TW201135965A - Fabrication process for vertical dicing-free light-emitting diodes with metal substrate - Google Patents

Fabrication process for vertical dicing-free light-emitting diodes with metal substrate Download PDF

Info

Publication number
TW201135965A
TW201135965A TW100121583A TW100121583A TW201135965A TW 201135965 A TW201135965 A TW 201135965A TW 100121583 A TW100121583 A TW 100121583A TW 100121583 A TW100121583 A TW 100121583A TW 201135965 A TW201135965 A TW 201135965A
Authority
TW
Taiwan
Prior art keywords
substrate
copper
metal
gan
layer
Prior art date
Application number
TW100121583A
Other languages
Chinese (zh)
Other versions
TWI466318B (en
Inventor
yi-lun Zhou
Rui-Ming Lin
yi-jun Guo
jia-long Cai
Ren-Zhi Li
Min-Hong Dong
meng-qi Wu
Original Assignee
Univ Chang Gung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Chang Gung filed Critical Univ Chang Gung
Priority to TW100121583A priority Critical patent/TWI466318B/en
Publication of TW201135965A publication Critical patent/TW201135965A/en
Application granted granted Critical
Publication of TWI466318B publication Critical patent/TWI466318B/en

Links

Abstract

A fabrication process for vertical dicing-free light-emitting diodes with metal substrate is provided, comprising the steps of: A. providing a cleaned GaN-based LED specimen; B. depositing an ohmic contact reflective layer on the specimen; C. using a thick photo-resist, as thick as 50-200 mm, to define a plurality of mutual independent copper electroplating areas on the ohmic contact reflective layer; D. using the electroplating method to electroplate copper substrate to define a few copper electroplating area to form a plurality of mutually independent copper substrates; E. using a laser to dissect the substrate; F. removing the un-doped GaN layer and producing n-GaN electrode in n-type GaN layer. This method can prevent metal sputtering when cutting a copper substrate and prevent warping of the copper substrate after the separation from the substrate.

