TW200923307A - Multiple channel flat heat pipe having sintered wick structure - Google Patents

Multiple channel flat heat pipe having sintered wick structure Download PDF

Info

Publication number
TW200923307A
TW200923307A TW96144031A TW96144031A TW200923307A TW 200923307 A TW200923307 A TW 200923307A TW 96144031 A TW96144031 A TW 96144031A TW 96144031 A TW96144031 A TW 96144031A TW 200923307 A TW200923307 A TW 200923307A
Authority
TW
Taiwan
Prior art keywords
flat
capillary structure
pipe
heat pipe
sintered
Prior art date
Application number
TW96144031A
Other languages
Chinese (zh)
Inventor
ming-quan Shi
xin-wei He
Original Assignee
Forcecon Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forcecon Technology Co Ltd filed Critical Forcecon Technology Co Ltd
Priority to TW96144031A priority Critical patent/TW200923307A/en
Publication of TW200923307A publication Critical patent/TW200923307A/en

Links

Abstract

The present invention provides a multiple channel flat heat pipe having sintered wick structure. The flat heat pipe has a flat pipe body of which its cross-section is a flat shape and two ends are a sealed hollow pipe. The flat heat pipe forms two flat surfaces and two sides. The flat pipe body includes a heated section and a cooling section. The inside of the flat pipe body forms a hollow pipe trough. A sintered wick structure is integrated to the hollow pipe trough of the flat pipe body. The sintered wick structure has a combining side combined and fastened to one flat surface. Further, at least two channels spaced at an interval and extended along the extension direction of the flat pipe body are formed between the predetermined area of the hollow pipe trough of the flat pipe body and the sintered wick structure. Accordingly, the flat heat pipe has the efficacy of simpler manufacturing process, cost saving, better structural sturdiness and heat conduction.

Description

200923307 九、發明說明: 【發明所屬之技術領域】 本發明係涉及一種熱管, 結毛細組織之創新型態設計者 特別是指 一種具有多流道燒 【先前技術】 按’隨著目前各種電腦電子 θ200923307 IX. INSTRUCTIONS: [Technical field of invention] The present invention relates to a heat pipe, and an innovative type designer of a knotted capillary structure particularly refers to a multi-flow channel burning [previous technique] according to the current various computer electronics θ

^ ^ ^ 回电于0又備之效能不斷提昇,故 對於放熱構件之效能要求 * 擁m幻由、贫 力相對七同’因此,散熱構件中 擔負熱傳導作用之敎管元株μ 4 ή ^ 。 …s 70件s又计良秀與否,顯得至關重要 熱管結構中, 快速導送回受熱端 ’以將受熱端之工 管運作效率而言, 重要的技術課題。 主要係藉由毛細組織將工作液由冷卻端 ;另一方面,則是透過中空流道的設置 作液忒化後快速導向冷卻端,因此就熱 所述毛細組織以及流道的設計實為相當^ ^ ^ The efficiency of returning to 0 is increasing, so the performance requirements for the heat-dissipating component * The illusion of the illusion, the relative poverty is relatively the same. Therefore, the heat-transfer member is responsible for the thermal conduction of the 元 tube strain μ 4 ή ^. ...s 70 pieces of s and good or not, it is very important In the heat pipe structure, the quick transfer back to the heated end is an important technical issue in terms of the efficiency of the work of the heated end. Mainly by the capillary structure, the working fluid is cooled by the cooling end; on the other hand, it is liquidized through the hollow channel to quickly guide the cooling end, so the design of the capillary structure and the flow channel is quite

八目别熱官結構中所採用的毛細組織,概分為金屬網體 粒;^成型體、溝槽等三種主要型態,#中就金屬網 :結構型態而t ’其缺點之一是在於製程部份較為繁項費 、先將所述金屬網體製成捲筒狀後再透過塞組手段置 入熱官内部,因此製造成本高而較不符合產業經濟效益·, 點之^ 二》,目丨Τ θ L X,/. ^ _ — 則疋由於邊金屬網體於熱管内部為塞置狀態, '、’、、g之間難免具有間隙,如此除了導熱效果差之問題外 田熱官進行曲折變化時,金屬網體並無法精準隨之曲折 進而谷易導致流道於曲折處無法順暢、易產生阻滯現象 200923307 而喪失導熱效能之嚴重問題;再就粉粒燒結成型體之習知 結構型恶而言,目前亦有採用塞置式組入熱管内部之作法 ’惟此種結構型態所產生的缺弊及問題點如同前述金屬網 體結構,即不贅述;而就一體結合於熱管内部之粉粒燒結 成型體而言,其粉粒燒結體均為分佈於熱管内壁成一環狀 或局部區域之型態,進而界定形成單一流道之態樣,此種 習知熱管結構於實際應用上發現,由於其單一流道環設粉 粒燒結體之空間型態侷限,將造成無論其流道空間或毛細 組織結構(即粉粒燒結體)均難以進一步獲得更佳導熱效 率之:1題點,實為美中不足、有待突破之技術課題。 疋以’針對上述習知熱管結構應用上所存在之問題點 ,如何研發出一種能夠更具理想實用性之創新構造,實有 待相關業界再加以思索突破之目標及方向者。 有鑑於此’發明人本於多年從事相關產品 與設計經驗,針對上述之目y i 心表以闻贫 ^ , 對这之目私,砰加設計與審慎評估後, 終什一確具實用性之本發明。 【發明内容】 本發明之主要目的,係在提供一 多流道扁型埶管,Α所#觫 ’、 ^、、疋結毛細組織 主…g其所欲解決之問題點,係斜#1 , 出一種製造簡單、结構# s 、、十對如何研 ^ ^ 穩固又旎兼具較佳導埶对兴々 熱管為目標加以思索突破; ,里之創 本發明解決問題之技術特點,係提佴— 大致包括:扁型管體,、扁型熱管, 為斷面呈扁型且二蠕封閉之中空 200923307 體型態,其界定形成二平 受熱段及冷卻段,扁型 及二側該扁型管體包括 組織,-體結合於扁型管部形:中空管槽;燒結毛細 織具-結合側與扁型管體复:中工官槽中’该燒結毛細組 流道’形成於燒結毛心織盘:平靠面結合固冑;至少二 隔配置狀態,且所述流空管槽預定區域之間呈間 者。藉此創新獨特設計,2者扁型管體之伸設方向延伸 致可達到如下之優點:本發明對照先前技術而言,大 其一The capillary structure used in the structure of the eight-headed hot official is divided into three types: metal mesh body particles; ^ molding body, groove, etc., #中中金属网:Structure type and t' one of its disadvantages is In the part of the process, the metal mesh body is made into a roll shape and then placed inside the heat official through the plug group. Therefore, the manufacturing cost is high and the industrial economic benefit is not met. 》, 丨Τ L LX, /. ^ _ — Then 疋 because the metal mesh body is in the state of the heat pipe inside, there is inevitably a gap between ', ', and g, so in addition to the problem of poor heat conduction, the field heat When the official changes in the tortuosity, the metal mesh body cannot be accurately twisted and twisted, and the valley is easy to cause the flow path to be in a smooth and inflexible position, which is prone to blockage phenomenon 200923307 and loses the serious problem of thermal conductivity; In terms of structural evils, there is also a practice of using plug-in type into the heat pipe. 'The only drawbacks and problems caused by this type of structure are the same as the metal mesh structure mentioned above, that is, they are not described; The inside of the heat pipe is burnt In the case of a knot-shaped body, the sintered body of the powder particles is distributed in a ring or a partial region of the inner wall of the heat pipe, thereby defining a state of forming a single flow channel, and the conventional heat pipe structure is found in practical applications due to The spatial pattern limitation of the powder channel sintered body in the single flow channel ring will make it difficult to further obtain better heat conduction efficiency regardless of the flow channel space or the capillary structure (ie, the powder particle sintered body): A technical problem that needs to be broken in the US. In view of the problems in the application of the above-mentioned conventional heat pipe structure, how to develop an innovative structure that can be more ideal and practical, and it is necessary for the relevant industry to think about the goals and directions of breakthrough. In view of the fact that the inventor has been engaged in related products and design experience for many years, in view of the above-mentioned objectives, it is worthwhile to use the design and prudent evaluation of this project. this invention. SUMMARY OF THE INVENTION The main object of the present invention is to provide a multi-channel flat-type manifold, which is the problem of the problem that the desired structure is solved by the #觫', ^, and 疋 capillary structure. , a simple manufacturing, structure # s,, ten pairs of how to study ^ ^ stable and 旎 have a better guide to think about the goal of Xingyu heat pipe; , the technical characteristics of the invention to solve the problem,佴 - generally consists of: flat pipe body, flat heat pipe, hollow type 200923307 body shape with flat section and two creeping closure, which defines the formation of the two flat heating section and the cooling section, the flat type and the two sides of the flat The tubular body comprises a tissue, the body is combined with the flat tubular shape: a hollow tubular groove; the sintered capillary woven fabric - the combined side and the flat tubular body is complexed: the sintered capillary flow channel is formed in the middle working tank Sintered core woven disc: the flat surface is combined with the solid shovel; at least two partitioned state, and the predetermined area between the flow tube slots is interposed. With this innovative and unique design, the extension of the two flat tubes can achieve the following advantages: the present invention is superior to the prior art.

所述燒結毛細組織制如L ^ ,^ Λl釦上係將燒結體置入扁型f ^ 中進行燒結手段, 句i s體 並配5心材的設置以形成流道, 如此即可製成該且 ^ 、有夕机道燒結毛細組織的扁型埶 官成品,藉此而具有製造押 #省士、士 ‘、、、 ,衣&間早、即省成本之較佳產 業經濟效益。The sintered capillary structure is made of L ^ , ^ Λl buckled, and the sintered body is placed in the flat shape f ^ for sintering, and the sentence is is body and 5 heart material is arranged to form a flow channel, so that the ^, the flat-type 埶 成品 成品 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结

―、精該燒結毛細組織具—結合側與扁型管體平靠面相 結合固定之結構特‘點,们寻燒結毛細組織與扁型管 體之間能夠獲得極佳熱料效果,且扁型管體能夠 猎燒結毛細組織的支撐達到更佳穩固性,扁型管體 作曲折變化時,燒結毛細組織亦可精準隨之曲變而 此保持流道順暢狀態者。 霉三、藉該燒結毛細組織與中空管槽之間形成至少二流道 之夕/;IL道空間型恶特點,將可同時增加扁型熱管運 作時工作液之汽化流道空間及液態導流面積,達到 大幅提昇扁型熱管導熱及散熱效能之實用進步性。 【實施方式】 200923307 請參關楚Ί _ 夕泣、曾鱼】 ' 2圖所示,係本發明具燒結毛細組織之 多流道扁型軚筝夕& ^ ,、'、S之較乜實施例,惟此等實施例僅供說明之 用’在專利申往μ 包括: 上並不受此結構之限制;所述爲型熱管係 一扁型管體1〇,Α 中空管$刑π /、係為斷面王扁型且二端呈封閉狀之 s體型態,俾界定形成有二平靠面u 又,該扁型普興1n〜, u 内部則μ Γ 段13以及冷卻段14,扁型管體 ==—中空管槽15’前述受熱段13的位 ㈣之山 位置’冷部段14的位置則可為扁型管 體10之一端部或兩端部位置; 一燒結毛細組織20,可為金屬 剞去,兮α 勹1屬杨粒(或顆粒)燒結成 ^者°亥k結毛細組織20係一體紝八於总刑其规7 Λ 总城1[;山 版、、、口 口於扁型官體1〇之中空 吕θ中,該燒結毛細組織20具有__钍人傰91 # ^ ,、另、结合側21與扁创簪胪 1〇的其中-側平靠面η相結合固定; 、…體 體道30,係形成於該燒結毛細組織20與扁型管 一、 二^槽預定區域之間呈間% ^ % 土、苦Qn β 壬间知配置狀態,且所述 μ道3〇係沿著該扁型管體1〇之伸設方向延伸者。 々:第2圖所示,所述扁型管體1〇係可藉由一 之胚官〗〇Β壓製成型,所述烤 表风生所迷麂結毛細組織2〇可於 〇Β型態時即燒結成型,復當胚 〆8 ,gp叮“丄 s ίυβ反扁成扁型管體10時 即可精由該燒結毛細組織20之山彡t u又山形狀恶變化而構 毛細組織20遠離其結合側21之哕伽 疋,’° 於中六其描1ς 之4側形成峰狀抵靠端22抵靠 ;中工g才曰15之另一側,同時蘇屮ρ ^ 者。 错此£隔形成二流道30空間 200923307 如第3圖所示,所述燒結毛細組織2〇燒結成型時,亦 可知用插入芯材4〇的方式形成其流道3〇之斷面型態。 如第4圖所示,所述燒結毛細組織2〇之内部亦可形成 有机道30B ,藉此而能進一步增加流道數量者。 弟5圖所示則為所述燒結毛細組織2〇與扁型管體1〇中 空管·梓1 e + 曰ΰ之間形成有三個流道30之變化實施態樣者。 第6圖所示,所述流道中並可增設有網體(如 金屬、扁、哉網)或多孔質構件,藉以進一步增進流道之導熱 效率者。 如第7圖所示,所述扁型管體1〇之中空管槽15内壁並 可形成有溝槽60,藉由所述溝槽60的增設,俾可進一步增 力'k、’Ό毛細組織2〇與中空管槽丨5之結合固定面積,令燒結 毛’、田‘’且織20之狀態更加穩固,且使得扁型管體10與燒結毛 細組織20之間的熱傳導效率以及流道30空間導流效果更為 提昇。 ’ 藉由上述之結構組成設計,本發明所揭扁型熱管具體 運作上請參考第1 、2圖所示’該扁型管體1〇與燒結毛細 組織20相結合之該側平靠面11可與散熱目標物(如CPU ) 相靠組導熱,當所述平靠面Π吸熱運作時,其熱能將直接 傳‘至燒結毛細組織20,促使内部工作液蒸發汽化,復透 過所述流道3〇引流至扁型管體10之冷卻段14進行冷卻凝結 ’其凝結成液態之工作液將再透過燒結毛細組織20傳導回 受熱段13。 200923307 如弟8圖所示,目丨丨炎# ώ 則為該扁型管體10具有較多流道30之 變化實施態樣,本竇·祐在丨Λ 霄把例中,其扁型管體10之平靠面η更 為寬擴而使得該扁型管體1〇可作為均熱板使用,而能用以 作為LED燈具之寬面狀散熱結構者。 再如第9圖所示,太岡 本圖所不意之扁型管體10,A燒結 毛細組織20設置上蛊a s 〇冷部長14之該端部之間可為留設有一 間距W之結構型能,w佔甘々— 心又有 — 心乂使其各〜道30於該端部具有連通空 間说2 ’精此當扁型普 s體10各£域受熱程度不同以致各流道 30工作液汽化速声袁 ^ ,、不同寸,能夠藉由所述連通空間[ X传互、均溫、提昇散熱效率之優點。 本發明之優點: 卜:述燒結毛細組織係於扁型管體之中空管槽内一體結 在j垔故製程上可將欲燒結體置入扁型管體中進行 ^結手段,並配合芯材的設置以形成流道,如此即可 i成該具有多流道燒結毛細組織㈣型熱管成品,藉 。匕而具有製造簡單、節省成本之較佳產業經濟效益者 2、 藉由該燒結 靠面相結合 扁型管體之 能夠藉該燒 扁型管體作 曲變而能保 毛細組織具一結合側與扁型管體其中—平 固定之結構特點,使得該燒結毛細組織與 間能夠獲得極佳熱傳導效果,且扁型管體 結毛細組織的支撐達到更佳之穩固性,且 曲折變化時,燒結毛細組織亦可精準隨之 持流道順暢狀者。 10 200923307 f: 3、 藉由該燒結 之多流道空 時工作液之 到大幅提昇 4、 藉由其燒結 設有間距之 連通空間, 各流道工作 通空間獲得 毛細組織與中空 間型態特點,將 汽化流道空間以 扁型熱管導熱及 毛細組織設置上 結構型態設計, 藉此當扁型管體 液汽化速度差異 互通均溫、提昇 管槽之間形成 可同時增加扁 及液態導流面 散熱效能之實 與冷卻段之該 以使各流道於 各區域受熱程 不同時,能夠 散熱效率之優 型熱營運作 積,進而達 用進步性。 端部間為留 該端邹具有 度不同以致 藉由所述連 點。 上述實施例所揭示者係藉以具體說明本發明 雖透過特定的術語進行說明,^能以此限 文中 利範圍;熟悉此項技術領域 毛月之專 神與原則後對其進行變更與修改二明之精 等變更與修改’皆應逾蓋於如后所述之=二 定範嚼中。 τ μ專利乾圍所界 200923307 【圖式簡單說明】 第1圖: 本發明較佳實施例之立體示意圖。 第2圖: 本發明較佳實施例之剖視圖。 第3圖: 本發明之流道型態變化及成型方式之另一實施例 圖一。 第4圖: 本發明之流道配置型態變化實施例圖一。 第5圖: 本發明之流道配置型態變化實施例圖二。 第6圖: 本發明之流道中增設有網體之實施例圖。 