TWI497026B - Flat heat pipe and method for manufacturing the same - Google Patents

Flat heat pipe and method for manufacturing the same Download PDF

Info

Publication number
TWI497026B
TWI497026B TW099139625A TW99139625A TWI497026B TW I497026 B TWI497026 B TW I497026B TW 099139625 A TW099139625 A TW 099139625A TW 99139625 A TW99139625 A TW 99139625A TW I497026 B TWI497026 B TW I497026B
Authority
TW
Taiwan
Prior art keywords
capillary structure
heat pipe
tube
capillary
flat heat
Prior art date
Application number
TW099139625A
Other languages
Chinese (zh)
Other versions
TW201221889A (en
Inventor
sheng-liang Dai
Sheng-Guo Zhou
Jin-Peng Liu
Yue Liu
sheng lin Wu
Yu Liang Lo
Original Assignee
Foxconn Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foxconn Tech Co Ltd filed Critical Foxconn Tech Co Ltd
Priority to TW099139625A priority Critical patent/TWI497026B/en
Publication of TW201221889A publication Critical patent/TW201221889A/en
Application granted granted Critical
Publication of TWI497026B publication Critical patent/TWI497026B/en

Links

Description

扁平熱導管及其製造方法 Flat heat pipe and method of manufacturing same

本發明涉及一種熱導管,特別涉及一種應用於電子元件散熱領域的扁平熱導管及其製造方法。 The present invention relates to a heat pipe, and more particularly to a flat heat pipe applied to the field of heat dissipation of electronic components and a method of manufacturing the same.

現階段,熱導管因其具有較高傳熱量的優點,已被廣泛應用於具較大發熱量的電子元件中。該熱導管工作時,利用管體內部填充的低沸點工作介質在其蒸發部吸收發熱電子元件產生的熱量後蒸發汽化,蒸氣帶著熱量運動至冷凝部,並在冷凝部液化凝結將熱量釋放出去,從而對電子元件進行散熱。該液化後的工作介質在熱導管壁部毛細結構的作用下回流至蒸發部,繼續蒸發汽化及液化凝結,使工作介質在熱導管內部迴圈運動,將電子元件產生的熱量源源不斷的散發出去。 At this stage, the heat pipe has been widely used in electronic components with large heat generation because of its high heat transfer capacity. When the heat pipe is in operation, the low-boiling working medium filled inside the pipe body absorbs the heat generated by the heat-generating electronic component in the evaporation portion, and then evaporates and vaporizes, the vapor moves with heat to the condensation portion, and condenses and condenses in the condensation portion to release the heat. Thereby dissipating heat from the electronic components. The liquefied working medium is returned to the evaporation portion under the action of the capillary structure of the heat pipe wall, and further evaporative vaporization and liquefaction condensation are performed, so that the working medium moves back inside the heat pipe, and the heat generated by the electronic component is continuously emitted. .

習知熱導管的毛細結構一般可分為溝槽型、燒結型、纖維型及絲網型等,這些毛細結構的特點單一,溝槽型、纖維型、絲網型毛細結構的滲透率高、熱阻小,但其毛細力弱,打扁後的最大傳熱量損失大;燒結型毛細結構的毛細力強、抗重力效果好,打扁後的最大傳熱量損失較小,但其滲透率低、熱阻大。 The capillary structure of the conventional heat pipe can be generally divided into a groove type, a sintered type, a fiber type and a wire mesh type, and the characteristics of the capillary structure are single, and the permeability of the groove type, the fiber type, and the wire mesh type capillary structure is high. The thermal resistance is small, but its capillary force is weak, and the maximum heat transfer loss after flattening is large; the sintered capillary structure has strong capillary force and good anti-gravity effect, and the maximum heat loss after flattening is small, but its permeability is low. The thermal resistance is large.

有鑒於此,有必要提供一種提高熱管性能的扁平熱導管及其製造 方法。 In view of this, it is necessary to provide a flat heat pipe for improving the performance of the heat pipe and its manufacture. method.

一種扁平熱導管,包括中空的扁平管體及設置於管體內的第一毛細結構與第二毛細結構,所述第一毛細結構由多空隙的鋼網彎折層疊形成,所述第二毛細結構由金屬粉末燒結形成,所述第一毛細結構與第二毛細結構相互貼合,所述管體內於第一毛細結構與第二毛細結構以外的區域形成蒸氣通道。 A flat heat pipe comprising a hollow flat tube body and a first capillary structure and a second capillary structure disposed in the tube body, the first capillary structure being formed by bending and laminating a multi-voided steel mesh, the second capillary structure Formed by sintering of the metal powder, the first capillary structure and the second capillary structure are bonded to each other, and the tube body forms a vapor passage in a region other than the first capillary structure and the second capillary structure.

一種扁平熱導管的製造方法,包括以下步驟:提供桿體,所述桿體呈圓柱狀,其外圓周面上開設有開口及缺口;提供第一毛細結構;提供圓管,所述圓管呈中空狀,所述圓管的內徑等於所述桿體的外徑,將所述桿體、第一毛細結構插入所述圓管中,使所述第一毛細結構位於所述桿體的開口與圓管的管壁之間;提供複數金屬粉末,並將金屬粉末填入位於所述圓管內的桿體的缺口中,將金屬粉末高溫燒結形成第二毛細結構;取出桿體,所述第一、第二毛細結構留置於所述圓管中且分別貼附於所述圓管的部分內壁上;及將圓管打扁形成扁平熱導管,使所述第二毛細結構貼合於所述第一毛細結構上,所述扁平熱導管內於第一毛細結構與第二毛細結構以外的區域形成蒸氣通道。 A method for manufacturing a flat heat pipe, comprising the steps of: providing a rod body having a cylindrical shape, an opening and a notch formed on an outer circumferential surface thereof; providing a first capillary structure; providing a round tube, wherein the round tube is Hollow, the inner diameter of the circular tube is equal to the outer diameter of the rod body, and the rod body and the first capillary structure are inserted into the circular tube so that the first capillary structure is located at the opening of the rod body Between the tube wall of the circular tube; providing a plurality of metal powders, filling the metal powder into the notch of the rod body located in the circular tube, sintering the metal powder at a high temperature to form a second capillary structure; taking out the rod body, The first and second capillary structures are left in the circular tube and respectively attached to a part of the inner wall of the circular tube; and the round tube is flattened to form a flat heat pipe, so that the second capillary structure is attached to In the first capillary structure, a vapor passage is formed in the flat heat pipe in a region other than the first capillary structure and the second capillary structure.

上述扁平熱導管及其製造方法中,所述第一毛細結構設於該管體內的一側上,而所述第二毛細結構設於該管體內的另一側上,並 且所述第一、第二毛細結構相互貼合,當所述熱導管工作時,工作介質可於所述第一、第二毛細結構間相互滲透,既具有較大的毛細力,又具有較高的滲透率及較小的熱阻力,從而使該熱導管具有良好的傳熱性能。 In the above flat heat pipe and the method of manufacturing the same, the first capillary structure is disposed on one side of the tube body, and the second capillary structure is disposed on the other side of the tube body, and And the first and second capillary structures are attached to each other, and when the heat pipe works, the working medium can penetrate each other between the first and second capillary structures, and has a large capillary force and a comparative High permeability and low thermal resistance make the heat pipe have good heat transfer performance.

10、20、30、40‧‧‧扁平熱導管 10, 20, 30, 40‧‧‧ flat heat pipes

101‧‧‧蒸發段 101‧‧‧Evaporation section

102‧‧‧冷凝段 102‧‧‧Condensation section

11‧‧‧管體 11‧‧‧Body

110‧‧‧內部空間 110‧‧‧Internal space

111‧‧‧頂板 111‧‧‧ top board

112‧‧‧底板 112‧‧‧floor

113、114‧‧‧側板 113, 114‧‧‧ side panels

118‧‧‧蒸氣通道 118‧‧‧Vapor passage

12、22、32、42、15‧‧‧第一毛細結構 12, 22, 32, 42, 15‧‧‧ first capillary structure

13、23、33、43、17、17a‧‧‧第二毛細結構 13, 23, 33, 43, 17, 17a‧‧‧Second capillary structure

14、14a‧‧‧桿體 14, 14a‧‧‧ rod body

141‧‧‧開口 141‧‧‧ openings

142、142a‧‧‧缺口 142, 142a‧‧ ‧ gap

16‧‧‧圓管 16‧‧‧ round tube

171‧‧‧平直邊 171‧‧‧ Straight side

172‧‧‧弧形邊 172‧‧‧Arc edge

18、18a‧‧‧圓形熱導管 18, 18a‧‧‧ Round heat pipe

10、20、30、40‧‧‧扁平熱導管 10, 20, 30, 40‧‧‧ flat heat pipes

101‧‧‧蒸發段 101‧‧‧Evaporation section

102‧‧‧冷凝段 102‧‧‧Condensation section

11‧‧‧管體 11‧‧‧Body

110‧‧‧內部空間 110‧‧‧Internal space

111‧‧‧頂板 111‧‧‧ top board

112‧‧‧底板 112‧‧‧floor

113、114‧‧‧側板 113, 114‧‧‧ side panels

118‧‧‧蒸氣通道 118‧‧‧Vapor passage

12、22、32、42、15‧‧‧第一毛細結構 12, 22, 32, 42, 15‧‧‧ first capillary structure

13、23、33、43、17、17a‧‧‧第二毛細結構 13, 23, 33, 43, 17, 17a‧‧‧Second capillary structure

14、14a‧‧‧桿體 14, 14a‧‧‧ rod body

141‧‧‧開口 141‧‧‧ openings

142、142a‧‧‧缺口 142, 142a‧‧ ‧ gap

16‧‧‧圓管 16‧‧‧ round tube

171‧‧‧平直邊 171‧‧‧ Straight side

172‧‧‧弧形邊 172‧‧‧Arc edge

18、18a‧‧‧圓形熱導管 18, 18a‧‧‧ Round heat pipe

圖1為本發明第一實施例的扁平熱導管側面示意圖。 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a side elevational view of a flat heat pipe according to a first embodiment of the present invention.

圖2為圖1所示扁平熱導管沿II-II線的橫向剖面示意圖。 2 is a schematic transverse cross-sectional view of the flat heat pipe of FIG. 1 taken along line II-II.

圖3為圖1所示扁平熱導管的一製造方法的流程圖。 3 is a flow chart of a method of manufacturing the flat heat pipe shown in FIG. 1.

圖4為圖3所示製造方法中桿體及圓管的立體示意圖。 4 is a schematic perspective view of a rod body and a round tube in the manufacturing method shown in FIG. 3.

圖5為圖4所示製造方法中桿體沿V-V線的橫向剖面示意圖。 Fig. 5 is a schematic transverse cross-sectional view of the rod body taken along line V-V in the manufacturing method shown in Fig. 4.

圖6為圖3所示製造方法中圓形熱導管的橫向剖面示意圖。 Figure 6 is a schematic transverse cross-sectional view of a circular heat pipe in the manufacturing method of Figure 3.

圖7為本發明第二實施例的扁平熱導管的橫向剖面示意圖。 Figure 7 is a transverse cross-sectional view showing a flat heat pipe according to a second embodiment of the present invention.

圖8為本發明第三實施例的扁平熱導管的橫向剖面示意圖。 Figure 8 is a transverse cross-sectional view showing a flat heat pipe according to a third embodiment of the present invention.