Description

201135965 六、發明說明: 【發明所屬之技術領域】 本發明係提供一種金屬基板發光二極體製作流程,尤 才曰,技術上提供一種垂直式免切割的金屬基板發光二極體 -之製程,其利用厚光阻使電鍵銅基板時形成數個互相獨立 的銅基板,而免於銅基板㈣時造成金屬錢與銅基板趣 曲的問題。 〇 【先前技術】 一般金屬基板發光二極體製作流程,請參閱第七圖所 不’其步驟為:1.試#清洗(7〇):元件製程開始之前要先 清洗,將試片(sapphire基板加上GaN LED)浸泡丙酮,使 用超音波震盪器震洗,再將試片浸泡異丙醇,使用超音波 震盪器震洗,用來去除試片上的丙酮,最後試片震洗D. j water並用氮氣槍吹乾。2.平台(mesa)獨立(71):使用電 C)水輔助化學氣相沉積法(plasma enhanced chemical vapor deposition,PECVD)成長二氧化矽(Si〇2)薄膜,用來當作之 後電漿蝕刻用的保護層,之後使用曝光微影技術製作平台 圖案,再使用氧化物姓刻液(buffer· 〇xide etching,Β0Ε) 姓刻出平台圖案,最後移除光阻;定義出平台圖案後,使 用感應式相合電漿雀虫刻機(inductiveiy coupled plasma, I CP)#刻氮化鎵磊晶結構層,蝕刻由p型氮化鎵至型氮 化鎵到露出藍寶石基板為止,製作出1 mm X 1 mm (或更大 3 201135965 )的平台,最後將二氧化矽(Si〇2)移除後即完成平台獨立, 平台之獨立主要是為了隔絕氮化鎵電流。3.平台側壁保護 層(72)平。側壁保濩層的功用是為了避免歐姆接觸反射 層造成兀件侧壁之短路與漏電流,以及避免後段製程金屬 粒子或污染物沾染側壁造成元件失敗。一般會使用二氧化 矽(Si0〇作為側壁保護層,利用電漿輔助化學氣相沉積法 (PECVD)成長二氧化矽(Si〇〇薄膜,使用曝光微影技術製作 圖案,再使用氧化物蝕刻液(B〇E)蝕刻出平台圖案最後移 除光阻,即完成平台側壁保護層。4.蒸鑛歐姆接觸反射層 (73) : P-型接觸與反射金屬的製作除了是要使光反射而不 被基板吸收,也必須考慮到與p — GaN的歐姆接觸,以及之 後化學電鑛銅的附著力H p_型接觸與反射金屬可為白 金(Pt)、ITO/Ti/Al/Ti/Au 或 Ni/Ag 系列。5.回火處理(74) :P-GaN搭配高功函數金屬需經過回火處理才能形成歐姆接 面;將爐管升溫至500 且充滿氧氣的高溫環境,將試片 推入爐管内進行熱回火處理,最後將試片拿出完成回火處 理。6.電鍍銅基板(75):使用電鍍法製備銅金屬基板,可 使用硫酸銅溶液來進行電鍍銅製程,將欲電鍍之試片置於 電鍍槽之陰極,銅塊(source)置於電鍍槽之陽極,並在硫 酸銅溶液中進行金屬基板之成長。電鑛完成後由電鑛液取 出,隨即置入D. I water中震洗’即完成電鍍銅基板。7•雷 射剥離藍寳石基板(76):氮化鎵薄膜藉由M〇CVD的方式成 4 201135965 , 長於藍寳石基板上,一般使用準分子KrF雷射(λ = 248 nm) 來剝離藍寶石基板。8.移除u_GaN(77广將藍寳石剝離後 ,由於在藍寶石基板與氮化鎵薄膜存在一層無摻雜氮化鎵 (u-GaN),一般使用乾蝕刻方式去除無摻雜氮化鎵 。9· n-GaN電極製作(78):移除u_GaN後,使用電子搶 (E-GUN)蒸鍍n型電極。其中,上述平台(mesa)獨立與平台 側壁保護層的步料非必要是可省略的,但一般& 了隔絕 〇 氮化鎵電流還是會進行。 上述的一般金屬基扳發光二極體製作流程可簡單的整 理為如第八圖所示之步驟:(J )平台獨立。(H)形 成平台側壁保護層(6 5)。( m )蒸鍍歐姆接觸反射層(6 6)。( IV )電鍍銅基板(67)。( V )雷射剝離藍寶石基板(6〇)。(贝) 移除無摻雜氮化鎵系層(61)並製作n-GaN的Cr/Au電極 (68)。 ◎ 惟’其上述習知之金屬基板發光二極體製作流程,仍 存在有下列缺失: 一、在接下來的銅基板切割時會造成金屬噴濺至側壁 而產生元件漏電流的問題。 一、用雷射剝離藍寶石基板後’銅基板容易輕曲,迭 成後續製程的問題。 是以’針對上述習知結構所存在之問題點,如何開發 一種更具理想實用性之創新結構,實消費者所殷切企盼, 201135965 亦係相關業者須努六π疏& 只背力研發突破之目標及方向。 有鑑於此’發明人本於多年從事相關產品之製造開發 與&汁經驗,針對上述之目標,詳加設計與審慎評估後, 終得一確具實用性之本發明。 【發明内容】 欲解決之技術問題點:習知之金屬基板發光二極體製 作机程,存在有一、在接下來的銅基板切割時會造成金屬 噴濺至側壁而產生元件漏電流的問題。二、用雷射剝離藍 寶石基板後,銅基板容易翹曲,造成後續製程的問題。 解決問題之技術特點:一種垂直式免切割的金屬基板 發光二極體之製程,藉此免於後續銅基板切割時造成金屬 噴濺與基板剝離後銅基板翹曲狀況,其依序包括以下步驟 :Α.提供一清洗過之試片,該試片為一基板上成長一氮化 鎵系發光二極體(GaN LED)之試片;Β.於氮化鎵系發光二 極體上蒸鑛一歐姆接觸反射層;C·於歐姆接觸反射層上利 用厚度可達到50-200 μιη的厚光阻定義出數個電鍍鋼區域 ’數該電鑛銅區域係互相獨立之區塊;D_使用電鍵法只電 鍍銅基板於C步驟所定義出的數該電鍍鋼區域,形成數個 互相獨立的銅基板;E·利用雷射剝離該試片之基板;F 移 除無摻雜氮化鎵系層(u-GaN)’並於η型氮化嫁系層(n_G 上製作n-GaN電極。 對照先前技術之功效:本發明方法利用厘氺〜μ J用厚先阻定義出 201135965 , 數個電鍍銅區域,使電鍍銅時形成數個互相獨立的銅基, 再接下來的銅基板切割時不會造成金屬噴濺至側壁的問題 ,且因為銅基板互相獨立,也不會於剝離藍寶石基板後, 銅基板產生翹*曲。 有關本發明所採用之技術、手段及其功效,兹舉一較 佳實施例並配合圖式詳細說明於后,相信本發明上述之目 的、構造及特徵,當可由之得一深入而具體的瞭解。 Ο 【實施方式】 參閱第一及第二圖所示,本發明係提供一種垂直式免 切割的金屬基板發光二極體之製程,藉此免於銅基板切割 時造成金屬喷濺與銅基板翹曲狀況,其主要包括以下步驟 (A)提供試片:提供一清洗過之試片,該試片為基板(4〇 )上成長氮化鎵系發光二極體(GaN LED)之試片; Ο (B)蒸鍍歐姆接觸反射層:於氮化鎵系發光二極體上蒸鍍 一歐姆接觸反射層(45); (c)定義電鍍銅區域:於歐姆接觸反射層(45)上利用厚度可 以達到50-200 μιη的厚光阻(PR,46)定義出數個電鍍銅區 域’數該電鍍銅區域係互相獨立之區塊; (D)電鍍銅基板:使用電鍍法電鍍銅基板(47),只電鍍銅 於C步驟所定義出的數該電鍍銅區域,形成數個互相獨立 的銅基板(47); 7 201135965 (E) 剝離基板:利用雷射剝離基板(40); (F) 製作電極:移除無摻雜氮化鎵系層u_GaN,41),並於 η型摻雜氮化鎵系層(n —GaN , 42)上製作n_GaN電極"8)。 其中,凊參閱第三圖,步驟])與步驟β間可增加一步 驟D1,步驟F後可增加一步驟F1,該步驟D1係於數該互 相獨立的銅基板(47)自由端以一膠黏層(adhesive layer, 49)黏合,於膠黏層(49)上再黏合一載體&肛4冗,5〇), 以增加基板(40)剝離後該試片之結構強度;該步驟π為移 除該膠黏層(49)與載體(50)。其中該膠黏層(49)可為氟素 橡膠,該載體(50)可為藍寶石基板(Sapphire)。 以下係提供一較佳實施例: 〔實施例〕 靖參閱第四至第六圖,本實施例步驟如下: y試片清洗(20):元件製程開始之前要先清洗,將試片( 藍寶石(sapphire)基板加上(GaN LED)浸泡丙酮,使用超 音波震盛器震洗,再將試片浸泡異丙醇,㈣超音波震蘯 器震洗’用來去除試月上的丙酮,最後試片震洗去離子水 (D-I water),並用氮氣搶吹乾。 b . ITO/ 療鏟歐姆接觸反射層(21): p-型接觸與反射金屬的製 7除了是要使光反射而不被基板吸收,也必須考慮到與p 型虱化鎵系層(p-GaN)的歐姆接觸,以及之後化學電鍍銅的 附著力丨常見P-型接觸與反射金屬可為白金(pt)、 201135965 , 鈦/鋁/鈦/金(ΠΟ/Ti/Al/Ti/Au)或鎳/銀(Ni/Ag)系列,本 發明使用金屬層為鎳/銀/鈦/金(Ni/Ag/Ti/Au),於氧氣環 境中進行以下回火製程。 c .回火處理(22) : p型氮化鎵系層(p_GaN)搭配高功函數 金屬需經過回火處理才能形成歐姆接面;將爐管升溫至5〇〇 C且充滿氧氣的高溫環境,將試片推入爐管内進行熱回火 處理,最後將試片拿出完成回火處理。201135965 VI. Description of the Invention: [Technical Field] The present invention provides a metal substrate light-emitting diode manufacturing process, and particularly provides a vertical cut-free metal substrate light-emitting diode-process. The use of thick photoresist prevents the formation of a plurality of mutually independent copper substrates when the copper substrate is electrically connected, thereby avoiding the problem of the metal money and the copper substrate when the copper substrate (4) is used. 〇[Prior Art] General metal substrate LED manufacturing process, please refer to the seventh figure. The steps are as follows: 1. Test #清(7〇): Before the component process starts, it should be cleaned first, and the test piece (sapphire) Substrate with GaN LED) soaked in acetone, shaken with ultrasonic oscillator, then soak the test piece with isopropyl alcohol, use ultrasonic vibration to wash the sample, remove the acetone on the test piece, and finally shake the sample D. j Water and blow dry with a nitrogen gun. 2. Platform (mesa) independent (71): using a plasma C-assisted chemical vapor deposition (PECVD) growth of cerium oxide (Si〇2) film, used as a plasma etching Use the protective layer, then use the exposure lithography technology to make the platform pattern, then use the oxide surname (buffer· 〇xide etching, Β0Ε) to name the platform pattern, and finally remove the photoresist; after defining the platform pattern, use Inductiveiy coupled plasma (ICP)#Inscribed galvanic epitaxial layer, etched from p-type gallium nitride to gallium nitride to expose sapphire substrate to produce 1 mm X The platform of 1 mm (or larger 3 201135965) finally completes the platform independence after the removal of cerium oxide (Si〇2). The independence of the platform is mainly to isolate the GaN current. 3. The platform sidewall protection layer (72) is flat. The function of the sidewall protection layer is to avoid short circuit and leakage current of the sidewall of the component caused by the ohmic contact reflective layer, and to avoid component failure caused by metal particles or contaminants contaminating the sidewall of the back process. Generally, cerium oxide (Si0 〇 is used as a sidewall protective layer, and cerium oxide is grown by plasma-assisted chemical vapor deposition (PECVD)) (Si 〇〇 film, patterning using exposure lithography, and then using an oxide etchant (B〇E) etching the platform pattern and finally removing the photoresist, that is, completing the sidewall protection layer of the platform. 4. Steaming ohmic contact reflective layer (73): P-type contact and reflective metal are produced in order to reflect light. Not absorbed by the substrate, must also consider the ohmic contact with p-GaN, and then the adhesion of chemical copper ore. H p_ type contact and reflective metal can be platinum (Pt), ITO / Ti / Al / Ti / Au Or Ni/Ag series. 5. Tempering treatment (74): P-GaN with high work function metal needs to be tempered to form ohmic junction; the furnace tube is heated to 500 and filled with oxygen in high temperature environment, the test piece Push into the furnace tube for thermal tempering treatment, and finally take out the test piece and complete the tempering treatment. 6. Electroplating copper substrate (75): Prepare copper metal substrate by electroplating method, copper copper sulfate solution can be used for electroplating copper process, The test piece to be plated is placed at the cathode of the plating bath The copper source is placed at the anode of the electroplating bath, and the growth of the metal substrate is carried out in the copper sulfate solution. After the electric ore is completed, it is taken out by the electro-mineral liquid, and then placed in the D. I water to be washed, that is, the electroplating copper is completed. Substrate. 7•Laser-peeled sapphire substrate (76): GaN film is formed by M〇CVD to 4 201135965, which is longer than sapphire substrate and is generally stripped using excimer KrF laser (λ = 248 nm). Sapphire substrate. 8. Removal of u_GaN (77 after removing the sapphire, due to the presence of an undoped gallium nitride (u-GaN) layer on the sapphire substrate and the gallium nitride film, dry etching is generally used to remove undoped nitrogen. Gallium. 9· n-GaN electrode fabrication (78): After removing u_GaN, an electron beam (E-GUN) is used to vaporize the n-type electrode, wherein the above-mentioned platform (mesa) is independent of the step of the platform sidewall protective layer. It may be omitted, but the general & isolation of GaN current will still be carried out. The above general metal-based LED manufacturing process can be simply organized into the steps shown in Figure 8: (J) The platform is independent. (H) Forming the platform sidewall protective layer (6 5). ( m ) Evaporation of ohmic contact reflective layer (6 6). (IV) Electroplated copper substrate (67). (V) Laser-peeled sapphire substrate (6〇). (Bei) Removal of undoped gallium nitride layer (61) And the n-GaN Cr/Au electrode (68) is fabricated. ◎ However, there are still the following defects in the above-mentioned conventional metal substrate light-emitting diode manufacturing process: 1. Metal spray is caused when the next copper substrate is cut. Splashing to the side wall causes the leakage current of the component. 1. After the sapphire substrate is stripped by laser, the copper substrate is easily bent and laminated to a subsequent process. It is based on the problems existing in the above-mentioned conventional structure, how to develop an innovative structure with more ideal and practicality, and the consumers are eagerly awaiting, 201135965 is also related to the industry's need for six π sparse & Goals and directions. In view of the fact that the inventor has been engaged in the manufacturing development and & juice experience of related products for many years, the invention has been carefully designed and carefully evaluated to achieve the practical invention. SUMMARY OF THE INVENTION Problems to be Solved: The conventional metal substrate light-emitting diode system has a problem that a metal substrate is splashed to the side wall and a component leakage current is generated when the subsequent copper substrate is cut. 2. After the sapphire substrate is stripped by laser, the copper substrate is easily warped, causing problems in subsequent processes. The technical feature of solving the problem: a process of a vertical cut-free metal substrate light-emitting diode, thereby avoiding the warpage of the copper substrate after the metal splash and the substrate are peeled off after the subsequent copper substrate cutting, and the steps include the following steps in sequence :Α. Providing a cleaned test piece which is a test piece for growing a gallium nitride-based light-emitting diode (GaN LED) on a substrate; 蒸. steaming on a gallium nitride-based light-emitting diode One ohm contact reflective layer; C· on the ohmic contact reflective layer using a thick photoresist having a thickness of 50-200 μm to define a plurality of galvanized steel regions 'the number of the electro-mineral copper regions are independent of each other; D_ use The electro-key method only electroplates the copper substrate to the number of the electroplated steel regions defined in the C step to form a plurality of mutually independent copper substrates; E· peels off the substrate of the test piece by laser; F removes the undoped gallium nitride system Layer (u-GaN)' and n-GaN electrode on n-type nitridation layer (n_G). Compared with the efficacy of the prior art: the method of the present invention uses centistoke ~ μ J to define 201135965 with a thickness of first resistance, several Electroplating copper area to form several independent layers when electroplating copper The copper base, and the subsequent copper substrate cutting does not cause the problem of metal splashing to the side wall, and since the copper substrates are independent of each other, the copper substrate is not bent after the sapphire substrate is peeled off. The above-mentioned objects, structures and features of the present invention will be understood from the following detailed description of the preferred embodiments of the present invention. Referring to the first and second figures, the present invention provides a vertical cut-free metal substrate light-emitting diode process, thereby preventing metal splash and copper substrate warpage when the copper substrate is cut. The method includes the following steps: (A) providing a test piece: providing a cleaned test piece, which is a test piece for growing a gallium nitride-based light-emitting diode (GaN LED) on a substrate (4 ;); Ο (B) An ohmic contact reflective layer is deposited: an ohmic contact reflective layer (45) is deposited on the gallium nitride-based light-emitting diode; (c) an electroplated copper region is defined: a thickness of 50 can be achieved on the ohmic contact reflective layer (45) -200 μιη thick light The resistance (PR, 46) defines a number of electroplated copper regions 'the number of electroplated copper regions are independent of each other; (D) electroplated copper substrate: electroplating copper substrate (47), only electroplating copper in step C Defining the number of electroplated copper regions to form a plurality of mutually independent copper substrates (47); 7 201135965 (E) stripping the substrate: stripping the substrate with a laser (40); (F) fabricating the electrode: removing undoped nitrogen The gallium layer u_GaN, 41), and the n-GaN electrode (8) were formed on the n-type doped gallium nitride layer (n-GaN, 42). Wherein, referring to the third figure, a step D1 may be added between the steps]) and the step β, and a step F1 may be added after the step F, the step D1 is a plurality of glues on the free ends of the mutually independent copper substrates (47). Adhesive layer (49) is bonded, and a carrier & anal 4 cues, 5 〇) is adhered to the adhesive layer (49) to increase the structural strength of the test piece after the substrate (40) is peeled off; To remove the adhesive layer (49) and the carrier (50). The adhesive layer (49) may be a fluorocarbon rubber, and the carrier (50) may be a sapphire substrate (Sapphire). The following provides a preferred embodiment: [Examples] Referring to the fourth to sixth figures, the steps of this embodiment are as follows: y test piece cleaning (20): the component process is cleaned before the start of the process, and the test piece (sapphire ( Sapphire) substrate plus (GaN LED) soaked in acetone, shocked with ultrasonic absorber, and then the test piece is soaked with isopropyl alcohol, (4) ultrasonic shock absorber shock wash 'to remove the acetone on the test month, the last test piece Shake off DI water and blow dry with nitrogen b. ITO/healing shovel ohmic contact reflective layer (21): p-type contact and reflective metal 7 is required to reflect light without being substrate Absorption, must also take into account the ohmic contact with the p-type gallium germanide layer (p-GaN), and then the adhesion of electroless copper plating. Common P-type contact and reflective metals can be platinum (pt), 201135965, titanium /Aluminum/Titanium/Gold (ΠΟ/Ti/Al/Ti/Au) or Nickel/Silver (Ni/Ag) series, the metal layer used in the present invention is nickel/silver/titanium/gold (Ni/Ag/Ti/Au) The following tempering process is carried out in an oxygen environment. c. Tempering treatment (22): p-type gallium nitride layer (p_GaN) with high work function metal Thermal treatment in order to form an ohmic junction; tube warmed to ambient temperature and full C 5〇〇 oxygen, the test piece is pushed into the furnace tube heat tempering treatment, and finally completed the test piece out tempering treatment.

d.定義電鍍銅區域(23):請參閱第五圖,定義出電鍍銅 區域,需要可以達到厚度50-200 μπι的厚光阻(pr,3〇)定 義出所需電鍍區域(31),利用厚光阻(3〇)的原因是要確保 形成互相獨立的銅基板,若使用一般光阻,銅基板還是有 可忐开> 成相連的區域,而不利於接下來的製程。 e電錢銅基板(24):請參閱第六圖,使用電鑛法製備銅金 屬基板(32)有高速鑛膜、低成本和容易量產等優點,我們 使用硫酸銅溶液來進行錢銅製程。將欲錢之試片置於 電鍍槽之陰極’銅塊置於電鍍槽之陽極,並在硫酸銅溶液 中進行金屬基板之成長。電鍍完成後由電鍍液取出,隨即 置入去離子水⑷water)中並以超音波震盛器清洗,即完 成電鍍銅金屬基板(32)。 f .雷射剝離藍寶石基板(25):我們#v 伐們使用準分子KrF雷射(λ = 248 nm)來剝離藍寶石基板。進 丁蛋射剝離實驗時,試片 必須以藍寶石基板在上銅基板在 牧卜的方向來進行,並將試 9 201135965 片位置調整至雷射聚焦面上’以確保各點的雷射能量分布 均句;而由於雷射會使氮化鎵分解為氮氣與鎵金屬,所以 雷射剝離後要將試片浸泡稀釋鹽酸(HC1】2〇=1:丨)即可去除 表面殘餘的鎵金屬。 g ·移除u-GaN(26):藍寳石剝離後,由於在藍寶石基板與 氮化鎵薄膜存在一層無摻雜氮化鎵系層(u_GaN),而此無摻 雜氮化鎵電性不佳;使用感應式耦合電漿蝕刻機(ic㈧來移 除無摻雜氮化鎵系層(u—GaN)。 h . n-GaN電極製作(27):移除無摻雜氮化鎵系層(u_GaN) 後,使用電子搶(E-GUN)在3χ1 Ο—6 torr中真空度下對試片 進行蒸鍍鉻/金(Cr/Au)做為n-GaN電極。 其中,於試片清洗(a.步驟)後可先進行平台獨立 (mesa)與側壁保護的製程,再進行歐姆接觸反射層(汰步驟 )的製作,平台(mesaMf立的製程為使用電漿輔助化學氣相 沉積法(plasma enhanced chemical vapor deposition, PECVD)成長一氧化石夕(§丨〇2)薄膜,用來當作之後電漿姓刻用 的保護層’之後使用曝光微影技術製作平台圖案,再使用 氧化物蝕刻液(buffer oxide etching, Β0Ε)蝕刻出平台圖 案’最後移除光阻;定義出平台圖案後,使用感應式耦合 電漿餘刻機(inductively coupled plasma, ICP)蝕刻氮化 錄蠢晶結構層,蝕刻由p型氮化鎵至η型氮化鎵到露出藍 寶石基板為止,製作出1 mm X 1 mm (或更大)的平台,最 10 201135965 後將二氧化矽(Si〇2)移除後即完成平台獨立,平台之獨立主 要是為了隔絕氮化鎵電流。側壁保護的製程為使用二氧化 矽(Si〇2)作為側壁保護層,利用電漿輔助化學氣相沉積法 (PECVD)成長二氧化矽(Si〇2)薄膜,使用曝光微影技術製作 圖案’再使用氧化物姓刻液(β〇Ε)钱刻出平台圖案,最後移 除光阻’即完成平台侧壁保護層。 配合電锻銅與雷射剝離(Laser Lift-off)技術,並搭 ¢)配厚膜光阻之定義,發展大面積垂直式免切割 (Dicing-free)銅基板氮化鎵發光二極體,成功解決了銅基 板切割時的困難與銅切割時造成金屬喷濺至側壁而產生元 件漏電流的問題,並避免了雷射剝離藍寶石基板後銅基板 翹曲所造成後續製程的問題。 刚文係針對本發明之較佳實施例為本發明之技術特徵 進行具體之S兒明;惟,熟悉此項技術之人士當可在不脫離 〇本發明之精神與原則下對本發明進行變更與修改,而該等 麦更與修改’皆應涵蓋於如下申請專利範圍所界定之範_ 中。 【圖式簡單說明】 第一圖:本發明製造流程圖。 第二圖:本發明簡化製程示意圖。 第一圖.本發明使用膠黏層固定之簡化製程示意圖。 第四圖.本發明其一實施例製造流程圖。 11 201135965 第五圖:本發明其一實施例定 第六圖:本發明其一實施例電 第七圖:習知金屬基板發光二 第八圖:習知金屬基板發光二 【主要元件符號說明】 •習用部分: (6 0 )藍寶石基板 (6 2 ) n型摻雜氮化鎵系層 (6 4 ) p型摻雜氮化鎵系層 (66)歐姆接觸反射層 (6 8 ) Cr/Au 電極 (7 1 )平台(mesa)獨立 (7 3 )蒸鍍歐姆接觸反射層 (7 5 )電鍍銅基板 (7 6 )雷射剝離藍寶石基板 (7 7 )移除 u-GaN •本創作部分: (2 0 )試片清洗 ( (22)回火處理 ( (2 4 )電鍍銅基板 ( (2 6 )移除 u-GaN ( \ (30)厚光阻 ( 義電鍍區域後元件SEM圖。 鍵銅後元件SEM圖。 極體製作流程圖。 極體簡化製程示意圖。 (6 1 )無摻雜氮化鎵系層 (6 3 )氮化鎵發光層 (6 5 )平台側壁保護層 (6 7 )銅基板 (7 〇 )試片清洗 (7 2 )平台側壁保護層 (7 4 )回火處理 (7 8 ) n-GaN電極製作 21)蒸鍍歐姆接觸反射層 23)定義電鑛銅區域 2 5 )雷射剝離藍寶石基板 2 7 ) n-GaN電極製作 3 1 )電鐘區域 12 201135965 (3 2 )銅金屬基板 (4 0 )基板 (4 1 )無摻雜氮化鎵系層 (4 2 ) η型摻雜氮化鎵系層 (4 3 )氮化鎵發光層 (4 4 ) ρ型摻雜氮化鎵系層 (4 5 )歐姆接觸反射層 (4 6 )厚光阻 (4 7 )銅基板 (4 8 ) n-GaN 電極 (4 9 )膠黏層 (5 0 )載體 13d. Define the copper plating area (23): Please refer to the fifth figure to define the copper plating area. The thick photoresist (pr, 3〇) with a thickness of 50-200 μm is required to define the required plating area (31). The reason for using the thick photoresist (3 〇) is to ensure that the copper substrates are formed independently of each other. If a general photoresist is used, the copper substrate can be opened and connected, which is not advantageous for the subsequent process. E-money copper substrate (24): Please refer to the sixth figure. The copper metal substrate (32) prepared by electro-mine method has the advantages of high-speed mineral film, low cost and easy mass production. We use copper sulfate solution for copper copper process. . The test piece of the desired money is placed at the cathode of the plating bath. The copper block is placed at the anode of the plating bath, and the growth of the metal substrate is carried out in a copper sulfate solution. After the plating is completed, it is taken out by the plating solution, and then placed in deionized water (4) water) and cleaned with an ultrasonic absorber to complete the electroplated copper metal substrate (32). f. Laser-peeled sapphire substrate (25): We #v slashed the sapphire substrate using an excimer KrF laser (λ = 248 nm). In the test of the detachment of the diced egg, the test piece must be carried out in the direction of the sapphire substrate on the upper copper substrate, and the position of the test 9 201135965 is adjusted to the laser focusing surface to ensure the laser energy distribution at each point. Because of the laser, the gallium nitride is decomposed into nitrogen and gallium metal. Therefore, after the laser is stripped, the test piece should be immersed in diluted hydrochloric acid (HC1) 2〇=1:丨) to remove the residual gallium metal. g · removal of u-GaN (26): after sapphire stripping, due to the presence of an undoped gallium nitride layer (u_GaN) on the sapphire substrate and the gallium nitride film, the undoped gallium nitride is not electrically Good; use an inductively coupled plasma etching machine (ic (8) to remove the undoped gallium nitride layer (u-GaN). h. n-GaN electrode fabrication (27): remove the undoped gallium nitride layer After (u_GaN), the test piece was subjected to vapor deposition of chromium/gold (Cr/Au) using an electron grab (E-GUN) at a vacuum of 3χ1 Ο-6 torr as an n-GaN electrode. a. Step) After the platform independent (mesa) and sidewall protection process, the ohmic contact reflective layer (step) is fabricated, and the platform (mesaMf process is plasma-assisted chemical vapor deposition (plasma) Enhanced chemical vapor deposition (PECVD) to grow a oxidized stone (§ 丨〇 2) film, used as a protective layer for the post-plasma name, and then use the exposure lithography technology to create a platform pattern, and then use an oxide etchant. (buffer oxide etching, Β0Ε) etched the platform pattern 'final removal of the photoresist; define the platform diagram Thereafter, an inductively coupled plasma (ICP) etching etched the amorphous structure layer and etching the p-type gallium nitride to the n-type gallium nitride to expose the sapphire substrate to produce 1 mm. The platform of X 1 mm (or larger), after the removal of cerium oxide (Si〇2) after 10 201135965, completes the platform independence. The independence of the platform is mainly to isolate the GaN current. The process of sidewall protection is used. Cerium dioxide (Si〇2) is used as a sidewall protective layer to grow a cerium oxide (Si〇2) film by plasma-assisted chemical vapor deposition (PECVD), and a pattern is created using exposure lithography technology. Liquid (β〇Ε) money engraved the platform pattern, and finally remove the photoresist' to complete the platform sidewall protective layer. With electric forging copper and laser lift-off (Laser Lift-off) technology, and with thick film light The definition of resistance, the development of large-area vertical Dicing-free copper substrate gallium nitride light-emitting diodes, successfully solved the difficulty of copper substrate cutting and metal splashing to the sidewall during copper cutting to cause component leakage current Problem and avoid the thunder The problem of the subsequent process caused by the warpage of the copper substrate after the sapphire substrate is peeled off. The text of the preferred embodiment of the present invention is specific to the technical features of the present invention; however, those skilled in the art can The present invention may be modified and modified without departing from the spirit and scope of the invention, and such modifications and modifications should be included in the scope defined by the following claims. BRIEF DESCRIPTION OF THE DRAWINGS First FIG.: A manufacturing flow chart of the present invention. Second figure: Schematic diagram of the simplified process of the present invention. The first figure shows a simplified process schematic of the invention using an adhesive layer. Figure 4 is a flow chart showing the manufacture of an embodiment of the present invention. 11 201135965 FIG. 5 is a sixth embodiment of the present invention: an seventh embodiment of the present invention: a conventional metal substrate emitting light FIG. 8 : a conventional metal substrate emitting light [main element symbol description] • Conventional part: (6 0) sapphire substrate (6 2 ) n-doped gallium nitride layer (6 4 ) p-doped gallium nitride layer (66) ohmic contact reflective layer (6 8 ) Cr/Au Electrode (7 1 ) platform (mesa) independent (7 3 ) evaporation ohmic contact reflective layer (7 5 ) electroplated copper substrate (7 6 ) laser stripped sapphire substrate (7 7 ) remove u-GaN • This creative part: (2 0) test strip cleaning ((22) tempering treatment ((2 4) electroplated copper substrate ((2 6 ) remove u-GaN ( \ (30) thick photoresist (SEM image of element after electroplating area. SEM image of post-copper elements. Flow chart of polar body fabrication. Schematic diagram of simplified process of polar body. (6 1 ) Undoped gallium nitride layer (6 3 ) Gallium nitride light-emitting layer (6 5 ) Platform sidewall protective layer (6 7 Copper substrate (7 〇) test strip cleaning (7 2 ) platform sidewall protective layer (7 4 ) tempering treatment (7 8 ) n-GaN electrode fabrication 21) evaporation ohmic contact reflective layer 23) definition of electric copper ore zone 2 5) Ray Stripped sapphire substrate 2 7 ) n-GaN electrode fabrication 3 1 ) electric clock region 12 201135965 (3 2 ) copper metal substrate (40) substrate (4 1 ) undoped gallium nitride layer (4 2 ) n-type doping Gallium nitride layer (4 3 ) gallium nitride light-emitting layer (4 4 ) p-type doped gallium nitride layer (45) ohmic contact reflective layer (46) thick photoresist (47) copper substrate ( 4 8 ) n-GaN electrode (4 9 ) adhesive layer (50) carrier 13

Claims (1)

201135965 七、申請專利範圍: 1 . -種垂直式免切割的金屬基板發光二極體之製程 ’藉此免於後續銅基板a割時造成金屬錢與基板剝離後 銅基板翹曲狀況,其依序包括以下步驟: A. 提供-清洗過之試片,該試“一基板上成長一乳 化鎵系發光二極體(GaN LED)之試片; B. 於該氮化鎵系發光二極體上蒸鍍一歐姆接觸反射 層; c.於該歐姆接觸反射層上利用厚度可達到5〇—2〇〇 _ 的厚光阻疋義出數個電鍍銅區域,數該電鑛銅區域係互相 獨立之區塊; D·使用電鍍法電鍍銅於c步驟所定義出的數該電鍍銅 區域,形成數個互相獨立的銅基板; Ε.利用雷射剝離該試片之該基板; 移除無摻雜氮化鎵系層(u_GaN),並於η型氮化鎵 系層(n-GaN)上製作n —GaN電極。 2 .如申請專利範圍第1項所述之垂直式免切割的金 屬基板發光—極體之製程’其中該步驟D與該步驟E間可 增加-步冑D卜該步驟F後可增加一步驟F卜該步驟〇ι 係於數互相獨立AA ^ ΛΠ U Sr- 的4銅基板自由端以一膠黏層黏合,於該 膠黏層上再黏合一載體’以增加剝離該基板後該試片之結 構強度;該#驟F1為移除該勝黏層與該載體。 14 201135965 3 .如申請專利範圍第2項所述之垂直式免切割的金 .屬基板發光二極體之製程,其中該膠黏層為氟素橡膠,該 載體為藍寶石(Sapphire)基板。 4.如申請專利範圍第1或2項所述之垂直式免切割 的金屬基板發光二極體之製程,其中該步驟A與該步驟B 間可增加一步驟A1,該步驟A1為對該試片進行平台獨立 (mesa)之製程’然後再進行側壁保護的製程。 〇 5 .如申請專利範圍第1項所述之垂直式免切割的金 屬基板發光二極體之製程,其中該步驟A的該試片之該基 板為藍寶石(Sapphi re)基板。 6 ·如申請專利範圍第1項所述之垂直式免切割的金 屬基板發光二極體之製程,其中該步驟B之該歐姆接觸反 射層可為Pt金屬、ΐτο/Ti/Al/Ti/Au金屬、Ni/Ag金屬或 Ni/Ag/Ti/Au 金屬。 〇 7 ·如申請專利範圍第5項所述之垂直式免切割的金 屬基板發光二極體之製程,其中該步驟E係使用準分子KrF 雷射(λ =248 nm)來剝離藍寶石基板。 8 .如申請專利範圍第1項所述之垂直式免切割的金 屬基板發光二極體之製程,其中該步驟F係使用感應式耦 合電漿蝕刻機(ICP)來移除無摻雜氮化鎵系層(u-GaN)。 9 .如申請專利範圍第1項所述之垂直式免切割的金 屬基板發光二極體之製程,其中該步驟F中之n-GaN電極 15 201135965 為Cr/Au金屬。 八、圖式· 如次頁 16201135965 VII. Patent application scope: 1. The process of a vertical type of non-cutting metal substrate light-emitting diode 'to avoid the warpage of the copper substrate after the metal money and the substrate are peeled off after the subsequent copper substrate a cutting, The sequence includes the following steps: A. Providing a cleaned test piece, the test piece of which is an emulsified gallium-based light-emitting diode (GaN LED) grown on a substrate; B. the gallium nitride-based light-emitting diode Evaporating an ohmic contact reflective layer; c. depositing a plurality of electroplated copper regions on the ohmic contact reflective layer with a thickness of up to 5 〇 2 〇〇 _, and the electro-mineral copper regions are mutually a separate block; D. electroplating copper using electroplating to define the number of copper-plated regions defined in step c to form a plurality of mutually independent copper substrates; 剥离. stripping the substrate of the test piece by laser; A gallium nitride-based layer (u_GaN) is doped, and an n-GaN electrode is formed on the n-type gallium nitride layer (n-GaN). 2. The vertical cut-free metal according to claim 1 Substrate illumination-polar body process' wherein step D and step E are Adding a step-F to the step F, a step F can be added. The step 〇 is tied to the mutually independent AA ^ ΛΠ U Sr- 4 copper substrate free end bonded by an adhesive layer on the adhesive layer Re-bonding a carrier to increase the structural strength of the test piece after peeling off the substrate; the #F1 is removing the flash layer and the carrier. 14 201135965 3. Vertical protection as described in claim 2 The cut gold is a process of a substrate light-emitting diode, wherein the adhesive layer is a fluorocarbon rubber, and the carrier is a sapphire substrate. 4. The vertical cut-free cutting according to claim 1 or 2. The process of the metal substrate illuminating diode, wherein a step A1 can be added between the step A and the step B, and the step A1 is a process of performing a platform independent (mesa) process on the test piece and then performing sidewall protection. 〇5. The process of the vertical cut-free metal substrate light-emitting diode according to claim 1, wherein the substrate of the test piece of the step A is a sapphire substrate. Vertical cut-free as described in item 1 of the patent scope The process of the metal substrate light-emitting diode, wherein the ohmic contact reflective layer of the step B may be a Pt metal, a ΐτο/Ti/Al/Ti/Au metal, a Ni/Ag metal or a Ni/Ag/Ti/Au metal. 7. The process of a vertical cut-free metal substrate light-emitting diode according to claim 5, wherein the step E uses an excimer KrF laser (λ = 248 nm) to strip the sapphire substrate. The process of the vertical cut-free metal substrate light-emitting diode according to claim 1, wherein the step F uses an inductively coupled plasma etching machine (ICP) to remove the undoped gallium nitride system. Layer (u-GaN). 9. The process of the vertical cut-free metal substrate light-emitting diode according to claim 1, wherein the n-GaN electrode 15 201135965 in the step F is a Cr/Au metal. Eight, the pattern · as the next page 16
TW100121583A 2011-06-21 2011-06-21 The process of vertical non - cutting metal substrate light - emitting diodes TWI466318B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100121583A TWI466318B (en) 2011-06-21 2011-06-21 The process of vertical non - cutting metal substrate light - emitting diodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100121583A TWI466318B (en) 2011-06-21 2011-06-21 The process of vertical non - cutting metal substrate light - emitting diodes

Publications (2)

Publication Number Publication Date
TW201135965A true TW201135965A (en) 2011-10-16
TWI466318B TWI466318B (en) 2014-12-21

Family

ID=46752078

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100121583A TWI466318B (en) 2011-06-21 2011-06-21 The process of vertical non - cutting metal substrate light - emitting diodes

Country Status (1)

Country Link
TW (1) TWI466318B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104638096A (en) * 2015-01-30 2015-05-20 广州市众拓光电科技有限公司 Preparation method for copper substrate for vertical LED (light-emitting diode) chips
CN105568329A (en) * 2016-02-23 2016-05-11 河源市众拓光电科技有限公司 Method for electrically plating copper on LED epitaxial wafer
TWI552377B (en) * 2012-08-03 2016-10-01 Chunghwa Telecom Co Ltd Method for fabricating a resonant cavity light emitting diode using a metal thin film to form a mirror
TWI552381B (en) * 2013-10-28 2016-10-01 兆鑫光電科技股份有限公司 Method for manufacturing vertical-feedthrough led

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI552377B (en) * 2012-08-03 2016-10-01 Chunghwa Telecom Co Ltd Method for fabricating a resonant cavity light emitting diode using a metal thin film to form a mirror
TWI552381B (en) * 2013-10-28 2016-10-01 兆鑫光電科技股份有限公司 Method for manufacturing vertical-feedthrough led
CN104638096A (en) * 2015-01-30 2015-05-20 广州市众拓光电科技有限公司 Preparation method for copper substrate for vertical LED (light-emitting diode) chips
CN104638096B (en) * 2015-01-30 2017-06-30 广州市众拓光电科技有限公司 A kind of preparation method of the copper base for light emitting diode (LED) chip with vertical structure
CN105568329A (en) * 2016-02-23 2016-05-11 河源市众拓光电科技有限公司 Method for electrically plating copper on LED epitaxial wafer

Also Published As

Publication number Publication date
TWI466318B (en) 2014-12-21

Similar Documents

Publication Publication Date Title
US7465592B2 (en) Method of making vertical structure semiconductor devices including forming hard and soft copper layers
CN101188265B (en) Semiconductor light emitting element and method of manufacturing the same
JP5612336B2 (en) Manufacturing method of semiconductor light emitting device
JP3896044B2 (en) Nitride-based semiconductor light-emitting device manufacturing method and product
TWI300277B (en) Method for manufacturing gallium nitride light emitting diode devices
JP2011181834A (en) Semiconductor light emitting element and method for manufacturing the same
US8168459B2 (en) Method for manufacturing semiconductor light-emitting device
JP2005117020A (en) Gallium nitride based compound semiconductor device and its manufacturing method
CN102037575A (en) Light-emitting element and a production method therefor
CN103117334A (en) GaN-based light emitting diode (LED) chips in vertical structure and manufacturing method thereof
JP4886869B2 (en) Semiconductor light emitting device and manufacturing method thereof
TW201135965A (en) Fabrication process for vertical dicing-free light-emitting diodes with metal substrate
US8470625B2 (en) Method of fabricating semiconductor light emitting device and semiconductor light emitting device
JP2010225852A (en) Semiconductor element, and method of manufacturing the same
JP5466479B2 (en) Manufacturing method of semiconductor device
TWI443871B (en) Fabrication method of gallium nitride light emitting diode with back reflector and heat dissipation layer
JP2009094108A (en) MANUFACTURING METHOD OF GaN-BASED LED DEVICE
JP5573138B2 (en) Manufacturing method of semiconductor light emitting device
CN102623589A (en) Manufacturing method of semiconductor light-emitting device with vertical structure
TWI257723B (en) Vertical light-emitting diode and method for manufacturing the same
JP4791119B2 (en) Method for manufacturing nitride-based semiconductor light-emitting device
JP2007081089A (en) Nitride-based semiconductor light-emitting element
TW201005991A (en) Light-emitting diode device and method for manufacturing the same
TWI436505B (en) Light emitting diode having reflective and low resistant contact and the manufacturing methods thereof
TWI293813B (en)

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees