TWI474104B - 設計規則及微影程序共同最佳化 - Google Patents

設計規則及微影程序共同最佳化 Download PDF

Info

Publication number
TWI474104B
TWI474104B TW102115302A TW102115302A TWI474104B TW I474104 B TWI474104 B TW I474104B TW 102115302 A TW102115302 A TW 102115302A TW 102115302 A TW102115302 A TW 102115302A TW I474104 B TWI474104 B TW I474104B
Authority
TW
Taiwan
Prior art keywords
pattern
design
pattern transfer
design variables
parameters
Prior art date
Application number
TW102115302A
Other languages
English (en)
Other versions
TW201403215A (zh
Inventor
Xiaofeng Liu
Original Assignee
Asml Netherlands Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asml Netherlands Bv filed Critical Asml Netherlands Bv
Publication of TW201403215A publication Critical patent/TW201403215A/zh
Application granted granted Critical
Publication of TWI474104B publication Critical patent/TWI474104B/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70525Controlling normal operating mode, e.g. matching different apparatus, remote control or prediction of failure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/398Design verification or optimisation, e.g. using design rule check [DRC], layout versus schematics [LVS] or finite element methods [FEM]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/7065Defects, e.g. optical inspection of patterned layer for defects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/18Manufacturability analysis or optimisation for manufacturability
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0005Apparatus or processes for manufacturing printed circuits for designing circuits by computer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

設計規則及微影程序共同最佳化
本文中之描述係關於微影裝置及程序,且更特定言之,係關於用於最佳化供微影裝置及程序中使用之設計規則參數、照明源及光罩設計佈局之工具。
微影投影裝置可用於(例如)積體電路(IC)之製造中。在此狀況下,光罩可含有對應於IC之個別層之電路圖案,且可將此圖案成像至已經塗佈有輻射敏感材料(抗蝕劑)層之基板(例如,矽晶圓)上之目標部分(例如,包含一或多個晶粒)上。一般而言,單一晶圓將含有經由微影投影裝置之投影系統而一次一個經順次地輻照之鄰近目標部分的整個網路。在一類型之微影投影裝置中,藉由將整個光罩圖案一次性曝光至目標部分上來輻照每一目標部分;此裝置通常被稱作晶圓步進器。在通常被稱作步進掃描裝置之替代裝置中,藉由在給定參考方向(「掃描」方向)上在投影光束下漸進地掃描光罩圖案同時平行或反平行於此方向而同步地掃描基板台來輻照每一目標部分。一般而言,因為投影系統將具有放大因數M(通常<1),所以基板台被掃描之速度V將為光罩台被掃描之速度的因數M倍。可(例如)自以引用方式併入本文中之US 6,046,792搜集到關於如本文所描述之微影器件的更多資訊。
在使用微影投影裝置之製造程序中,將光罩圖案成像至由輻射敏感材料(抗蝕劑)層至少部分地覆蓋之基板上。在此成像步驟之前,基板可經歷各種工序,諸如,上底漆、抗蝕劑塗佈及軟烘烤。在曝光之後,基板可經受其他工序,諸如,曝光後烘烤(PEB)、顯影、硬烘烤,及經成像特徵之量測/檢測。此工序陣列用作圖案化一器件(例如,IC)之個別層的基礎。此經圖案化層接著可經歷各種程序,諸如,蝕刻、離子植入(摻雜)、金屬化、氧化、化學機械拋光等等,該等程序皆意欲精整一個別層。若需要若干層,則將必須針對每一新層來重複整個工序或其變體。最終,器件陣列將存在於基板(晶圓)上。接著藉由諸如切塊或鋸切之技術來使此等器件彼此分離,據此,可將個別器件安裝於載體上、連接至銷釘,等等。
出於簡單起見,投影系統在下文中可被稱作「透鏡」;然而,此術語應被廣泛地解釋為涵蓋各種類型之投影系統,包括(例如)折射光學件、反射光學件,及反射折射系統。投影系統亦可包括用於引導、塑形或控制輻射投影光束的根據此等設計類型中任一者而操作之組件,且此等組件在下文中亦可被集體地或單個地稱作「透鏡」。另外,微影投影裝置可屬於具有兩個或兩個以上基板台(及/或兩個或兩個以上光罩台)之類型。在此等「多載物台」器件中,可並行地使用額外台,或可在一或多個台上進行預備步驟,同時將一或多個其他台用於曝光。
上文所提及之光微影光罩包含對應於待整合至矽晶圓上之電路組件之幾何圖案。利用CAD(電腦輔助設計)程式來產生用以創製此等光罩之圖案,此程序常常被稱作EDA(電子設計自動化)。大多數CAD程式遵循一預定設計規則集合以便創製功能光罩。此等規則係藉由處理及設計限制而設定。舉例而言,設計規則定義電路器件(諸如,閘極、電容器,等等)或互連線之間的空間容許度,以便確保該等電路 器件或線彼此不會以不理想方式相互作用。設計規則限制通常被稱作「臨界尺寸」(CD)。電路之臨界尺寸可被定義為線或孔之最小寬度,或兩個線或兩個孔之間的最小空間。因此,CD判定經設計電路之總大小及密度。當然,積體電路製作中之目標中之一者係在晶圓上如實地再生原始電路設計(經由光罩)。
如所提及,微影為半導體積體電路製造中之中心步驟,其中形成於基板上之圖案界定半導體器件之功能元件,諸如,微處理器、記憶體晶片,等等。相似微影技術亦用於形成平板顯示器、微機電系統(MEMS)及其他器件。
隨著半導體製造程序繼續進步,幾十年來,電路元件之尺寸已不斷地縮減,同時每器件的功能元件(諸如,電晶體)之量已穩固地增加,其遵循通常被稱作「莫耳定律(Moore's law)」之趨勢。在當前先進技術下,使用被稱為掃描器之光學微影投影系統來製造前邊緣器件之臨界層,光學微影投影系統使用來自深紫外線雷射光源之照明而將光罩影像投影至基板上,從而創製具有充分地低於100奈米(亦即,小於投影光之波長的一半)之尺寸的個別電路特徵。
供印刷尺寸小於光學投影系統之經典解析度極限之特徵的此程序根據解析度公式CD=k1×λ/NA而通常被稱作低k1微影,其中λ為所使用輻射之波長(當前在大多數狀況下為248奈米或193奈米),NA為投影光學件之數值孔徑,CD為「臨界尺寸」--通常為所印刷之最小特徵大小--且k1為經驗解析度因數。一般而言,k1愈小,則在晶圓上再生類似於由電路設計者規劃之形狀及尺寸以便達成特定電功能性及效能的圖案變得愈困難。為了克服此等困難,將複雜微調步驟應用於投影系統以及光罩設計。舉例而言,此等步驟包括(但不限於)NA及光學相干性設定之最佳化、自訂照明方案、相移光罩之使用、光罩佈局中之光學近接校正,或通常被定義為「解析度增強技術」(RET)之 其他方法。
作為RET之一個重要實例,光學近接校正(OPC)處理如下事實:晶圓上之經印刷特徵之最終大小及置放將不僅僅為光罩上之對應特徵之大小及置放的函數。應注意,術語「光罩」及「比例光罩」在本文中被互換式地利用。一般熟習此項技術者應瞭解,術語「光罩」及「比例光罩」涵蓋透射或反射圖案化器件,諸如,可程式化鏡面陣列或LCD矩陣。對於存在於典型電路設計上之小特徵大小及高特徵密度,給定特徵之特定邊緣之位置將在某種程度上受到其他鄰近特徵之存在或不存在的影響。此等近接效應起因於自一特徵耦合至另一特徵的微小量之光。相似地,近接效應可起因於在通常跟隨微影曝光之曝光後烘烤(PEB)、抗蝕劑顯影及蝕刻期間之擴散及其他化學效應。
為了確保根據給定目標電路設計之要求而在半導體基板上產生特徵,需要利用複雜數值模型來預測近接效應,且需要在高端器件之成功製造變得可能之前將校正或預失真應用於光罩之設計。在典型高端設計中,幾乎每一特徵邊緣皆需要某種修改,以便達成足夠地接近目標設計之經印刷圖案。此等修改可包括邊緣位置或線寬之移位或偏置以及「輔助」特徵之應用,「輔助」特徵不意欲印刷其自身,但將影響關聯主要特徵之屬性。在半導體工業中,微影蝕刻術(或簡單地為微影)為將電路圖案印刷於半導體晶圓(例如,矽或GaAs晶圓)上之程序。當前,光學微影為用於半導體器件及諸如平板顯示器之其他器件之大量製造中的主要技術。此微影使用在可見光至深紫外線光譜範圍內之光以將感光性抗蝕劑曝光於基板上。未來,可使用極紫外線(EUV)及軟x射線。在曝光之後,顯影抗蝕劑以得到抗蝕劑影像。
圖1說明例示性微影投影系統10。主要組件為:光源12,其可為(例如)深紫外線準分子雷射源,或其他波長(包括EUV波長)之源;照明光學件,其定義部分相干性且可包括特定源塑形光學件14、16a及 16b;光罩或比例光罩18;及投影光學件16c,其將光罩圖案之影像產生至晶圓平面22上。光瞳平面處之可調整濾光器或孔隙20可限定照射於晶圓平面22上之光束角度之範圍,其中最大可能角度定義投影光學件之數值孔徑NA=sin(θmax )。
圖2中說明用於模擬微影投影裝置中之微影的例示性流程圖。源模型31表示源之光學特性(包括光強度分佈及/或相位分佈)。投影光學件模型32表示投影光學件之光學特性(包括由投影光學件造成的對光強度分佈及/或相位分佈之改變)。設計佈局模型35表示設計佈局之光學特性(包括由給定設計佈局33造成的對光強度分佈及/或相位分佈之改變),其為在光罩上之特徵配置的表示。可自設計佈局模型35、投影光學件模型32及設計佈局模型35模擬空中影像36。可使用抗蝕劑模型37而自空中影像36模擬抗蝕劑影像38。舉例而言,微影之模擬可預測抗蝕劑影像中之輪廓及CD。
更具體言之,應注意,源模型31可表示源之光學特性,該等特性包括(但不限於)NA-均方偏差(σ)設定,以及任何特定照明源形狀(例如,離軸光源,諸如,環形、四極及偶極,等等)。投影光學件模型32可表示投影光學件之光學特性,該等特性包括像差、失真、折射率、實體大小、實體尺寸,等等。設計佈局模型35亦可表示實體光罩之物理屬性,如(例如)全文以引用方式併入本文中之美國專利第7,587,704號所描述。模擬之目標係準確地預測(例如)邊緣置放及CD,該等邊緣置放及CD接著可與所欲設計進行比較。所欲設計通常被定義為可以諸如GDSII或OASIS或其他檔案格式之標準化數位檔案格式而提供之預OPC設計佈局。
當抗蝕劑係由經投影影像曝光且此後被烘烤及顯影時,抗蝕劑傾向於經歷複雜化學及物理改變。通常,最終抗蝕劑圖案之特徵為其臨界尺寸或CD,臨界尺寸或CD通常被定義為抗蝕劑-基板界面處抗蝕 劑特徵之寬度。雖然CD通常意欲表示圖案化於給定器件中之最小特徵,但實務上,術語CD用以描述任何抗蝕劑特徵之線寬。
在大多數曝光工具中,光學系統將自光罩層級至晶圓層級之圖案之大小縮減達一縮減因數,通常為4或5。由於此情形,光罩層級處之圖案通常大於晶圓層級處之所要圖案,其放寬在光罩層級處所需要之尺寸控制容許度且改良光罩製造程序之良率及可製造性。曝光工具之此縮減因數在提及曝光程序之「尺寸」時引入某種混淆。在本文中,特徵大小及尺寸指代晶圓層級特徵大小及尺寸,且「最小特徵大小」指代晶圓層級處之最小特徵。
對於用以正確地圖案化一器件之曝光程序,必須圖案化該器件中之所有臨界結構之CD以達成設計目標尺寸。因為實務上沒有可能在無誤差的情況下達成每一目標CD,所以在針對CD誤差之某一容許度的情況下設計器件。在此狀況下,若所有臨界特徵之CD係在此等預定義容許度內,則圖案被認為可接受。為了使曝光程序在製造環境中可行,完全CD分佈必須橫越一程序條件範圍而屬於容許度極限,該程序條件範圍表示被預期在加工時發生之典型程序變化範圍。舉例而言,標稱相同程序條件之實際劑量可自標稱劑量變化高達±5%;標稱相同程序條件之實際焦平面可自標稱焦平面變化高達±100奈米。
限制或降級圖案轉印程序之保真度的因素包括光罩製造程序之不完美性、投影光學件之不完美性、抗蝕劑程序之不完美性,及經投影光與形成於晶圓上之膜堆疊之間的相互作用之控制之不完美性。然而,即使在用完美光罩、完美光學件、完美抗蝕劑系統及完美基板反射率控制的情況下,影像保真度亦變得難以被維持,此係因為經成像特徵之尺寸變得小於用於曝光工具中之光之波長。對於使用193奈米照明源之曝光程序,需要小至65奈米之特徵。在此深次波長體系中,圖案轉印程序變得高度非線性,且晶圓層級處之最終圖案之尺寸不僅 變成光罩層級處之圖案之大小的極敏感函數,而且變成特徵之局域環境的極敏感函數,其中該局域環境延伸出至為光之波長之約略五倍至十倍的半徑。在給出相比於波長極小之特徵大小的情況下,即使是光罩上之相同結構亦將具有不同晶圓層級尺寸,此取決於相鄰特徵之大小及近接且甚至取決於未緊鄰但仍在由曝光工具之光學件界定之近接區內之特徵的大小及近接。
在致力於在圖案轉印程序中改良成像品質且最小化高非線性時,當前處理技術使用各種RET及OPC,其為用於旨在克服近接效應之任何技術的一般術語。OPC之最簡單形式中之一者為選擇性偏置(selective bias)。在給出CD相對於間距曲線的情況下,可藉由改變光罩層級處之CD而迫使所有不同間距至少在最佳聚焦及曝光時產生相同CD。因此,若一特徵在晶圓層級處印刷得太小,則光罩層級特徵將經偏置為稍微大於標稱特徵,且反之亦然。因為自光罩層級至晶圓層級之圖案轉印程序為非線性,所以偏置量並不簡單地為在最佳聚焦及曝光時之測定CD誤差乘以縮減比率,但在用模型化及實驗的情況下,可判定適當偏置。選擇性偏置為對近接效應之問題的不完整解決方案,尤其是在其僅於標稱程序條件下被應用的情況下。儘管原則上可應用此偏置以在最佳聚焦及曝光時給出均一CD相對於間距曲線,但一旦曝光程序自標稱條件變化,每一經偏置間距曲線就將不同地作出回應,從而針對不同特徵引起不同程序窗。因此,用以給出相同CD相對於間距之「最佳」偏置甚至可對總程序窗有負面影響,從而縮減而非擴大聚焦及曝光範圍,在該聚焦及曝光範圍內,所有目標特徵在所要程序容許度內印刷於晶圓上。
已針對除了上文之一維偏置實例以外的應用而開發其他更複雜OPC技術。二維近接效應為線端縮短(line end shortening)。線端具有依據曝光及聚焦而自其所要端點部位「拉回」之傾向。在許多狀況 下,長線端之端縮短程度可比對應線窄化大若干倍。若線端未能完全地跨越其意欲覆蓋之底層(諸如,在源極-汲極區上方之多晶矽閘極層),則此類型之線端拉回可引起經製造器件之突發故障。因為此類型之圖案對聚焦及曝光高度地敏感,所以僅僅將線端偏置為長於設計長度係不適當的,此係因為在最佳聚焦及曝光時或在曝光不足條件下之線將過度地長,從而隨著延伸線端觸碰相鄰結構而引起短路,或在更多空間添加於電路中之個別特徵之間時引起不必要大之電路大小。因為積體電路設計及製造之關鍵目標中之一者係最大化功能元件之數目同時最小化每晶片所需要之面積,所以添加過多間隔為高度不理想的解決方案。
已開發二維OPC途徑以幫助解決線端拉回問題。例行地將被稱為「錘頭(hammerhead)」或「襯線(serif)」之額外結構(或輔助特徵)添加至線端以有效地將其錨定於適當位置且提供遍及整個程序窗之縮減拉回。即使在最佳聚焦及曝光時,亦未解析此等額外結構,但該等額外結構變更主特徵之外觀而不會被獨自完全地解析。如本文所使用之「主特徵」意謂意欲在程序窗中之一些或全部條件下印刷於晶圓上之特徵。在光罩上之圖案不再僅僅為藉由縮減比率而擴大規模之所要晶圓圖案的程度上,輔助特徵相比於添加至線端之簡單錘頭可呈現更有主動性之形式。諸如襯線之輔助特徵相比於僅僅縮減線端拉回的狀況可應用於更多狀況。內部或外部襯線可應用於任何邊緣(尤其是二維邊緣),以縮減隅角圓化或邊緣擠壓。在用足夠選擇性偏置以及所有大小及極性之輔助特徵的情況下,光罩上之特徵愈來愈少地類似於晶圓層級處所需要之最終圖案。一般而言,光罩圖案變成晶圓層級圖案之預失真版本,其中失真意欲抵消或反向將在微影程序期間發生之圖案變形以在晶圓上產生儘可能地接近由設計者所欲之圖案的圖案。
出於解析度及程序窗增強兩者,亦可在經添加有不同相位之相 移結構之單一光罩上一起使用許多此等OPC技術。偏置一維線之簡單任務變得愈來愈複雜,此係因為必須在不會與鄰接特徵造成任何衝突的情況下移動二維結構、調整二維結構之大小、用輔助特徵來增強二維結構且可能地使二維結構相移。歸因於深次波長微影之延伸近接範圍,應用於一特徵之OPC之類型的改變可針對在零點五微米至一微米內所定位之另一特徵具有非所欲後果。因為在此近接範圍內很可能存在許多特徵,所以最佳化OPC裝飾之任務在添加更有主動性之途徑的情況下變得愈來愈複雜。所添加之每一新特徵對其他特徵有影響,該等其他特徵接著又可被重新校正,且可重複地反覆結果以收斂至光罩佈局,其中每一特徵可以其最初所欲之方式被印刷,而同時以適當方式貢獻於其相鄰特徵之空中影像,使得該等相鄰特徵亦在其各別容許度內被印刷。
一種用於針對包含一微影投影裝置之一圖案轉印程序獲得一或多個設計規則之一或多個設計變數之值的電腦實施方法,該方法包含:同時地最佳化該圖案轉印程序之一或多個設計變數及該一或多個設計規則之該一或多個設計變數。
10‧‧‧微影投影系統
12‧‧‧光源
14‧‧‧特定源塑形光學件
16a‧‧‧特定源塑形光學件
16b‧‧‧特定源塑形光學件
16c‧‧‧投影光學件
18‧‧‧光罩/比例光罩
20‧‧‧濾光器/孔隙
22‧‧‧晶圓平面
31‧‧‧源模型
32‧‧‧投影光學件模型
35‧‧‧設計佈局模型
36‧‧‧空中影像
37‧‧‧抗蝕劑模型
38‧‧‧抗蝕劑影像
100‧‧‧電腦系統
102‧‧‧匯流排
104‧‧‧處理器
105‧‧‧處理器
106‧‧‧主記憶體
108‧‧‧唯讀記憶體(ROM)
110‧‧‧儲存器件
112‧‧‧顯示器
114‧‧‧輸入器件
116‧‧‧游標控制件
118‧‧‧通信介面
120‧‧‧網路鏈路
122‧‧‧區域網路
124‧‧‧主機電腦
126‧‧‧網際網路服務業者(ISP)
128‧‧‧網際網路
130‧‧‧伺服器
301‧‧‧參數/兩個圖案之間的邊緣至邊緣距離
302‧‧‧參數/圖案之高度
303‧‧‧參數/圖案之寬度
304‧‧‧參數/圖案之邊緣之絕對位置
305‧‧‧參數/一圖案之邊緣至同一圖案或不同圖案之另一邊緣之延伸線之間的距離
306‧‧‧參數/隅角至隅角距離
307‧‧‧參數/兩個圖案之間的重疊部之尺寸
308‧‧‧參數/圖案之邊緣至層或光罩上之固定點之間的距離
309‧‧‧參數/與經組態以待在圖案轉印程序中產生於不同光罩上或產生於不同層上之兩個圖案有關的幾何參數
1000‧‧‧柵格
AD‧‧‧調整構件
B‧‧‧輻射投影光束
BD‧‧‧光束遞送系統
C‧‧‧目標部分
CO‧‧‧聚光器
IF‧‧‧干涉量測構件
IL‧‧‧輻射系統/照明系統/照明器
IN‧‧‧積光器
M1‧‧‧圖案化器件中之對準標記
M2‧‧‧圖案化器件中之對準標記
MA‧‧‧光罩/圖案化器件
MT‧‧‧第一物件台/光罩台
P1‧‧‧晶圓上之對準標記
P2‧‧‧晶圓上之對準標記
PM‧‧‧第一定位構件
PS‧‧‧投影系統/透鏡
PW‧‧‧第二定位構件
SO‧‧‧輻射源
W‧‧‧基板
WT‧‧‧第二物件台/基板台
對於一般熟習此項技術者,在結合附圖而審閱特定實施例之以下描述後,上述態樣及其他態樣與特徵隨即將變得顯而易見,在該等附圖中:圖1說明例示性微影投影系統。
圖2展示用於模擬微影投影裝置中之微影的例示性流程圖。
圖3A至圖3G展示例示性設計規則參數。
圖4說明表示當存在設計規則之兩個參數時暴力途徑(brutal force approach)必須搜尋之空間的例示性輪廓標繪圖。
圖5展示得知圖案轉印程序之度量特性之有利值的方法。
圖6展示圖5之步驟之例示性最佳化程序。
圖7為可供實施實施例之實例電腦系統的方塊圖。
圖8為實施例所適用之微影投影裝置的示意圖。
現在將參看圖式來詳細地描述實施例,該等圖式被提供為說明性實例。值得注意地,以下諸圖及實例不意謂將範疇限於單一實施例,而其他實施例藉由所描述或所說明元件中之一些或全部之互換而係可能的。此外,在可使用已知組件來部分地或完全地實施本文所描述之某些元件的情況下,將僅描述理解本文中之描述所必要的此等已知組件之彼等部分,且將在無混淆的情況下省略此等已知組件之其他部分之詳細描述。除非本文另有指定,否則對於熟習此項技術者將顯而易見,被描述為以軟體予以實施之實施例不應限於此情形,而可包括以硬體或以軟體與硬體之組合予以實施之實施例,且反之亦然。除非本文另有明確陳述,否則在本說明書中,不應認為展示單個組件之實施例具限制性;實情為,範疇意欲涵蓋包括複數個相同組件之其他實施例,且反之亦然。此外,本說明書或申請專利範圍中之任何術語不意欲被歸於罕見或特定涵義,除非有如此明確闡述。
在圖案轉印程序中,由微影投影裝置印刷於基板上之圖案至少為圖案轉印程序之參數及一或多個層或光罩上之圖案之參數的函數。圖案轉印程序之參數可包含微影投影裝置之參數及/或曝光前或曝光後工序之參數。曝光前或曝光後工序之參數可包括曝光前或曝光後烘烤(例如,溫度及持續時間)、曝光後蝕刻(例如,蝕刻劑組成、蝕刻持續時間)、抗蝕劑塗佈、抗蝕劑顯影,等等。微影投影裝置之參數可包括劑量、光罩偏置、照明源形狀,等等。層或光罩上之圖案之參數可包括圖案之多種幾何參數。層或光罩上之圖案之變化可影響微影投 影裝置之參數之最佳值;微影投影裝置中之變化可影響層或光罩上之圖案之參數的最佳值。此處,參數之「最佳值」意謂:當參數具有最佳值時,圖案轉印程序之度量特性處於有利值。舉例而言,度量可為圖案轉印程序之程序窗;較寬程序窗較理想。
圖3A至圖3G展示圖案之例示性參數。圖3A展示參數301。參數301為兩個圖案之間的邊緣至邊緣距離。圖3B展示參數302至304。參數302為圖案之高度。參數303為圖案之寬度。參數304為圖案之邊緣之絕對位置。圖3C展示參數305。參數305為一圖案之邊緣至同一圖案或不同圖案之另一邊緣之延伸線之間的距離。圖3D展示參數306。參數306為隅角至隅角距離。圖3E展示參數307。參數307為兩個圖案之間的重疊部之尺寸。圖3F展示參數308。參數308為圖案之邊緣至層或光罩上之固定點之間的距離。圖3G展示參數309。參數309為與經組態以待在圖案轉印程序中產生於不同光罩上或產生於不同層上之兩個圖案有關的幾何參數(此處,舉例而言,加影線圖案及未加影線圖案係在不同光罩或層上)。圖案之其他例示性參數可包括圖案之縱橫比及圖案陣列之間距。圖案之參數不限於圖3A至圖3G中之實例,而可為圖案之任何幾何特性或此等幾何特性之間的任何關係,其中圖案可在多層圖案轉印程序中位於同一層或光罩上或位於不同層或光罩上。
在設計經組態為待產生於光罩上之圖案之一方法中,遵循一設計規則集合以增加光罩在特定圖案轉印程序中可用之機會。圖案轉印程序之差異可針對個別圖案轉印程序導致不同設計規則集合。設計規則可為對光罩上之圖案之參數的約束(例如,圖3A至圖3G中之參數301至309中之一者的上限及下限)。通常,在遵循設計規則集合而設計圖案之後,針對此等圖案導出圖案轉印程序之參數之最佳值。然而,因為圖案及微影投影裝置兩者影響圖案轉印程序,所以可能存在 遵循不同設計規則集合而設計之其他圖案,該不同設計規則集合可得到圖案轉印程序之度量特性之甚至更有利值。
為了得知度量之有利值,吾人可採取暴力途徑。可針對許多不同設計規則集合得知圖案轉印程序之參數之最佳值,且選擇給出度量之有利值之設計規則集合。舉例而言,存在設計規則之兩個參數(圖3A至圖3G中之參數301至309中之一者的上限及下限),且設計規則之兩個參數中每一者可假定介於1奈米至10奈米之間的值。在暴力途徑中,針對設計規則之兩個參數假定1奈米之增量會給出度量之有利值之合理竭盡式搜尋,必須針對設計規則之兩個參數之10×10=100個不同組合導出圖案轉印程序之參數之最佳值,且選擇在此100個組合當中給出度量之有利值之組合。當僅僅存在設計規則之兩個參數時,此暴力途徑已經計算上極昂貴。若存在設計規則之兩個以上參數(此情形在實務圖案設計程序中係極有可能的),則計算費用將在不實務之程度上按指數規律增加。
圖4說明表示當存在設計規則之兩個參數時暴力途徑必須搜尋之空間的例示性輪廓標繪圖。水平軸線及垂直軸線表示設計規則之兩個參數之值。深度表示度量,其較高值較有利。在最終得知圖4所標記之柵格1000中的度量之有利值之前,暴力途徑必須在每一柵格處演算微影投影裝置之參數之最佳值。
根據一實施例,圖5中展示用於得知度量之有利值之方法。在步驟405中,獲得圖案轉印程序之參數(被互換式地稱作「設計變數」)。在步驟410中,獲得設計規則之參數(被互換式地稱作「設計變數」)。在步驟415中,同時地最佳化圖案轉印程序之設計變數及設計規則之參數。進行步驟415中之最佳化以導出得到度量之有利值的設計變數之值。或者,步驟415中之最佳化可包括連續地最佳化圖案轉印程序之設計變數及設計規則之設計變數兩者。在步驟420中輸出 最佳化之結果,包括圖案轉印程序之設計變數之值及設計規則之參數之值。
舉例而言,可在2010年10月28日申請之全文據此以引用方式併入本文中的美國專利申請案第12/914,946號中得知最佳化方法之實例。
在一實施例中,可使用成本函數來執行最佳化,成本函數可被表達如下:
其中(z 1 ,z 2 ,...,z N )為N個設計變數或其值;(z 1 ,z 2 ,...,z N )至少包括圖案轉印程序之某設計變數及設計規則之一些設計變數;f p (z 1 ,z 2 ,...,z N )為圖案轉印程序之度量特性,諸如,針對(z 1 ,z 2 ,...,z N )之設計變數之值集合在第p評估點處之特性之實際值與所欲值之間的差、焦點、CD、影像移位、影像失真、影像旋轉、邊緣置放誤差、抗蝕劑輪廓距離、臨界尺寸均一性、劑量變化、焦點變化、程序條件變化、光罩誤差(MEEF)、光罩複雜性缺陷大小,及焦點移位,等等。w p 為指派給f p (z 1 ,z 2 ,...,z N )之權重常數。評估點之實例可為晶圓上之任何實體點或圖案,或虛擬設計佈局上之任何點,或抗蝕劑影像,或空中影像。因為正是抗蝕劑影像常常規定基板上之電路圖案,所以f p (z 1 ,z 2 ,...,z N )常常包括抗蝕劑影像之表示。舉例而言,此評估點之f p (z 1 ,z 2 ,...,z N )可簡單地為抗蝕劑影像中之一點至彼點之所欲位置之間的距離(亦即,邊緣置放誤差EPE p (z 1 ,z 2 ,...,z N ))。圖案轉印程序之設計變數可為任何可調整參數,諸如,源、光罩、投影光學件、劑量、焦點等等之可調整參數。在一實施例中,該等設計變數中至少一些為投影光學件之可調整特性。投影光學件可包括被集體地稱為「波前操控器(wavefront manipulator)」之組件,其可用以調整輻照光束之波前及強度分佈及/或相移之形狀。投影光學件可調整沿著微影投影 裝置之光徑之任何部位(諸如,在光罩之前、在光瞳平面附近、在影像平面附近、在焦平面附近)處的波前及強度分佈。投影光學件可用以校正或補償由(例如)源、光罩、微影投影裝置中之溫度變化、微影投影裝置之組件之熱膨脹造成的波前及強度分佈之某些失真。調整波前及強度分佈可改變f p (z 1 ,z 2 ,...,z N )及成本函數之值。可自一模型模擬此等改變或實際地量測此等改變。
應注意,f p (z 1 ,z 2 ,...,z N )之正常加權均方根(RMS)被定義為,因此,最小化f p (z 1 ,z 2 ,...,z N )之加權RMS等效於最小化方程式1所定義之成本函數。因此,本文可出於記法簡單起見而互換式地利用f p (z 1 ,z 2 ,...,z N )之加權RMS及方程式1。
另外,若PW(程序窗)為度量,則成本函數可包括在不同PW條件下之f p (z 1 ,z 2 ,...,z N )。舉例而言,若考慮N個PW條件,則可將成本函數寫為: 其中係在第n個PW條件下,n =1,...,N 。當為邊緣置放誤差(EPE)時,則最小化方程式1'中之以上成本函數等效於最小化在各種PW條件下之邊緣移位,因此,此情形導致最大化PW。詳言之,若PW亦由不同光罩偏置組成,則最小化以上成本函數亦包括MEEF(光罩誤差增強因數)之最小化,MEEF被定義為晶圓EPE與誘發性光罩邊緣偏置之間的比率。
設計變數可具有約束,該等約束可被表達為(z 1 ,z 2 ,...,z N ) Z ,其中z 為設計變數之可能值集合。該等約束可表示微影投影裝置之硬體實施中之實體限定。該等約束可包括(但不限於)如下各者中之一或 多者:調諧範圍、設計變數之間的相互相依性(interdependence)。
因此,步驟415之最佳化程序係在約束(z 1 ,z 2 ,...,z N ) Z 下得知最小化成本函數的設計變數之值集合(若存在),亦即,得知:
應瞭解,成本函數可具有其他合適形式,諸如, 或其組合。
可使用諸如以下各者之任何合適方法來最小化成本函數(或針對 諸如的某一形式之成本函數來最大化成本函數):高斯-牛頓(Gauss-Newton)演算法、內插方法、萊文貝格-馬誇特(Levenberg-Marquardt)演算法、梯度下降演算法、模擬退火、內點方法、遺傳演算法、求解多項式。
圖6中進一步說明步驟415之例示性最佳化程序。此最佳化程序包含定義複數個設計變數(z 1 ,z 2 ,...,z N )之多變數成本函數的步驟505。(z 1 ,z 2 ,...,z N )至少包括圖案轉印程序之某設計變數及設計規則之一些設計變數。設計變數(z 1 ,z 2 ,...,z N )可包括照明源及光罩設計佈局之特性。在步驟510中,自設計變數演算成本函數。熟習此項技術者應瞭解,作為演算成本函數之部分,可演算空中影像或抗蝕劑影像。此演算係使用圖2所描繪之模組而進行。一旦演算成本函數,最佳化程序就前進至步驟515,其中判定是否滿足特定或預定終止條件。預定終止條件可為任何合適條件,諸如:成本函數達到最小值或最大值;成本函數等於臨限值或已超越臨限值;成本函數已達到預設誤差極限內;或達到反覆之預設數目或預定義計算時間。若滿足步驟515中之終止條件,則最佳化程序結束。若不滿足步驟515中之終止條 件,則最佳化程序前進至步驟520,其中改變設計變數之值,且接著返回至步驟510以使用設計變數之改變值來重新評估成本函數。
反覆地重複工序510至520直至滿足終止條件為止。
在圖5及圖6之方法中,根據一實施例,可同時地最佳化圖案轉印程序之設計變數及設計規則之設計變數(被稱作同時最佳化),或可順次地最佳化圖案轉印程序之設計變數及設計規則之設計變數。如本文所使用之術語「同時」、「同時地」、「聯合」及「聯合地」意謂允許圖案轉印程序之設計變數及設計規則之設計變數及/或任何其他設計變數同時地改變。
圖7為說明可輔助體現及/或實施本文所揭示之圖案選擇方法之電腦系統100的例示性方塊圖。電腦系統100包括用於傳達資訊之匯流排102或其他通信機構,及與匯流排102耦接以處理資訊之一或多個處理器104(及105)。電腦系統100亦包括耦接至匯流排102以用於儲存待由處理器104執行之資訊及指令的主記憶體106,諸如,隨機存取記憶體(RAM)或其他動態儲存器件。主記憶體106亦可用於在待由處理器104執行之指令之執行期間儲存暫時變數或其他中間資訊。電腦系統100進一步包括耦接至匯流排102以用於儲存用於處理器104之靜態資訊及指令的唯讀記憶體(ROM)108或其他靜態儲存器件。提供諸如磁碟或光碟之儲存器件110,且將儲存器件110耦接至匯流排102以用於儲存資訊及指令。
電腦系統100可經由匯流排102而耦接至用於向電腦使用者顯示資訊之顯示器112,諸如,陰極射線管(CRT)或平板顯示器或觸控面板顯示器。包括文數字按鍵及其他按鍵之輸入器件114耦接至匯流排102以用於將資訊及命令選擇傳達至處理器104。另一類型之使用者輸入器件為用於將方向資訊及命令選擇傳達至處理器104且用於控制顯示器112上之游標移動的游標控制件116,諸如,滑鼠、軌跡球或游標方 向按鍵。此輸入器件通常具有在兩個軸線(第一軸線(例如,x)及第二軸線(例如,y))上之兩個自由度,其允許該器件指定在一平面中之位置。亦可將觸控面板(螢幕)顯示器用作輸入器件。
根據一實施例,模擬程序之部分可由電腦系統100回應於處理器104執行主記憶體106中含有之一或多個指令之一或多個序列而執行。此等指令可自另一電腦可讀媒體(諸如,儲存器件110)讀取至主記憶體106中。主記憶體106中含有之指令序列之執行使處理器104執行本文所描述之程序步驟。呈多處理配置之一或多個處理器亦可用以執行主記憶體106中含有之指令序列。在替代實施例中,可代替或結合軟體指令而使用硬連線電路。因此,實施例不限於硬體電路及軟體之任何特定組合。
如本文所使用之術語「電腦可讀媒體」指代參與將指令提供至處理器104以供執行之任何媒體。此媒體可採取許多形式,包括(但不限於)非揮發性媒體、揮發性媒體及傳輸媒體。舉例而言,非揮發性媒體包括光碟或磁碟,諸如,儲存器件110。揮發性媒體包括動態記憶體,諸如,主記憶體106。傳輸媒體包括同軸纜線、銅線及光纖,包括包含匯流排102之電線。傳輸媒體亦可採取聲波或光波之形式,諸如,在射頻(RF)及紅外線(IR)資料通信期間產生之聲波或光波。舉例而言,常見形式之電腦可讀媒體包括軟碟、可撓性碟、硬碟、磁帶、任何其他磁性媒體、CD-ROM、DVD、任何其他光學媒體、打孔卡、紙帶、具有孔圖案之任何其他實體媒體、RAM、PROM及EPROM、FLASH-EPROM、任何其他記憶體晶片或晶匣、如下文所描述之載波,或可供電腦讀取之任何其他媒體。
可在將一或多個指令之一或多個序列攜載至處理器104以供執行時涉及各種形式之電腦可讀媒體。舉例而言,最初可將指令承載於遠端電腦之磁碟上。遠端電腦可將指令載入至其動態記憶體中且使用數 據機經由電話線而發送指令。在電腦系統100本端之數據機可接收電話線上之資料,且使用紅外線傳輸器以將資料轉換成紅外線信號。耦接至匯流排102之紅外線偵測器可接收紅外線信號中攜載之資料且將資料置放於匯流排102上。匯流排102將資料攜載至主記憶體106,處理器104自主記憶體106擷取及執行指令。由主記憶體106接收之指令可視情況在供處理器104執行之前或之後儲存於儲存器件110上。
電腦系統100亦較佳地包括耦接至匯流排102之通信介面118。通信介面118提供對網路鏈路120之雙向資料通信耦接,網路鏈路120連接至區域網路122。舉例而言,通信介面118可為整合式服務數位網路(ISDN)卡或數據機以提供對對應類型之電話線之資料通信連接。作為另一實例,通信介面118可為區域網路(LAN)卡以提供對相容LAN之資料通信連接。亦可實施無線鏈路。在任何此類實施中,通信介面118發送及接收攜載表示各種類型之資訊之數位資料串流的電信號、電磁信號或光學信號。
網路鏈路120通常經由一或多個網路而向其他資料器件提供資料通信。舉例而言,網路鏈路120可經由區域網路122而向主機電腦124或向由網際網路服務業者(ISP)126操作之資料設備提供連接。ISP 126又經由全球封包資料通信網路(現在通常被稱作「網際網路」128)而提供資料通信服務。區域網路122及網際網路128兩者皆使用攜載數位資料串流之電信號、電磁信號或光學信號。經由各種網路之信號及在網路鏈路120上且經由通信介面118之信號(該等信號將數位資料攜載至電腦系統100及自電腦系統100攜載數位資料)為輸送資訊的例示性形式之載波。
電腦系統100可經由該(該等)網路、網路鏈路120及通信介面118而發送訊息且接收資料(包括程式碼)。在網際網路實例中,伺服器130可能經由網際網路128、ISP 126、區域網路122及通信介面118而 傳輸用於應用程式之經請求程式碼。根據一實施例,一個此類經下載應用程式提供(例如)該實施例之測試圖案選擇。經接收程式碼可在其被接收時由處理器104執行,及/或儲存於儲存器件110或其他非揮發性儲存器中以供稍後執行。以此方式,電腦系統100可獲得呈載波之形式的應用程式碼。
圖8示意性地描繪例示性微影投影裝置,其效能可利用本文所描述之方法予以模擬及/或最佳化。該裝置包含:-輻射系統Ex、IL,其用於供應輻射投影光束B。在此特定狀況下,該輻射系統亦包含輻射源SO;-第一物件台(光罩台)MT,其具備用於固持光罩MA(例如,比例光罩)之光罩固持器,且連接至用於相對於投影系統PS來準確地定位該光罩之第一定位構件PM;-第二物件台(基板台)WT,其具備用於固持基板W(例如,抗蝕劑塗佈矽晶圓)之基板固持器,且連接至用於相對於投影系統PS來準確地定位該基板之第二定位構件PW;-投影系統(「透鏡」)PS(例如,折射、反射或反射折射光學系統),其用於將光罩MA之經輻照部分成像至基板W之目標部分C(例如,包含一或多個晶粒)上。
如本文所描繪,裝置屬於透射類型(亦即,具有透射光罩)。然而,一般而言,其亦可屬於(例如)反射類型(具有反射光罩)。或者,裝置可使用另一種圖案化構件作為光罩之使用的替代例;實例包括可程式化鏡面陣列或LCD矩陣。
源SO(例如,水銀燈或準分子雷射)產生輻射光束。舉例而言,此光束係直接地或在已橫穿諸如光束擴展器或光束遞送系統BD之調節構件之後饋入至照明系統(照明器)IL中。照明器IL可包含調整構件AD以用於設定光束中之強度分佈的外部徑向範圍及/或內部徑向範圍(通 常分別被稱作□外部及□內部)。另外,照明器通常將包含各種其他組件,諸如,積光器IN及聚光器CO。以此方式,照射於光罩MA上之光束B在其橫截面中具有所要均一性及強度分佈。
關於圖8應注意,源SO可在微影投影裝置之外殼內(此常常為當源SO為(例如)水銀燈時之狀況),但其亦可在微影投影裝置遠端,其所產生之輻射光束被導向至該裝置中(例如,憑藉合適引導鏡面);此後一情境常常為當源SO為準分子雷射(例如,基於KrF、ArF或F2雷射作用)時之狀況。本發明涵蓋至少兩種此等情境。
光束B隨後截取被固持於光罩台MT上之光罩MA。在已橫穿光罩MA的情況下,光束B傳遞通過透鏡PS,透鏡PS將光束PS聚焦至基板W之目標部分C上。憑藉第二定位構件(及干涉量測構件IF),可準確地移動基板台WT,例如,以便使不同目標部分C定位於光束B之路徑中。相似地,第一定位構件可用以(例如)在自光罩庫對光罩MA機械擷取之後或在掃描期間相對於光束B之路徑來準確地定位光罩MA。一般而言,將憑藉圖8中未被明確地描繪之長衝程模組(粗略定位)及短衝程模組(精細定位)來實現物件台MT、WT之移動。然而,在晶圓步進器(相對於步進掃描工具)之狀況下,光罩台MT可僅僅連接至短衝程致動器,或可固定。
在需要時,可使用圖案化器件中之對準標記M1、M2及晶圓上之對準標記P1、P2來對準圖案化器件MA及基板W。
所描繪工具可用於兩種不同模式中:-在步進模式中,使光罩台MT保持基本上靜止,且將整個光罩影像一次性(亦即,單次「閃光」)投影至目標部分C上。接著使基板台WT在x及/或y方向上移位,使得不同目標部分C可由光束B輻照;-在掃描模式中,基本上相同情境適用,惟在單次「閃光」中不曝光給定目標部分C除外。取而代之,光罩台MT可在給定方向(所謂 「掃描方向」,例如,y方向)上以速度v移動,使得造成投影光束PB遍及光罩影像進行掃描;同時發生地,基板台WT以速度V=Mv在相同或相對方向上同時地移動,其中M為透鏡PL之放大率(通常,M=1/4或=1/5)。以此方式,可在不必損害解析度之情況下曝光相對大目標部分C。
本文所揭示之概念可模擬或數學上模型化用於成像次波長特徵之任何通用成像系統,且可尤其有用於能夠產生具有愈來愈小之大小之波長的新興成像技術。已經在使用中之新興技術包括能夠使用ArF雷射來產生193奈米波長且甚至能夠使用氟雷射來產生157奈米波長之DUV(深紫外線)微影。此外,EUV微影能夠藉由使用同步加速器或藉由用高能電子來撞擊材料(固體或電漿)而產生在20奈米至5奈米之範圍內之波長,以便產生在此範圍內之光子。因為大多數材料在此範圍內具吸收性,所以可藉由具有鉬及矽之多堆疊之反射鏡面來產生照明。多堆疊鏡面具有鉬及矽之40層對,其中每一層之厚度為四分之一波長。可用X射線微影來產生甚至更小波長。通常,同步加速器用以產生X射線波長。因為大多數材料在x射線波長下具吸收性,所以吸收材料薄片界定特徵將在何處印刷(正型抗蝕劑)或不印刷(負型抗蝕劑)。
雖然本文所揭示之概念可用於在諸如矽晶圓之基板上之成像,但應理解,所揭示概念可用於任何類型之微影成像系統,例如,用於在不同於矽晶圓之基板上之成像的微影成像系統。
對於一般熟習此項技術者應易於顯而易見,可在不脫離精神及範疇的情況下進行形式及細節之改變及修改。附加申請專利範圍意欲涵蓋此等改變及修改。本文所揭示之概念可模擬或數學上模型化用於成像次波長特徵之任何通用成像系統,且可尤其有用於能夠產生具有愈來愈小之大小之波長的新興成像技術。已經在使用中之新興技術包 括能夠藉由使用ArF雷射來產生193奈米波長且甚至能夠藉由使用氟雷射來產生157奈米波長的EUV(極紫外線)微影。此外,EUV微影能夠藉由使用同步加速器或藉由用高能電子來撞擊材料(固體或電漿)而產生在20奈米至5奈米之範圍內之波長,以便產生在此範圍內之光子。
雖然本文所揭示之概念可用於在諸如矽晶圓之基板上之成像,但應理解,所揭示概念可用於任何類型之微影成像系統,例如,用於在不同於矽晶圓之基板上之成像的微影成像系統。
可使用以下條項來進一步描述本發明:
1.一種用於針對包含一微影投影裝置之一圖案轉印程序獲得一或多個設計規則之一或多個設計變數之值的方法,該方法包含:同時地最佳化該圖案轉印程序之一或多個設計變數及該一或多個設計規則之該一或多個設計變數。
2.如條項1之方法,其中該最佳化包含導出該圖案轉印程序之該一或多個設計變數及該一或多個設計規則之該一或多個設計變數的值,該等值得到該圖案轉印程序之一度量特性之一有利值。
3.如條項1之方法,其中該最佳化包含評估量測該圖案轉印程序之一度量特性之一成本函數,該成本函數為該圖案轉印程序之一或多個設計變數及該一或多個設計規則之一或多個設計變數的一函數。
4.如條項2至3中任一項之方法,其中該圖案轉印程序之該度量特性為該圖案轉印程序之一程序窗。
5.如條項1至4中任一項之方法,其中該圖案轉印程序之該一或多個設計變數係選自由該微影投影裝置之參數及曝光前或曝光後工序之參數組成的一群組。
6.如條項1至4中任一項之方法,其中該一或多個設計規則之該一或多個設計變數包含對經組態用於經由該圖案轉印程序而成像之圖案之參數的一或多個約束。
7.如條項6之方法,其中圖案之該等參數包含該等圖案之幾何參數。
8.如條項6之方法,其中該等圖案之該等參數係選自由如下各者組成之一群組:兩個圖案之間的一邊緣至邊緣距離、一圖案之一高度、一圖案之一寬度、一圖案之一邊緣之一絕對位置、一圖案之一邊緣至該同一圖案或一不同圖案之另一邊緣之一延伸線之間的一距離、一隅角至隅角距離、兩個圖案之間的一重疊部之一尺寸、一圖案之一邊緣至一或多個光罩上之一固定點之間的一距離、一圖案之一縱橫比,及一圖案陣列之間距。
9.如條項6之方法,其中該等圖案經組態用於在該圖案轉印程序中經由不同層而成像。
10.如條項1至9中任一項之方法,其中該微影投影裝置及該一或多個設計規則兩者影響該圖案轉印程序。
11.如條項2至3之方法,其中該最佳化包含改變該圖案轉印程序之該一或多個設計變數及該一或多個設計規則之該一或多個設計變數的一或多個值,直至滿足一終止條件為止。
12.如條項11之方法,其進一步包含重新評估該成本函數。
13.如條項11至12中任一項之方法,其中該終止條件包括如下各者中之一或多者:該成本函數之最小化;該成本函數之最大化;達到反覆之一預設數目;達到等於或超出一預設臨限值的該成本函數之一值;達到一預定義計算時間;達到一預設數目反覆;及達到在一預設誤差極限內的該成本函數之一值。
14.如條項13之方法,其中該成本函數係藉由選自由如下各者組成之一群組之一方法而最小化或最大化:高斯-牛頓演算法、內插方法、萊文貝格-馬誇特演算法、梯度下降演算法、模擬退火、內點方法,及遺傳演算法。
15.如條項1之方法,其中該最佳化係在該圖案轉印程序之該一或多個設計變數及該一或多個設計規則之該一或多個設計變數中至少一者的約束下執行。
16.如條項3、12至15中任一項之方法,其中該成本函數為如下各者中之一或多者的一函數:焦點、CD、影像移位、影像失真、影像旋轉、邊緣置放誤差、抗蝕劑輪廓距離、臨界尺寸均一性、劑量變化、焦點變化、程序條件變化、光罩誤差(MEEF)、光罩複雜性缺陷大小,及焦點移位。
17.如條項5之方法,其中該等曝光前或曝光後工序包含曝光前或曝光後烘烤(例如,溫度及持續時間)、曝光後蝕刻(例如,蝕刻劑組成、蝕刻持續時間)、抗蝕劑塗佈及抗蝕劑顯影中之一或多者。
18.如條項5之方法,其中該微影投影裝置之該等參數包含劑量、光罩偏置、投影光學件及照明源形狀中之一或多者之參數。
19.一種電腦程式產品,其包含經記錄有指令之一電腦可讀媒體,該等指令在由一電腦執行時實施如以上條項中任一項之方法。
以上描述意欲為說明性而非限制性的。因此,對於熟習此項技術者將顯而易見,可在不脫離下文所闡明之申請專利範圍之範疇的情況下對所描述之實施例進行修改。

Claims (14)

  1. 一種用於針對一微影投影裝置之一圖案轉印程序獲得一或多個設計規則之一或多個設計變數之值的方法,該方法包含:同時地最佳化該圖案轉印程序之一或多個設計變數及該一或多個設計規則之該一或多個設計變數,其中該最佳化包含:評估量測該圖案轉印程序之一度量(metric)特性之一成本函數,該成本函數為該圖案轉印程序之一或多個設計變數及該一或多個設計規則之一或多個設計變數的一函數。
  2. 如請求項1之方法,其中該最佳化包含:導出該圖案轉印程序之該一或多個設計變數及該一或多個設計規則之該一或多個設計變數的值,該等值得到該圖案轉印程序之一度量特性之一有利值。
  3. 如請求項1或2之方法,其中該圖案轉印程序之該度量特性為該圖案轉印程序之一程序窗。
  4. 如請求項1之方法,其中該圖案轉印程序之該一或多個設計變數係選自由該微影投影裝置之參數及曝光前或曝光後工序之參數組成的一群組。
  5. 如請求項1之方法,其中該一或多個設計規則之該一或多個設計變數包含對經組態用於經由該圖案轉印程序而成像之圖案之參數的一或多個約束。
  6. 如請求項5之方法,其中該等圖案之該等參數係選自由如下各者組成之一群組:兩個圖案之間的一邊緣至邊緣距離、一圖案之一高度、一圖案之一寬度、一圖案之一邊緣之一絕對位置、一圖案之一邊緣至該圖案或一不同圖案之另一邊緣之一延伸線之 間的一距離、一隅角至隅角距離、兩個圖案之間的一重疊部之一尺寸、一圖案之一邊緣至一或多個光罩上之一固定點之間的一距離、一圖案之一縱橫比,及一圖案陣列之間距。
  7. 如請求項1或2之方法,其中該最佳化包含:改變該圖案轉印程序之該一或多個設計變數及該一或多個設計規則之該一或多個設計變數的一或多個值,直至滿足一終止條件為止。
  8. 如請求項7之方法,其進一步包含重新評估該成本函數。
  9. 如請求項7之方法,其中該終止條件包括如下各者中之一或多者:該成本函數之最小化;該成本函數之最大化;達到反覆之一預設數目;達到等於或超出一預設臨限值的該成本函數之一值;達到一預定義計算時間;達到一預設數目反覆;及達到在一預設誤差極限內的該成本函數之一值。
  10. 如請求項1之方法,其中該最佳化係在該圖案轉印程序之該一或多個設計變數及該一或多個設計規則之該一或多個設計變數中至少一者的約束下執行。
  11. 如請求項1或10之方法,其中該成本函數為如下各者中之一或多者的一函數:焦點、CD、影像移位、影像失真、影像旋轉、邊緣置放誤差、抗蝕劑輪廓距離、臨界尺寸均一性、劑量變化、焦點變化、程序條件變化、光罩誤差(MEEF)、光罩複雜性缺陷大小,及焦點移位。
  12. 如請求項4之方法,其中該等曝光前或曝光後工序包含曝光前或曝光後烘烤(例如,溫度及持續時間)、曝光後蝕刻(例如,蝕刻劑組成、蝕刻持續時間)、抗蝕劑塗佈及抗蝕劑顯影中之一或多者。
  13. 如請求項4之方法,其中該微影投影裝置之該等參數包含劑量、光罩偏置、投影光學件及照明源形狀中之一或多者之參數。
  14. 一種電腦程式產品,其包含經記錄有指令之一電腦可讀媒體,該等指令在由一電腦執行時實施如請求項1至13中任一項之方法。
TW102115302A 2012-05-04 2013-04-29 設計規則及微影程序共同最佳化 TWI474104B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201261642765P 2012-05-04 2012-05-04

Publications (2)

Publication Number Publication Date
TW201403215A TW201403215A (zh) 2014-01-16
TWI474104B true TWI474104B (zh) 2015-02-21

Family

ID=48190489

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102115302A TWI474104B (zh) 2012-05-04 2013-04-29 設計規則及微影程序共同最佳化

Country Status (4)

Country Link
US (1) US9489479B2 (zh)
NL (1) NL2010647A (zh)
TW (1) TWI474104B (zh)
WO (1) WO2013164187A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11797748B2 (en) 2018-12-28 2023-10-24 Asml Netherlands B.V. Method for generating patterning device pattern at patch boundary

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9613175B2 (en) * 2014-01-28 2017-04-04 Globalfoundries Inc. Method, computer system and computer-readable storage medium for creating a layout of an integrated circuit
US20150246476A1 (en) * 2014-03-02 2015-09-03 Seagate Technology Llc Method for fabricating rectangular pattered stacks
KR102146437B1 (ko) * 2014-03-18 2020-08-21 에이에스엠엘 네델란즈 비.브이. 패턴 배치 에러 인식의 최적화
KR101939313B1 (ko) 2014-06-25 2019-01-16 에이에스엠엘 네델란즈 비.브이. 에칭 변동 감내 최적화
US10382979B2 (en) * 2014-12-09 2019-08-13 Futurewei Technologies, Inc. Self-learning, adaptive approach for intelligent analytics-assisted self-organizing-networks (SONs)
US10327159B2 (en) 2014-12-09 2019-06-18 Futurewei Technologies, Inc. Autonomous, closed-loop and adaptive simulated annealing based machine learning approach for intelligent analytics-assisted self-organizing-networks (SONs)
US9858379B2 (en) * 2015-02-18 2018-01-02 Toshiba Memory Corporation Mask data generation system, mask data generation method, and recording medium
US11126092B2 (en) * 2015-11-13 2021-09-21 Asml Netherlands B.V. Methods for determining an approximate value of a processing parameter at which a characteristic of the patterning process has a target value
US11112700B2 (en) * 2016-03-24 2021-09-07 Asml Netherlands B.V. Optimization of a lithographic projection apparatus accounting for an interlayer characteristic
US9870612B2 (en) * 2016-06-06 2018-01-16 Taiwan Semiconductor Manufacturing Co., Ltd. Method for repairing a mask
US10083272B2 (en) 2016-08-12 2018-09-25 International Business Machines Corporation Integrated circuit design layout optimizer based on process variation and failure mechanism
US10877381B2 (en) * 2016-10-21 2020-12-29 Asml Netherlands B.V. Methods of determining corrections for a patterning process
US10915031B1 (en) * 2017-02-07 2021-02-09 Synopsys, Inc. Optical source compensation
CN109254494B (zh) * 2017-07-12 2021-11-12 中芯国际集成电路制造(上海)有限公司 一种光学邻近修正方法
US10635776B1 (en) * 2017-07-14 2020-04-28 Synopsys, Inc. Producing mask layouts with rounded corners
CN107463309B (zh) * 2017-08-21 2020-12-25 郑州航空工业管理学院 用于墙壁纸设计的熵极大准则交互式进化优化方法
US10394116B2 (en) 2017-09-06 2019-08-27 International Business Machines Corporation Semiconductor fabrication design rule loophole checking for design for manufacturability optimization
US10628544B2 (en) 2017-09-25 2020-04-21 International Business Machines Corporation Optimizing integrated circuit designs based on interactions between multiple integration design rules
KR102440337B1 (ko) 2017-12-22 2022-09-05 에이에스엠엘 네델란즈 비.브이. 결함 확률에 기초한 프로세스 윈도우
US10621295B2 (en) 2018-04-10 2020-04-14 International Business Machines Corporation Incorporation of process variation contours in design rule and risk estimation aspects of design for manufacturability to increase fabrication yield
CN111399334B (zh) * 2019-01-03 2021-12-21 无锡华润上华科技有限公司 掩模版制作方法和掩模版
US11182929B2 (en) * 2019-02-25 2021-11-23 Center For Deep Learning In Electronics Manufacturing, Inc. Methods and systems for compressing shape data for electronic designs
US10877367B2 (en) * 2019-08-30 2020-12-29 Intel Corporation Adaptive algorithm to generate optical proximity correction lithographic recipe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508167A (ja) * 2003-10-16 2007-04-05 グラハム パッケージング ペット テクノロジーズ インコーポレイティッド 耐剥離性多層容器、プリフォーム、製品および製法
US20110173578A1 (en) * 2010-01-14 2011-07-14 Asml Netherlands B.V. Method and Apparatus for Enhancing Signal Strength for Improved Generation and Placement of Model-Based Sub-Resolution Assist Features (MB-SRAF)
TW201124871A (en) * 2009-10-28 2011-07-16 Asml Netherlands Bv Method of pattern selection for source and mask optimization
US20110230999A1 (en) * 2008-11-21 2011-09-22 Luoqi Chen Fast Freeform Source and Mask Co-Optimization Method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0824722B1 (en) 1996-03-06 2001-07-25 Asm Lithography B.V. Differential interferometer system and lithographic step-and-scan apparatus provided with such a system
JP4488727B2 (ja) 2003-12-17 2010-06-23 株式会社東芝 設計レイアウト作成方法、設計レイアウト作成システム、マスクの製造方法、半導体装置の製造方法、及び設計レイアウト作成プログラム
US7587704B2 (en) 2005-09-09 2009-09-08 Brion Technologies, Inc. System and method for mask verification using an individual mask error model
EP2053528A1 (en) 2007-10-26 2009-04-29 Interuniversitair Microelektronica Centrum Design optimisation by concurrent design and manufacturing technology tuning
US8570485B2 (en) * 2008-06-03 2013-10-29 Asml Netherlands B.V. Lens heating compensation systems and methods
US8336003B2 (en) * 2010-02-19 2012-12-18 International Business Machines Corporation Method for designing optical lithography masks for directed self-assembly
US8490034B1 (en) * 2010-07-08 2013-07-16 Gauda, Inc. Techniques of optical proximity correction using GPU
US8415077B2 (en) * 2010-08-13 2013-04-09 International Business Machines Corporation Simultaneous optical proximity correction and decomposition for double exposure lithography
NL2007579A (en) * 2010-11-10 2012-05-14 Asml Netherlands Bv Pattern-dependent proximity matching/tuning including light manipulation by projection optics.
NL2007577A (en) * 2010-11-10 2012-05-14 Asml Netherlands Bv Optimization of source, mask and projection optics.
NL2007578A (en) * 2010-11-17 2012-05-22 Asml Netherlands Bv Pattern-independent and hybrid matching/tuning including light manipulation by projection optics.
JP2012160521A (ja) * 2011-01-31 2012-08-23 Toshiba Corp 半導体装置の製造プロセス最適化手法及び半導体装置の製造方法
US8607170B2 (en) 2011-03-02 2013-12-10 Texas Instruments Incorporated Perturbational technique for co-optimizing design rules and illumination conditions for lithography process
NL2008311A (en) * 2011-04-04 2012-10-08 Asml Netherlands Bv Integration of lithography apparatus and mask optimization process with multiple patterning process.
NL2009982A (en) * 2012-01-10 2013-07-15 Asml Netherlands Bv Source mask optimization to reduce stochastic effects.
NL2010196A (en) * 2012-02-09 2013-08-13 Asml Netherlands Bv Lens heating aware source mask optimization for advanced lithography.
CN104395828B (zh) * 2012-05-31 2018-02-02 Asml荷兰有限公司 基于梯度的图案和评价点选择
NL2011592A (en) * 2012-10-31 2014-05-06 Asml Netherlands Bv Compensation for patterning device deformation.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508167A (ja) * 2003-10-16 2007-04-05 グラハム パッケージング ペット テクノロジーズ インコーポレイティッド 耐剥離性多層容器、プリフォーム、製品および製法
US20110230999A1 (en) * 2008-11-21 2011-09-22 Luoqi Chen Fast Freeform Source and Mask Co-Optimization Method
TW201124871A (en) * 2009-10-28 2011-07-16 Asml Netherlands Bv Method of pattern selection for source and mask optimization
US20110173578A1 (en) * 2010-01-14 2011-07-14 Asml Netherlands B.V. Method and Apparatus for Enhancing Signal Strength for Improved Generation and Placement of Model-Based Sub-Resolution Assist Features (MB-SRAF)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11797748B2 (en) 2018-12-28 2023-10-24 Asml Netherlands B.V. Method for generating patterning device pattern at patch boundary
TWI828011B (zh) * 2018-12-28 2024-01-01 荷蘭商Asml荷蘭公司 判定光罩圖案之方法及相關非暫時性電腦程式產品

Also Published As

Publication number Publication date
US20150089459A1 (en) 2015-03-26
US9489479B2 (en) 2016-11-08
TW201403215A (zh) 2014-01-16
NL2010647A (en) 2013-11-06
WO2013164187A1 (en) 2013-11-07

Similar Documents

Publication Publication Date Title
TWI474104B (zh) 設計規則及微影程序共同最佳化
TWI579656B (zh) 輔助特徵及光源之最佳化
TWI519901B (zh) 用於三維抗蝕分佈模擬之微影模型
TWI475334B (zh) 微影裝置之整合及具多重圖案化製程之光罩最佳化製程
TWI567508B (zh) 圖案置放誤差感知之最佳化
TWI630468B (zh) 用以改良微影程序之電腦實施方式及電腦程式產品
US11022894B2 (en) Rule-based deployment of assist features
TW201539226A (zh) 用於微影程序之最佳化流程
TWI600977B (zh) 用於三維特徵之微影模型
TW201341970A (zh) 用於進階微影術之可察知透鏡升溫的源光罩最佳化
TWI464530B (zh) 基板構形感知微影模型化
TWI615684B (zh) 具剖面感知之源光罩最佳化
TWI495961B (zh) 用於三維拓樸晶圓之微影模型
US10796063B2 (en) Mapping of patterns between design layout and patterning device
CN109313391B (zh) 基于位移的重叠或对准
TW202032255A (zh) 用於在嵌塊邊界處產生圖案化器件圖案之方法
TW201945834A (zh) 用於改進抗蝕劑模型預測的系統及方法