r 1 第7圖: 本發明之中空管槽内壁增設有溝槽之實施例圖。 第8圖: 本發明之多流道配置型態變化實施例圖。 第9圖: 本發明之燒結毛細組織設置型態另一實施例圖。 【主要元件符號說明】―, the sintered capillary structure - the combination of the side and the flat tube body to the fixed surface of the structure of the special 'point, we can find excellent thermal effect between the sintered capillary structure and the flat tube, and flat The tube body can hunt and support the support of the capillary structure to achieve better stability. When the flat tube body is twisted and changed, the sintered capillary structure can also be accurately curved to maintain the smooth state of the flow path. Mold three, by the formation of at least two flow channels between the sintered capillary structure and the hollow tube groove; the characteristics of the IL channel space type, can simultaneously increase the vaporization flow path space and liquid flow of the working liquid when the flat heat pipe operates The area is practically improved to greatly improve the heat conduction and heat dissipation performance of the flat heat pipe. [Embodiment] 200923307 Please refer to Guan Chuxi _ 夕 夕, 曾鱼] 'Figure 2 shows the multi-channel flat type 軚 夕 & ^,, ', S of the present invention with sintered capillary structure The embodiments are only for illustrative purposes. 'The patent application to μ includes: and is not limited by this structure; the type of heat pipe is a flat pipe 1〇, 中空 hollow pipe π /, is the s-type of the cross section of the king and the closed end of the cross section, the 俾 defines the formation of the two flat cavities u, the flat Pu Xing 1n~, u the internal μ Γ section 13 and cooling Section 14, flat tube body == - hollow tube groove 15' position of the heat receiving section 13 (four) mountain position 'the cold section 14 position may be one end or both end positions of the flat tube body 10; A sintered capillary structure 20, which can be metal bismuth, 兮α 勹1 genus Yang granules (or granules) sintered into ^ 亥 k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k The mountain plate, the mouth is in the hollow θ of the flat body 1 ,, the sintered capillary structure 20 has __钍人傰91 # ^, and the other side, the combination side 21 and the flat 簪胪1簪胪- side flat The surface η is combined and fixed; the body passage 30 is formed between the sintered capillary structure 20 and the predetermined area of the flat tube 1 and the second groove, and the state of the joint between the soil and the bitter Qn β is defined. And the microchannels are extended along the extending direction of the flat tubular body 1〇. 々: As shown in Fig. 2, the flat tube body 1 can be press-formed by an embryonic scorpion, which is entangled in the sputum type. When the sintering is formed, the complex embryonic 〆8, gp叮“丄s υ υ 反 反 反 反 反 成 扁 10 即可 即可 即可 即可 即可 即可 即可 即可 即可 即可 即可 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结 烧结It combines with the side of the sacral scorpion 21, '° on the 4th side of the middle six, which forms a peak-shaped abutting end 22; the middle worker g is the other side of the ,15, while the Su 屮 ^ ^ ^.隔隔形成形成流流30Space 200923307 As shown in Fig. 3, when the sintered capillary structure is sintered, it is also known that the cross-sectional shape of the flow path 3〇 is formed by inserting the core material 4〇. As shown in Fig. 4, the inside of the sintered capillary structure 2 can also form an organic channel 30B, thereby further increasing the number of flow channels. Figure 5 shows the sintered capillary structure 2〇 and the flat tube. The body 1 〇 hollow tube 梓 1 e + 形成 is formed between three flow channels 30. The sixth embodiment shows that the flow channel can be added with a net (such as metal, flat, mesh) or porous member, thereby further improving the heat transfer efficiency of the flow channel. As shown in Fig. 7, the flat tube body 1 can be formed with the inner wall of the hollow tube groove 15 The groove 60, by the addition of the groove 60, can further increase the combined fixed area of the 'k, 'the capillary structure 2〇 and the hollow tube groove 5, so that the sintered hair ', the field' and the weave The state of 20 is more stable, and the heat transfer efficiency between the flat pipe body 10 and the sintered capillary structure 20 and the space flow effect of the flow passage 30 are further improved. 'With the above structural composition design, the flat type disclosed in the present invention For the specific operation of the heat pipe, please refer to the first and second figures. The flat tube body 1〇 and the sintered capillary structure 20 are combined with the heat-dissipating object (such as CPU) to conduct heat. When the flat surface is in heat absorption operation, its thermal energy will be directly transmitted to the sintered capillary structure 20, causing the internal working fluid to evaporate and vaporize, and the through-flow passage 3〇 is drained to the cooling section 14 of the flat tubular body 10 for cooling. Condensing 'the working fluid that condenses into a liquid will pass through the sintered capillary 20 is transmitted back to the heated section 13. 200923307 As shown in Fig. 8, the eyelid inflammation # ώ is the embodiment of the flat tube body 10 having more flow passages 30, and this sinus is in the 丨Λ 丨Λ 霄In the example, the flat surface η of the flat tube body 10 is more widened, so that the flat tube body 1 can be used as a soaking plate, and can be used as a wide-surface heat dissipation structure of the LED lamp. As shown in Fig. 9, the flat tube body 10, which is unintentional in the figure, is provided with a structure of the upper squeezing capillary structure 20, and the end portion of the chilling unit 14 may be provided with a spacing type W. w 占甘々 - heart has - 乂 乂 乂 各 各 〜 〜 〜 于 于 于 于 于 于 于 于 于 于 于 于 于 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' The sound Yuan ^, different inches, can take advantage of the connected space [X-transmission, uniform temperature, and improved heat dissipation efficiency. The invention has the advantages that: the sintered capillary structure is integrated into the hollow tube groove of the flat tube body, and the sintered body can be placed into the flat tube body to perform the knotting method, and cooperate The core material is arranged to form a flow channel, so that the finished product having the multi-channel sintered capillary structure (four) type heat pipe can be used.较佳 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 藉 藉 藉 藉 藉 藉 藉 藉 藉 藉 藉 藉 藉 藉 藉 藉 藉 藉 藉 藉 藉 藉 藉 藉 藉 藉 藉 藉 藉 藉 藉 藉 藉 藉 藉 藉 藉 藉 藉 藉The structural characteristics of the flat tube-flat-fixed structure enable excellent thermal conduction between the sintered capillary structure and the support of the capillary structure of the flat tube body to achieve better stability, and the sintered capillary structure is also changed when the tortuosity changes. It can accurately follow the flow path. 10 200923307 f: 3, through the sintering of the multi-channel air-time working fluid to a large increase 4, through its sintering with a spacing of the connection space, the flow path of each flow channel to obtain the characteristics of capillary structure and medium-space The vaporization flow channel space is designed with the heat conduction of the flat heat pipe and the capillary structure, so that when the vaporization speed of the flat body fluid is different, the uniform temperature and the formation of the riser groove can simultaneously increase the flat and liquid flow guiding surfaces. The heat dissipation performance and the cooling section are such that when the flow paths are different in each region, the heat dissipation efficiency can be optimized and the progress can be improved. The end is left to have a different degree so that the connection is made. The disclosures of the above embodiments are specifically illustrated to illustrate the present invention by way of specific terms, and can be used to limit the scope of the text; familiar with the technical field of Mao Yue, the changes and modifications The changes and modifications of the fines should be overwritten in the following two paragraphs. τ μ Patent Dry Enclosure 200923307 [Simplified Schematic] FIG. 1 is a perspective view of a preferred embodiment of the present invention. Figure 2 is a cross-sectional view of a preferred embodiment of the invention. Fig. 3 is a view showing another embodiment of the flow path type change and molding method of the present invention. Fig. 4 is a view showing an embodiment of a flow path configuration type change of the present invention. Fig. 5 is a view showing an embodiment of a flow path configuration type change of the present invention. Fig. 6 is a view showing an embodiment in which a mesh body is added to a flow path of the present invention. r 1 Fig. 7 is a view showing an embodiment in which a groove is formed in the inner wall of the hollow tube groove of the present invention. Fig. 8 is a view showing an embodiment of a multi-channel arrangement type change of the present invention. Fig. 9 is a view showing another embodiment of the sintered capillary structure of the present invention. [Main component symbol description]

扁型管體 10 胚管 10B 平靠面 1 1 侧部 12 受熱段 13 冷卻段 14 中空管槽 15 燒結毛細組織 20 結合侧 抵靠端 2 2 流道 30 芯材 40 網體 50 溝槽 60 間距 W 連通空間 W 2 間距 連通空間 12Flat tube 10 Tube 3B Flat surface 1 1 Side 12 Heated section 13 Cooling section 14 Hollow tube groove 15 Sintered capillary structure 20 Combined side abutting end 2 2 Flow path 30 Core material 40 Mesh 50 Groove 60 Spacing W connecting space W 2 spacing connecting space 12

Claims (1)

200923307 曱請專利範圍: 一種具燒結毛細組織之多流道4型熱f,包括, 一扁型管體,係為斷面呈扁型 ^ . 别〜 ^ 一 ^封閉之中空普辨 型恕,俾界定形成二平靠 二g體 非田Μ及—側部, 體包括受熱段以及冷卻段,扁剞 §Χ聖官 空管槽; …體内部則形成一中200923307 专利 专利 patent scope: A multi-channel type 4 heat f with sintered capillary structure, including, a flat tube body, the section is flat type ^.俾Defining the formation of two flats, two g bodies, non-field ridges and side parts, the body including the heated section and the cooling section, the flat 剞 Χ Χ Χ Χ 空 ; ; ;; 燒織,係一體結合於爲型管體之中空管槽中 該垸結毛細組織具一結合側與 面相結合固定; 體其中-平靠 芏 > 二流道,係形 ,_ W '一、va〜丹屏型管體的 二管槽預定區域之間呈間隔配置狀態,且 係沿著該扁型管體之伸設方向延伸者。 a机 依據申請專利範圍第1項所述之具燒結毛細組織之多 流道扁型熱管’其中所述燒結毛細組織遠離其結合二 之該側並形成有峰狀抵靠端抵靠於中空管槽之另一側 ’同時藉此區隔形成至少二流道空間。 依據申請專利範圍第1項所述之具燒結毛細組織之多 流道扁型熱管,其中所述燒結毛細組織之内部亦可形 成有流道。 依據申請專利範圍第1項所述之具燒結毛細組織之多 流道扁型熱管,其中所述流道中並可增設有網體或多 孔質構件。 依據申請專利範圍第1項所述之具燒結毛細組織之多 流道扁型熱管,其中所述扁型管體之中空管槽内壁並 13 200923307 可形成有溝槽。 織之多 管體冷 ,以使 6、依據申i青專利範圍第1項所述之具燒結毛細組 流道扁型熱管,其中所述燒結毛細組織與扁型 卻段之該端部之間可為留設有間距之結構型態 其各流道於該端部具有連通空間。 f 14The woven and woven fabric is integrally combined with the hollow tube groove of the tubular body with a combined side and a surface of the capillary structure; the body is - flat 芏 > the second flow path, the shape, _ W '1, The predetermined areas of the two tube grooves of the va to Dan screen type pipe are arranged at intervals, and are extended along the extending direction of the flat pipe body. The machine is a multi-channel flat heat pipe having a sintered capillary structure according to the first aspect of the patent application, wherein the sintered capillary structure is away from the side of the joint 2 and forms a peak-shaped abutting end against the hollow The other side of the tube groove 'at the same time forms at least two flow channel spaces. A multi-channel flat heat pipe having a sintered capillary structure according to the first aspect of the invention, wherein the sintered capillary structure may also have a flow path formed therein. A multi-channel flat heat pipe having a sintered capillary structure according to claim 1, wherein a mesh body or a porous member may be added to the flow path. A multi-channel flat heat pipe having a sintered capillary structure according to claim 1, wherein the inner wall of the hollow pipe groove of the flat pipe body is formed with a groove. The woven multi-tube body is cold, so that the sintered capillary flow channel flat heat pipe according to the first item of the patent application scope of claim 1, wherein the sintered capillary structure and the end portion of the flat section are It may be a structural type in which a pitch is left, and each flow path has a communication space at the end. f 14
TW96144031A 2007-11-21 2007-11-21 Multiple channel flat heat pipe having sintered wick structure TW200923307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96144031A TW200923307A (en) 2007-11-21 2007-11-21 Multiple channel flat heat pipe having sintered wick structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96144031A TW200923307A (en) 2007-11-21 2007-11-21 Multiple channel flat heat pipe having sintered wick structure

Publications (1)

Publication Number Publication Date
TW200923307A true TW200923307A (en) 2009-06-01

Family

ID=44728524

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96144031A TW200923307A (en) 2007-11-21 2007-11-21 Multiple channel flat heat pipe having sintered wick structure

Country Status (1)

Country Link
TW (1) TW200923307A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI394927B (en) * 2009-07-21 2013-05-01 Furukawa Electric Co Ltd Flat type heat pipe and its manufacturing method
CN103217039A (en) * 2012-01-19 2013-07-24 奇鋐科技股份有限公司 Heat pipe heat radiating structure
CN103217037A (en) * 2012-01-19 2013-07-24 奇鋐科技股份有限公司 Heat pipe structure
CN103217038A (en) * 2012-01-19 2013-07-24 奇鋐科技股份有限公司 Improved heat pipe structure
US8667684B2 (en) * 2010-05-14 2014-03-11 Furui Precise Component (Kunshan) Co., Ltd. Flat heat pipe and method for manufacturing the same
TWI494531B (en) * 2010-05-20 2015-08-01 Foxconn Tech Co Ltd Flat heat pipe and method for manufacturing the same
TWI510751B (en) * 2012-01-19 2015-12-01 Asia Vital Components Co Ltd Heat pipe structure
US9506699B2 (en) 2012-02-22 2016-11-29 Asia Vital Components Co., Ltd. Heat pipe structure
TWI564530B (en) * 2012-01-19 2017-01-01 Asia Vital Components Co Ltd Heat pipe heat dissipation structure
CN113819783A (en) * 2021-09-10 2021-12-21 联想(北京)有限公司 Heat pipe and manufacturing method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9188396B2 (en) 2009-07-21 2015-11-17 Furukawa Electric Co., Ltd. Flattened heat pipe and manufacturing method thereof
US10408547B2 (en) 2009-07-21 2019-09-10 Furukawa Electric Co., Ltd. Flattened heat pipe and manufacturing method thereof
TWI394927B (en) * 2009-07-21 2013-05-01 Furukawa Electric Co Ltd Flat type heat pipe and its manufacturing method
US9453689B2 (en) 2010-05-14 2016-09-27 Furui Precise Component (Kunshan) Co., Ltd. Flat heat pipe
US8667684B2 (en) * 2010-05-14 2014-03-11 Furui Precise Component (Kunshan) Co., Ltd. Flat heat pipe and method for manufacturing the same
TWI494531B (en) * 2010-05-20 2015-08-01 Foxconn Tech Co Ltd Flat heat pipe and method for manufacturing the same
CN103217038A (en) * 2012-01-19 2013-07-24 奇鋐科技股份有限公司 Improved heat pipe structure
TWI510751B (en) * 2012-01-19 2015-12-01 Asia Vital Components Co Ltd Heat pipe structure
CN103217039B (en) * 2012-01-19 2016-05-11 奇鋐科技股份有限公司 Hot pipe cooling structure
CN103217037A (en) * 2012-01-19 2013-07-24 奇鋐科技股份有限公司 Heat pipe structure
TWI564530B (en) * 2012-01-19 2017-01-01 Asia Vital Components Co Ltd Heat pipe heat dissipation structure
CN103217039A (en) * 2012-01-19 2013-07-24 奇鋐科技股份有限公司 Heat pipe heat radiating structure
US9506699B2 (en) 2012-02-22 2016-11-29 Asia Vital Components Co., Ltd. Heat pipe structure
CN113819783A (en) * 2021-09-10 2021-12-21 联想(北京)有限公司 Heat pipe and manufacturing method thereof

Similar Documents

Publication Publication Date Title
TW200923307A (en) Multiple channel flat heat pipe having sintered wick structure
CN2771785Y (en) Sleeving-pipe type heat exchanger
CN201532142U (en) Flat heat pipe with hooked capillary structure
CN100552366C (en) Loop heat pipe
JP5882909B2 (en) Heat exchanger, garbage processing machine including heat exchanger, and method of manufacturing heat exchanger
US20090139696A1 (en) Flat heat pipe with multi-passage sintered capillary structure
CN101600853B (en) Turbine bucket
KR20110083996A (en) Double-piped heat exchanger
TWM426988U (en) Thin type heat pipe
CN101861507A (en) Plane type heat exchanger
CN102261862B (en) A kind of Flat heat pipe heat exchanger
CN109945708A (en) A kind of reinforcing heat pipe of gas-liquid separation
CN102818466A (en) Heat pipe
TW200923306A (en) Flat heat pipe having sintered multiple channel wick structure
CN209197542U (en) Micro heat pipe structure applied to cabinet
TWM399307U (en) Looped heat dissipation module
CN201122068Y (en) Heat pipe structure with double-layer capillary organization
CN210004836U (en) reinforced heat pipe for gas-liquid separation
CN107726674A (en) Heat exchanger and heat pump
CN104215107A (en) Phase-change-type radiator
CN203881188U (en) Radiating device for large-cooling-capacity stirling cryocooler
CN201229139Y (en) Hot pipe with double-segment capillary structure
CN207688709U (en) Heat exchanger and acoustic energy refrigeration machine
CN206042625U (en) Integrated heat dissipation device
TWI275767B (en) Heat pipe