google Patents

Flat heat pipe and method for manufacturing the same Download PDF

Info

Publication number
TWI494531B
TWI494531B TW099116053A TW99116053A TWI494531B TW I494531 B TWI494531 B TW I494531B TW 099116053 A TW099116053 A TW 099116053A TW 99116053 A TW99116053 A TW 99116053A TW I494531 B TWI494531 B TW I494531B
Authority
TW
Taiwan
Prior art keywords
capillary structure
heat pipe
flat heat
capillary
tube
Prior art date
Application number
TW099116053A
Other languages
Chinese (zh)
Other versions
TW201142232A (en
Inventor
sheng-liang Dai
Jin-Peng Liu
Yue Liu
Sheng-Guo Zhou
sheng lin Wu
Nien Tien Cheng
Original Assignee
Foxconn Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foxconn Tech Co Ltd filed Critical Foxconn Tech Co Ltd
Priority to TW099116053A priority Critical patent/TWI494531B/en
Publication of TW201142232A publication Critical patent/TW201142232A/en
Application granted granted Critical
Publication of TWI494531B publication Critical patent/TWI494531B/en

Links

Description

扁平熱導管及其製造方法 Flat heat pipe and method of manufacturing same

本發明涉及一種熱導管,尤係涉及一種應用於電子元件散熱領域的扁平熱導管及其製造方法。 The present invention relates to a heat pipe, and more particularly to a flat heat pipe applied to the field of heat dissipation of electronic components and a method of manufacturing the same.

現階段,熱導管因其具有較高傳熱量的優點,已被廣泛應用於具較大發熱量的電子元件中。該熱導管工作時,利用管體內部填充的低沸點工作介質在其蒸發部吸收發熱電子元件產生的熱量後蒸發汽化,蒸氣帶著熱量運動至冷凝部,並在冷凝部液化凝結將熱量釋放出去,從而對電子元件進行散熱。該液化後的工作介質在熱導管壁部毛細結構的作用下回流至蒸發部,繼續蒸發汽化及液化凝結,使工作介質在熱導管內部循環運動,將電子元件產生的熱量源源不斷的散發出去。 At this stage, the heat pipe has been widely used in electronic components with large heat generation because of its high heat transfer capacity. When the heat pipe is in operation, the low-boiling working medium filled inside the pipe body absorbs the heat generated by the heat-generating electronic component in the evaporation portion, and then evaporates and vaporizes, the vapor moves with heat to the condensation portion, and condenses and condenses in the condensation portion to release the heat. Thereby dissipating heat from the electronic components. The liquefied working medium is returned to the evaporation portion under the action of the capillary structure of the heat pipe wall, and further evaporative vaporization and liquefaction condensation are performed, so that the working medium circulates inside the heat pipe, and the heat generated by the electronic component is continuously emitted.

習知熱導管的毛細結構一般可分為溝槽型、燒結型、纖維型及絲網型等,該等毛細結構的特點單一,溝槽型、纖維型、絲網型毛細結構的滲透率高、熱阻小,但其毛細力弱,打扁後的最大傳熱量損失大;燒結型毛細結構的毛細力強、抗重力效果好,打扁後的最大傳熱量損失較小,但其滲透率低、熱阻大。 The capillary structure of the conventional heat pipe can be generally classified into a groove type, a sintered type, a fiber type, and a wire mesh type, and the characteristics of the capillary structures are single, and the permeability of the groove type, the fiber type, and the wire mesh type capillary structure is high. The thermal resistance is small, but the capillary force is weak, and the maximum heat transfer loss after flattening is large; the sintered capillary structure has strong capillary force and good anti-gravity effect, and the maximum heat transfer loss after flattening is small, but its permeability Low, high thermal resistance.

有鑒於此,有必要提供一種提高熱管性能的扁平熱導管及其製造 方法。 In view of this, it is necessary to provide a flat heat pipe for improving the performance of the heat pipe and its manufacture. method.

一種扁平熱導管,包括中空的扁平管體及設置於管體內的第一毛細結構與第二毛細結構,所述第一毛細結構與第二毛細結構的構造不同,所述第一毛細結構由絲線編織形成,所述第二毛細結構由金屬粉末燒結形成,所述第一毛細結構結合於所述管體內的一側上,所述第二毛細結構結合於所述管體內的另一側上,所述第一毛細結構與第二毛細結構相互貼合,所述管體內於第一毛細結構與第二毛細結構的兩側各形成一蒸氣通道。 A flat heat pipe comprising a hollow flat tube body and a first capillary structure and a second capillary structure disposed in the tube body, the first capillary structure being different from the structure of the second capillary structure, the first capillary structure being composed of a thread Braiding, the second capillary structure is formed by sintering a metal powder, the first capillary structure is bonded to one side of the tube body, and the second capillary structure is bonded to the other side of the tube body, The first capillary structure and the second capillary structure are in contact with each other, and the tube body forms a vapor passage on each side of the first capillary structure and the second capillary structure.

一種扁平熱導管的製造方法,包括以下步驟:提供桿體,所述桿體呈圓柱狀,其外圓周面上開設有開口及缺口,所述開口與缺口正對設置;提供第一毛細結構;提供圓管,所述圓管呈中空狀,所述圓管的內徑等於所述桿體的外徑,將所述桿體、第一毛細結構插入所述圓管中,使所述第一毛細結構位於所述桿體的開口內;將金屬粉末填入位於所述圓管內的桿體的缺口中,將金屬粉末高溫燒結形成第二毛細結構;取出桿體,所述第一、第二毛細結構留置於所述圓管中,所述第一、第二毛細結構正對設置,且分別貼附於所述圓管的部分內壁上;及將圓管打扁形成扁平熱導管,使所述第二毛細結構貼合於所述第一毛細結構上,所述扁平熱導管內於第一毛細結構與第二毛細結構的兩側各形成一蒸氣通道。 A method for manufacturing a flat heat pipe, comprising the steps of: providing a rod body having a cylindrical shape, an opening and a notch formed on an outer circumferential surface thereof, the opening being disposed opposite to the notch; providing a first capillary structure; Providing a circular tube, the circular tube is hollow, the inner diameter of the circular tube is equal to the outer diameter of the rod body, and the rod body and the first capillary structure are inserted into the round tube to make the first The capillary structure is located in the opening of the rod body; the metal powder is filled into the notch of the rod body located in the circular tube, and the metal powder is sintered at a high temperature to form a second capillary structure; the rod body is taken out, the first and the first a second capillary structure is disposed in the circular tube, the first and second capillary structures are disposed opposite to each other, and are respectively attached to a part of the inner wall of the circular tube; and the round tube is flattened to form a flat heat pipe, The second capillary structure is attached to the first capillary structure, and the flat heat pipe forms a vapor channel on each side of the first capillary structure and the second capillary structure.

上述扁平熱導管及其製造方法中,所述第一毛細結構設於該管體內的一側上,而所述第二毛細結構設於該管體內的另一側上,並且所述第一、第二毛細結構相互貼合,當所述熱導管工作時,工作介質可於所述第一、第二毛細結構間相互滲透,既具有較大的 毛細力,又具有較高的滲透率及較小的熱阻力,從而使該熱導管具有良好的傳熱性能。 In the above flat heat pipe and the method of manufacturing the same, the first capillary structure is disposed on one side of the tube body, and the second capillary structure is disposed on the other side of the tube body, and the first, The second capillary structures are in contact with each other, and when the heat pipe is in operation, the working medium can penetrate each other between the first and second capillary structures, and has a large The capillary force has a high permeability and a small heat resistance, so that the heat pipe has good heat transfer performance.

10、20、30、40‧‧‧扁平熱導管 10, 20, 30, 40‧‧‧ flat heat pipes

101‧‧‧蒸發段 101‧‧‧Evaporation section

102‧‧‧冷凝段 102‧‧‧Condensation section

11‧‧‧管體 11‧‧‧Body

110‧‧‧內部空間 110‧‧‧Internal space

111‧‧‧頂板 111‧‧‧ top board

112‧‧‧底板 112‧‧‧floor

113、114‧‧‧側板 113, 114‧‧‧ side panels

118‧‧‧蒸氣通道 118‧‧‧Vapor passage

12、22、32、42、15、15a、15c‧‧‧第一毛細結構 12, 22, 32, 42, 15, 15a, 15c‧‧‧ first capillary structure

13、23、33、43、17、17b‧‧‧第二毛細結構 13, 23, 33, 43, 17, 17b‧‧‧Second capillary structure

14、14a、14b、14c‧‧‧桿體 14, 14a, 14b, 14c‧‧‧ rods

141、141a、141c‧‧‧開口 141, 141a, 141c‧‧

142、142b‧‧‧缺口 142, 142b‧‧ ‧ gap

16‧‧‧圓管 16‧‧‧ round tube

171‧‧‧平直邊 171‧‧‧ Straight side

172‧‧‧弧形邊 172‧‧‧Arc edge

18、18a、18b、18c‧‧‧圓形熱導管 18, 18a, 18b, 18c‧‧‧ circular heat pipes

圖1為本發明第一實施例的扁平熱導管側面示意圖。 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a side elevational view of a flat heat pipe according to a first embodiment of the present invention.

圖2為圖1所示扁平熱導管沿II-II線的橫向剖面示意圖。 2 is a schematic transverse cross-sectional view of the flat heat pipe of FIG. 1 taken along line II-II.

圖3為圖1所示扁平熱導管的一製造方法的流程圖。 3 is a flow chart of a method of manufacturing the flat heat pipe shown in FIG. 1.

圖4為圖3所示製造方法中桿體及圓管的立體示意圖。 4 is a schematic perspective view of a rod body and a round tube in the manufacturing method shown in FIG. 3.

圖5為圖4所示製造方法中桿體沿V-V線的橫向剖面示意圖。 Fig. 5 is a schematic transverse cross-sectional view of the rod body taken along line V-V in the manufacturing method shown in Fig. 4.

圖6為圖3所示製造方法中圓形熱導管的橫向剖面示意圖。 Figure 6 is a schematic transverse cross-sectional view of a circular heat pipe in the manufacturing method of Figure 3.

圖7為圖1所示熱導管的另一製造方法中桿體的橫向剖面示意圖。 Fig. 7 is a schematic transverse cross-sectional view showing a rod body in another manufacturing method of the heat pipe shown in Fig. 1.

圖8為圖7所示製造方法中圓形熱導管的橫向剖面示意圖。 Figure 8 is a schematic transverse cross-sectional view of a circular heat pipe in the manufacturing method of Figure 7.

圖9為本發明第二實施例的扁平熱導管的橫向剖面示意圖。 Figure 9 is a transverse cross-sectional view showing a flat heat pipe according to a second embodiment of the present invention.

圖10為本發明第三實施例的扁平熱導管的橫向剖面示意圖。 Figure 10 is a transverse cross-sectional view showing a flat heat pipe according to a third embodiment of the present invention.

圖11為圖10所示扁平熱導管的一製造方法中桿體的橫向剖面示意圖。 Figure 11 is a schematic transverse cross-sectional view of a rod body in a method of manufacturing the flat heat pipe shown in Figure 10.

圖12為圖11所示製造方法中圓形熱導管的橫向剖面示意圖。 Figure 12 is a schematic transverse cross-sectional view of a circular heat pipe in the manufacturing method of Figure 11.

圖13為圖10所示扁平熱導管的另一製造方法中桿體的橫向剖面示意圖。 Figure 13 is a schematic transverse cross-sectional view of a rod body in another manufacturing method of the flat heat pipe shown in Figure 10.

圖14為圖13所示製造方法中圓形熱導管的橫向剖面示意圖。 Figure 14 is a schematic transverse cross-sectional view of a circular heat pipe in the manufacturing method of Figure 13.

圖15為本發明第四實施例的扁平熱導管的橫向剖面示意圖。 Figure 15 is a transverse cross-sectional view showing a flat heat pipe according to a fourth embodiment of the present invention.

下面參照附圖結合實施例對本發明作進一步之說明。 The present invention will be further described below in conjunction with the embodiments with reference to the accompanying drawings.

圖1與圖2所示為本發明第一實施例中的扁平熱導管10,該熱導管10包括一縱長的扁平管體11、縱向設於該管體11內的一第一毛細結構12與一第二毛細結構13、及注入該管體11內的適量工作介質(圖未示)。該熱導管10沿長度方向具有一蒸發段101及一冷凝段102,該蒸發段101與冷凝段102分別設於該管體11的兩端。 1 and 2 show a flat heat pipe 10 according to a first embodiment of the present invention. The heat pipe 10 includes an elongated flat tube body 11 and a first capillary structure 12 longitudinally disposed in the tube body 11. And a second capillary structure 13, and an appropriate amount of working medium (not shown) injected into the tube body 11. The heat pipe 10 has an evaporation section 101 and a condensation section 102 along the length direction. The evaporation section 101 and the condensation section 102 are respectively disposed at two ends of the tube body 11.

該管體11由銅等導熱性良好的材料製成,其可將外部的熱量傳遞至內部。該管體11呈中空密封狀,其內形成一內部空間110,該管體11由一中空圓管壓扁而成。該管體11包括一頂板111、一底板112及兩側板113、114。該頂板111與底板112相互平行且上下相對,該兩側板113、114呈弧形,其分別位於該管體11的兩側並與該頂板111、底板112相連,以使該管體11在與縱向垂直的橫向的截面上形成類似跑道型的輪廓。 The tube body 11 is made of a material having good thermal conductivity such as copper, which can transfer external heat to the inside. The tube body 11 has a hollow seal shape, and an inner space 110 is formed therein. The tube body 11 is formed by flattening a hollow tube. The tube body 11 includes a top plate 111, a bottom plate 112 and two side plates 113, 114. The top plate 111 and the bottom plate 112 are parallel to each other and are vertically opposed to each other. The two side plates 113 and 114 are arc-shaped, and are respectively located at two sides of the pipe body 11 and connected to the top plate 111 and the bottom plate 112, so that the pipe body 11 is in contact with A longitudinally vertical cross section forms a runway-like profile.

該第一毛細結構12呈一縱長結構,其被該第二毛細結構13壓扁成扁平實心狀,該第一毛細結構12上形成複數細小的孔隙(圖未示),所述孔隙可由銅、不銹鋼、纖維等材料製成的絲線編織後形成。本實施例中,該第一毛細結構12係由銅線編織形成沿其徑向相互層疊的多層絲網。該第一毛細結構12的孔隙率大,故滲透率高、熱阻小,有利於工作介質於其中順利流動。當然,該第一毛細結構12亦可為編織而成的單層網狀結構。 The first capillary structure 12 has a longitudinal structure which is flattened into a flat solid shape by the second capillary structure 13. The first capillary structure 12 is formed with a plurality of fine pores (not shown), and the pores can be made of copper. A wire made of a material such as stainless steel or fiber is formed by weaving. In the present embodiment, the first capillary structure 12 is woven by a copper wire to form a multilayered mesh laminated to each other in the radial direction thereof. The first capillary structure 12 has a large porosity, so that the permeability is high and the thermal resistance is small, which facilitates the smooth flow of the working medium therein. Of course, the first capillary structure 12 can also be a woven single-layer mesh structure.

該第一毛細結構12設於該管體11內的中部的一側上。在本實施例中,該第一毛細結構12的底面緊密貼合於該管體11的底板112的內表面上,而其頂面則結合於該第二毛細結構13上。 The first capillary structure 12 is disposed on one side of the middle portion of the tubular body 11. In this embodiment, the bottom surface of the first capillary structure 12 is closely attached to the inner surface of the bottom plate 112 of the tubular body 11, and the top surface thereof is coupled to the second capillary structure 13.

該第二毛細結構13與該第一毛細結構12的構造不同,其由銅等金屬粉末燒結形成多孔狀,該第二毛細結構13內部孔隙小,蒸發表面積大,毛細力強、抗重力效果好,且打扁後的最大傳熱量損失較小,有助於工作介質的蒸發吸熱,從而有效的傳遞熱導管10的蒸發段101的熱量。該第二毛細結構13設於該管體11內的中部與該第一毛細結構12正對的另一側上,即該第二毛細結構13正對該第一毛細結構12,該第二毛細結構13貼合於該第一毛細結構12的一側的尺寸小於該第二毛細結構13遠離該第一毛細結構12的一側的尺寸。在本實施例中,該第二毛細結構13大致呈三棱柱形,其尺寸較大的頂側面藉由高溫燒結緊密貼合於該管體11的頂板111的內表面上,而尺寸較小的底側形成一尖端並貼合於該第一毛細結構12的頂面的中間。 The second capillary structure 13 is different from the first capillary structure 12 in that it is sintered by a metal powder such as copper to form a porous shape. The second capillary structure 13 has small internal pores, large evaporation surface area, strong capillary force and good anti-gravity effect. And the maximum heat loss loss after flattening is small, which contributes to the evaporation endothermic of the working medium, thereby effectively transferring the heat of the evaporation section 101 of the heat pipe 10. The second capillary structure 13 is disposed on the other side of the tube body 11 opposite to the first capillary structure 12, that is, the second capillary structure 13 is facing the first capillary structure 12, the second capillary The dimension of the structure 13 attached to one side of the first capillary structure 12 is smaller than the dimension of the side of the second capillary structure 13 away from the first capillary structure 12. In this embodiment, the second capillary structure 13 has a substantially triangular prism shape, and the top surface of the larger size is closely adhered to the inner surface of the top plate 111 of the tube body 11 by high-temperature sintering, and the size is small. The bottom side forms a tip and fits in the middle of the top surface of the first capillary structure 12.

該第一、第二毛細結構12、13上下層疊貼合,並沿縱向將該管體11的內部空間110一分為二,從而於該第一、第二毛細結構12、13的兩側各形成一蒸氣通道118,該等蒸氣通道118可供蒸氣通過。 The first and second capillary structures 12 and 13 are laminated on top of each other, and the internal space 110 of the tubular body 11 is divided into two in the longitudinal direction, so as to be on both sides of the first and second capillary structures 12 and 13 A vapor passage 118 is formed which allows vapor to pass therethrough.

該工作介質為水、蠟、酒精、甲醇等具較低沸點的物質。當該熱導管10的蒸發段101與一熱源(圖未示)接觸時,該工作介質從蒸發段101處吸熱蒸發,並通過蒸氣通道118向冷凝段102移動,在冷凝段102放熱後凝結成液體,將熱量釋放出去,完成對熱源的散熱。該第一、第二毛細結構12、13提供毛細力使在管體11的冷凝段102凝結形成的工作介質回流至蒸發段101,實現工作介質在管體11內的循環運動,以完成對熱源的持續散熱。 The working medium is a substance having a lower boiling point such as water, wax, alcohol or methanol. When the evaporation section 101 of the heat pipe 10 is in contact with a heat source (not shown), the working medium absorbs heat from the evaporation section 101 to evaporate, and moves to the condensation section 102 through the vapor passage 118, and condenses after the condensation section 102 releases heat. The liquid releases the heat and completes the heat dissipation from the heat source. The first and second capillary structures 12, 13 provide a capillary force to return the working medium formed by the condensation of the condensation section 102 of the pipe body 11 to the evaporation section 101, thereby achieving a circulating motion of the working medium in the pipe body 11 to complete the heat source. Continuous cooling.

上述熱導管10中,該第一毛細結構12由絲線編織形成,其設於該 管體11內的一側(底板112的內表面)上,而該第二毛細結構13由金屬粉末燒結形成,其設於該管體11內的另一側(頂板111的內表面)上,並且該第一、第二毛細結構12、13均位於管體11內的中部且相互上下層疊貼合,當該熱導管10工作時,該工作介質於該第一、第二毛細結構12、13間相互滲透,既因燒結的第二毛細結構13而具有較大的毛細力,又因編織的第一毛細結構12而具有較高的滲透率及較小的熱阻力,從而使該熱導管10具有良好的傳熱性能。上述熱導管10的厚度可達到2mm以下,甚至當熱導管10的厚度為1.8mm時,該熱導管10仍能保證良好的性能,適用於內部空間狹小的電子設備如筆記本電腦等。 In the heat pipe 10, the first capillary structure 12 is formed by weaving a wire, and the One side of the tube body 11 (the inner surface of the bottom plate 112), and the second capillary structure 13 is formed by sintering of metal powder, which is disposed on the other side (the inner surface of the top plate 111) inside the tube body 11, And the first and second capillary structures 12 and 13 are located in the middle of the tube body 11 and are laminated on each other. When the heat pipe 10 is in operation, the working medium is in the first and second capillary structures 12 and 13 Interpenetrating, having a large capillary force due to the sintered second capillary structure 13, and having a higher permeability and a smaller thermal resistance due to the woven first capillary structure 12, thereby making the heat pipe 10 Has good heat transfer performance. The heat pipe 10 can have a thickness of less than 2 mm, and even when the thickness of the heat pipe 10 is 1.8 mm, the heat pipe 10 can ensure good performance, and is suitable for electronic devices such as notebook computers having a small internal space.

下面以具體實驗資料說明本發明熱導管10比習知型熱導管的傳熱性能強。以下測試均在相同條件下進行,同一表中的熱導管的規格及參數均相同,其中,Qmax為熱導管操作溫度在50℃時的最大傳熱量,平均熱阻值Rt=(蒸發段平均溫度(冷凝段平均溫度)/Qmax。 The heat transfer performance of the heat pipe 10 of the present invention is better than that of the conventional heat pipe by the specific experimental data. The following tests are carried out under the same conditions. The specifications and parameters of the heat pipes in the same table are the same. Among them, Qmax is the maximum heat transfer capacity when the heat pipe operating temperature is 50 °C, and the average heat resistance value Rt=(the average temperature of the evaporation section) (Condensation section average temperature) / Qmax.

如表1中所示,在被壓扁至相同規格(厚度T=2.0mm)的情況下,本發明的熱導管10的平均最大傳熱量較習知溝槽熱導管提升約57%,較習知燒結型熱導管提升約27%,同時平均熱阻值較習知溝槽熱導管減小約36%,較習知燒結型熱導管減小約22%,故,本發明的熱導管10打扁後的最大傳熱量損失較小,平均熱阻值亦較小,其綜合性能明顯提高。 As shown in Table 1, in the case of being flattened to the same specification (thickness T = 2.0 mm), the average maximum heat transfer amount of the heat pipe 10 of the present invention is increased by about 57% compared with the conventional grooved heat pipe. It is known that the sintered heat pipe is increased by about 27%, and the average heat resistance value is reduced by about 36% compared with the conventional grooved heat pipe, and is reduced by about 22% compared with the conventional sintered heat pipe. Therefore, the heat pipe of the present invention is 10 The maximum heat transfer loss after flattening is small, the average thermal resistance value is also small, and its comprehensive performance is significantly improved.

如表2中所示,在被壓扁至相同規格(厚度T=1.8mm)的情況下,本發明的熱導管10的平均最大傳熱量較習知溝槽熱導管提升約57%,較習知燒結型熱導管提升約28%,同時平均熱阻值較習知溝槽熱導管減小約36%,較習知燒結型熱導管減小約22%,故,本發明的熱導管10打扁後的最大傳熱量損失較小,平均熱阻值亦較小,其綜合性能明顯提高。 As shown in Table 2, in the case of being flattened to the same specification (thickness T = 1.8 mm), the average maximum heat transfer amount of the heat pipe 10 of the present invention is increased by about 57% compared with the conventional grooved heat pipe. It is known that the sintered heat pipe is increased by about 28%, and the average heat resistance value is reduced by about 36% compared with the conventional grooved heat pipe, and is reduced by about 22% compared with the conventional sintered heat pipe. Therefore, the heat pipe of the present invention is 10 The maximum heat transfer loss after flattening is small, the average thermal resistance value is also small, and its comprehensive performance is significantly improved.

圖3至圖6所示為上述熱導管10的一製造方法,其包括如下步驟:提供一桿體14,如圖4與圖5所示,該桿體14呈圓柱狀,其外圓周面上的底部沿軸向開設一拱形的開口141,該桿體14於外圓周面上的頂部正對該開口141處平直地切除一小部分,從而於該桿體14的外圓周面上的頂部形成一平直的缺口142,該缺口142與開口141不連通;提供一中空圓管形的第一毛細結構15(請參照圖6),將該第一 毛細結構15置入該桿體14的開口141中;提供一中空的金屬圓管16,該圓管16的內徑約等於該桿體14的外徑,將該桿體14、第一毛細結構15插入該圓管16中;將金屬粉末填入位於該圓管16內的桿體14的缺口142中,填充金屬粉末時,可先填入粒徑較細的金屬粉末,後逐步填入粒徑較粗的金屬粉末,振動該圓管16,使金屬粉末因重力因素按粒徑大小沿圓管16縱向分佈,填滿後將金屬粉末高溫燒結形成一第二毛細結構17,該第二毛細結構17的橫截面具有一平直邊171及與該平直邊171相連的一弧形邊172,其中該弧形邊172黏貼在圓管16的內表面上;取出桿體14,如圖6所示,該第一、第二毛細結構15、17留置於該圓管16中,該第一、第二毛細結構15、17正對設置,且分別貼附於該圓管16的部分內壁上;向該圓管16內填充工作介質,抽真空並封閉該圓管16的縱向兩端以形成圓形熱導管18;將該第一、第二毛細結構15、17正對打扁該圓形熱導管18即形成第一實施例中的熱導管10,其中,該圓管16壓扁後形成扁平狀的管體11,該第二毛細結構17壓扁後形成大致呈三棱柱狀的第二毛細結構13,該第二毛細結構13尺寸較小的一側即底側貼合於該第一毛細結構17的頂面上,該第一毛細結構15受該第二毛細結構17的擠壓形成扁平實心的第一毛細結構12。 3 to 6 show a manufacturing method of the heat pipe 10, which includes the following steps: providing a rod body 14, as shown in Figs. 4 and 5, the rod body 14 has a cylindrical shape on the outer circumferential surface thereof. The bottom portion of the rod body 14 defines an opening 141 in the axial direction, and the top portion of the rod body 14 on the outer circumferential surface is directly cut off a small portion at the opening 141 so as to be on the outer circumferential surface of the rod body 14. Forming a flat notch 142 at the top, the notch 142 is not in communication with the opening 141; providing a hollow capillary-shaped first capillary structure 15 (please refer to FIG. 6), the first The capillary structure 15 is placed in the opening 141 of the rod body 14; a hollow metal tube 16 is provided, the inner diameter of the tube 16 is approximately equal to the outer diameter of the rod body 14, the rod body 14, the first capillary structure 15 is inserted into the circular tube 16; the metal powder is filled into the notch 142 of the rod body 14 located in the circular tube 16, and when the metal powder is filled, the metal powder having a fine particle size can be filled first, and then the grain is gradually filled. The metal powder having a relatively large diameter vibrates the circular tube 16 so that the metal powder is distributed along the longitudinal direction of the circular tube 16 by the gravity factor. After filling, the metal powder is sintered at a high temperature to form a second capillary structure 17, the second capillary The cross-sectional mask of structure 17 has a straight edge 171 and a curved edge 172 connected to the straight edge 171, wherein the curved edge 172 is adhered to the inner surface of the circular tube 16; the rod body 14 is removed, as shown in FIG. As shown, the first and second capillary structures 15, 17 are left in the circular tube 16, and the first and second capillary structures 15, 17 are disposed opposite to each other and are respectively attached to a part of the inner wall of the circular tube 16. Filling the tube 16 with a working medium, evacuating and closing the longitudinal ends of the tube 16 to form a circular heat pipe 18; the first and second capillary structures 15, 17 are directly opposite to the circular heat pipe 18 to form the heat pipe 10 in the first embodiment, wherein the round pipe 16 is flattened to form a flat tube The second capillary structure 17 is flattened to form a second capillary structure 13 having a substantially triangular prism shape. The smaller side of the second capillary structure 13 , that is, the bottom side is attached to the first capillary structure 17 . On the top surface, the first capillary structure 15 is pressed by the second capillary structure 17 to form a flat solid first capillary structure 12.

上述製造方法中,該桿體14的缺口142為平直狀,其可藉由銑床直接銑出,成本低,便於量產。 In the above manufacturing method, the notch 142 of the rod body 14 is straight, which can be directly milled by a milling machine, and has low cost and is convenient for mass production.

圖7與圖8所示為上述熱導管10的另一製造方法,其與上述製造方法類似,不同之處在於:該桿體14a的底部的開口141a形成與頂部的缺口142類似的平直狀,該第一毛細結構15a為中空橢圓形,在形成圓形熱導管18a前,該桿體14a插入該圓管16中,該第一毛細結構15a插入該圓管16內的桿體14a的開口141a中。本實施例的製造方法中,該桿體14a的開口141a與缺口142均為平直狀,其均可藉由銑床直接銑出,進一步降低了生產成本。 7 and 8 show another manufacturing method of the above heat pipe 10, which is similar to the above manufacturing method, except that the opening 141a of the bottom of the rod body 14a is formed in a straight shape similar to the top notch 142. The first capillary structure 15a is a hollow elliptical shape. The rod body 14a is inserted into the circular tube 16 before the circular heat pipe 18a is formed. The first capillary structure 15a is inserted into the opening of the rod body 14a in the circular tube 16. In 141a. In the manufacturing method of the embodiment, the opening 141a and the notch 142 of the rod body 14a are both straight, and can be directly milled by a milling machine, thereby further reducing the production cost.

圖9所示為本發明第二實施例中的熱導管20,該熱導管20與第一實施例中的熱導管10類似,其不同之處在於:該第一毛細結構22設於該管體11內的中間靠左的位置,該第二毛細結構23與該第一毛細結構22斜向對準,該第二毛細結構23未與該管體11的頂板111貼合的一側面(圖中為左側面)緊密貼合於該第一毛細結構22的頂面的右側。當然,該第一毛細結構22亦可設於該管體11內的中間靠右的位置,該第二毛細結構23未與該管體11的頂板111貼合的一側面(即右側面)緊密貼合於該第一毛細結構22的頂面的左側。 Figure 9 shows a heat pipe 20 in a second embodiment of the present invention, which heat pipe 20 is similar to the heat pipe 10 of the first embodiment, except that the first capillary structure 22 is provided in the pipe body. The second capillary structure 23 is obliquely aligned with the first capillary structure 22, and the second capillary structure 23 is not adjacent to the top plate 111 of the tubular body 11 (in the figure) The left side surface is closely attached to the right side of the top surface of the first capillary structure 22. Of course, the first capillary structure 22 may also be disposed at a position to the right in the middle of the tube body 11. The second capillary structure 23 is not closely attached to a side surface (ie, the right side surface) of the top plate 111 of the tube body 11. It is attached to the left side of the top surface of the first capillary structure 22.

製造該熱導管20時,只需將圖6與圖8中的第一毛細結構15、15a與第二毛細結構17斜向對準打扁圓形熱導管18、18a即可。 When manufacturing the heat pipe 20, it is only necessary to align the first capillary structures 15, 15a and the second capillary structure 17 in Figs. 6 and 8 obliquely to round the circular heat pipes 18, 18a.

圖10所示為本發明第三實施例中的熱導管30,該熱導管30與第一實施例中的熱導管10類似,其不同之處在於:該第二毛細結構33呈長方體狀,其頂面緊密貼合於該管體11的頂板111的內表面上,而其底面的中央則貼合於該第一毛細結構32的頂面上。 Figure 10 is a view showing a heat pipe 30 according to a third embodiment of the present invention, which is similar to the heat pipe 10 of the first embodiment, except that the second capillary structure 33 has a rectangular parallelepiped shape, The top surface is closely attached to the inner surface of the top plate 111 of the tube body 11, and the center of the bottom surface is attached to the top surface of the first capillary structure 32.

圖11與圖12所示為上述熱導管30的一製造方法,其與圖3至圖6所示的熱導管10的製造方法類似,不同之處在於:該桿體14b的頂 部的缺口142b的橫截面為彩虹形,該圓形熱導管18b內對應形成的第二毛細結構17b的橫截面亦為彩虹形,該第二毛細結構17b壓扁後形成大致呈長方體狀的第二毛細結構33。 11 and 12 show a method of manufacturing the heat pipe 30 described above, which is similar to the method of manufacturing the heat pipe 10 shown in FIGS. 3 to 6, except that the top of the rod 14b is The cross section of the notch 142b is rainbow-shaped, and the cross section of the corresponding second capillary structure 17b in the circular heat pipe 18b is also rainbow-shaped. The second capillary structure 17b is flattened to form a substantially rectangular parallelepiped shape. Two capillary structure 33.

圖13與圖14所示為上述熱導管30的另一製造方法,其與圖11與圖12所示的熱導管30的製造方法類似,不同之處在於:該桿體14c的底部的開口141c形成平直狀,該第一毛細結構15c為中空橢圓形,在形成圓形熱導管18c前,該桿體14c插入該圓管16中,該第一毛細結構15c插入該圓管16內的桿體14c的開口141c中。 13 and FIG. 14 show another manufacturing method of the heat pipe 30 described above, which is similar to the manufacturing method of the heat pipe 30 shown in FIGS. 11 and 12, except that the opening 141c of the bottom of the rod 14c is Formed in a straight shape, the first capillary structure 15c is a hollow elliptical shape, and the rod body 14c is inserted into the circular tube 16 before the circular heat pipe 18c is formed, and the first capillary structure 15c is inserted into the rod in the circular tube 16. In the opening 141c of the body 14c.

圖15所示為本發明第四實施例中的熱導管40,該熱導管40與第三實施例中的熱導管30類似,其不同之處在於:該第一毛細結構42設於該管體11內的中部靠左的位置,該第二毛細結構43與該第一毛細結構42斜向對準,該第二毛細結構43未與該管體11的頂板111貼合的底面的左側緊密貼合於該第一毛細結構42的頂面上。當然,該第一毛細結構42亦可設於該管體11內的中部靠右的位置,該第二毛細結構43未與該管體11的頂板111貼合的底面的右側緊密貼合於該第一毛細結構42的頂面上。 Figure 15 is a view showing a heat pipe 40 in a fourth embodiment of the present invention, which is similar to the heat pipe 30 in the third embodiment, except that the first capillary structure 42 is provided in the pipe body. The second capillary structure 43 is obliquely aligned with the first capillary structure 42 in the left portion of the middle portion of the inner surface of the tube 11. The second capillary structure 43 is not closely attached to the left side of the bottom surface of the tube body 11 to which the top plate 111 is attached. It is fitted to the top surface of the first capillary structure 42. Of course, the first capillary structure 42 can also be disposed at a right position in the middle of the tube body 11. The second capillary structure 43 is not closely attached to the right side of the bottom surface of the tube body 11 to which the top plate 111 is attached. The top surface of the first capillary structure 42.

製造該熱導管40時,只需將圖12與圖14中的第一毛細結構15、15c與第二毛細結構17b斜向對準打扁圓形熱導管18b、18c即可。 When manufacturing the heat pipe 40, it is only necessary to align the first capillary structures 15, 15c and the second capillary structure 17b in Figs. 12 and 14 obliquely to round the circular heat pipes 18b, 18c.

綜上所述,本發明符合發明專利要件,爰依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,舉凡熟悉本案技藝之人士,在爰依本發明精神所作之等效修飾或變化,皆應涵蓋於以下之申請專利範圍內。 In summary, the present invention complies with the requirements of the invention patent and submits a patent application according to law. The above description is only the preferred embodiment of the present invention, and equivalent modifications or variations made by those skilled in the art will be included in the following claims.

10‧‧‧扁平熱導管 10‧‧‧flat heat pipe

11‧‧‧管體 11‧‧‧Body

110‧‧‧內部空間 110‧‧‧Internal space

111‧‧‧頂板 111‧‧‧ top board

112‧‧‧底板 112‧‧‧floor

113、114‧‧‧側板 113, 114‧‧‧ side panels

118‧‧‧蒸氣通道 118‧‧‧Vapor passage

12‧‧‧第一毛細結構 12‧‧‧First capillary structure

13‧‧‧第二毛細結構 13‧‧‧Second capillary structure

Claims (19)

一種扁平熱導管,包括中空的扁平管體及設置於管體內的第一毛細結構與第二毛細結構,其改良在於:所述第一毛細結構與第二毛細結構的構造不同,所述第一毛細結構由絲線編織形成,所述第二毛細結構藉由將粒徑較細的金屬粉末及粒徑較粗的金屬粉末先後填充於管體內燒結形成,所述第一毛細結構結合於所述管體內的一側上,所述第二毛細結構結合於所述管體內的另一側上,所述第一毛細結構與第二毛細結構相互貼合,所述管體內於第一毛細結構與第二毛細結構的兩側各形成一蒸氣通道。 A flat heat pipe comprising a hollow flat tube body and a first capillary structure and a second capillary structure disposed in the tube body, wherein the first capillary structure is different from the second capillary structure, the first The capillary structure is formed by weaving a wire, and the second capillary structure is formed by sintering a metal powder having a fine particle diameter and a metal powder having a relatively large particle diameter in a tube, and the first capillary structure is bonded to the tube. On one side of the body, the second capillary structure is bonded to the other side of the tube body, and the first capillary structure and the second capillary structure are attached to each other, and the tube body is in the first capillary structure and the first capillary structure A vapor channel is formed on each side of the two capillary structures. 如申請專利範圍第1項所述的扁平熱導管,其中所述管體包括頂板及與所述頂板相對的底板,所述第一毛細結構的一側結合於所述管體的底板上,所述第二毛細結構的一側結合於所述管體的頂板上,所述第一毛細結構未結合於管體的底板上的另一側與所述第二毛細結構未結合於管體的頂板上的另一側相互貼合。 The flat heat pipe according to claim 1, wherein the pipe body comprises a top plate and a bottom plate opposite to the top plate, and one side of the first capillary structure is coupled to the bottom plate of the pipe body, One side of the second capillary structure is coupled to the top plate of the pipe body, the first capillary structure is not bonded to the other side of the bottom plate of the pipe body, and the second capillary structure is not bonded to the top plate of the pipe body. The other side of the upper side fits together. 如申請專利範圍第1項所述的扁平熱導管,其中所述第一毛細結構與第二毛細結構正對設置,所述第二毛細結構貼合於所述第一毛細結構的中間或所述第二毛細結構的中間貼合於所述第一毛細結構上。 The flat heat pipe of claim 1, wherein the first capillary structure is disposed opposite to the second capillary structure, and the second capillary structure is attached to the middle of the first capillary structure or The middle of the second capillary structure is attached to the first capillary structure. 如申請專利範圍第3項所述的扁平熱導管,其中所述第二毛細結構與所述第一毛細結構貼合的一側的尺寸小於所述第二毛細結構遠離所述第一毛細結構的一側的尺寸,所述第二毛細結構與所述第一毛細結構貼合的一側形成一尖端並貼合於所述第一毛細結構的中間。 The flat heat pipe of claim 3, wherein a side of the second capillary structure that is attached to the first capillary structure is smaller than a size of the second capillary structure away from the first capillary structure. The side of the second capillary structure conforming to the first capillary structure forms a tip end and is fitted in the middle of the first capillary structure. 如申請專利範圍第3項所述的扁平熱導管,其中所述第二毛細結構為長方體狀,所述第二毛細結構的中央貼合於所述第一毛細結構上。 The flat heat pipe according to claim 3, wherein the second capillary structure has a rectangular parallelepiped shape, and a center of the second capillary structure is attached to the first capillary structure. 如申請專利範圍第1項所述的扁平熱導管,其中所述第一毛細結構與第二毛細結構斜向對準設置,所述第二毛細結構貼合於所述第一毛細結構的一側或所述第二毛細結構的一側貼合於所述第一毛細結構上。 The flat heat pipe according to claim 1, wherein the first capillary structure is disposed obliquely in alignment with the second capillary structure, and the second capillary structure is attached to one side of the first capillary structure. Or one side of the second capillary structure is attached to the first capillary structure. 如申請專利範圍第6項所述的扁平熱導管,其中所述第二毛細結構與所述第一毛細結構貼合的一側的尺寸小於所述第二毛細結構遠離所述第一毛細結構的一側的尺寸,所述第二毛細結構貼合於所述第一毛細結構的一側上。 The flat heat pipe of claim 6, wherein a side of the second capillary structure that is attached to the first capillary structure is smaller than a size of the second capillary structure away from the first capillary structure. One side of the size, the second capillary structure is attached to one side of the first capillary structure. 如申請專利範圍第6項所述的扁平熱導管,其中所述第二毛細結構為長方體狀,所述第二毛細結構的一側端貼合於所述第一毛細結構上。 The flat heat pipe according to claim 6, wherein the second capillary structure has a rectangular parallelepiped shape, and one end of the second capillary structure is attached to the first capillary structure. 如申請專利範圍第1項所述的扁平熱導管,其中所述第二毛細結構為三棱柱形或長方體狀,所述第二毛細結構未與所述管體結合的另一側貼合於所述第一毛細結構上。 The flat heat pipe according to claim 1, wherein the second capillary structure is a triangular prism shape or a rectangular parallelepiped shape, and the other side of the second capillary structure not bonded to the tubular body is attached to the same Said on the first capillary structure. 如申請專利範圍第1項所述的扁平熱導管,其中所述第一毛細結構被所述第二毛細結構擠壓成扁平狀。 The flat heat pipe of claim 1, wherein the first capillary structure is extruded into a flat shape by the second capillary structure. 一種扁平熱導管的製造方法,包括以下步驟:提供桿體,所述桿體呈圓柱狀,所述桿體的外圓周面上開設有開口及缺口,所述開口與缺口正對設置;提供第一毛細結構;提供圓管,所述圓管呈中空狀,所述圓管的內徑等於所述桿體的外徑,將所述桿體、第一毛細結構插入所述圓管中,使所述第一毛細結構位於所述桿體的開口內;將粒徑較細的金屬粉末及粒徑較粗的金屬粉末先後填入位於所述圓管內的桿體的缺口中,將金屬粉末高溫燒結形成第二毛細結構;取出桿體,所述第一、第二毛細結構留置於所述圓管中,所述第一、第二毛細結構正對設置,且分別貼附於所述圓管的部分內壁上;及 將圓管打扁形成扁平熱導管,使所述第二毛細結構貼合於所述第一毛細結構上,所述扁平熱導管內於第一毛細結構與第二毛細結構的兩側各形成一蒸氣通道。 A method for manufacturing a flat heat pipe, comprising the steps of: providing a rod body having a cylindrical shape, wherein an outer surface of the rod body is provided with an opening and a notch, and the opening is disposed opposite to the notch; a capillary structure; the round tube is hollow, the inner diameter of the round tube is equal to the outer diameter of the rod body, and the rod body and the first capillary structure are inserted into the round tube, so that The first capillary structure is located in the opening of the rod body; the metal powder having a fine particle diameter and the metal powder having a relatively large particle diameter are successively filled into the notch of the rod body located in the circular tube, and the metal powder is Sintering at a high temperature to form a second capillary structure; taking out the rod body, the first and second capillary structures are left in the round tube, the first and second capillary structures are disposed opposite to each other, and are respectively attached to the circle Part of the inner wall of the tube; and Flattening the round tube to form a flat heat pipe, the second capillary structure is attached to the first capillary structure, and the flat heat pipe is formed on both sides of the first capillary structure and the second capillary structure Vapor channel. 如申請專利範圍第11項所述的扁平熱導管的製造方法,其中所述缺口的橫截面為彩虹形,取出所述桿體後打扁所述圓管前,所述第二毛細結構的橫截面對應為彩虹形。 The method for manufacturing a flat heat pipe according to claim 11, wherein the notch has a rainbow cross shape, and the second capillary structure is transversely before the rod is taken out and the circular tube is flattened. The cross section corresponds to a rainbow shape. 如申請專利範圍第12項所述的扁平熱導管的製造方法,其中打扁所述圓管後,所述第二毛細結構為長方體狀。 The method for manufacturing a flat heat pipe according to claim 12, wherein the second capillary structure is a rectangular parallelepiped shape after the round pipe is flattened. 如申請專利範圍第11項所述的扁平熱導管的製造方法,其中所述缺口為平直狀,取出所述桿體後打扁所述圓管前,所述第二毛細結構具有平直邊及與所述平直邊相連的弧形邊,所述弧形邊結合於所述圓管的內表面上。 The method for manufacturing a flat heat pipe according to claim 11, wherein the notch is a flat shape, and the second capillary structure has a straight side before the rod is removed after the rod body is taken out. And an arcuate edge connected to the straight edge, the arcuate edge being bonded to an inner surface of the circular tube. 如申請專利範圍第14項所述的扁平熱導管的製造方法,其中打扁所述圓管後,所述第二毛細結構與所述第一毛細結構貼合的一側的尺寸小於所述第二毛細結構遠離所述第一毛細結構的一側的尺寸。 The method for manufacturing a flat heat pipe according to claim 14, wherein a size of a side of the second capillary structure that is bonded to the first capillary structure is smaller than the first portion after the round tube is flattened The second capillary structure is away from the size of one side of the first capillary structure. 如申請專利範圍第11項所述的扁平熱導管的製造方法,其中所述缺口為拱形,打扁所述圓管前,所述第一毛細結構為中空圓形。 The method for manufacturing a flat heat pipe according to claim 11, wherein the notch is arched, and the first capillary structure is hollow and round before the round pipe is flattened. 如申請專利範圍第11項所述的扁平熱導管的製造方法,其中所述缺口為平直狀,打扁所述圓管前,所述第一毛細結構為中空橢圓形。 The method for manufacturing a flat heat pipe according to claim 11, wherein the notch is a flat shape, and the first capillary structure is a hollow ellipse before the round tube is flattened. 如申請專利範圍第11所述的熱導管的製造方法,其特徵在於:打扁所述圓管的過程中,所述第一毛細結構受所述第二毛細結構的擠壓形成扁平狀。 The method of manufacturing a heat pipe according to claim 11, wherein the first capillary structure is formed into a flat shape by extrusion of the second capillary structure during the process of flattening the circular tube. 如申請專利範圍第11項所述的扁平熱導管的製造方法,其中打扁所述圓管時,將所述第一毛細結構與所述第二毛細結構正對或斜向對準。 The method of manufacturing a flat heat pipe according to claim 11, wherein when the round pipe is flattened, the first capillary structure and the second capillary structure are aligned in an oblique or oblique direction.
TW099116053A 2010-05-20 2010-05-20 Flat heat pipe and method for manufacturing the same TWI494531B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099116053A TWI494531B (en) 2010-05-20 2010-05-20 Flat heat pipe and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099116053A TWI494531B (en) 2010-05-20 2010-05-20 Flat heat pipe and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW201142232A TW201142232A (en) 2011-12-01
TWI494531B true TWI494531B (en) 2015-08-01

Family

ID=46765005

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099116053A TWI494531B (en) 2010-05-20 2010-05-20 Flat heat pipe and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI494531B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI530654B (en) 2011-12-26 2016-04-21 鴻準精密工業股份有限公司 Plate type heat pipe
CN102538530A (en) * 2012-01-12 2012-07-04 昆山德泰新材料科技有限公司 Heat pipe with grooves
TWI564530B (en) * 2012-01-19 2017-01-01 Asia Vital Components Co Ltd Heat pipe heat dissipation structure
US9506699B2 (en) 2012-02-22 2016-11-29 Asia Vital Components Co., Ltd. Heat pipe structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074578A (en) * 1998-08-28 2000-03-14 Furukawa Electric Co Ltd:The Flat heat pipe and manufacture thereof
TWI289654B (en) * 2006-06-02 2007-11-11 Foxconn Tech Co Ltd Composite heat pipe and method of producing the same
JP2009068787A (en) * 2007-09-14 2009-04-02 Furukawa Electric Co Ltd:The Thin heat pipe and method of manufacturing the same
TW200923307A (en) * 2007-11-21 2009-06-01 Forcecon Technology Co Ltd Multiple channel flat heat pipe having sintered wick structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074578A (en) * 1998-08-28 2000-03-14 Furukawa Electric Co Ltd:The Flat heat pipe and manufacture thereof
TWI289654B (en) * 2006-06-02 2007-11-11 Foxconn Tech Co Ltd Composite heat pipe and method of producing the same
JP2009068787A (en) * 2007-09-14 2009-04-02 Furukawa Electric Co Ltd:The Thin heat pipe and method of manufacturing the same
TW200923307A (en) * 2007-11-21 2009-06-01 Forcecon Technology Co Ltd Multiple channel flat heat pipe having sintered wick structure

Also Published As

Publication number Publication date
TW201142232A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
US9453689B2 (en) Flat heat pipe
TW201303250A (en) Heat pipe
US7866374B2 (en) Heat pipe with capillary wick
CN102466422B (en) Flat heat pipe and manufacture method thereof
TWI530654B (en) Plate type heat pipe
US20140166244A1 (en) Flat heat pipe and method for manufacturing the same
US20110174464A1 (en) Flat heat pipe and method for manufacturing the same
US20120227935A1 (en) Interconnected heat pipe assembly and method for manufacturing the same
US20190376748A1 (en) Heat pipe
JP2007120935A (en) Heat transfer tube
US20120111540A1 (en) Flat type heat pipe and method for manufacturing the same
CN103629963A (en) Multi-scale capillary core flat plate loop heat pipe type heat-dissipation device
US20100155031A1 (en) Heat pipe and method of making the same
TWI494531B (en) Flat heat pipe and method for manufacturing the same
TW201425855A (en) Heat pipe and method for manufacturing the same
TWI457528B (en) Plate type heat pipe
TWI497026B (en) Flat heat pipe and method for manufacturing the same
US20120043059A1 (en) Loop heat pipe
TWI497025B (en) Flat heat pipe and method for manufacturing the same
TWI530655B (en) Plate type heat pipe
TWI482938B (en) Flat type heat pipe and method of manufacturing the same
TWI486543B (en) Flat type heat pipe
TWI482937B (en) Flat type heat pipe
TWM446489U (en) Heat conduction pipe structure
TWI608213B (en) Heat transfer device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees