TWI466318B - The process of vertical non - cutting metal substrate light - emitting diodes - Google Patents
The process of vertical non - cutting metal substrate light - emitting diodes Download PDFInfo
- Publication number
- TWI466318B TWI466318B TW100121583A TW100121583A TWI466318B TW I466318 B TWI466318 B TW I466318B TW 100121583 A TW100121583 A TW 100121583A TW 100121583 A TW100121583 A TW 100121583A TW I466318 B TWI466318 B TW I466318B
- Authority
- TW
- Taiwan
- Prior art keywords
- substrate
- copper
- emitting diode
- gan
- light
- Prior art date
Links
Landscapes
- Led Devices (AREA)
Description
本發明係提供一種金屬基板發光二極體製作流程,尤指其技術上提供一種垂直式免切割的金屬基板發光二極體之製程,其利用厚光阻使電鍍銅基板時形成數個互相獨立的銅基板,而免於銅基板切割時造成金屬噴濺與銅基板翹曲的問題。The invention provides a metal substrate light-emitting diode manufacturing process, in particular to a technical process for providing a vertical cut-free metal substrate light-emitting diode, which uses a thick photoresist to form a plurality of mutually independent copper plating substrates. The copper substrate avoids the problem of metal splash and warpage of the copper substrate when the copper substrate is cut.
一般金屬基板發光二極體製作流程,請參閱第七圖所示,其步驟為:1.試片清洗(70):元件製程開始之前要先清洗,將試片(sapphire基板加上GaN LED)浸泡丙酮,使用超音波震盪器震洗,再將試片浸泡異丙醇,使用超音波震盪器震洗,用來去除試片上的丙酮,最後試片震洗D.I water,並用氮氣槍吹乾。2.平台(mesa)獨立(71):使用電漿輔助化學氣相沉積法(plasma enhanced chemical vapor deposition,PECVD)成長二氧化矽(SiO2 )薄膜,用來當作之後電漿蝕刻用的保護層,之後使用曝光微影技術製作平台圖案,再使用氧化物蝕刻液(buffer oxide etching,BOE)蝕刻出平台圖案,最後移除光阻;定義出平台圖案後,使用感應式耦合電漿蝕刻機(inductively coupled plasma,ICP)蝕刻氮化鎵磊晶結構層,蝕刻由p型氮化鎵至n型氮化鎵到露出藍寶石基板為止,製作出1mm×1mm(或更大 )的平台,最後將二氧化矽(SiO2 )移除後即完成平台獨立,平台之獨立主要是為了隔絕氮化鎵電流。3.平台側壁保護層(72):平台側壁保護層的功用是為了避免歐姆接觸反射層造成元件側壁之短路與漏電流,以及避免後段製程金屬粒子或污染物沾染側壁造成元件失敗。一般會使用二氧化矽(SiO2 )作為側壁保護層,利用電漿輔助化學氣相沉積法(PECVD)成長二氧化矽(SiO2 )薄膜,使用曝光微影技術製作圖案,再使用氧化物蝕刻液(BOE)蝕刻出平台圖案,最後移除光阻,即完成平台側壁保護層。4.蒸鍍歐姆接觸反射層(73):p-型接觸與反射金屬的製作除了是要使光反射而不被基板吸收,也必須考慮到與p-GaN的歐姆接觸,以及之後化學電鍍銅的附著力;常見p-型接觸與反射金屬可為白金(Pt)、ITO/Ti/Al/Ti/Au或Ni/Ag系列。5.回火處理(74):p-GaN搭配高功函數金屬需經過回火處理才能形成歐姆接面;將爐管升溫至500℃且充滿氧氣的高溫環境,將試片推入爐管內進行熱回火處理,最後將試片拿出完成回火處理。6.電鍍銅基板(75):使用電鍍法製備銅金屬基板,可使用硫酸銅溶液來進行電鍍銅製程,將欲電鍍之試片置於電鍍槽之陰極,銅塊(source)置於電鍍槽之陽極,並在硫酸銅溶液中進行金屬基板之成長。電鍍完成後由電鍍液取出,隨即置入D.I water中震洗,即完成電鍍銅基板。7.雷射剝離藍寶石基板(76):氮化鎵薄膜藉由MOCVD的方式成 長於藍寶石基板上,一般使用準分子KrF雷射(λ=248nm)來剝離藍寶石基板。8.移除u-GaN(77):將藍寶石剝離後,由於在藍寶石基板與氮化鎵薄膜存在一層無摻雜氮化鎵(u-GaN),一般使用乾蝕刻方式去除無摻雜氮化鎵(u-GaN)。9.n-GaN電極製作(78):移除u-GaN後,使用電子槍(E-GUN)蒸鍍n型電極。其中,上述平台(mesa)獨立與平台側壁保護層的步驟為非必要是可省略的,但一般為了隔絕氮化鎵電流還是會進行。Generally, the manufacturing process of the metal substrate light-emitting diode is as shown in the seventh figure. The steps are as follows: 1. Test piece cleaning (70): Before the component process starts, the test piece (sapphire substrate plus GaN LED) is used. Immerse the acetone, shake it with an ultrasonic oscillator, then soak the test piece with isopropyl alcohol, shake it with an ultrasonic oscillator, remove the acetone on the test piece, and finally shake the DI water with the test piece and blow it dry with a nitrogen gun. 2. Mesa independence (71): Growth of cerium oxide (SiO 2 ) film by plasma enhanced chemical vapor deposition (PECVD) for protection after plasma etching Layer, then use the exposure lithography technology to make the platform pattern, then use the oxide oxide etching (BOE) to etch the platform pattern, and finally remove the photoresist; after defining the platform pattern, use the inductive coupling plasma etching machine Inductively coupled plasma (ICP) etches a gallium nitride epitaxial layer and etches p-type gallium nitride to n-type gallium nitride to expose a sapphire substrate to produce a 1 mm × 1 mm (or larger) platform. After the removal of cerium oxide (SiO 2 ), the platform is independent. The independence of the platform is mainly to isolate the GaN current. 3. Platform sidewall protection layer (72): The function of the platform sidewall protection layer is to avoid the short circuit and leakage current of the component sidewall caused by the ohmic contact reflective layer, and to avoid the component failure caused by the metal particles or contaminants contaminating the sidewall in the back process. Typically use silicon dioxide (SiO 2) as the sidewall protective layer by plasma assisted chemical vapor deposition (PECVD) to grow silicon dioxide (SiO 2) film, using an exposure lithography patterning, then an oxide etch The liquid (BOE) etches the pattern of the platform, and finally removes the photoresist, that is, completes the sidewall protection layer of the platform. 4. Evaporation of ohmic contact reflective layer (73): p-type contact and reflective metal fabrication in addition to light reflection without being absorbed by the substrate, must also consider ohmic contact with p-GaN, and then electroless copper plating Adhesion; common p-type contact and reflective metals can be platinum (Pt), ITO/Ti/Al/Ti/Au or Ni/Ag series. 5. Tempering treatment (74): p-GaN with high work function metal should be tempered to form an ohmic junction; the furnace tube is heated to 500 ° C and filled with oxygen in a high temperature environment, the test piece is pushed into the furnace tube The heat tempering treatment is carried out, and finally the test piece is taken out to complete the tempering treatment. 6. Electroplated copper substrate (75): a copper metal substrate is prepared by electroplating, and a copper sulfate solution can be used for the electroplating copper process, the test piece to be electroplated is placed at the cathode of the electroplating bath, and the copper source is placed in the electroplating bath. The anode is grown and the metal substrate is grown in a copper sulfate solution. After the electroplating is completed, it is taken out by the plating solution, and then placed in the DI water to be shaken, that is, the electroplated copper substrate is completed. 7. Laser-peeled sapphire substrate (76): A gallium nitride film is grown on a sapphire substrate by MOCVD, and an excimer KrF laser (λ = 248 nm) is generally used to strip the sapphire substrate. 8. Removal of u-GaN (77): After sapphire is stripped, since there is an undoped gallium nitride (u-GaN) layer on the sapphire substrate and the gallium nitride film, dry etching is generally used to remove undoped nitridation. Gallium (u-GaN). 9. n-GaN electrode fabrication (78): After removing u-GaN, an n-type electrode was evaporated using an electron gun (E-GUN). Wherein, the steps of the above-mentioned platform (mesa) and the sidewall protection layer of the platform are not necessarily omitted, but generally, the isolation of the GaN current is still performed.
上述的一般金屬基板發光二極體製作流程可簡單的整理為如第八圖所示之步驟:(I)平台(mesa)獨立。(Ⅱ)形成平台側壁保護層(65)。(Ⅲ)蒸鍍歐姆接觸反射層(66)。(Ⅳ)電鍍銅基板(67)。(V)雷射剝離藍寶石基板(60)。(Ⅵ)移除無摻雜氮化鎵系層(61)並製作n-GaN的Cr/Au電極(68)。The above-described general metal substrate light-emitting diode fabrication process can be simply organized into steps as shown in the eighth figure: (I) The platform (mesa) is independent. (II) Forming a platform sidewall protective layer (65). (III) An ohmic contact reflective layer (66) is deposited. (IV) Electroplated copper substrate (67). (V) Laser stripped sapphire substrate (60). (VI) The undoped gallium nitride layer (61) is removed and a Cr/Au electrode (68) of n-GaN is formed.
惟,其上述習知之金屬基板發光二極體製作流程,仍存在有下列缺失:However, the above-mentioned conventional metal substrate light-emitting diode manufacturing process still has the following defects:
一、在接下來的銅基板切割時會造成金屬噴濺至側壁而產生元件漏電流的問題。1. When the next copper substrate is cut, it will cause metal to splash to the sidewall and cause leakage current of the component.
二、用雷射剝離藍寶石基板後,銅基板容易翹曲,造成後續製程的問題。Second, after the sapphire substrate is stripped by laser, the copper substrate is easily warped, causing problems in subsequent processes.
是以,針對上述習知結構所存在之問題點,如何開發一種更具理想實用性之創新結構,實消費者所殷切企盼, 亦係相關業者須努力研發突破之目標及方向。Therefore, in view of the problems existing in the above-mentioned conventional structure, how to develop an innovative structure that is more ideal and practical, and the consumers are eagerly awaiting, It is also the relevant industry to work hard to develop breakthrough goals and directions.
有鑑於此,發明人本於多年從事相關產品之製造開發與設計經驗,針對上述之目標,詳加設計與審慎評估後,終得一確具實用性之本發明。In view of this, the inventor has been engaged in the manufacturing development and design experience of related products for many years. After detailed design and careful evaluation, the inventor has finally obtained the practical invention.
習知之金屬基板發光二極體製 作流程,存在有一、在接下來的銅基板切割時會造成金屬噴濺至側壁而產生元件漏電流的問題。二、用雷射剝離藍寶石基板後,銅基板容易翹曲,造成後續製程的問題。Conventional metal substrate light-emitting diode system In the process, there is a problem that when the next copper substrate is cut, metal is splashed to the side wall to cause leakage current of the element. Second, after the sapphire substrate is stripped by laser, the copper substrate is easily warped, causing problems in subsequent processes.
一種垂直式免切割的金屬基板 發光二極體之製程,藉此免於後續銅基板切割時造成金屬噴濺與基板剝離後銅基板翹曲狀況,其依序包括以下步驟:A.提供一清洗過之試片,該試片為一基板上成長一氮化鎵系發光二極體(GaN LED)之試片;B.於氮化鎵系發光二極體上蒸鍍一歐姆接觸反射層;C.於歐姆接觸反射層上利用厚度可達到50-200μm的厚光阻定義出數個電鍍銅區域,數該電鍍銅區域係互相獨立之區塊;D.使用電鍍法只電鍍銅基板於C步驟所定義出的數該電鍍銅區域,形成數個互相獨立的銅基板;E.利用雷射剝離該試片之基板;F.移除無摻雜氮化鎵系層(u-GaN),並於n型氮化鎵系層(n-GaN)上製作n-GaN電極。Vertical cut-free metal substrate The process of the light-emitting diode, thereby avoiding the warpage of the copper substrate after the metal splash and the substrate are peeled off after the subsequent copper substrate cutting, and the steps include the following steps: A. providing a cleaned test piece, the test piece a test piece for growing a gallium nitride-based light-emitting diode (GaN LED) on a substrate; B. vapor-depositing an ohmic contact reflective layer on the gallium nitride-based light-emitting diode; C. on the ohmic contact reflective layer A plurality of electroplated copper regions are defined by a thickness resistor having a thickness of 50-200 μm, and the electroplated copper regions are independent of each other; D. electroplating is used to electroplate only the copper substrate in the number of steps defined in step C. a copper region, forming a plurality of mutually independent copper substrates; E. stripping the substrate of the test piece by laser; F. removing the undoped gallium nitride layer (u-GaN), and n-type gallium nitride An n-GaN electrode was formed on the layer (n-GaN).
本發明方法利用厚光阻定義出 數個電鍍銅區域,使電鍍銅時形成數個互相獨立的銅基,再接下來的銅基板切割時不會造成金屬噴濺至側壁的問題,且因為銅基板互相獨立,也不會於剝離藍寶石基板後,銅基板產生翹曲。The method of the invention defines using thick photoresist A plurality of electroplated copper regions form a plurality of mutually independent copper bases when electroplating copper, and the subsequent copper substrate cutting does not cause metal splashing to the side walls, and since the copper substrates are independent of each other, they are not peeled off. After the sapphire substrate, the copper substrate is warped.
有關本發明所採用之技術、手段及其功效,茲舉一較佳實施例並配合圖式詳細說明於后,相信本發明上述之目的、構造及特徵,當可由之得一深入而具體的瞭解。The above-mentioned objects, structures and features of the present invention will be described in detail with reference to the preferred embodiments of the present invention. .
參閱第一及第二圖所示,本發明係提供一種垂直式免切割的金屬基板發光二極體之製程,藉此免於銅基板切割時造成金屬噴濺與銅基板翹曲狀況,其主要包括以下步驟:(A)提供試片:提供一清洗過之試片,該試片為基板(40)上成長氮化鎵系發光二極體(GaN LED)之試片;(B)蒸鍍歐姆接觸反射層:於氮化鎵系發光二極體上蒸鍍一歐姆接觸反射層(45);(C)定義電鍍銅區域:於歐姆接觸反射層(45)上利用厚度可以達到50-200μm的厚光阻(PR,46)定義出數個電鍍銅區域,數該電鍍銅區域係互相獨立之區塊;(D)電鍍銅基板:使用電鍍法電鍍銅基板(47),只電鍍銅於C步驟所定義出的數該電鍍銅區域,形成數個互相獨立的銅基板(47); (E)剝離基板:利用雷射剝離基板(40);(F)製作電極:移除無摻雜氮化鎵系層(u-GaN,41),並於n型摻雜氮化鎵系層(n-GaN,42)上製作n-GaN電極(48)。Referring to the first and second figures, the present invention provides a process for a vertical cut-free metal substrate light-emitting diode, thereby preventing metal splash and copper substrate warpage when the copper substrate is cut, which is mainly The method comprises the following steps: (A) providing a test piece: providing a cleaned test piece, which is a test piece of a gallium nitride-based light-emitting diode (GaN LED) grown on a substrate (40); (B) an evaporation test piece An ohmic contact reflective layer: an ohmic contact reflective layer (45) is deposited on the gallium nitride-based light-emitting diode; (C) an electroplated copper region is defined: a thickness of 50-200 μm can be used on the ohmic contact reflective layer (45) The thick photoresist (PR, 46) defines several electroplated copper regions, and the electroplated copper regions are independent of each other; (D) electroplated copper substrate: electroplated copper substrate (47), electroplated only with copper The number of electroplated copper regions defined in step C forms a plurality of mutually independent copper substrates (47); (E) Stripping the substrate: peeling the substrate by laser (40); (F) fabricating the electrode: removing the undoped gallium nitride layer (u-GaN, 41), and n-doping the gallium nitride layer An n-GaN electrode (48) was formed on (n-GaN, 42).
其中,請參閱第三圖,步驟D與步驟E間可增加一步驟D1,步驟F後可增加一步驟F1,該步驟D1係於數該互相獨立的銅基板(47)自由端以一膠黏層(adhesive layer,49)黏合,於膠黏層(49)上再黏合一載體(carrier,50),以增加基板(40)剝離後該試片之結構強度;該步驟F1為移除該膠黏層(49)與載體(50)。其中該膠黏層(49)可為氟素橡膠,該載體(50)可為藍寶石基板(Sapphire)。Please refer to the third figure. Step D1 can be added between step D and step E. Step F1 can be added to step F1. The step D1 is to glue the free ends of the mutually independent copper substrates (47). Adhesive layer (49) is bonded, and a carrier (50) is adhered to the adhesive layer (49) to increase the structural strength of the test piece after the substrate (40) is peeled off; the step F1 is to remove the adhesive. Adhesive layer (49) and carrier (50). The adhesive layer (49) may be a fluorocarbon rubber, and the carrier (50) may be a sapphire substrate (Sapphire).
以下係提供一較佳實施例:A preferred embodiment is provided below:
請參閱第四至第六圖,本實施例步驟如下:Please refer to the fourth to sixth figures. The steps of this embodiment are as follows:
a.試片清洗(20):元件製程開始之前要先清洗,將試片(藍寶石(sapphire)基板加上(GaN LED)浸泡丙酮,使用超音波震盪器震洗,再將試片浸泡異丙醇,使用超音波震盪器震洗,用來去除試片上的丙酮,最後試片震洗去離子水(D.I water),並用氮氣槍吹乾。a. Test piece cleaning (20): Before the component process begins, the test piece (sapphire substrate plus (GaN LED) is soaked in acetone, shaken with an ultrasonic oscillator, and then the test piece is soaked in isopropyl. The alcohol was shaken with an ultrasonic oscillator to remove the acetone on the test piece. Finally, the test piece was shaken with DI water and dried with a nitrogen gun.
b.蒸鍍歐姆接觸反射層(21):p-型接觸與反射金屬的製作除了是要使光反射而不被基板吸收,也必須考慮到與p型氮化鎵系層(p-GaN)的歐姆接觸,以及之後化學電鍍銅的附著力;常見p-型接觸與反射金屬可為白金(Pt)、ITO/ 鈦/鋁/鈦/金(ITO/Ti/Al/Ti/Au)或鎳/銀(Ni/Ag)系列,本發明使用金屬層為鎳/銀/鈦/金(Ni/Ag/Ti/Au),於氧氣環境中進行以下回火製程。b. evaporation of ohmic contact reflective layer (21): p-type contact and reflective metal fabrication in addition to light reflection without being absorbed by the substrate, must also consider with p-type gallium nitride layer (p-GaN) Ohmic contact, and adhesion of electroless copper afterwards; common p-type contact and reflective metals can be platinum (Pt), ITO/ Titanium/aluminum/titanium/gold (ITO/Ti/Al/Ti/Au) or nickel/silver (Ni/Ag) series, the metal layer used in the present invention is nickel/silver/titanium/gold (Ni/Ag/Ti/Au The following tempering process is carried out in an oxygen atmosphere.
c.回火處理(22):p型氮化鎵系層(p-GaN)搭配高功函數金屬需經過回火處理才能形成歐姆接面;將爐管升溫至500℃且充滿氧氣的高溫環境,將試片推入爐管內進行熱回火處理,最後將試片拿出完成回火處理。c. tempering treatment (22): p-type gallium nitride layer (p-GaN) with high work function metal should be tempered to form an ohmic junction; the furnace tube is heated to 500 ° C and filled with oxygen high temperature environment The test piece is pushed into the furnace tube for heat tempering treatment, and finally the test piece is taken out to complete the tempering treatment.
d.定義電鍍銅區域(23):請參閱第五圖,定義出電鍍銅區域,需要可以達到厚度50-200μm的厚光阻(PR,30)定義出所需電鍍區域(31),利用厚光阻(30)的原因是要確保形成互相獨立的銅基板,若使用一般光阻,銅基板還是有可能形成相連的區域,而不利於接下來的製程。d. Define the copper plating area (23): Please refer to the fifth figure to define the copper plating area. It is necessary to achieve a thick photoresist (PR, 30) with a thickness of 50-200 μm to define the required plating area (31). The reason for the photoresist (30) is to ensure the formation of mutually independent copper substrates. If a general photoresist is used, it is still possible for the copper substrate to form a connected region, which is not advantageous for the subsequent process.
e電鍍銅基板(24):請參閱第六圖,使用電鍍法製備銅金屬基板(32)有高速鍍膜、低成本和容易量產等優點,我們使用硫酸銅溶液來進行電鍍銅製程。將欲電鍍之試片置於電鍍槽之陰極,銅塊置於電鍍槽之陽極,並在硫酸銅溶液中進行金屬基板之成長。電鍍完成後由電鍍液取出,隨即置入去離子水(D.I water)中並以超音波震盪器清洗,即完成電鍍銅金屬基板(32)。E-plated copper substrate (24): Please refer to the sixth figure. The copper metal substrate (32) prepared by electroplating has the advantages of high-speed coating, low cost and easy mass production. We use copper sulfate solution to carry out the electroplating copper process. The test piece to be electroplated is placed at the cathode of the plating bath, the copper block is placed at the anode of the plating bath, and the growth of the metal substrate is performed in the copper sulfate solution. After the electroplating is completed, it is taken out by the plating solution, and then placed in deionized water (D.I water) and washed with an ultrasonic oscillator, that is, the electroplated copper metal substrate (32) is completed.
f.雷射剝離藍寶石基板(25):我們使用準分子KrF雷射(λ=248nm)來剝離藍寶石基板。進行雷射剝離實驗時,試片必須以藍寶石基板在上銅基板在下的方向來進行,並將試 片位置調整至雷射聚焦面上,以確保各點的雷射能量分布均勻;而由於雷射會使氮化鎵分解為氮氣與鎵金屬,所以雷射剝離後要將試片浸泡稀釋鹽酸(HCl:H2 O=1:1)即可去除表面殘餘的鎵金屬。f. Laser Peeling Sapphire Substrate (25): We used an excimer KrF laser (λ = 248 nm) to strip the sapphire substrate. In the laser peeling test, the test piece must be carried out with the sapphire substrate in the downward direction of the upper copper substrate, and the test piece position is adjusted to the laser focusing surface to ensure uniform laser energy distribution at each point; The shot will decompose GaN into nitrogen and gallium metal. Therefore, after the laser is peeled off, the test piece should be immersed in diluted hydrochloric acid (HCl: H 2 O = 1:1) to remove the residual gallium metal.
g.移除u-GaN(26):藍寶石剝離後,由於在藍寶石基板與氮化鎵薄膜存在一層無摻雜氮化鎵系層(u-GaN),而此無摻雜氮化鎵電性不佳;使用感應式耦合電漿蝕刻機(ICP)來移除無摻雜氮化鎵系層(u-GaN)。g. Removal of u-GaN (26): After sapphire stripping, an undoped gallium nitride layer (u-GaN) exists in the sapphire substrate and the gallium nitride film, and the undoped gallium nitride electrical property Poor; an inductively coupled plasma etching machine (ICP) is used to remove the undoped gallium nitride layer (u-GaN).
h.n-GaN電極製作(27):移除無摻雜氮化鎵系層(u-GaN)後,使用電子槍(E-GUN)在3×10-6 torr中真空度下對試片進行蒸鍍鉻/金(Cr/Au)做為n-GaN電極。hn-GaN electrode fabrication (27): After removing the undoped gallium nitride layer (u-GaN), the test piece was vapor-deposited using an electron gun (E-GUN) at a vacuum of 3 × 10 -6 torr. / Gold (Cr/Au) as an n-GaN electrode.
其中,於試片清洗(a.步驟)後可先進行平台獨立(mesa)與側壁保護的製程,再進行歐姆接觸反射層(b.步驟)的製作,平台(mesa)獨立的製程為使用電漿輔助化學氣相沉積法(plasma enhanced chemical vapor deposition,PECVD)成長二氧化矽(SiO2 )薄膜,用來當作之後電漿蝕刻用的保護層,之後使用曝光微影技術製作平台圖案,再使用氧化物蝕刻液(buffer oxide etching,BOE)蝕刻出平台圖案,最後移除光阻;定義出平台圖案後,使用感應式耦合電漿蝕刻機(inductively coupled plasma,ICP)蝕刻氮化鎵磊晶結構層,蝕刻由p型氮化鎵至n型氮化鎵到露出藍寶石基板為止,製作出1mm×1mm(或更大)的平台,最 後將二氧化矽(SiO2 )移除後即完成平台獨立,平台之獨立主要是為了隔絕氮化鎵電流。側壁保護的製程為使用二氧化矽(SiO2 )作為側壁保護層,利用電漿輔助化學氣相沉積法(PECVD)成長二氧化矽(SiO2 )薄膜,使用曝光微影技術製作圖案,再使用氧化物蝕刻液(BOE)蝕刻出平台圖案,最後移除光阻,即完成平台側壁保護層。Wherein, after the test piece cleaning (a. step), the platform independent (mesa) and sidewall protection processes may be performed, and then the ohmic contact reflective layer (b. step) is fabricated, and the platform (mesa) independent process is used. Plasma-assisted chemical vapor deposition (PECVD) growth of cerium oxide (SiO 2 ) film, used as a protective layer for plasma etching, and then using the exposure lithography technology to create a platform pattern, and then The oxide pattern is etched using a buffer oxide etching (BOE), and finally the photoresist is removed. After the pattern is defined, the gallium nitride epitaxial etch is performed using an inductively coupled plasma (ICP). The structural layer is etched from p-type gallium nitride to n-type gallium nitride to expose the sapphire substrate to form a 1 mm × 1 mm (or larger) platform, and finally the cerium oxide (SiO 2 ) is removed to complete the platform. Independent, the platform is independent to isolate the GaN current. The sidewall protection process uses cerium oxide (SiO 2 ) as a sidewall protective layer, and a cerium oxide (SiO 2 ) film is grown by plasma-assisted chemical vapor deposition (PECVD), and a pattern is formed using exposure lithography. The oxide etchant (BOE) etches the pattern of the platform and finally removes the photoresist, ie the sidewall protection layer of the platform is completed.
配合電鍍銅與雷射剝離(Laser Lift-off)技術,並搭配厚膜光阻之定義,發展大面積垂直式免切割(Dicing-free)銅基板氮化鎵發光二極體,成功解決了銅基板切割時的困難與銅切割時造成金屬噴濺至側壁而產生元件漏電流的問題,並避免了雷射剝離藍寶石基板後銅基板翹曲所造成後續製程的問題。Developed a large-area vertical Dicing-free copper substrate gallium nitride light-emitting diode with the help of electroplated copper and laser lift-off technology, combined with the definition of thick film photoresist. The difficulty in cutting the substrate and the problem of metal leakage to the sidewall during copper cutting cause leakage current of the component, and avoid the problem of subsequent process caused by warpage of the copper substrate after the laser peeling off the sapphire substrate.
前文係針對本發明之較佳實施例為本發明之技術特徵進行具體之說明;惟,熟悉此項技術之人士當可在不脫離本發明之精神與原則下對本發明進行變更與修改,而該等變更與修改,皆應涵蓋於如下申請專利範圍所界定之範疇中。The present invention has been described with reference to the preferred embodiments of the present invention. However, those skilled in the art can change and modify the present invention without departing from the spirit and scope of the invention. Such changes and modifications shall be covered in the scope defined by the following patent application.
.習用部分:. Conventional part:
(60)‧‧‧藍寶石基板(60)‧‧‧Sapphire substrate
(61)‧‧‧無摻雜氮化鎵系層(61) ‧‧‧ undoped gallium nitride layer
(62)‧‧‧n型摻雜氮化鎵系層(62) ‧‧‧n-doped gallium nitride layer
(63)‧‧‧氮化鎵發光層(63) ‧‧‧ gallium nitride light-emitting layer
(64)‧‧‧p型摻雜氮化鎵系層(64)‧‧‧p-type doped gallium nitride layer
(65)‧‧‧平台側壁保護層(65)‧‧‧ Platform sidewall protection
(66)‧‧‧歐姆接觸反射層(66) ‧ ‧ ohm contact reflective layer
(67)‧‧‧銅基板(67)‧‧‧Copper substrate
(68)‧‧‧Cr/Au電極(68)‧‧‧Cr/Au electrodes
(70)‧‧‧試片清洗(70)‧‧‧Test strip cleaning
(71)‧‧‧平台(mesa)獨立(71) ‧‧‧ platform (mesa) independence
(72)‧‧‧平台側壁保護層(72) ‧‧‧ Platform sidewall protection
(73)‧‧‧蒸鍍歐姆接觸反射層(73)‧‧‧Extruded ohmic contact reflective layer
(74)‧‧‧回火處理(74) ‧ ‧ tempering
(75)‧‧‧電鍍銅基板(75) ‧‧‧Electroplated copper substrate
(76)‧‧‧雷射剝離藍寶石基板(76)‧‧‧Laser stripped sapphire substrate
(77)‧‧‧移除u-GaN(77)‧‧‧Remove u-GaN
(78)‧‧‧n-GaN電極製作(78) ‧‧‧n-GaN electrode fabrication
.本創作部分:. This creative part:
(20)‧‧‧試片清洗(20)‧‧‧Test strip cleaning
(21)‧‧‧蒸鍍歐姆接觸反射層(21)‧‧‧Deposition of ohmic contact reflective layer
(22)‧‧‧回火處理(22) ‧ ‧ tempering
(23)‧‧‧定義電鍍銅區域(23) ‧‧‧Defining electroplated copper areas
(24)‧‧‧電鍍銅基板(24)‧‧‧Electroplated copper substrate
(25)‧‧‧雷射剝離藍寶石基板(25)‧‧‧Laser stripped sapphire substrate
(26)‧‧‧移除u-GaN(26)‧‧‧Remove u-GaN
(27)‧‧‧n-GaN電極製作(27) ‧‧‧n-GaN electrode fabrication
(30)‧‧‧厚光阻(30)‧‧‧Thick light resistance
(31)‧‧‧電鍍區域(31) ‧‧‧ plating area
(32)‧‧‧銅金屬基板(32)‧‧‧ copper metal substrate
(40)‧‧‧基板(40) ‧‧‧Substrate
(41)‧‧‧無摻雜氮化鎵系層(41) ‧‧‧ undoped gallium nitride layer
(42)‧‧‧n型摻雜氮化鎵系層(42) ‧‧‧n-doped gallium nitride layer
(43)‧‧‧氮化鎵發光層(43) ‧‧‧ gallium nitride light-emitting layer
(44)‧‧‧p型摻雜氮化鎵系層(44)‧‧‧p-type doped gallium nitride layer
(45)‧‧‧歐姆接觸反射層(45) ‧ ‧ ohm contact reflective layer
(46)‧‧‧厚光阻(46) ‧‧‧Thick light resistance
(47)‧‧‧銅基板(47)‧‧‧Copper substrate
(48)‧‧‧n-GaN電極(48)‧‧‧n-GaN electrodes
(49)‧‧‧膠黏層(49)‧‧‧Adhesive layer
(50)‧‧‧載體(50) ‧ ‧ carrier
第一圖:本發明製造流程圖。First Figure: Flow chart of the manufacturing process of the present invention.
第二圖:本發明簡化製程示意圖。Second figure: Schematic diagram of the simplified process of the present invention.
第三圖:本發明使用膠黏層固定之簡化製程示意圖。Third: A simplified process schematic diagram of the present invention using an adhesive layer.
第四圖:本發明其一實施例製造流程圖。Fourth Figure: A flow chart for manufacturing an embodiment of the present invention.
第五圖:本發明其一實施例定義電鍍區域後元件SEM圖。Fifth Figure: An SEM image of a post-electrode region defining element in accordance with an embodiment of the present invention.
第六圖:本發明其一實施例電鍍銅後元件SEM圖。Figure 6 is a SEM image of a post-copper copper element in accordance with one embodiment of the present invention.
第七圖:習知金屬基板發光二極體製作流程圖。Figure 7: Flow chart of the fabrication of a conventional metal substrate light-emitting diode.
第八圖:習知金屬基板發光二極體簡化製程示意圖。Figure 8: Schematic diagram of a simplified process for a conventional metal substrate light-emitting diode.
(40)‧‧‧基板(40) ‧‧‧Substrate
(41)‧‧‧無摻雜氮化鎵系層(41) ‧‧‧ undoped gallium nitride layer
(42)‧‧‧n型摻雜氮化鎵系層(42) ‧‧‧n-doped gallium nitride layer
(43)‧‧‧氮化鎵發光層(43) ‧‧‧ gallium nitride light-emitting layer
(44)‧‧‧p型摻雜氮化鎵系層(44)‧‧‧p-type doped gallium nitride layer
(45)‧‧‧歐姆接觸反射層(45) ‧ ‧ ohm contact reflective layer
(46)‧‧‧厚光阻(46) ‧‧‧Thick light resistance
(47)‧‧‧銅基板(47)‧‧‧Copper substrate
(48)‧‧‧n-GaN電極(48)‧‧‧n-GaN electrodes
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100121583A TWI466318B (en) | 2011-06-21 | 2011-06-21 | The process of vertical non - cutting metal substrate light - emitting diodes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100121583A TWI466318B (en) | 2011-06-21 | 2011-06-21 | The process of vertical non - cutting metal substrate light - emitting diodes |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201135965A TW201135965A (en) | 2011-10-16 |
TWI466318B true TWI466318B (en) | 2014-12-21 |
Family
ID=46752078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100121583A TWI466318B (en) | 2011-06-21 | 2011-06-21 | The process of vertical non - cutting metal substrate light - emitting diodes |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI466318B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI552377B (en) * | 2012-08-03 | 2016-10-01 | Chunghwa Telecom Co Ltd | Method for fabricating a resonant cavity light emitting diode using a metal thin film to form a mirror |
TWI552381B (en) * | 2013-10-28 | 2016-10-01 | 兆鑫光電科技股份有限公司 | Method for manufacturing vertical-feedthrough led |
CN104638096B (en) * | 2015-01-30 | 2017-06-30 | 广州市众拓光电科技有限公司 | A kind of preparation method of the copper base for light emitting diode (LED) chip with vertical structure |
CN105568329A (en) * | 2016-02-23 | 2016-05-11 | 河源市众拓光电科技有限公司 | Method for electrically plating copper on LED epitaxial wafer |
-
2011
- 2011-06-21 TW TW100121583A patent/TWI466318B/en not_active IP Right Cessation
Non-Patent Citations (2)
Title |
---|
曾婉晴 , "金屬基板氮化鎵發光二極體p型電極高反射層與歐姆接觸之研究" , 長庚大學碩士論文,中華民國97年7月 * |
郭怡君 , "圖案化金屬基板氮化鎵發光二極體之開發與研製" , 長庚大學碩士論文,中華民國98年7月 * |
Also Published As
Publication number | Publication date |
---|---|
TW201135965A (en) | 2011-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101192598B1 (en) | Method for fabricating and separating semiconductor devices | |
CN101188265B (en) | Semiconductor light emitting element and method for manufacturing the same | |
TWI647335B (en) | Method for stripping growth substrate by chemical etching | |
CN100580965C (en) | Thin film LED chip device based on composite low-resistance buffer structure and manufacturing method thereof | |
TWI419354B (en) | Group iii nitride semiconductor light emitting element and method for making same | |
WO2010020066A1 (en) | Method for fabricating semiconductor light-emitting device with double-sided passivation | |
TWI466318B (en) | The process of vertical non - cutting metal substrate light - emitting diodes | |
CN102694085A (en) | Method for producing group iii nitride semiconductor light emitting element | |
CN104319326B (en) | Light-emitting diode manufacturing method | |
TWI543402B (en) | A light-emitting element, a light-emitting element, and a semiconductor device | |
JP5603812B2 (en) | Manufacturing method of semiconductor device | |
US10305000B2 (en) | Method for producing light-emitting device | |
JP2007081312A (en) | Method of manufacturing nitride-based semiconductor light-emitting element | |
CN101834239A (en) | Light-emitting diode with reflecting and low-impedance contact electrode and manufacturing method thereof | |
KR100782129B1 (en) | Method of Silicon Substrate based Light Emitting Diodes using for Wafer Bonding Process | |
CN104300048A (en) | Manufacturing method for GaN-based light-emitting diode chip | |
TW201443255A (en) | Method for producing gallium nitride | |
TW201411690A (en) | A reclaimed wafer and a method for reclaiming a wafer | |
CN102623589A (en) | Manufacturing method of semiconductor light-emitting device with vertical structure | |
CN109427940B (en) | Light emitting diode epitaxial wafer and manufacturing method thereof | |
JP4791119B2 (en) | Method for manufacturing nitride-based semiconductor light-emitting device | |
TWI436505B (en) | Light emitting diode having reflective and low resistant contact and the manufacturing methods thereof | |
TWI398015B (en) | Method for manufacturing light-emitting diode | |
TWI399868B (en) | Methods for manufacturing light emitting diode having high reflective contact | |
CN108807148B (en) | Method for recovering sapphire patterned substrate for GaN-LED by combining physics and chemistry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |