TWI466343B - Light-emitting diode device - Google Patents
Light-emitting diode device Download PDFInfo
- Publication number
- TWI466343B TWI466343B TW101100736A TW101100736A TWI466343B TW I466343 B TWI466343 B TW I466343B TW 101100736 A TW101100736 A TW 101100736A TW 101100736 A TW101100736 A TW 101100736A TW I466343 B TWI466343 B TW I466343B
- Authority
- TW
- Taiwan
- Prior art keywords
- emitting diode
- light
- layer
- defect
- doped layer
- Prior art date
Links
- 230000007547 defect Effects 0.000 claims description 81
- 238000000034 method Methods 0.000 claims description 16
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 claims description 8
- 230000005641 tunneling Effects 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 150000004767 nitrides Chemical class 0.000 claims description 4
- 229910003468 tantalcarbide Inorganic materials 0.000 claims description 4
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims description 4
- 238000002513 implantation Methods 0.000 claims description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims 2
- 238000000407 epitaxy Methods 0.000 claims 2
- 229910052732 germanium Inorganic materials 0.000 claims 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims 2
- 229910052757 nitrogen Inorganic materials 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 3
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 229910002601 GaN Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000004508 polar body Anatomy 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/08—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48135—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/48137—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
Description
本發明係有關一種發光二極體裝置,特別是關於一種具缺陷層的發光二極體裝置。 The present invention relates to a light emitting diode device, and more particularly to a light emitting diode device having a defective layer.
為了提升發光二極體(LED)的發光效率,方法之一是使用穿隧接面(tunnel junction)將二或多個發光二極體疊加起來。疊加發光二極體較單一發光二極體放射更多的光線,因而提高亮度。使用穿隧接面還可強化電流的分散(spreading),使得主動層內更多的載子可進行再結合(recombination)。此外,疊加發光二極體較同樣數目之單一發光二極體具有較少的電極接觸,不但可節省空間,且可降低所造成的電致遷移(electromigration)問題。 In order to improve the luminous efficiency of a light-emitting diode (LED), one of the methods is to superimpose two or more light-emitting diodes using a tunnel junction. The superimposed light-emitting diode emits more light than the single light-emitting diode, thereby increasing the brightness. The use of tunneling junctions also enhances the spreading of the current so that more carriers within the active layer can be recombined. In addition, the superimposed light-emitting diodes have fewer electrode contacts than the same number of single light-emitting diodes, which not only saves space, but also reduces the electromigration problem caused.
傳統形成穿隧接面的方法之一是使用重摻雜技術,如美國專利第6,822,991號,題為“含有穿隧接面的發光裝置(Light Emitting Devices Including Tunnel Junctions)”。由於穿隧距離通常 很短,因此,使用重摻雜技術較難達到所要的穿隧接面。再者,重摻雜也可能影響到鄰近層級的摻雜濃度。 One of the conventional methods of forming a tunneling junction is to use a heavily doped technique, such as U.S. Patent No. 6,822,991, entitled "Light Emitting Devices Including Tunnel Junctions." Due to the tunneling distance usually It is very short, so it is difficult to achieve the desired tunneling junction using heavy doping techniques. Furthermore, heavy doping may also affect the doping concentration of adjacent levels.
傳統形成穿隧接面的另一方法是使用極化(polarization)技術,如美國專利第6,878,975號,題為“極化場增強之穿隧結構(Polarization Field Enhanced Tunnel Structures)”。此種方法需要較複雜的製程控制,且會限制了材質使用的選擇性。 Another method of conventionally forming a tunneling junction is to use a polarization technique, such as U.S. Patent No. 6,878,975, entitled "Polarization Field Enhanced Tunnel Structures." This approach requires more complex process control and limits the selectivity of material usage.
提升發光二極體之發光效率的另一方法是形成歐姆接觸(ohmic contact)於發光二極體的電極處。傳統形成歐姆接觸的方法之一是使用重摻雜技術,此方法的缺點會影響到鄰近層級的摻雜濃度。 Another method of improving the luminous efficiency of the light-emitting diode is to form an ohmic contact at the electrode of the light-emitting diode. One of the traditional methods of forming ohmic contacts is to use a heavily doped technique, the disadvantages of which can affect the doping concentration of adjacent levels.
因此,亟需提出一種新穎的發光二極體結構,用以解決上述的問題。 Therefore, it is urgent to propose a novel light-emitting diode structure to solve the above problems.
鑑於上述,本發明實施例的目的之一在於提出一種發光二極體裝置,其使用導電缺陷層以形成穿隧接面或者歐姆接觸,以提升發光二極體的發光效率。相較於傳統發光二極體,本發明實施例使用較簡單製程及架構以形成穿隧接面或歐姆接觸,不但能改善發光效率且不會引發其他問題。 In view of the above, one of the objects of embodiments of the present invention is to provide a light emitting diode device that uses a conductive defect layer to form a tunnel junction or an ohmic contact to improve the light emitting efficiency of the light emitting diode. Compared with the conventional light-emitting diode, the embodiment of the present invention uses a simpler process and structure to form a tunnel junction or an ohmic contact, which not only improves the luminous efficiency but also causes other problems.
根據本發明實施例之一,發光二極體包含第一發光二 極體、第二發光二極體及導電缺陷層。其中,導電缺陷層位於該第一發光二極體與該第二發光二極體之間,作為穿隧接面,藉以將第一發光二極體與第二發光二極體疊加在一起。 According to one of the embodiments of the present invention, the light emitting diode comprises a first light emitting diode a polar body, a second light emitting diode, and a conductive defect layer. The conductive defect layer is disposed between the first light emitting diode and the second light emitting diode as a tunnel junction surface, thereby stacking the first light emitting diode and the second light emitting diode.
根據本發明另一實施例,發光二極體包含第一摻雜層、第二摻雜層、導電缺陷層及至少一電極。其中,導電缺陷層位於第一/第二摻雜層與電極之間,藉以形成歐姆接觸。 According to another embodiment of the present invention, a light emitting diode includes a first doped layer, a second doped layer, a conductive defect layer, and at least one electrode. Wherein, the conductive defect layer is located between the first/second doped layer and the electrode to form an ohmic contact.
11‧‧‧第一發光二極體 11‧‧‧First Light Emitting Diode
111‧‧‧n型摻雜層 111‧‧‧n-type doped layer
112‧‧‧p型摻雜層 112‧‧‧p-type doped layer
113‧‧‧第一摻雜層 113‧‧‧First doped layer
114‧‧‧主動層 114‧‧‧Active layer
115‧‧‧第二摻雜層 115‧‧‧Second doped layer
116‧‧‧共價鍵 116‧‧‧ covalent bond
117‧‧‧第一電極 117‧‧‧First electrode
12‧‧‧導電缺陷層 12‧‧‧ Conductive defect layer
121‧‧‧共價鍵 121‧‧‧ covalent bond
122‧‧‧懸鍵 122‧‧‧ dangling
13‧‧‧第二發光二極體 13‧‧‧Second light-emitting diode
131‧‧‧n型摻雜層 131‧‧‧n-type doped layer
132‧‧‧p型摻雜層 132‧‧‧p-type doped layer
133‧‧‧第一摻雜層 133‧‧‧First doped layer
134‧‧‧主動層 134‧‧‧ active layer
135‧‧‧第二摻雜層 135‧‧‧Second doped layer
136‧‧‧第二電極 136‧‧‧second electrode
20‧‧‧發光二極體單元 20‧‧‧Lighting diode unit
22‧‧‧銲線 22‧‧‧welding line
24‧‧‧基板 24‧‧‧Substrate
25‧‧‧第一電極 25‧‧‧First electrode
27‧‧‧第二電極 27‧‧‧second electrode
29‧‧‧電源供應器 29‧‧‧Power supply
41‧‧‧n型摻雜層 41‧‧‧n-type doped layer
42‧‧‧主動層 42‧‧‧ active layer
43‧‧‧p型摻雜層 43‧‧‧p-type doped layer
44‧‧‧導電缺陷層 44‧‧‧ Conductive defect layer
45‧‧‧p型電極 45‧‧‧p-type electrode
46‧‧‧n型電極 46‧‧‧n type electrode
第一圖顯示本發明第一實施例之發光二極體裝置的剖面簡化示意圖。 The first figure shows a simplified schematic cross-sectional view of a light-emitting diode device according to a first embodiment of the present invention.
第二A圖顯示第一圖之第一發光二極體及第二發光二極體為同質接面結構的剖面示意圖。 FIG. 2A is a schematic cross-sectional view showing the first light-emitting diode and the second light-emitting diode of the first figure in a homojunction structure.
第二B圖顯示第一圖之第一發光二極體及第二發光二極體為異質接面結構的剖面示意圖。 FIG. 2B is a cross-sectional view showing the first light-emitting diode and the second light-emitting diode of the first figure in a heterojunction structure.
第三圖顯示第二B圖之第二摻雜層與導電缺陷層的晶格示意圖。 The third figure shows a lattice diagram of the second doped layer and the conductive defect layer of the second B-graph.
第四圖顯示本發明第二實施例的剖面示意圖。 The fourth figure shows a schematic cross-sectional view of a second embodiment of the present invention.
第五圖顯示發光二極體裝置的立體示意圖。 The fifth figure shows a schematic perspective view of the light emitting diode device.
第一圖顯示本發明第一實施例之發光二極體裝置的剖面簡化示意圖。發光二極體裝置包含至少一發光二極體單元,而每一發 光二極體單元包含第一發光二極體11(LED1)與第二發光二極體13(LED2)疊加(stack)在一起,兩者之間形成有一導電缺陷(defect)層12,用以作為穿隧接面(tunnel junction),其具有低阻抗及低光損失(optical loss)。其中,第一發光二極體11的頂部面向第二發光二極體13的底部。本實施例雖以疊加的二個發光二極體作為例示,然而,本實施例可擴展應用於二個以上之發光二極體的疊加。 The first figure shows a simplified schematic cross-sectional view of a light-emitting diode device according to a first embodiment of the present invention. The light emitting diode device comprises at least one light emitting diode unit, and each light emitting The photodiode unit includes a first light emitting diode 11 (LED1) and a second light emitting diode 13 (LED2) stacked together, and a conductive defect layer 12 is formed therebetween for Tunnel junction, which has low impedance and low optical loss. The top of the first light-emitting diode 11 faces the bottom of the second light-emitting diode 13 . Although the two light-emitting diodes are superimposed as an example in the present embodiment, the present embodiment can be extended to the superposition of two or more light-emitting diodes.
第一圖所示的第一發光二極體11及第二發光二極體13可以為同質接面(homojunction)結構或者為異質接面(heterojunction)結構。第二A圖顯示當第一發光二極體11及第二發光二極體13為同質接面結構的剖面示意圖。第一發光二極體11主要包含n型摻雜層111及p型摻雜層112,該二層的材質相同,因此具有相同的能隙(energy gap)。p型摻雜層112與n型摻雜層111之間會形成p-n接面。類似的情形,第二發光二極體13主要包含n型摻雜層131及p型摻雜層132。第一電極117位於n型摻雜層111上,而第二電極136位於p型摻雜層132上。 The first light-emitting diode 11 and the second light-emitting diode 13 shown in the first figure may be a homojunction structure or a heterojunction structure. The second A diagram shows a schematic cross-sectional view of the first light-emitting diode 11 and the second light-emitting diode 13 in a homojunction structure. The first light-emitting diode 11 mainly includes an n-type doped layer 111 and a p-type doped layer 112. The two layers are made of the same material and therefore have the same energy gap. A p-n junction is formed between the p-type doped layer 112 and the n-type doped layer 111. Similarly, the second LED 13 mainly includes an n-type doping layer 131 and a p-type doping layer 132. The first electrode 117 is on the n-type doped layer 111 and the second electrode 136 is on the p-type doped layer 132.
第二B圖顯示當第一發光二極體11及第二發光二極體13為異質接面結構的剖面示意圖。在部分範例中,第一發光二極體或第二發光二極體係為三族氮化物(group-III nitride)發光二極體。第一發光二極體11主要包含第一摻雜層113、主動(active)層114及第二摻雜層115。第一摻雜層/第二摻雜層113/115與主動層114使用不同材質,因此具有相異的能隙。藉此,載子可被侷限於主動層114所形成的井區(well)。在部分範例中,第一摻雜層113為n型摻雜層(例如氮化 鎵(GaN)),主動層114為氮化銦鎵(InGaN),而第二摻雜層115為p型摻雜層(例如氮化鎵(GaN))。類似的情形,第二發光二極體13主要包含第一摻雜層133、主動層134及第二摻雜層135。第一電極117位於第一摻雜層113上,而第二電極136位於第二摻雜層135上。由於異質接面結構的發光二極體為目前的主流,因此以下實施例的說明將以第二B圖作為例示。第二A圖及第二B圖所顯示的剖面結構僅為簡化示意圖,可依實際應用情形於所示層級之間額外插入一或多層級。 The second B diagram shows a schematic cross-sectional view of the first light-emitting diode 11 and the second light-emitting diode 13 in a heterojunction structure. In some examples, the first light emitting diode or the second light emitting diode system is a group-III nitride light emitting diode. The first light emitting diode 11 mainly includes a first doping layer 113, an active layer 114, and a second doping layer 115. The first doped layer/second doped layer 113/115 and the active layer 114 use different materials and thus have different energy gaps. Thereby, the carrier can be limited to the well formed by the active layer 114. In some examples, the first doped layer 113 is an n-type doped layer (eg, nitrided) Gallium (GaN), the active layer 114 is indium gallium nitride (InGaN), and the second doped layer 115 is a p-type doped layer (eg, gallium nitride (GaN)). In a similar manner, the second LED 13 mainly includes a first doping layer 133, an active layer 134, and a second doping layer 135. The first electrode 117 is on the first doped layer 113 and the second electrode 136 is on the second doped layer 135. Since the light-emitting diode of the heterojunction structure is currently the mainstream, the description of the following embodiments will be exemplified by the second B diagram. The cross-sectional structures shown in the second A and second B are merely simplified schematics, and one or more levels may be additionally inserted between the illustrated levels depending on the actual application.
在部分範例中,第一發光二極體11的主動層114與第二發光二極體13的主動層134可使用相同的材質,因而得以發射相同波長的光線。在部分範例中,第一發光二極體11的主動層114與第二發光二極體13的主動層134可使用不同的材質,因而得以發射不同波長的光線。相關細節可參考美國專利第6822991號,題為“含穿隧接面的發光二極體裝置(Light Emitting Device Including Tunnel Junctions)”,其內容視為本說明書的一部份。 In some examples, the active layer 114 of the first light-emitting diode 11 and the active layer 134 of the second light-emitting diode 13 can use the same material, thereby emitting light of the same wavelength. In some examples, the active layer 114 of the first light-emitting diode 11 and the active layer 134 of the second light-emitting diode 13 may use different materials, thereby emitting light of different wavelengths. For further details, reference is made to U.S. Patent No. 6,829,991, entitled "Light Emitting Device Including Tunnel Junctions", the contents of which are incorporated herein by reference.
在部分範例中,導電缺陷層12可使用磊晶技術形成於第一發光二極體11的頂部,例如第二摻雜層115的上表面。在部分範例中,導電缺陷層12提升缺陷密度至其成長面缺陷密度的5倍以上,藉由高缺陷密度提供導電的效果;在部分範例中,導電缺陷層12提升缺陷密度至其成長面缺陷密度的2個數量級以上。在部分範例中,導電缺陷層12的材質可為氮化矽(SiN)、金屬[例如:鎵(Ga)、鋁(Al)、銦(In)…等]、碳化矽(SiC)或矽(Si),但不以此為限。導電缺陷 層12的厚度可為數奈米(nm)至數十奈米之間。在部分範例中,導電缺陷層12的厚度小於或等於100奈米(nm)。 In some examples, the conductive defect layer 12 may be formed on top of the first light emitting diode 11 using an epitaxial technique, such as the upper surface of the second doped layer 115. In some examples, the conductive defect layer 12 increases the defect density to more than 5 times the density of the growth surface defect, and provides a conductive effect by high defect density; in some examples, the conductive defect layer 12 increases the defect density to its growth surface defect. More than 2 orders of magnitude density. In some examples, the conductive defect layer 12 may be made of tantalum nitride (SiN), a metal [eg, gallium (Ga), aluminum (Al), indium (In), etc.], tantalum carbide (SiC) or tantalum ( Si), but not limited to this. Conductive defect The thickness of layer 12 can range from a few nanometers (nm) to tens of nanometers. In some examples, the thickness of the conductive defect layer 12 is less than or equal to 100 nanometers (nm).
在部分範例中,導電缺陷層12與第二發光二極體13之間更包含一緩衝層(未顯示於圖中),緩衝層鄰接導電缺陷層12,且降低缺陷密度至其成長面缺陷密度的5分之1以下。在部分範例中,緩衝層降低缺陷密度至其成長面缺陷密度的2個數量級以下。在部分範例中,緩衝層的厚度大於或等於10奈米。在部分範例中,緩衝層的厚度約為數百個奈米。另外,導電缺陷層12的缺陷密度可為107~1021/立方厘米。 In some examples, the conductive defect layer 12 and the second LED 13 further include a buffer layer (not shown), the buffer layer is adjacent to the conductive defect layer 12, and the defect density is reduced to the defect density of the growth surface. Less than one-fifth. In some examples, the buffer layer reduces the defect density to less than two orders of magnitude of its growth face defect density. In some examples, the thickness of the buffer layer is greater than or equal to 10 nanometers. In some examples, the thickness of the buffer layer is about several hundred nanometers. In addition, the defect density of the conductive defect layer 12 may be 10 7 to 10 21 /cm 3 .
第三圖顯示第二摻雜層115與導電缺陷層12的晶格示意圖。第二摻雜層115的晶格之間以共價鍵(covalent bond)116相連結,導電缺陷層12的晶格之間也以共價鍵121相連結。由於第二摻雜層115與導電缺陷層12的晶格常數不同,造成兩者之間的晶格不匹配(mismatch),因此第二摻雜層115與導電缺陷層12之間會形成懸鍵(dangling bond)122而非共價鍵。組成懸鍵122的電子比較不受到原子核的約束而形成自由電子,因而增加導電缺陷層12的極性,藉以形成第一發光二極體11與第二發光二極體13之間的穿隧接面。 The third figure shows a lattice diagram of the second doped layer 115 and the conductive defect layer 12. The lattices of the second doped layer 115 are connected by a covalent bond 116, and the crystal lattices of the conductive defect layer 12 are also joined by a covalent bond 121. Since the lattice constant of the second doping layer 115 and the conductive defect layer 12 are different, resulting in a lattice mismatch between the two, a dangling bond is formed between the second doping layer 115 and the conductive defect layer 12. (dangling bond) 122 instead of covalent bond. The electrons constituting the dangling bond 122 are relatively free from the nucleus to form free electrons, thereby increasing the polarity of the conductive defect layer 12, thereby forming a tunnel junction between the first light emitting diode 11 and the second light emitting diode 13. .
本實施例之導電缺陷層12的形成除了使用磊晶技術外,還可使用其他技術。例如,對第一發光二極體11的頂部(例如第二摻雜層115的上表面)施以佈值(implantation)製程,撞擊(impact)第二摻雜層115的上表面以形成導電缺陷層12。 The formation of the conductive defect layer 12 of the present embodiment may use other techniques in addition to the epitaxial technique. For example, an implantation process is applied to the top of the first light-emitting diode 11 (for example, the upper surface of the second doped layer 115), and the upper surface of the second doped layer 115 is impacted to form a conductive defect. Layer 12.
第四圖顯示本發明第二實施例的剖面示意圖。如前所述,發光二極體可為同質接面結構或者異質接面結構,如第二A圖或第二B圖所示。在部分範例中,發光二極體係為三族氮化物(group-III nitride)發光二極體。在本實施例中,發光二極體主要包含n型摻雜層41、主動層(或p-n接面)42及p型摻雜層43。在本實施例中,形成導電缺陷層44於p型摻雜層43或/且n型摻雜層41的表面,再於導電缺陷層44的表面分別形成p型電極45或n型電極46。藉此,p型摻雜層43與p型電極45之間可形成歐姆接觸(ohmic contact),使其電壓-電流的關係為線性。類似的情形,n型摻雜層41與n型電極46之間也可形成歐姆接觸。 The fourth figure shows a schematic cross-sectional view of a second embodiment of the present invention. As described above, the light emitting diode may be a homojunction structure or a heterojunction structure, as shown in FIG. 2A or FIG. In some examples, the light-emitting diode system is a group-III nitride light-emitting diode. In this embodiment, the light emitting diode mainly includes an n-type doping layer 41, an active layer (or p-n junction) 42 and a p-type doping layer 43. In the present embodiment, the conductive defect layer 44 is formed on the surface of the p-type doping layer 43 or/and the n-type doped layer 41, and the p-type electrode 45 or the n-type electrode 46 is formed on the surface of the conductive defect layer 44, respectively. Thereby, an ohmic contact can be formed between the p-type doping layer 43 and the p-type electrode 45, so that the voltage-current relationship is linear. In a similar situation, an ohmic contact can also be formed between the n-type doped layer 41 and the n-type electrode 46.
在本實施例中,導電缺陷層44可使用磊晶技術形成於p型摻雜層43的表面或/且n型摻雜層41的表面。類似於前述第一實施例,導電缺陷層44提升缺陷密度至其成長面缺陷密度的5倍以上,藉由高缺陷密度提供導電的效果;在部分範例中,導電缺陷層44提升缺陷密度至其成長面缺陷密度的2個數量級以上。在部分範例中,導電缺陷層44的材質可為氮化矽(SiN)、金屬[例如:鎵(Ga)、鋁(Al)、銦(In)…等]、碳化矽(SiC)或矽(Si),但不以此為限。導電缺陷層44的厚度可為數奈米(nm)至數十奈米之間。在部分範例中,導電缺陷層44的厚度小於或等於100奈米(nm)。 In the present embodiment, the conductive defect layer 44 may be formed on the surface of the p-type doping layer 43 or/and the surface of the n-type doping layer 41 using an epitaxial technique. Similar to the foregoing first embodiment, the conductive defect layer 44 increases the defect density to more than 5 times the density of the growth face defect, providing an effect of conduction by a high defect density; in some examples, the conductive defect layer 44 raises the defect density to The growth surface defect density is more than two orders of magnitude. In some examples, the conductive defect layer 44 may be made of tantalum nitride (SiN), a metal [eg, gallium (Ga), aluminum (Al), indium (In), etc.], tantalum carbide (SiC) or tantalum ( Si), but not limited to this. The conductive defect layer 44 may have a thickness ranging from several nanometers (nm) to several tens of nanometers. In some examples, the thickness of the conductive defect layer 44 is less than or equal to 100 nanometers (nm).
在部分範例中,導電缺陷層44與p型摻雜層43的表面且/或n型摻雜層41的表面之間更包含一緩衝層(未顯示於圖中),緩衝層鄰接導電缺陷層44,且降低缺陷密度至其成長面缺陷密度的5分之1以下。在部分範例中,緩衝層降低缺陷密度至其成長面缺陷密度的2個數 量級以下。在部分範例中,緩衝層的厚度大於或等於10奈米。在部分範例中,緩衝層的厚度約為數百個奈米。另外,導電缺陷層44的缺陷密度可為107~1021/立方厘米。 In some examples, the conductive defect layer 44 further includes a buffer layer (not shown) between the surface of the p-type doped layer 43 and/or the surface of the n-type doped layer 41, and the buffer layer is adjacent to the conductive defect layer. 44, and reduce the defect density to less than 5% of the growth surface defect density. In some examples, the buffer layer reduces the defect density to less than two orders of magnitude of its growth face defect density. In some examples, the thickness of the buffer layer is greater than or equal to 10 nanometers. In some examples, the thickness of the buffer layer is about several hundred nanometers. In addition, the defect density of the conductive defect layer 44 may be 10 7 to 10 21 /cm 3 .
第五圖顯示發光二極體裝置的立體示意圖,其包含複數個發光二極體單元20,以陣列型式排列於基板24上,因此,第五圖所示的發光二極體裝置又稱為發光二極體陣列。相鄰發光二極體20的第一電極25及第二電極27藉由銲線22或內連線而電性連結,因而形成一串聯序列。位於串聯序列的最前端發光二極體與最後端發光二極體,未與其他發光二極體20連接的第一電極25及第二電極27分別連接至電源供應器29的兩端。第五圖所示發光二極體單元20可以是第一實施例(第一圖)的垂直疊加發光二極體,也可以是第二實施例(第四圖)的單一發光二極體。 The fifth figure shows a schematic diagram of a light emitting diode device, which includes a plurality of light emitting diode units 20 arranged in an array on the substrate 24. Therefore, the light emitting diode device shown in FIG. 5 is also called light emitting. Diode array. The first electrode 25 and the second electrode 27 of the adjacent light-emitting diodes 20 are electrically connected by a bonding wire 22 or an interconnecting wire, thereby forming a series sequence. The first electrode 25 and the second electrode 27, which are not connected to the other LEDs 20, are connected to the two ends of the power supply 29, respectively. The light-emitting diode unit 20 shown in the fifth figure may be a vertically stacked light-emitting diode of the first embodiment (first figure), or may be a single light-emitting diode of the second embodiment (fourth figure).
以上所述僅為本發明之較佳實施例而已,並非用以限定本發明之申請專利範圍;凡其它未脫離發明所揭示之精神下所完成之等效改變或修飾,均應包含在下述之申請專利範圍內。 The above description is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention; all other equivalent changes or modifications which are not departing from the spirit of the invention should be included in the following Within the scope of the patent application.
11‧‧‧第一發光二極體 11‧‧‧First Light Emitting Diode
12‧‧‧導電缺陷層 12‧‧‧ Conductive defect layer
13‧‧‧第二發光二極體 13‧‧‧Second light-emitting diode
Claims (12)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101100736A TWI466343B (en) | 2012-01-06 | 2012-01-06 | Light-emitting diode device |
US13/678,697 US9130103B2 (en) | 2012-01-06 | 2012-11-16 | Light-emitting diode device |
US13/678,672 US8980728B2 (en) | 2012-01-06 | 2012-11-16 | Method of manufacturing a semiconductor apparatus |
US13/678,646 US8963297B2 (en) | 2012-01-06 | 2012-11-16 | Semiconductor apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101100736A TWI466343B (en) | 2012-01-06 | 2012-01-06 | Light-emitting diode device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201330335A TW201330335A (en) | 2013-07-16 |
TWI466343B true TWI466343B (en) | 2014-12-21 |
Family
ID=48743316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101100736A TWI466343B (en) | 2012-01-06 | 2012-01-06 | Light-emitting diode device |
Country Status (2)
Country | Link |
---|---|
US (1) | US9130103B2 (en) |
TW (1) | TWI466343B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3003402B1 (en) * | 2013-03-14 | 2016-11-04 | Centre Nat Rech Scient | MONOLITHIC LIGHT EMITTING DEVICE. |
TWI646680B (en) * | 2017-01-10 | 2019-01-01 | 英屬開曼群島商錼創科技股份有限公司 | Micro light emitting diode chip and display panel |
CN110021685A (en) * | 2018-01-19 | 2019-07-16 | 东莞市中晶半导体科技有限公司 | A kind of gallium nitride base high light efficiency LED extension base chip and preparation method thereof |
KR102630680B1 (en) * | 2019-05-02 | 2024-01-30 | 삼성전자주식회사 | Light emitting diode, manufacturing method of light emitting diode and display pannel including light emitting diode |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200849548A (en) * | 2007-06-05 | 2008-12-16 | Lite On Technology Corp | Light emitting element, manufacturing method thereof and light emitting module using the same |
TW201031977A (en) * | 2009-02-24 | 2010-09-01 | Epistar Corp | A display apparatus having an array-type light-emitting device |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6153894A (en) * | 1998-11-12 | 2000-11-28 | Showa Denko Kabushiki Kaisha | Group-III nitride semiconductor light-emitting device |
WO2001080311A1 (en) * | 2000-04-17 | 2001-10-25 | Virginia Commonwealth University | Defect reduction in gan and related materials |
TW493287B (en) * | 2001-05-30 | 2002-07-01 | Epistar Corp | Light emitting diode structure with non-conductive substrate |
US6878975B2 (en) | 2002-02-08 | 2005-04-12 | Agilent Technologies, Inc. | Polarization field enhanced tunnel structures |
TW546852B (en) * | 2002-04-15 | 2003-08-11 | Epistar Corp | Mixed-light type LED and the manufacturing method thereof |
US6822991B2 (en) | 2002-09-30 | 2004-11-23 | Lumileds Lighting U.S., Llc | Light emitting devices including tunnel junctions |
CN1275337C (en) * | 2003-09-17 | 2006-09-13 | 北京工大智源科技发展有限公司 | High-efficiency high-brightness multiple active district tunnel reclaimed white light light emitting diodes |
DE102004004765A1 (en) * | 2004-01-29 | 2005-09-01 | Rwe Space Solar Power Gmbh | Active Zones Semiconductor Structure |
US7095052B2 (en) * | 2004-10-22 | 2006-08-22 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Method and structure for improved LED light output |
US20060240275A1 (en) * | 2005-04-25 | 2006-10-26 | Gadkaree Kishor P | Flexible display substrates |
JP5334354B2 (en) * | 2005-05-13 | 2013-11-06 | シャープ株式会社 | Manufacturing method of semiconductor device |
TWI257185B (en) * | 2005-08-02 | 2006-06-21 | Formosa Epitaxy Inc | Light emitting diode element and driving method thereof |
US20070029555A1 (en) * | 2005-08-04 | 2007-02-08 | Lester Steven D | Edge-emitting LED light source |
KR100779078B1 (en) | 2005-12-09 | 2007-11-27 | 한국전자통신연구원 | Silicon-based light emitting diode for enhancing light extraction efficiency and fabrication method thereof |
KR100794304B1 (en) | 2005-12-16 | 2008-01-11 | 삼성전자주식회사 | Optical device and Method of fabricating the same |
EP2005488B1 (en) * | 2005-12-16 | 2013-07-31 | Samsung Display Co., Ltd. | Optical device and method of fabricating the same |
US7737451B2 (en) * | 2006-02-23 | 2010-06-15 | Cree, Inc. | High efficiency LED with tunnel junction layer |
US7888669B2 (en) | 2006-11-13 | 2011-02-15 | Georgia Tech Research Corporation | Nitride/zinc oxide based light-emitting diodes |
WO2009075972A2 (en) * | 2007-12-10 | 2009-06-18 | 3M Innovative Properties Company | Down-converted light emitting diode with simplified light extraction |
US7732803B2 (en) * | 2008-05-01 | 2010-06-08 | Bridgelux, Inc. | Light emitting device having stacked multiple LEDS |
US20110180781A1 (en) * | 2008-06-05 | 2011-07-28 | Soraa, Inc | Highly Polarized White Light Source By Combining Blue LED on Semipolar or Nonpolar GaN with Yellow LED on Semipolar or Nonpolar GaN |
DE102008028345A1 (en) * | 2008-06-13 | 2009-12-17 | Osram Opto Semiconductors Gmbh | Semiconductor body and method for producing a semiconductor body |
US20100269896A1 (en) | 2008-09-11 | 2010-10-28 | Applied Materials, Inc. | Microcrystalline silicon alloys for thin film and wafer based solar applications |
US8912428B2 (en) * | 2008-10-22 | 2014-12-16 | Epir Technologies, Inc. | High efficiency multijunction II-VI photovoltaic solar cells |
US20100147361A1 (en) * | 2008-12-15 | 2010-06-17 | Chen Yung T | Tandem junction photovoltaic device comprising copper indium gallium di-selenide bottom cell |
JP4871973B2 (en) * | 2009-04-28 | 2012-02-08 | 株式会社沖データ | Semiconductor thin film element manufacturing method, semiconductor wafer, and semiconductor thin film element |
CN102484150A (en) | 2009-08-27 | 2012-05-30 | 独立行政法人产业技术综合研究所 | Multi-junction photoelectric converter, integrated multi-junction photoelectric converter, and method for manufacturing same |
CN102449732A (en) | 2009-10-13 | 2012-05-09 | 住友电气工业株式会社 | Method for manufacturing silicon carbide substrate and silicon carbide substrate |
JP4892618B2 (en) * | 2010-02-16 | 2012-03-07 | 株式会社東芝 | Semiconductor light emitting device |
US20110204376A1 (en) * | 2010-02-23 | 2011-08-25 | Applied Materials, Inc. | Growth of multi-junction led film stacks with multi-chambered epitaxy system |
JP5197686B2 (en) | 2010-07-16 | 2013-05-15 | 株式会社東芝 | Manufacturing method of semiconductor light emitting device |
CN102097553A (en) | 2010-12-03 | 2011-06-15 | 北京工业大学 | Sapphire substrate-based single chip white light emitting diode |
CN102231377B (en) | 2010-12-18 | 2012-07-11 | 木林森股份有限公司 | High color rendering light emitting diode and manufacture method thereof |
US8963297B2 (en) * | 2012-01-06 | 2015-02-24 | Phostek, Inc. | Semiconductor apparatus |
US8980728B2 (en) * | 2012-01-06 | 2015-03-17 | Phostek, Inc. | Method of manufacturing a semiconductor apparatus |
-
2012
- 2012-01-06 TW TW101100736A patent/TWI466343B/en not_active IP Right Cessation
- 2012-11-16 US US13/678,697 patent/US9130103B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200849548A (en) * | 2007-06-05 | 2008-12-16 | Lite On Technology Corp | Light emitting element, manufacturing method thereof and light emitting module using the same |
TW201031977A (en) * | 2009-02-24 | 2010-09-01 | Epistar Corp | A display apparatus having an array-type light-emitting device |
Also Published As
Publication number | Publication date |
---|---|
TW201330335A (en) | 2013-07-16 |
US20130175553A1 (en) | 2013-07-11 |
US9130103B2 (en) | 2015-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20130106690A (en) | White light emitting diode | |
WO2012089003A1 (en) | Nitride light emitting diode with compound current spreading layer | |
JP2015046598A (en) | Semiconductor light emitting device including hole injection layer, and method of manufacturing the same | |
KR102587949B1 (en) | Heterogeneous tunneling junction for hole injection in nitride-based light emitting devices. | |
US11522106B2 (en) | Nitride-based light-emitting diode device | |
TW201338197A (en) | Light emitting device with graded composition hole tunneling layer | |
CN106129196A (en) | A kind of epitaxial wafer for flip LED chips and preparation method thereof | |
CN103594579B (en) | A kind of epitaxial structure of iii-nitride light emitting devices | |
CN103855263A (en) | GaN-base LED epitaxial wafer with polarization tunnel junction and preparation method of GaN-base LED epitaxial wafer | |
TWI466343B (en) | Light-emitting diode device | |
WO2016065884A1 (en) | Light-emitting diode | |
KR102358403B1 (en) | A light emitting diode comprising at least one wider bandgap interlayer located within at least one barrier layer of the light emitting region. | |
US20150179880A1 (en) | Nitride semiconductor structure | |
CN103199163B (en) | Light-emitting diode assembly | |
TW201338200A (en) | Light-emitting diode device | |
CN103715317B (en) | Light-emitting diode assembly | |
TWI601308B (en) | Infrared LED | |
KR101978485B1 (en) | Light Emitting Diode And Light Emitting Diode Package | |
CN205900578U (en) | Light emitting diode epitaxial wafer | |
CN111326628A (en) | Light emitting diode based on N-type doped laminated layer and functional layer | |
CN111326616A (en) | Semiconductor light-emitting element | |
TW201501345A (en) | LED chip and method for manufacturing the same | |
KR101919109B1 (en) | Uv light emitting deviceand uv light emitting device package | |
CN109671825A (en) | A kind of polar semiconductor light emitting diode | |
KR20120100369A (en) | Iii-nitride semiconductor light emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |