TWI471915B - Gate structure and method of making the same - Google Patents
Gate structure and method of making the same Download PDFInfo
- Publication number
- TWI471915B TWI471915B TW98123313A TW98123313A TWI471915B TW I471915 B TWI471915 B TW I471915B TW 98123313 A TW98123313 A TW 98123313A TW 98123313 A TW98123313 A TW 98123313A TW I471915 B TWI471915 B TW I471915B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- oxide layer
- tantalum nitride
- gate
- gate structure
- Prior art date
Links
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Description
本發明係有關於一種閘極結構及其製作方法,特別是有關於一種互補式金氧半導體電晶體影像感測器之閘極結構及其製作方法。The present invention relates to a gate structure and a method of fabricating the same, and more particularly to a gate structure of a complementary MOS transistor image sensor and a method of fabricating the same.
載子偶合裝置(charge-coupled devices,CCDs)是習知常用來將光轉換為電子訊號的光學電路元件,其應用範圍很廣,包括有顯示器、錄音設備(transcription machine)以及照相機等等,雖然CCD的功能廣泛,但是仍受限其較高之價位以及體積大小的問題。因此目前發展出互補式金氧半導體電晶體影像感測器(CMOS image sensor,CIS),其中的感光二極體(photodiode)和CCD具有相似的功能,同樣是用於將光轉換為電子訊號。由於CIS是以傳統的半導體製程製作,因此可利用現有半導體設備和技術,故生產量持續增加中。Charge-coupled devices (CCDs) are optical circuit components commonly used to convert light into electronic signals. They are used in a wide range of applications, including displays, transcription machines, cameras, etc. The CCD has a wide range of functions, but it is still limited by its higher price and size. Therefore, a complementary CMOS image sensor (CIS) has been developed, in which a photodiode and a CCD have similar functions, and are also used to convert light into an electronic signal. Since CIS is fabricated in a conventional semiconductor process, existing semiconductor devices and technologies can be utilized, so production continues to increase.
典型的CIS可依其功能劃分為一光感測區與一元件區,其中光感測區通常設有至少一感光二極體(photodiode),並與位於元件區的轉移電晶體(transfer transistor)、重置電晶體(reset transistor)、源極隨耦電晶體(source follower transistor)或選擇電晶體(select transistor)等之MOS電晶體同組成CIS,用來接收外部的光線並感測光照的強度,並且傳送訊號至外部的連接線路。A typical CIS can be divided into a light sensing area and an element area according to its function, wherein the light sensing area is usually provided with at least one photodiode and a transfer transistor located in the element region. A MOS transistor such as a reset transistor, a source follower transistor, or a select transistor is combined to form a CIS for receiving external light and sensing the intensity of illumination. And transmit the signal to the external connection line.
傳統上在製作影像感測器之電晶體上的閘極側壁子時,首先必需先形成一側壁子材料層,側壁子材料層不僅會覆蓋各電晶體的閘極,亦會同時覆蓋各感光二極體。接著進行一乾式蝕刻,例如電漿蝕刻,以去除部分的側壁子材料層而在各閘極側壁分別形成側壁子。在蝕刻側壁子材料層時,位於各閘極上表面以及各感光二極體上表面的側壁子材料層幾乎被電漿完全去除,因此,曝露出的感光二極體表面會被電漿轟擊,進而造成感光二極體表面的矽晶格被破壞。如此一來,將會使感光二極體中的暗電流不穩定,產生雜訊。Traditionally, in the fabrication of the gate sidewalls of the transistor of the image sensor, a sidewall material layer must first be formed. The sidewall material layer not only covers the gate of each transistor, but also covers each photosensitive layer. Polar body. A dry etch, such as plasma etching, is then performed to remove portions of the sidewall sub-material layers to form sidewalls on each of the gate sidewalls. When the sidewall material layer is etched, the sidewall material layer on the upper surface of each gate and the upper surface of each of the photosensitive diodes is almost completely removed by the plasma, so that the exposed surface of the photosensitive diode is bombarded by the plasma, and further The germanium lattice on the surface of the photodiode is destroyed. As a result, the dark current in the photodiode will be unstable and noise will be generated.
為避免電漿破壞感光二極體,目前會在進行乾式蝕刻側壁子材料層之前,另形成一光阻圖案保護各感光二極體表面。然而,此種方式不但需製備一額外的光罩且會增加製程步驟而降低產能,並且在側壁子完成之後,感光二極體表面依然保留側壁子材料層,留下的側壁子材料層將會影響感光二極體所產生的電流大小,降低感測度。In order to prevent the plasma from damaging the photosensitive diode, a photoresist pattern is formed to protect the surface of each photosensitive diode before dry etching the sidewall material layer. However, this method not only requires the preparation of an additional mask but also increases the process steps and reduces the productivity. After the sidewall is completed, the surface of the photodiode remains in the sidewall material layer, leaving the sidewall material layer. It affects the amount of current generated by the photodiode and reduces the sensitivity.
因此本發明的主要目的在於提供一種閘極結構的製作方法,在形成側壁子時可有效避免破壞感光二極體表面。Therefore, the main object of the present invention is to provide a method for fabricating a gate structure, which can effectively avoid damage to the surface of the photodiode when forming the sidewall.
根據本發明之申請專利範圍所揭露之一較佳實施例,其係提供一種閘極結構的製作方法,首先,形成一閘極,然後,形成一第一氧化矽層、一氮化矽層以及一第二氧化矽層由下至上依序覆蓋閘極,接著,進行一乾式蝕刻,蝕刻該第二氧化矽層,最後,進行一濕式蝕刻,蝕刻該氮化矽層和該第一氧化矽層。根據本發明之較佳實施例,前述濕式蝕刻所使用的蝕刻液係為RCA清洗液。根據本發明之另一較佳實施例,前述氮化矽層係利用SINGEN的方式形成,所形成的氮化矽層實質上不會被磷酸蝕刻。According to a preferred embodiment of the present invention, a method for fabricating a gate structure is provided. First, a gate is formed, and then a first tantalum oxide layer and a tantalum nitride layer are formed. a second ruthenium oxide layer sequentially covers the gate from bottom to top, and then, a dry etch is performed to etch the second ruthenium oxide layer, and finally, a wet etch is performed to etch the tantalum nitride layer and the first ruthenium oxide layer Floor. According to a preferred embodiment of the present invention, the etching liquid used in the wet etching is an RCA cleaning liquid. According to another preferred embodiment of the present invention, the tantalum nitride layer is formed by SINGEN, and the formed tantalum nitride layer is not substantially etched by phosphoric acid.
根據本發明之申請專利範圍所揭露之另一較佳實施例,其係提供另一種閘極結構,包含:一閘極;以及一閘極側壁子設於該閘極之垂直側壁,並且該閘極側壁子包含由第一氧化矽層、一氮化矽層以及一第二氧化矽層所構成的一ONO堆疊層,且該氮化矽層係為利用SINGEN的方式形成,所形成的氮化矽層實質上不會被磷酸蝕刻。According to another preferred embodiment of the present invention, another gate structure is provided, including: a gate; and a gate sidewall disposed on a vertical sidewall of the gate, and the gate The pole sidewall includes an ONO stack layer composed of a first tantalum oxide layer, a tantalum nitride layer and a second tantalum oxide layer, and the tantalum nitride layer is formed by using SINGEN, and the formed nitride is formed. The tantalum layer is not substantially etched by phosphoric acid.
本發明的特徵在於利用SINGEN的方式,形成氧化矽-氮化矽-氧化矽(ONO)堆疊層中的氮化矽層,重點在於利用SINGEN的方式形成的氮化矽層實質上不會被磷酸蝕刻,但是可以被RCA清洗液蝕刻。在氧化矽-氮化矽-氧化矽堆疊層形成之後,先以乾式蝕刻去除部分的第二氧化矽層,再接續以RCA清洗液進行濕式蝕刻,同時蝕刻第一氧化矽層、氮化矽層、第二氧化矽層,以形成一閘極側壁子。The invention is characterized in that a tantalum nitride layer in a tantalum oxide-yttria-yttria (ONO) stacked layer is formed by means of SINGEN, and the focus is that the tantalum nitride layer formed by the method of SINGEN is substantially not phosphated. Etched, but can be etched by the RCA cleaning solution. After the yttria-tantalum nitride-yttria stack layer is formed, a portion of the second ruthenium oxide layer is removed by dry etching, and then wet etching is performed with the RCA cleaning solution while etching the first ruthenium oxide layer and the tantalum nitride layer. The layer and the second layer of tantalum oxide form a gate sidewall.
請參考第1圖至第4圖,第1圖至第4為本發明閘極結構的製作方法之示意圖。第5圖所繪示的是具有缺陷的閘極結構示意圖。第6圖所繪示的是CIS的製作方法之示意圖。Please refer to FIGS. 1 to 4, and FIGS. 1 to 4 are schematic views showing a method of fabricating the gate structure of the present invention. Figure 5 is a schematic diagram of a gate structure with defects. Figure 6 is a schematic diagram showing the method of manufacturing the CIS.
以單一CIS單元為例,如第1圖所示,首先提供一基底10,例如一矽基底或一絕緣層上覆矽(Silicon On Insulator;SOI)等之半導體基底,其至少包含一P型摻雜井12以及一淺溝渠隔離(STI)結構14形成於基底10中。於P型摻雜井12上可劃分為至少一光感測區A和至少一元件區B。此皆為熟習該項技藝者及通常知識者所熟知,在此不贅述。Taking a single CIS unit as an example, as shown in FIG. 1, first, a substrate 10 such as a germanium substrate or a semiconductor substrate such as a silicon-on-insulator (SOI), which contains at least one P-type doping, is provided. A well 12 and a shallow trench isolation (STI) structure 14 are formed in the substrate 10. The P-type doping well 12 can be divided into at least one photo sensing area A and at least one element area B. This is well known to those skilled in the art and those of ordinary skill, and will not be described here.
接著,於元件區B上形成一閘極16,形成閘極16的方式可以為,於基底10表面全面形成一介電層(圖未示),此介電層可以為熱氧化法所形成之矽氧化合物,或者是以其他沉積等製程所形成之各式介電材料。隨後再於介電層上形成一導電層(圖未示),且此導電層可包含多晶矽層、金屬矽化物、金屬、合金或者是以其他沉積等製程所形成之各式導電材料。然後對此導電層與介電層進行一黃光暨蝕刻製程,以於基底10上形成閘極16。然後,如第1圖所示,於基底10表面和閘極16上形成一側壁子材料層18。本發明之側壁子材料層18係為一氧化矽-氮化矽-氧化矽(ONO)堆疊層,其形成方式例如,依序於基底10表面和閘極16上形成一第一氧化矽層20、一氮化矽層22以及一第二氧化矽層24由下至上依序覆蓋基底10表面和閘極16。其中,第一氧化矽層20可以利用沉積的方式形成,其厚度約為100埃。第二氧化矽層24亦可以使用沉積的方式形成。值得注意的是:本發明之氮化矽層22係使用SINGEN方式來形成,例如,所形成的氮化矽層22使用美商應用材料公司所提供的Applied Centura SiNgenPlus LPCVD機台來形成。因此所形成的氮化矽層22較為鬆散,並且實質上不會被磷酸蝕刻。上述Applied Centura SiNgenPlus LPCVD機台係為一單片式低壓化學氣相沉積(LPCVD)氮化矽反應器,其特色在於可以在低溫沉積,其操作溫度約在600至800℃,並且可以提供較佳的氧化矽品質。Then, a gate 16 is formed on the element region B. The gate 16 may be formed by forming a dielectric layer (not shown) on the surface of the substrate 10. The dielectric layer may be formed by thermal oxidation. Oxide compounds, or various dielectric materials formed by other deposition processes. A conductive layer (not shown) is then formed on the dielectric layer, and the conductive layer may comprise a polysilicon layer, a metal halide, a metal, an alloy, or various conductive materials formed by other deposition processes. Then, a yellow light etch process is performed on the conductive layer and the dielectric layer to form a gate 16 on the substrate 10. Then, as shown in FIG. 1, a sidewall sub-material layer 18 is formed on the surface of the substrate 10 and the gate 16. The sidewall material layer 18 of the present invention is a tantalum oxide-tantalum nitride-yttria (ONO) stacked layer formed by, for example, forming a first tantalum oxide layer 20 on the surface of the substrate 10 and the gate 16. A tantalum nitride layer 22 and a second tantalum oxide layer 24 sequentially cover the surface of the substrate 10 and the gate 16 from bottom to top. Wherein, the first ruthenium oxide layer 20 can be formed by deposition and has a thickness of about 100 angstroms. The second hafnium oxide layer 24 can also be formed using deposition. It is to be noted that the tantalum nitride layer 22 of the present invention is formed by the SINGEN method. For example, the formed tantalum nitride layer 22 is formed using an Applied Centura SiNgenPlus LPCVD machine provided by Applied Materials. The tantalum nitride layer 22 thus formed is relatively loose and is not substantially etched by phosphoric acid. The above Applied Centura SiNgenPlus LPCVD machine is a monolithic low pressure chemical vapor deposition (LPCVD) tantalum nitride reactor characterized by being capable of depositing at low temperatures, operating at temperatures of about 600 to 800 ° C, and providing better The quality of yttrium oxide.
然後如第2圖所示,利用乾式蝕刻,如電漿蝕刻,以氮化矽層22作為停止層,專用以蝕刻第二氧化矽層24,使得第二氧化矽層24在閘極16的側壁之氮化矽層22上,形成一側壁子26。此時,位於閘極16頂部上方和未被閘極16附蓋之基底10上的第二氧化矽層24係完全被電漿蝕刻去除,曝露出下方之氮化矽層22,而殘留於閘極16側壁之第二氧化矽層24則形成側壁子26;或者,如第3圖所示,位於閘極16頂部上和基底10的第二氧化矽層24可以尚有些許殘留,此二者情況皆可適用後續本發明製程。Then, as shown in FIG. 2, the dry tantalum layer 22 is used as a stop layer by dry etching, such as plasma etching, and is dedicated to etching the second hafnium oxide layer 24 such that the second hafnium oxide layer 24 is on the sidewall of the gate 16. On the tantalum nitride layer 22, a sidewall 26 is formed. At this time, the second ruthenium oxide layer 24 on the substrate 10 above the top of the gate 16 and not covered by the gate 16 is completely removed by plasma etching, exposing the underlying tantalum nitride layer 22, leaving the gate The second ruthenium oxide layer 24 on the side wall of the pole 16 forms the sidewall spacer 26; or, as shown in Fig. 3, the second ruthenium oxide layer 24 on the top of the gate 16 and the substrate 10 may have some residual. The subsequent processes of the present invention are applicable to the case.
之後,如第4圖所示,利用濕式蝕刻,主要蝕刻氮化矽層22和第一氧化矽層20,而第二氧化矽層24也會被同時蝕刻,以在閘極16的側壁上形成一由第一氧化矽層20、氮化矽層22以及第二氧化矽層24所共同組成的一側壁子28。至此,本發明之閘極結構38業已完成,本發明之閘極結構可以作為CMOS影像感測器中的轉移電晶體(transfer transistor)、重置電晶體(reset transistor)、源極隨耦電晶體(source follower transistor)或選擇電晶體(select transistor)之閘極結構。Thereafter, as shown in FIG. 4, the tantalum nitride layer 22 and the first hafnium oxide layer 20 are mainly etched by wet etching, and the second hafnium oxide layer 24 is also simultaneously etched to be on the sidewall of the gate 16. A sidewall 28 is formed by the first tantalum oxide layer 20, the tantalum nitride layer 22, and the second tantalum oxide layer 24. So far, the gate structure 38 of the present invention has been completed, and the gate structure of the present invention can be used as a transfer transistor, a reset transistor, a source follower transistor in a CMOS image sensor. (source follower transistor) or select the gate structure of the select transistor.
值得注意的是:本發明在濕式蝕刻氮化矽層22、第一氧化矽層20和第二氧化矽層24時,所使用的蝕刻液為RCA清洗液,一般來說,含有氫氧化銨(NH4 OH)和過氧化氫(H2 O2 )之RCA青洗液係用去除半導體晶片上形成的自然氧化層(native oxide),或做為半導體製程中各式蝕刻步驟之後的濕式清洗製程。而傳統上,利用化學氣相沈積法所形成的氮化矽層可以利用磷酸來蝕刻,因為磷酸對於氮化矽和氧化矽有高選擇比,所以磷酸幾乎只蝕刻氮化矽而不蝕刻氧化矽。然而如第5圖所示,若是使用磷酸來進行本發明ONO堆疊層之氮化矽層22的濕式蝕刻步驟,則會使得氮化矽層22產生缺陷30的現象,換而言之,在第二氧化矽層24下方的氮化矽層22會出現底切(undercut)。It should be noted that in the wet etching of the tantalum nitride layer 22, the first hafnium oxide layer 20 and the second hafnium oxide layer 24, the etching solution used is an RCA cleaning solution, generally containing ammonium hydroxide. RCA blankets of (NH 4 OH) and hydrogen peroxide (H 2 O 2 ) are used to remove the native oxide formed on the semiconductor wafer, or as a wet after the various etching steps in the semiconductor process. Cleaning process. Conventionally, a tantalum nitride layer formed by chemical vapor deposition can be etched using phosphoric acid because phosphoric acid has a high selectivity to tantalum nitride and tantalum oxide, so phosphoric acid etches only tantalum nitride without etching tantalum oxide. . However, as shown in Fig. 5, if the phosphoric acid is used to carry out the wet etching step of the tantalum nitride layer 22 of the ONO stack layer of the present invention, the tantalum nitride layer 22 is caused to have defects 30, in other words, An undercut of the tantalum nitride layer 22 under the second hafnium oxide layer 24 occurs.
然而,由於本發明之氮化矽層22係刻意使用SINGEN方式來形成,故結構較於鬆散,因此本發明得以採用RCA清洗液進行濕式蝕刻,因為RCA清洗液,可以同時蝕刻氧化矽和利用SINGEN方式製成的氮化矽,也就是說在此濕式蝕刻的步驟中,第一氧化矽層20、氮化矽層22和第二氧化矽層24皆可以被RCA清洗液蝕刻,而可得到第4圖所示之結構,不會產生如第5圖所示的缺陷。However, since the tantalum nitride layer 22 of the present invention is deliberately formed by the SINGEN method, the structure is looser, so the present invention can be wet-etched using the RCA cleaning solution because the RCA cleaning solution can simultaneously etch the tantalum oxide and utilize it. The tantalum nitride produced by the SINGEN method, that is, in the step of wet etching, the first tantalum oxide layer 20, the tantalum nitride layer 22 and the second tantalum oxide layer 24 can be etched by the RCA cleaning solution, but Obtaining the structure shown in Fig. 4 does not cause defects as shown in Fig. 5.
本發明和習知製程不同的是:本發明先後採用乾式和濕式蝕刻方式蝕刻ONO堆疊層,亦即先利用一乾式蝕刻,以氮化矽層22當作停止層,專門蝕刻第二氧化矽層24,然後再利用一濕式蝕刻,例如以RCA清洗液作為蝕刻劑,主要蝕刻氮化矽層22和第一氧化矽層20並且亦順道蝕刻第二氧化矽層24,以形成側壁子28。而習知技藝通常是全程使用乾式蝕刻或全程使用濕式蝕刻來蝕刻側壁子材料層,如ONO堆疊層。此外,本發明ONO堆疊層中的氮化矽層22係使用SINGEN的方式製作,因此,本發明的氮化矽層22、第一氧化矽層20和第二氧化矽層24可以利用RCA清洗液同時被蝕刻。因此,就可以形成如第4圖所繪示的結構完整的側壁子28,並且,由於第一氧化矽層20係利用濕式蝕刻去除,並非使用電漿蝕刻去除,因此,光感測區A的基底10表面不會因為電漿轟擊而使得矽晶格被破壞,造成暗電流不穩定。此外,也不需要如習知技術般,外加形成光阻保護光感測區A以及去光阻等之製程步驟。The present invention differs from the conventional process in that the present invention successively etches the ONO stacked layer by dry and wet etching, that is, first uses a dry etching to treat the second layer of tantalum oxide with the tantalum nitride layer 22 as a stop layer. Layer 24, and then using a wet etch, such as RCA cleaning solution as an etchant, primarily etches tantalum nitride layer 22 and first hafnium oxide layer 20 and also etches second hafnium oxide layer 24 to form sidewall spacers 28 . Conventional techniques typically use dry etching or wet etching throughout the process to etch sidewall material layers, such as ONO stacked layers. Further, the tantalum nitride layer 22 in the ONO stacked layer of the present invention is formed by using SINGEN, and therefore, the tantalum nitride layer 22, the first tantalum oxide layer 20, and the second tantalum oxide layer 24 of the present invention can utilize the RCA cleaning liquid. Also etched. Therefore, the structurally complete sidewall spacer 28 as shown in FIG. 4 can be formed, and since the first ruthenium oxide layer 20 is removed by wet etching, it is not removed by plasma etching, and therefore, the light sensing region A The surface of the substrate 10 does not cause the germanium lattice to be destroyed due to plasma bombardment, resulting in unstable dark current. In addition, it is not necessary to add a process step of forming a photoresist to protect the photo sensing region A and removing the photoresist, as in the prior art.
在閘極結構38完成之後,接著再形成所需之感光二極體或相對應之汲極/源極。例如第6圖所示,以一第一圖案化光阻層(圖未示)覆蓋基底10、STI結構14及閘極結構38,曝露出感光二極體區A,之後,再以離子佈植將N型摻質(例如磷或砷等)摻入感光二極體區域A之基底10中,形成N型摻雜區32。隨後將第一圖案化光阻層剝除,完成感光二極體之製程。之後,再以一第二圖案化光阻(未顯示)為遮罩,於閘極結構38之一側摻入一N型摻雜區36,至此,完成CIS之製程。After the gate structure 38 is completed, the desired photodiode or corresponding drain/source is then formed. For example, as shown in FIG. 6, a first patterned photoresist layer (not shown) covers the substrate 10, the STI structure 14, and the gate structure 38, exposing the photosensitive diode region A, and then ion implantation. An N-type dopant (e.g., phosphorus or arsenic, etc.) is doped into the substrate 10 of the photodiode region A to form an N-type doping region 32. The first patterned photoresist layer is subsequently stripped to complete the process of the photodiode. Then, a second patterned photoresist (not shown) is used as a mask, and an N-type doping region 36 is doped on one side of the gate structure 38. Thus, the CIS process is completed.
最後再如第4圖所示,本發明所提供之閘極結構38可適用於CIS晶片中轉移電晶體(transfer transistor)、重置電晶體(reset transistor)、源極隨耦電晶體(source follower transistor)或選擇電晶體(select transistor)等之MOS電晶體或是其他一般周邊區域中的CMOS電晶體等。本發明所提供之閘極結構38係設於一基底10上,而閘極結構38包含一閘極16、一閘極側壁子28設於閘極16之垂直側壁,並且閘極側壁子28包含由第一氧化矽層20、一氮化矽層22以及一第二氧化矽層24所構成的一ONO堆疊層。值得注意的是:本發明的氮化矽層22,實質上不會被磷酸蝕刻。此外,閘極16另包含一介電層15設於基底10上。根據本發明之較佳實施例,第一氧化矽層20的厚度約為100埃,係加熱氧化的方式而形成。而第二氧化矽層24則可以使用沉積的方式形成。Finally, as shown in FIG. 4, the gate structure 38 provided by the present invention can be applied to a transfer transistor, a reset transistor, and a source follower in a CIS wafer. Transistor) Select a MOS transistor such as a select transistor or a CMOS transistor in other general peripheral regions. The gate structure 38 provided by the present invention is disposed on a substrate 10, and the gate structure 38 includes a gate 16 and a gate sidewall 28 is disposed on a vertical sidewall of the gate 16, and the gate sidewall 28 includes An ONO stacked layer composed of a first hafnium oxide layer 20, a tantalum nitride layer 22, and a second hafnium oxide layer 24. It is worth noting that the tantalum nitride layer 22 of the present invention is substantially not etched by phosphoric acid. In addition, the gate 16 further includes a dielectric layer 15 disposed on the substrate 10. In accordance with a preferred embodiment of the present invention, the first yttria layer 20 has a thickness of about 100 angstroms and is formed by means of heat oxidation. The second hafnium oxide layer 24 can be formed using deposition.
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.
10...基底10. . . Base
12...P型摻雜井12. . . P-type doping well
14...STI結構14. . . STI structure
15...介電層15. . . Dielectric layer
16...閘極16. . . Gate
18...側壁子材料層18. . . Side wall material layer
20...第一氧化矽層20. . . First ruthenium oxide layer
22...氮化矽層twenty two. . . Tantalum nitride layer
24...第二氧化矽層twenty four. . . Second ruthenium oxide layer
26...側壁子26. . . Side wall
28...側壁子28. . . Side wall
30...缺陷30. . . defect
32...N型摻雜區32. . . N-doped region
36...N型摻雜區36. . . N-doped region
38...閘極結構38. . . Gate structure
第1圖至第4為本發明閘極結構的製作方法之示意圖。1 to 4 are schematic views showing a method of fabricating the gate structure of the present invention.
第5圖所繪示的是具有缺陷的閘極結構示意圖。Figure 5 is a schematic diagram of a gate structure with defects.
第6圖所繪示的是CIS的製作方法之示意圖。Figure 6 is a schematic diagram showing the method of manufacturing the CIS.
10...基底10. . . Base
12...P型摻雜井12. . . P-type doping well
14...STI結構14. . . STI structure
15...介電層15. . . Dielectric layer
16...閘極16. . . Gate
20...第一氧化矽層20. . . First ruthenium oxide layer
22...氮化矽層twenty two. . . Tantalum nitride layer
24...第二氧化矽層twenty four. . . Second ruthenium oxide layer
28...側壁子28. . . Side wall
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98123313A TWI471915B (en) | 2009-07-10 | 2009-07-10 | Gate structure and method of making the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98123313A TWI471915B (en) | 2009-07-10 | 2009-07-10 | Gate structure and method of making the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201103079A TW201103079A (en) | 2011-01-16 |
TWI471915B true TWI471915B (en) | 2015-02-01 |
Family
ID=44837734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW98123313A TWI471915B (en) | 2009-07-10 | 2009-07-10 | Gate structure and method of making the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI471915B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0777269A2 (en) * | 1995-12-01 | 1997-06-04 | Sharp Kabushiki Kaisha | MOS transistor and fabrication process therefor |
CN1967878A (en) * | 2005-11-17 | 2007-05-23 | 力旺电子股份有限公司 | Operation mehtod of single-poly non-volatile memory device |
-
2009
- 2009-07-10 TW TW98123313A patent/TWI471915B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0777269A2 (en) * | 1995-12-01 | 1997-06-04 | Sharp Kabushiki Kaisha | MOS transistor and fabrication process therefor |
CN1967878A (en) * | 2005-11-17 | 2007-05-23 | 力旺电子股份有限公司 | Operation mehtod of single-poly non-volatile memory device |
Also Published As
Publication number | Publication date |
---|---|
TW201103079A (en) | 2011-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11056530B2 (en) | Semiconductor structure with metal connection layer | |
JP5976500B2 (en) | Method of manufacturing a CMOS image sensor for protecting a photodiode from plasma damage | |
KR100535924B1 (en) | CMOS Image sensor and its fabricating method | |
JP2010206134A (en) | Solid-state image pickup apparatus and method of manufacturing the same | |
US9871064B1 (en) | Method for forming shallow trenches of the dual active regions | |
CN117238842B (en) | Deep trench forming method and backside illuminated image sensor manufacturing method | |
US8076207B2 (en) | Gate structure and method of making the same | |
US9859329B2 (en) | Imaging device manufacturing method | |
US20060284223A1 (en) | CMOS image sensor and manufacturing method thereof | |
KR100708866B1 (en) | Method of fabricating image sensors | |
TWI471915B (en) | Gate structure and method of making the same | |
JP2012019085A (en) | Solid-state imaging device and manufacturing method of the same | |
US7781253B2 (en) | Image sensor and method of manufacturing the same | |
US20090140252A1 (en) | Image sensor and method for manufacturing the sensor | |
US7645629B2 (en) | Fabricating CMOS image sensor | |
KR20110075946A (en) | Method for manufacturing of image sensor | |
KR20090068401A (en) | Method for fabricating semiconductor device | |
KR20070050511A (en) | Method of forming an device isolation area and method of forming an image device using the same | |
KR100935050B1 (en) | Image sensor and its manufacturing method | |
KR100788379B1 (en) | Manufacturing method of image sensor | |
CN115911062A (en) | Shallow trench isolation structure and forming method thereof | |
KR100728648B1 (en) | Manufacturing method for image sensor | |
JP2011204740A (en) | Solid-state image pickup device and manufacturing method of the same | |
JP2006253480A (en) | Solid-state imaging element and its manufacturing method | |
KR20100078045A (en) | Method for manufacturing complementary metal oxide semiconductor image sensor |