圖9為圖8所示製造方法中圓形熱導管的橫向剖面示意圖。 Figure 9 is a schematic transverse cross-sectional view of a circular heat pipe in the manufacturing method of Figure 8.

圖10為圖9所示扁平熱導管的另一製造方法中桿體的橫向剖面示意圖。 Fig. 10 is a schematic transverse cross-sectional view showing a rod body in another manufacturing method of the flat heat pipe shown in Fig. 9.

圖11為本發明第四實施例的扁平熱導管的橫向剖面示意圖。 Figure 11 is a transverse cross-sectional view showing a flat heat pipe according to a fourth embodiment of the present invention.

圖1與圖2所示為本發明第一實施例中的扁平熱導管10,該熱導管10包括一縱長的扁平管體11、縱向設於該管體11內的一第一毛細結構12與一第二毛細結構13、及注入該管體11內的適量工作介質 (圖未示)。該熱導管10沿長度方向具有一蒸發段101及一冷凝段102,該蒸發段101與冷凝段102分別設於該管體11的兩端。 1 and 2 show a flat heat pipe 10 according to a first embodiment of the present invention. The heat pipe 10 includes an elongated flat tube body 11 and a first capillary structure 12 longitudinally disposed in the tube body 11. And a second capillary structure 13 and an appropriate amount of working medium injected into the tube body 11 (not shown). The heat pipe 10 has an evaporation section 101 and a condensation section 102 along the length direction. The evaporation section 101 and the condensation section 102 are respectively disposed at two ends of the tube body 11.

該管體11由銅等導熱性良好的材料製成,其可將外部的熱量傳遞至內部。該管體11呈中空密封狀,其內形成一內部空間110,該管體11由一中空圓管壓扁而成。該管體11包括一頂板111、一底板112及兩側板113、114。該頂板111與底板112相互平行且上下相對,該兩側板113、114呈弧形,其分別位於該管體11的兩側並與該頂板111、底板112相連,以使該管體11在與縱向垂直的橫向的截面上形成類似跑道型的輪廓。 The tube body 11 is made of a material having good thermal conductivity such as copper, which can transfer external heat to the inside. The tube body 11 has a hollow seal shape, and an inner space 110 is formed therein. The tube body 11 is formed by flattening a hollow tube. The tube body 11 includes a top plate 111, a bottom plate 112 and two side plates 113, 114. The top plate 111 and the bottom plate 112 are parallel to each other and are vertically opposed to each other. The two side plates 113 and 114 are arc-shaped, and are respectively located at two sides of the pipe body 11 and connected to the top plate 111 and the bottom plate 112, so that the pipe body 11 is in contact with A longitudinally vertical cross section forms a runway-like profile.

該第一毛細結構12呈一縱長結構,其被該第二毛細結構13壓扁成扁平實心狀,該第一毛細結構12上形成複數細小的孔隙(圖未示)。本實施例中,該第一毛細結構12是由具有複數孔隙的鋼網多層堆疊形成。該第一毛細結構12的孔隙率大,因此滲透率高、熱阻小,有利於工作介質於其中順利流動。當然,該第一毛細結構12也可為單層的鋼網。 The first capillary structure 12 has a longitudinal structure which is flattened into a flat solid shape by the second capillary structure 13, and a plurality of fine pores (not shown) are formed on the first capillary structure 12. In this embodiment, the first capillary structure 12 is formed by a multilayer stack of steel meshes having a plurality of pores. The first capillary structure 12 has a large porosity, so that the permeability is high and the thermal resistance is small, which facilitates the smooth flow of the working medium therein. Of course, the first capillary structure 12 can also be a single-layer steel mesh.

該第一毛細結構12設於該管體11內的中部的一側上。在本實施例中,該第一毛細結構12的底面緊密貼合於該管體11的底板112的內表面上,而其頂面則結合於該第二毛細結構13上。 The first capillary structure 12 is disposed on one side of the middle portion of the tubular body 11. In this embodiment, the bottom surface of the first capillary structure 12 is closely attached to the inner surface of the bottom plate 112 of the tubular body 11, and the top surface thereof is coupled to the second capillary structure 13.

該第二毛細結構13與第一毛細結構12的構造不同,其為由銅等金屬粉末燒結形成的多孔性結構。該第二毛細結構13內部空隙小,蒸發表面積大,毛細力強,抗重力效果好,且打扁後的最大傳熱量損失較小,有助於工作介質的蒸發吸熱,從而有效的傳遞熱導管10的蒸發段101的熱量。該第二毛細結構13設於該管體11內的中部與該第一毛細結構12正對的另一側上,即該第二毛細結構13 正對該第一毛細結構12。該第二毛細結構13貼合於該第一毛細結構12的一側的尺寸小於該第二毛細結構13遠離該第一毛細結構12的一側的尺寸。在本實施例中,該第二毛細結構13大致呈三稜柱狀,其尺寸較大的頂端面通過高溫燒結緊密貼合於該管體11的頂板111的內表面上,而尺寸較大的底端形成一尖端並貼合於該第一毛細結構12的中部。 The second capillary structure 13 is different from the first capillary structure 12 in that it is a porous structure formed by sintering a metal powder such as copper. The second capillary structure 13 has small internal voids, large evaporation surface area, strong capillary force, good anti-gravity effect, and small loss of maximum heat transfer after flattening, which contributes to evaporation and heat absorption of the working medium, thereby effectively transmitting the heat pipe. The heat of the evaporation section 101 of 10. The second capillary structure 13 is disposed on the other side of the tube body 11 opposite to the first capillary structure 12, that is, the second capillary structure 13 The first capillary structure 12 is being formed. The size of the second capillary structure 13 attached to one side of the first capillary structure 12 is smaller than the size of the side of the second capillary structure 13 away from the first capillary structure 12. In the present embodiment, the second capillary structure 13 has a substantially triangular prism shape, and the top end surface of the larger size is closely adhered to the inner surface of the top plate 111 of the tube body 11 by high temperature sintering, and the larger size bottom is formed. The tip forms a tip and is attached to the middle of the first capillary structure 12.

該第一、第二毛細結構12、13上下層疊貼合,並沿縱向將該管體11的內部空間110一分為二,從而於該第一、第二毛細結構12、13的兩側各形成一蒸氣通道118,這些蒸氣通道118可供蒸氣通過。 The first and second capillary structures 12 and 13 are laminated on top of each other, and the internal space 110 of the tubular body 11 is divided into two in the longitudinal direction, so as to be on both sides of the first and second capillary structures 12 and 13 A vapor passage 118 is formed which allows vapor to pass therethrough.

該工作介質為水、蠟、酒精、甲醇等具較低沸點的物質。當該熱導管10的蒸發段101與一熱源(圖未示)接觸時,該工作介質從蒸發段101處吸熱蒸發,並通過蒸氣通道118向冷凝段102移動,在冷凝段102放熱後凝結成液體,將熱量釋放出去,完成對熱源的散熱。該第一、第二毛細結構12、13提供毛細力使在管體11的冷凝段102凝結形成的工作介質回流至蒸發段101,實現工作介質在管體11內的迴圈運動,以完成對熱源的持續散熱。 The working medium is a substance having a lower boiling point such as water, wax, alcohol or methanol. When the evaporation section 101 of the heat pipe 10 is in contact with a heat source (not shown), the working medium absorbs heat from the evaporation section 101 to evaporate, and moves to the condensation section 102 through the vapor passage 118, and condenses after the condensation section 102 releases heat. The liquid releases the heat and completes the heat dissipation from the heat source. The first and second capillary structures 12, 13 provide a capillary force to return the working medium formed by the condensation of the condensation section 102 of the pipe body 11 to the evaporation section 101, thereby realizing the loop motion of the working medium in the pipe body 11 to complete the pair. The heat source continues to dissipate heat.

上述熱導管10中,該第一毛細結構12為多孔的鋼網,其設於該管體11內的一側(底板112的內表面)上,而該第二毛細結構13由金屬粉末燒結形成的燒結結構,其設於該管體11內的另一側(頂板111的內表面)上,並且該第一、第二毛細結構12、13均位於管體11內的中部且相互上下層疊貼合,當該熱導管10工作時,該工作介質於該第一、第二毛細結構12、13間相互滲透,既因燒結的第二毛細結構13而具有較大的毛細力,又因第一毛細結構12而 具有較高的滲透率及較小的熱阻力,從而使該熱導管10具有良好的傳熱性能。上述熱導管10的厚度可達到2mm以下,甚至當熱導管10的厚度為1.5mm時,該熱導管10仍能保證良好的性能,適用於內部空間狹小的電子設備如筆記本電腦等。 In the heat pipe 10, the first capillary structure 12 is a porous steel mesh which is disposed on one side of the pipe body 11 (the inner surface of the bottom plate 112), and the second capillary structure 13 is formed by sintering of the metal powder. The sintered structure is disposed on the other side of the tube body 11 (the inner surface of the top plate 111), and the first and second capillary structures 12, 13 are located in the middle of the tube body 11 and are stacked one on another. When the heat pipe 10 is in operation, the working medium penetrates between the first and second capillary structures 12 and 13, and has a large capillary force due to the sintered second capillary structure 13 and Capillary structure 12 It has a high permeability and a small heat resistance, so that the heat pipe 10 has good heat transfer performance. The thickness of the heat pipe 10 described above can be less than 2 mm, and even when the thickness of the heat pipe 10 is 1.5 mm, the heat pipe 10 can ensure good performance, and is suitable for electronic devices such as notebook computers having a small internal space.

下麵以具體實驗資料說明本發明熱導管10比傳統型熱導管的傳熱性能強。以下測試均在相同條件下進行,同一表中的熱導管的規格及參數均相同,其中,Qmax為熱導管操作溫度在50℃時的最大傳熱量,平均熱阻值Rth=(蒸發段平均溫度(冷凝段平均溫度)/Qmax。 The heat transfer performance of the heat pipe 10 of the present invention is higher than that of the conventional heat pipe by the specific experimental data. The following tests are carried out under the same conditions. The specifications and parameters of the heat pipes in the same table are the same. Among them, Q max is the maximum heat transfer capacity of the heat pipe operating temperature at 50 ° C, and the average thermal resistance value R th = (evaporation section) Average temperature (condensation section average temperature) / Qmax.

如表1中所示,在被壓扁至相同規格(厚度T=2.0mm)的情況下,本發明的熱導管10的平均最大傳熱量較傳統燒結型熱導管提升約16.7%,同時平均熱阻值較傳統燒結型熱導管減小約10.8%,因此,本發明的熱導管10打扁後的最大傳熱量損失較小,平均熱阻值也較小,其綜合性能明顯提高。 As shown in Table 1, in the case of being flattened to the same specification (thickness T = 2.0 mm), the average maximum heat transfer amount of the heat pipe 10 of the present invention is increased by about 16.7% compared with the conventional sintered heat pipe, and the average heat is simultaneously The resistance value is reduced by about 10.8% compared with the conventional sintered heat pipe. Therefore, the maximum heat transfer loss of the heat pipe 10 of the present invention after being flattened is small, the average thermal resistance value is also small, and the comprehensive performance is remarkably improved.

表2 規格為直徑(=6mm、長度L=200mm、厚度T=1.5mm Table 2 Specifications are diameter (=6mm, length L=200mm, thickness T=1.5mm

如表2中所示,在被壓扁至相同規格(厚度T=1.5mm)的情況下,本發明的熱導管10的平均最大傳熱量較傳統燒結型熱導管提升約43.6%,同時平均熱阻值較傳統燒結型熱導管減小約28.9%,因此,本發明的熱導管10打扁後的最大傳熱量損失較小,平均熱阻值也較小,其綜合性能明顯提高。 As shown in Table 2, in the case of being flattened to the same specification (thickness T = 1.5 mm), the average maximum heat transfer amount of the heat pipe 10 of the present invention is increased by about 43.6% compared with the conventional sintered heat pipe, and the average heat is simultaneously The resistance value is reduced by about 28.9% compared with the conventional sintered heat pipe. Therefore, the maximum heat transfer loss of the heat pipe 10 of the present invention after being flattened is small, the average thermal resistance value is also small, and the comprehensive performance is remarkably improved.

圖3至圖6所示為上述熱導管10的一製造方法,其包括如下步驟:提供一桿體14,如圖4與圖5所示,該桿體14呈圓柱狀,其外圓周面上的底部沿周向開設一弧形的開口141,該桿體14於外圓周面上的頂部正對該開口141處平直地切除一小部分,從而於該桿體14的外圓周面上的頂部形成一平直的缺口142,該缺口142與開口141不連通;提供一中空的金屬圓管16,該圓管16的內徑約等於該桿體14的外徑,將該桿體14插入該圓管16中;提供一由多孔的鋼網彎折而多層堆疊形成的第一毛細結構15(請參照圖6),將該第一毛細結構15置入該圓管16與桿體14的開口141之間的空隙; 提供複數金屬粉末,並將金屬粉末填入位於該圓管16與桿體14的缺口142之間的空隙中,填充金屬粉末時,可先填入粒徑較細的金屬粉末,後逐步填入粒徑較粗的金屬粉末,振動該圓管16,使金屬粉末因重力因素按粒徑大小沿圓管16縱向分佈,填滿後將金屬粉末高溫燒結形成一第二毛細結構17,該第二毛細結構17的橫截面具有一平直邊171及與該平直邊171相連的一弧形邊172,其中該弧形邊172黏貼在圓管16的內表面上;取出桿體14,如圖6所示,該第一、第二毛細結構15、17留置於該圓管16中,該第一、第二毛細結構15、17正對設置,且分別貼附於該圓管16的部分內壁上;向該圓管16內填充工作介質,抽真空並封閉該圓管16的縱向兩端以形成圓形熱導管18;將該第一、第二毛細結構15、17正對打扁該圓形熱導管18即形成第一實施例中的熱導管10,其中,該圓管16壓扁後形成扁平狀的管體11,該第二毛細結構17壓扁後形成大致呈三稜柱狀的第二毛細結構13,該第二毛細結構13尺寸較小的一側即底側貼合於該第一毛細結構17的頂面上,該第一毛細結構15受該第二毛細結構17的擠壓形成一橫截面大致呈長方形的第一毛細結構12。 3 to 6 show a manufacturing method of the heat pipe 10, which includes the following steps: providing a rod body 14, as shown in Figs. 4 and 5, the rod body 14 has a cylindrical shape on the outer circumferential surface thereof. The bottom portion of the rod body 14 is circumferentially opened with an arcuate opening 141. The top portion of the rod body 14 on the outer circumferential surface is directly cut off a small portion at the opening 141 so as to be on the outer circumferential surface of the rod body 14. A flat notch 142 is formed at the top, the notch 142 is not in communication with the opening 141; a hollow metal tube 16 is provided, the inner diameter of the tube 16 is approximately equal to the outer diameter of the rod 14, and the rod 14 is inserted In the circular tube 16; a first capillary structure 15 (see FIG. 6) formed by multi-layer stacking of a porous steel mesh is provided, and the first capillary structure 15 is placed in the circular tube 16 and the rod body 14. a gap between the openings 141; A plurality of metal powders are provided, and the metal powder is filled in a space between the round pipe 16 and the notch 142 of the rod body 14. When the metal powder is filled, the metal powder having a fine particle size may be first filled, and then gradually filled in. The metal powder having a relatively large particle diameter vibrates the circular tube 16 so that the metal powder is distributed along the longitudinal direction of the circular tube 16 according to the gravity factor, and after filling, the metal powder is sintered at a high temperature to form a second capillary structure 17, which is second. The cross-sectional mask of the capillary structure 17 has a straight edge 171 and a curved edge 172 connected to the straight edge 171, wherein the curved edge 172 is adhered to the inner surface of the circular tube 16; the rod body 14 is removed, as shown in the figure As shown in FIG. 6, the first and second capillary structures 15, 17 are left in the circular tube 16, and the first and second capillary structures 15, 17 are disposed opposite to each other and are respectively attached to the portion of the circular tube 16. a working medium is filled into the circular tube 16, vacuum is drawn and the longitudinal ends of the circular tube 16 are closed to form a circular heat pipe 18; the first and second capillary structures 15, 17 are directly aligned The circular heat pipe 18 forms the heat pipe 10 in the first embodiment, wherein the round pipe 16 is flattened and shaped a flat tube body 11, the second capillary structure 17 is flattened to form a second triangular structure 13 having a substantially triangular prism shape, and a side of the second capillary structure 13 having a smaller size, that is, a bottom side is attached to the first On the top surface of the capillary structure 17, the first capillary structure 15 is pressed by the second capillary structure 17 to form a first capillary structure 12 having a substantially rectangular cross section.

上述製造方法中,該桿體14的缺口142為平直狀,其可通過銑床直接銑出,成本低,便於量產。 In the above manufacturing method, the notch 142 of the rod body 14 is straight, which can be directly milled out by a milling machine, and has low cost and is convenient for mass production.

圖7所示為本發明第二實施例中的熱導管20,該熱導管20與第一實施例中的熱導管10類似,其不同之處在於:該第一毛細結構22設於該管體11內的中間靠左的位置,該第二毛細結構23設於該管 體11內的中間靠右的位置且與該第一毛細結構22斜向對準,該第二毛細結構23未與該管體11的頂板111貼合的一側面(圖中為左側面)緊密貼合於該第一毛細結構22的頂面的右側。當然,該第一毛細結構22也可設於該管體11內的中間靠右的位置,該第二毛細結構23末與該管體11的頂板111貼合的一側面(即右側面)緊密貼合於該第一毛細結構22的頂面的左側。 Figure 7 shows a heat pipe 20 in a second embodiment of the present invention, which is similar to the heat pipe 10 of the first embodiment, except that the first capillary structure 22 is provided in the pipe body. In the middle leftward position in the 11th, the second capillary structure 23 is disposed in the tube The middle right portion of the body 11 is obliquely aligned with the first capillary structure 22, and the second capillary structure 23 is not closely attached to a side surface (the left side surface in the drawing) of the top plate 111 of the tubular body 11 It is attached to the right side of the top surface of the first capillary structure 22. Of course, the first capillary structure 22 can also be disposed at a right-right position in the tubular body 11, and the second capillary structure 23 is closely attached to a side surface (ie, the right side surface) of the top plate 111 of the tubular body 11. It is attached to the left side of the top surface of the first capillary structure 22.

製造該熱導管20時,只需將圖6中的第一毛細結構15與第二毛細結構17斜向對準打扁圓形熱導管18即可。 When manufacturing the heat pipe 20, it is only necessary to align the first capillary structure 15 and the second capillary structure 17 in Fig. 6 obliquely to round the circular heat pipe 18.

圖8所示為本發明第三實施例中的熱導管30,該熱導管30與第一實施例中的熱導管10類似,其不同之處在於:該第二毛細結構33呈長方體狀,其頂面緊密貼合於該管體11的頂板111的內表面上,而其底面的中央則貼合於該第一毛細結構32的凸起321的頂面上。 Figure 8 is a view showing a heat pipe 30 according to a third embodiment of the present invention, which is similar to the heat pipe 10 of the first embodiment, except that the second capillary structure 33 has a rectangular parallelepiped shape, The top surface is closely attached to the inner surface of the top plate 111 of the tube body 11, and the center of the bottom surface is attached to the top surface of the protrusion 321 of the first capillary structure 32.

圖9與圖10所示為上述熱導管30的一製造方法,其與圖3至圖6所示的熱導管10的製造方法類似,不同之處在於:該桿體14a的頂部的缺口142a的橫截面為弧形,該圓形熱導管18a內對應形成的第二毛細結構17a的橫截面也為弧形,該第二毛細結構17a壓扁後形成大致呈長方體狀的第二毛細結構33。 9 and 10 show a method of manufacturing the heat pipe 30 described above, which is similar to the method of manufacturing the heat pipe 10 shown in Figs. 3 to 6, except that the notch 142a of the top of the rod 14a is The cross section is curved, and the cross section of the corresponding second capillary structure 17a formed in the circular heat pipe 18a is also curved. The second capillary structure 17a is crushed to form a second capillary structure 33 having a substantially rectangular parallelepiped shape.

圖11所示為本發明第四實施例中的熱導管40,該熱導管40與第三實施例中的熱導管30類似,其不同之處在於:該第一毛細結構42設於該管體11內的中部靠左的位置,該第二毛細結構43與該第一毛細結構42斜向對準,該第二毛細結構43未與該管體11的頂板111貼合的一側面(圖中為左側面)緊密貼合於該第一毛細結構42的頂面的右側。當然,該第一毛細結構42也可設於該管體11內 的中間靠右的位置,該第二毛細結構43未與該管體11的頂板111貼合的一側面(即右側面)緊密貼合於該第一毛細結構42的頂面的左側。 Figure 11 is a view showing a heat pipe 40 in a fourth embodiment of the present invention, which is similar to the heat pipe 30 in the third embodiment, except that the first capillary structure 42 is provided in the pipe body. The second capillary structure 43 is obliquely aligned with the first capillary structure 42 in a leftward position in the middle portion of the 11th, and the second capillary structure 43 is not attached to a side surface of the top plate 111 of the tubular body 11 (in the figure) The left side surface is closely attached to the right side of the top surface of the first capillary structure 42. Of course, the first capillary structure 42 can also be disposed in the tube body 11. In the middle right position, a side surface (ie, the right side surface) of the second capillary structure 43 that is not attached to the top plate 111 of the tube body 11 is in close contact with the left side of the top surface of the first capillary structure 42.

製造該熱導管40時,只需將圖9中的第一毛細結構15第二毛細結構17a向對準打扁圓形熱導管18a即可。 When the heat pipe 40 is manufactured, it is only necessary to align the second capillary structure 17a of the first capillary structure 15 in Fig. 9 with the circular heat pipe 18a.

綜上所述,本發明符合發明專利要件,爰依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,舉凡熟悉本案技藝之人士,在爰依本發明精神所作之等效修飾或變化,皆應涵蓋於以下之申請專利範圍內。 In summary, the present invention complies with the requirements of the invention patent and submits a patent application according to law. The above description is only the preferred embodiment of the present invention, and equivalent modifications or variations made by those skilled in the art will be included in the following claims.

10‧‧‧扁平熱導管 10‧‧‧flat heat pipe

11‧‧‧管體 11‧‧‧Body

12‧‧‧第一毛細結構 12‧‧‧First capillary structure

13‧‧‧第二毛細結構 13‧‧‧Second capillary structure

110‧‧‧內部空間 110‧‧‧Internal space

111‧‧‧頂板 111‧‧‧ top board

112‧‧‧底板 112‧‧‧floor

113、114‧‧‧側板 113, 114‧‧‧ side panels

118‧‧‧蒸氣通道 118‧‧‧Vapor passage

Claims (13)

一種扁平熱導管,包括中空的扁平管體及設置於管體內的第一毛細結構與第二毛細結構,其改良在於:所述第一毛細結構由多空隙的鋼網彎折層疊形成,所述第二毛細結構由金屬粉末燒結形成,所述第一毛細結構與第二毛細結構相互貼合併沿縱向將管體的內部空間一分為二,從而於所述管體內、第一毛細結構與第二毛細結構以外的相對兩側的區域形成二間隔的蒸氣通道,所述第一毛細結構與第二毛細結構斜向對準設置,所述第二毛細結構貼合於所述第一毛細結構的一側或所述第二毛細結構的一側貼合於所述第一毛細結構上。 A flat heat pipe comprising a hollow flat tube body and a first capillary structure and a second capillary structure disposed in the tube body, wherein the first capillary structure is formed by bending and laminating a multi-voided steel mesh, The second capillary structure is formed by sintering the metal powder, and the first capillary structure and the second capillary structure are bonded to each other to divide the internal space of the tubular body into two in the longitudinal direction, thereby forming the first capillary structure and the first capillary structure and the first capillary structure. The opposite side regions of the second capillary structure form a two-spaced vapor channel, the first capillary structure being disposed obliquely in alignment with the second capillary structure, the second capillary structure being attached to the first capillary structure One side or one side of the second capillary structure is attached to the first capillary structure. 如申請專利範圍第1項所述的扁平熱導管,其中所述第一毛細結構結合於所述管體內的一側上,所述第二毛細結構結合於所述管體內的另一側上。 The flat heat pipe of claim 1, wherein the first capillary structure is bonded to one side of the tube body, and the second capillary structure is bonded to the other side of the tube body. 如申請專利範圍第2項所述的扁平熱導管,其中所述管體包括頂板及與所述頂板相對的底板,所述第一毛細結構的一側結合於所述管體的底板上,所述第二毛細結構的一側結合於所述管體的頂板上,所述第一毛細結構未結合於管體的底板上的另一側與所述第二毛細結構未結合於管體的頂板上的另一側相互貼合。 The flat heat pipe of claim 2, wherein the pipe body comprises a top plate and a bottom plate opposite to the top plate, and one side of the first capillary structure is coupled to the bottom plate of the pipe body, One side of the second capillary structure is coupled to the top plate of the pipe body, the first capillary structure is not bonded to the other side of the bottom plate of the pipe body, and the second capillary structure is not bonded to the top plate of the pipe body. The other side of the upper side fits together. 如申請專利範圍第1項所述的扁平熱導管,其中所述第二毛細結構與所述第一毛細結構貼合的一側的尺寸小於所述第二毛細結構遠離所述第一毛細結構的一側的尺寸,所述第二毛細結構貼合於所述第一毛細結構的一側上。 The flat heat pipe according to claim 1, wherein a side of the second capillary structure that is attached to the first capillary structure is smaller than a size of the second capillary structure away from the first capillary structure. One side of the size, the second capillary structure is attached to one side of the first capillary structure. 如申請專利範圍第1項所述的扁平熱導管,其中所述第二毛細結構為長方體狀,所述第二毛細結構的一側端貼合於所述第一毛細結構上。 The flat heat pipe according to claim 1, wherein the second capillary structure has a rectangular parallelepiped shape, and one end of the second capillary structure is attached to the first capillary structure. 如申請專利範圍第1項所述的扁平熱導管,其中所述第二毛細結構為三稜柱形或長方體狀,所述第二毛細結構未與所述管體結合的另一側貼合於所述第一毛細結構上。 The flat heat pipe according to claim 1, wherein the second capillary structure is a triangular prism shape or a rectangular parallelepiped shape, and the other side of the second capillary structure not bonded to the tubular body is attached to the same Said on the first capillary structure. 一種扁平熱導管的製造方法,包括以下步驟:提供桿體,所述桿體呈圓柱狀,其外圓周面上開設有開口及缺口;提供第一毛細結構;提供圓管,所述圓管呈中空狀,所述圓管的內徑等於所述桿體的外徑,將所述桿體、第一毛細結構插入所述圓管中,使所述第一毛細結構位於所述桿體的開口與圓管的管壁之間;提供複數金屬粉末,並將金屬粉末填入位於所述圓管內的桿體的缺口中,將金屬粉末高溫燒結形成第二毛細結構;取出桿體,所述第一、第二毛細結構留置於所述圓管中且分別貼附於所述圓管的部分內壁上;及將圓管打扁形成扁平熱導管,使所述第二毛細結構貼合於所述第一毛細結構上,所述第一毛細結構與所述第二毛細結構沿縱向將管體的內部空間一分為二,從而於所述扁平熱導管內、第一毛細結構與第二毛細結構以外的相對兩側的區域形成二間隔的蒸氣通道,打扁所述圓管時,將所述第一毛細結構與所述第二毛細結構斜向對準。 A method for manufacturing a flat heat pipe, comprising the steps of: providing a rod body having a cylindrical shape, an opening and a notch formed on an outer circumferential surface thereof; providing a first capillary structure; providing a round tube, wherein the round tube is Hollow, the inner diameter of the circular tube is equal to the outer diameter of the rod body, and the rod body and the first capillary structure are inserted into the circular tube so that the first capillary structure is located at the opening of the rod body Between the tube wall of the circular tube; providing a plurality of metal powders, filling the metal powder into the notch of the rod body located in the circular tube, sintering the metal powder at a high temperature to form a second capillary structure; taking out the rod body, The first and second capillary structures are left in the circular tube and respectively attached to a part of the inner wall of the circular tube; and the round tube is flattened to form a flat heat pipe, so that the second capillary structure is attached to In the first capillary structure, the first capillary structure and the second capillary structure divide the internal space of the pipe body into two in the longitudinal direction, thereby forming the first capillary structure and the second capillary heat pipe. Formation of opposite sides of the capillary structure Spaced vapor passage, when playing the flat tube, the first capillary structure and the second capillary structure is aligned obliquely. 如申請專利範圍第7項所述的扁平熱導管的製造方法,其中所述缺口的橫截面為弧形,取出所述桿體後打扁所述圓管前,所述第二毛細結構的橫截面對應為弧形。 The method for manufacturing a flat heat pipe according to claim 7, wherein the cross section of the notch is curved, and the second capillary structure is transversely before the rod is removed after the rod body is taken out. The section corresponds to an arc. 如申請專利範圍第8項所述的扁平熱導管的製造方法,其中打扁所述圓管後,所述第二毛細結構為長方體狀。 The method for manufacturing a flat heat pipe according to claim 8, wherein the second capillary structure is a rectangular parallelepiped shape after the round pipe is flattened. 如申請專利範圍第7項所述的扁平熱導管的製造方法,其中所述缺口為平直狀,取出所述桿體後打扁所述圓管前,所述第二毛細結構具有平直邊 及與所述平直邊相連的弧形邊,所述弧形邊結合於所述圓管的內表面上。 The method for manufacturing a flat heat pipe according to claim 7, wherein the notch is flat, and the second capillary structure has a straight side before the rod is removed after the rod body is taken out. And an arcuate edge connected to the straight edge, the arcuate edge being bonded to an inner surface of the circular tube. 如申請專利範圍第10項所述的扁平熱導管的製造方法,其中打扁所述圓管後,所述第二毛細結構與所述第一毛細結構貼合的一側的尺寸小於所述第二毛細結構遠離所述第一毛細結構的一側的尺寸。 The method for manufacturing a flat heat pipe according to claim 10, wherein, after the round pipe is flattened, a size of a side of the second capillary structure that is bonded to the first capillary structure is smaller than the first The second capillary structure is away from the size of one side of the first capillary structure. 如申請專利範圍第7項所述的扁平熱導管的製造方法,其中所述開口為弧形,打扁所述圓管前,所述第一毛細結構呈弧形。 The method of manufacturing a flat heat pipe according to claim 7, wherein the opening is curved, and the first capillary structure is curved before the round tube is flattened. 如申請專利範圍第12項所述的扁平熱導管的製造方法,其中打扁所述圓管的過程中,所述第一毛細結構受所述第二毛細結構的擠壓形成扁平狀。 The method of manufacturing a flat heat pipe according to claim 12, wherein, in the process of flattening the round pipe, the first capillary structure is formed into a flat shape by extrusion of the second capillary structure.
TW099139625A 2010-11-18 2010-11-18 Flat heat pipe and method for manufacturing the same TWI497026B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099139625A TWI497026B (en) 2010-11-18 2010-11-18 Flat heat pipe and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099139625A TWI497026B (en) 2010-11-18 2010-11-18 Flat heat pipe and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW201221889A TW201221889A (en) 2012-06-01
TWI497026B true TWI497026B (en) 2015-08-21

Family

ID=46725074

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099139625A TWI497026B (en) 2010-11-18 2010-11-18 Flat heat pipe and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI497026B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201437592A (en) * 2013-03-28 2014-10-01 Quanta Comp Inc Heat guiding module, heat pipe, and manufacturing method of heat pipe
CN108827049A (en) * 2018-07-04 2018-11-16 江苏凯唯迪科技有限公司 A kind of flat heat pipe and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074578A (en) * 1998-08-28 2000-03-14 Furukawa Electric Co Ltd:The Flat heat pipe and manufacture thereof
TWM367324U (en) * 2009-05-19 2009-10-21 Tai Sol Electronics Co Ltd Heat pipe
TW201038896A (en) * 2009-04-16 2010-11-01 Yeh Chiang Technology Corp Ultra-thin heat pipe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074578A (en) * 1998-08-28 2000-03-14 Furukawa Electric Co Ltd:The Flat heat pipe and manufacture thereof
TW201038896A (en) * 2009-04-16 2010-11-01 Yeh Chiang Technology Corp Ultra-thin heat pipe
TWM367324U (en) * 2009-05-19 2009-10-21 Tai Sol Electronics Co Ltd Heat pipe

Also Published As

Publication number Publication date
TW201221889A (en) 2012-06-01

Similar Documents

Publication Publication Date Title
US8667684B2 (en) Flat heat pipe and method for manufacturing the same
CN102466422B (en) Flat heat pipe and manufacture method thereof
JP4354270B2 (en) Vapor chamber
TW201303250A (en) Heat pipe
US20210222958A1 (en) Heat pipe
US20120111540A1 (en) Flat type heat pipe and method for manufacturing the same
US20070240857A1 (en) Heat pipe with capillary wick
US20110174465A1 (en) Flat heat pipe with vapor channel
JP2010002125A (en) Steam chamber
TWI633269B (en) Heat pipe
TW201425855A (en) Heat pipe and method for manufacturing the same
KR20050051530A (en) Flat plate heat transferring apparatus
TWI494531B (en) Flat heat pipe and method for manufacturing the same
TWI497026B (en) Flat heat pipe and method for manufacturing the same
CN205488104U (en) Ultra -thin heat conduction component and ultra -thin heat conduction component of buckling
JP5654176B2 (en) heat pipe
US20100229394A1 (en) Method for fabricating wick microstructures in heat pipes
TWI497025B (en) Flat heat pipe and method for manufacturing the same
US20120037344A1 (en) Flat heat pipe having swirl core
US20130160976A1 (en) Heat pipe with composite wick structure
JP2010236016A (en) Composite material with high thermal-conductivity and method for manufacturing the same
US20150122460A1 (en) Heat pipe structure
TWI482938B (en) Flat type heat pipe and method of manufacturing the same
KR20080053783A (en) Heat pipe and cooling apparatus using the same
TWI286193B (en) Heat pipe

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees