TWI465118B - 駐極體振膜與使用此駐極體振膜的喇叭 - Google Patents

駐極體振膜與使用此駐極體振膜的喇叭 Download PDF

Info

Publication number
TWI465118B
TWI465118B TW099136143A TW99136143A TWI465118B TW I465118 B TWI465118 B TW I465118B TW 099136143 A TW099136143 A TW 099136143A TW 99136143 A TW99136143 A TW 99136143A TW I465118 B TWI465118 B TW I465118B
Authority
TW
Taiwan
Prior art keywords
electret
layer
electrode layer
horn
diaphragm
Prior art date
Application number
TW099136143A
Other languages
English (en)
Other versions
TW201129112A (en
Inventor
Che I Kao
Chih Kung Lee
Wen Ching Ko
Chang Ho Liou
Ing Yih Leu
Ming Daw Chen
Yi Jen Chan
Chien Kai Tseng
Original Assignee
Ind Tech Res Inst
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst, Univ Nat Taiwan filed Critical Ind Tech Res Inst
Publication of TW201129112A publication Critical patent/TW201129112A/zh
Application granted granted Critical
Publication of TWI465118B publication Critical patent/TWI465118B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/01Electrostatic transducers characterised by the use of electrets
    • H04R19/013Electrostatic transducers characterised by the use of electrets for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/13Acoustic transducers and sound field adaptation in vehicles

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Laminated Bodies (AREA)

Description

駐極體振膜與使用此駐極體振膜的喇叭
此處揭露關於一種駐極體振膜(electret diaphragm)與使用此駐極體振膜的喇叭。
近來,可撓式與平面式喇叭在未來的應用引發相當大的興趣,已被積極地討論的應用領域如3C(電腦、通訊及消費電子)、智慧型窗戶(smart windows)、智慧型窗簾(smart curtains)、汽車音響(automobile audio)以及玩具。然而,一些新的發聲(sound generating)技術並不完全地適用於未來音頻系統的需求,例如省電、具有彈性之結構、以及外型之設計自由等。因此,對於駐極體可撓式喇叭進行改良的想法漸增,並且已有相關落實構想的動作。
傳統型駐極體致動器自1970年代起已開始被研究。典型的構造為一置於多孔電極層之間,以駐極體為基底的薄膜,並且以一組分隔片(spacers)隔離。喇叭則是以膜振動模式運作,藉由改變靜電力造成外加電壓與駐極體振膜上誘發振動間的交互作用,繼而引發聲波(acoustic wave)放射。結果顯示其本身的優點包括簡單而小型的結構、較佳的效率及極佳的高頻響應。因此,由庫倫定律(Coulomb's law)可知,為獲得一高效率的駐極體喇叭,駐極體振膜必須具有高電荷儲存量以及質量輕的特點,藉由有效地提升電荷密度,而得到有效率的裝置。
為獲得一高效率的駐極體喇叭,駐極體振膜必須具有高電荷儲存量以及質量輕的特點,藉由有效地提升電荷密度,可得到有效率的裝置。多孔性聚四氟乙烯(PTFE)膜因具優良的電荷儲存能力而被認為是一較佳的駐極體材料。然而,儘管PTFE具有這些優點和益處,其仍然具有以下特點如難以附著到電極層、在高多孔性薄膜的電荷儲存穩定性普通、彈性模數低以及在低應力下容易塑性形變。這些缺點易阻礙可撓式喇叭進一步的發展。已有一些研究試圖採用塗佈以及層合方法形成複合材料,以改善多孔PTFE的特性。然而,複合材料的均勻覆蓋性仍較差。雖然難以實現,但是一個良好的駐極體振膜理想上應包括成本低、電極層和駐極體層之間有貼附良好、質量輕等特徵。
揭露於此之實施例提供一種駐極體振膜。此駐極體振膜包括一駐極體層、一附著至駐極體層表面的接合層,以及一附著至接合層的鋁電極層。駐極體層至少包括乙烯基聚合物。接合層之一材料包括乙烯/丙烯酸乙酯共聚物(EEA)或乙烯/醋酸乙烯酯共聚物(EVA)。
揭露於此之實施例進一步提供一種喇叭。此喇叭至少包括一有孔電極層以及一駐極體振膜,其相對所述有孔電極層配置。此駐極體振膜包括一駐極體層、一附著至駐極體層表面的接合層、以及一附著在接合層上之鋁電極層。
為進一步詳述於此揭露之內容,以數個實施例配合圖式作詳細說明如下。
圖1為根據本發明之一實施例所圖示的一種駐極體振膜之剖面示意圖。
請參照圖1,駐極體振膜100包括駐極體層102、附著至駐極體層102的表面106之接合層104、以及附著至接合層104的鋁電極層108。駐極體層102至少包含乙烯基聚合物110。舉例而言,於本實施例中,駐極體層102由氟聚合物基材(base material)112以及乙烯基聚合物110之添加材料(added material)所構成。
乙烯基聚合物110可包括環烯烴共聚物(cyclic olefin copolymer,COC)、聚氯乙烯(polyvinyl chloride,PVC)、聚乙烯(polyethylene,PE)或由這些材料中擇一與至少一種下述材料混合,聚苯乙烯(polystyrene,PS)、聚碳酸酯(polycarbonate,PC)、聚(甲基丙烯酸甲脂)(poly(methyl methacrylate),PMMA)、聚醯亞胺(polyimide,PI)、聚醚醯亞胺(polyetherimide,PEI)、聚2,6-二甲基-1,4-苯醚(poly(2,6-dimethyl-1,4-phenylene ether,PPE)、聚丙烯(polypropylene,PP)、高密度聚乙烯(high density polyetbylene,HDPE)、聚氨酯(polyurethane,PU)、聚醚醚酮(poly(etheretherketone),PEEK)以及聚醚醯亞胺(poly(etherimide),PEI)。
氟聚合物基材112可包括織物型聚合物、不織布型(nonwoven type)聚合物或者多孔型聚合物,較佳可如圖1所示之多孔型聚合物。舉例而言,多孔型聚合物包括聚四氟乙烯(PTFE)、四氟乙烯、聚全氟乙丙烯(FEP)、聚(乙烯-四氟乙烯)(ETFE)或聚四氟乙烯-全氟烷氧基共聚物(polytetrafluoroethylene co-perfluoroalkoxy,PFA);不織布型聚合物包括FEP、ETFE或PFA。
乙烯基聚合物110對於接合層104具有極佳的附著性。乙烯基聚合物110能藉由填入氟聚合物基材112中之孔洞而可與氟聚合物基材112複合。
接合層104之材料包括乙烯/丙烯酸乙酯共聚物(EEA)或乙烯/醋酸乙烯酯共聚物(EVA)等。
於一實施例中,如圖2A所示,駐極體層102上可形成有由數個厚部202與數個薄部204所組成之圖案200。駐極體層102可於不同區域有不同的厚度,且此厚度差異會顯著地影響喇叭中的個別單元。因此,可透過控制個別單元的厚度來增強喇叭之頻率響應。
除此之外,於圖2B中,駐極體層102可只包含乙烯基聚合物110,如一環烯烴共聚物(COC)層。由於駐極體層102可經溶液製程製備,所以其可根據通常技術形成圖案200之厚部202。為使圖面清楚,於圖2A以及圖2B中並未呈現接合層104以及鋁電極層108。
圖2C為圖1另一例之駐極體振膜的剖面示意圖。於圖2C中,鋁電極層108可配置於薄部204以外之厚部202中。不連通的鋁電極層108之形成可藉由先在厚部202內的駐極體層102上印製接合層104,再鍍上整層的鋁電極層,最後去除薄部204內的鋁電極層。
另外,由於鋁電極層108和接合層104間的附著力比鋁電極層108和乙烯基聚合物110間強,即使駐極體層102為不具圖2C中之圖案200的一個平面,仍可透過噴墨技術或網印來圖案化接合層104,然後藉由一些沖洗製程進一步圖案化鋁電極層108成為預定的圖案,上述鋁電極層108可透過濺渡或物理氣相沉積(PVD)製程形成。因此可省略傳統如微影蝕刻之圖案化鋁電極層的方法。
採用以上所述之方法,可將接合層104和鋁電極層108圖案化成為不連通的陣列圖案,如圖2D所示。為使圖面清楚,只呈現出鋁電極層108,且各個不連通的陣列圖案(如鋁電極層108)例如具有延伸至駐極體振膜100之邊緣208的導線206。此不連通的鋁電極層108可形成個別控制的駐極體單元陣列,因而可完成陣列式多聲道喇叭。藉由進一步將多重喇叭聲道控制於相延遲訊號,則可實現聲束操控。同理,接合層104和鋁電極層108可被圖案化成為部份連通的陣列圖案或者為部分不連通的陣列圖案。
於另一實施例中,如圖3A及3B所示,駐極體層102可形成為具有由複數皺摺302組成之圖案300。由於具有皺摺302的區域之厚度大於不具皺摺302的區域之厚度,因此駐極體層102的效能亦因不同區域之厚度不同而有所差異。因此,喇叭之頻率響應可藉通過整個駐極體層102的皺摺302的位置來增強。圖3A中之駐極體層102包括氟聚合物基材112,但圖3A中之駐極體層102僅包含乙烯基聚合物110而沒有氟聚合物基材112。為使圖面清楚,接合層104以及鋁電極層108並未呈現在圖3A以及圖3B中。
圖2A-2C以及圖3A-3B中之駐極體層102可透過所示於圖4及圖5所示的捲對捲製程(roll-to-roll process)製作。
於圖4中,捲對捲製程包括進行一網印製程,藉此使駐極體層102增厚而形成圖2中的厚部202。舉例而言,提供一個捲對捲設備400,其包括捲駐極體層402、網板404、印刷裝置406以及紅外光源408。乙烯基聚合物110原料可被加入印刷裝置406中,並透過網板404而印製到駐極體層102上。之後,可用紅外光源408烘乾印好的駐極體層102。
在圖5中,捲對捲製程包括一成型製程(molding process),將駐極體層102壓皺或壓花而形成圖3中之數個皺褶302。舉例而言,提供包括捲駐極體層502以及模具504之捲對捲設備500。當使捲駐極體層502通過模具504時,模具504會閉合而使駐極體層102具有皺褶。
駐極體層102可包括具有直徑為微米級或奈米級的孔洞。由於駐極體層102可於較長時間內維持靜電荷,且在經加電處理(electrifying treatment)之後可具壓電特性,故在駐極體層102內的孔洞可能增加傳輸(transmission)並增強材料的壓電特性。
於一實施例中,乙烯基聚合物110透過下述方法形成在氟聚合物基材112上:提供一溶液(如乙烯基聚合物110之原料)於氟聚合物基材112的表面上,以形成一濕膜,然後使其固化。此溶液例如可透過塗佈、潤濕或者網印供應至氟聚合物基材112上。濕膜的固化例如可藉由加熱或輻射進行烘烤。上述溶液中包含乙烯基聚合物材料。於一實施例中,此溶液進一步包含添加物例如無機奈米粒子。這些奈米粒子的例子如Al2 O3 、Bi2 O3 、SiO2 、TiO2 、BaTiO3 、CaCO3 或Si3 N4
於一實施例中,乙烯基聚合物110的原料溶解於一溶液中。前述溶液例如包括甲苯、二甲苯、對二甲苯、氯仿、N-甲基吡咯酮(NMP)、二甲基甲醯胺(DMF)或者四氫呋喃(THF)等溶劑。而在固化濕膜期間,溶劑會自濕膜上被移除。
圖6為根據本發明之另一實施例所圖示的一種喇叭之剖面示意圖。
請參照圖6,喇叭600至少包括一個包含駐極體層604的駐極體振膜602、附著至駐極體層604的表面608之接合層606、以及附著至接合層608的鋁電極膜610。舉例而言,鋁電極膜610可透過蒸鍍、濺鍍、塗佈或網印而形成。
喇叭600可進一步包括有孔電極層612、有孔平板614,駐極體層602安裝於有孔電極層612和有孔平板614之間。
此外,第一間隔元件616可介於駐極體振膜602以及有孔電極層612之間,第二間隔元件618可介於鋁電極膜610以及有孔平板614之間。另外,駐極體振膜602、有孔電極層612以及有孔平板614可被安裝至一框架或框架支撐元件620。
駐極體層604至少包括氟聚合物基材622以及添加材料乙烯基聚合物624。氟聚合物基材622以及乙烯基聚合物624添加材料的例子可參照前述實施例,而駐極體層604的結構可使用圖1~圖3其中一種駐極體層102。
以帶負電之駐極體層604為例,當一個輸入音訊提供至有孔電極層612和鋁電極膜610,由此輸入訊號而來的正電壓會對駐極體振膜602產生一吸引力(attracting force),而由此輸入訊號而來的負電壓會在喇叭600的正電荷上產生一排斥力而使駐極體振膜602沿一方向移動。
相對地,當輸入音源訊號的電壓相位改變時,正電壓會對駐極體振膜602的負電荷產生一吸引力,而負電壓會對喇叭600的正電荷產生一排斥力而使駐極體振膜602沿與前述方向相反的方向移動。駐極體振膜602會重複地來回移動,並振動而擠壓周圍空氣,透過在不同方向的不同力量交互作用而產生聲音。
在駐極體振膜602上與有孔電極層612相對的一側具有聲室構造626,其可被有孔平板614和第二間隔元件618封閉或者部分封閉。於一些實施例中,在駐極體層604的表面608對側之表面628可電導耦合於框架支撐元件620以及第一間隔元件616。
而第一間隔元件616以及第二間隔元件618在位置、高度及(或)形狀均可被調整,此為喇叭設計中的一部份。此外,第二間隔元件618的數量可大於、等於或者小於第一間隔元件616之數量,且第一間隔元件616或第二間隔元件618可直接位在或超出有孔電極層612或有孔平板614之上。
有孔電極層612可由金屬組成,例如透過蒸鍍、濺鍍、塗佈或者網印。於一實施例中,有孔平板614可由彈性材料如紙張或者極薄的非導體材料,於此紙張或非導體材料上鍍上一金屬膜而組成。
當有孔電極層612是由非導體材料層鍍上金屬膜而組成時,此非導體材料可為塑膠、橡膠、紙張、非導體織物(棉纖維或聚合物纖維)或者其他非導體材料,其中金屬膜可為鋁、金、銀、銅、鎳金雙金屬、氧化銦錫(ITO)、氧化銦鋅(IZO)、高分子傳導材料如聚乙烯二氧噻吩(polyethylenedioxythiophene,PEDOT)等;合金;或任何其中所列舉材料之組合或等效物。當有孔電極層612是由導體材料組成時,此導體材料可為金屬(鐵、銅、鋁或其合金)、傳導性織物(金屬纖維、氧化金屬纖維、碳纖維或石墨纖維)等,或者為任何此些材料或其他材料之組合。
於一實施例中,喇叭600除框架支撐元件620外可被一保護膜覆蓋(未圖示)於單側或兩側。此保護膜可為透氣性但防水,例如含有多孔聚四氟乙烯的GORE-TEX膜等。GORE-TEX或類似材質能夠預防水和氧氣的影響,因而可預防駐極體層604漏出電荷並且減少其靜電效應。
駐極體振膜602經薄膜電暈放電處理或者電極化處理。於一實施例中,控制處理條件如溫度、溼度及放電程度,可用以調整或者改善充電效應。
以下對數個實驗結果進行討論,以呈現於此所揭露之實施例中陽極材料的影響。
實驗一:製備複合多孔性PTFE/COC層
COC Topas6013以7.5wt%濃度溶於甲苯形成COC溶液,經黏度計(SV-10,A&D scientech,台灣)測量具有12.1cp之黏度。首先,利用旋轉塗佈法以COC溶液製備多孔性PTFE膜的塗層。上述COC溶液可滲透入多孔性PTFE膜之空隙,接著藉由2000 rpm的轉速控制此複合膜的密度以及均勻性。此初期的複合膜(embryo composite)樣品的纖維PTFE和COC間藉著機械性附著力而良好地結合。在第一步驟後,此初期樣品於100℃下退火四小時以移除殘餘甲苯。
實驗二:製備多孔性PTFE/COC/EEA駐極體振膜
EEA以0.5wt%濃度溶於甲苯中而形成EAA溶液。重複上述步驟,再次利用旋轉塗佈法以EEA溶液製備初期樣品的塗層。最後,以電子束蒸鍍機將100nm鋁層蒸鍍至複合膜上。
結果一:複合多孔性PTFE/COC層之SEM形態
為研究及比較COC之添加對複合材料型態的原因,以電子掃描式顯微鏡(SEM)對樣本之表面進行研究。於圖7中,標準多孔性PTFE之SEM影像清楚地顯示外表面上的多孔結構且在高倍率SEM下具有開放的多孔構造以及高度多孔性。得到之複合多孔性PTFE/COC層型態如圖8所示。結果顯示COC穿透多孔性PTFE的空洞且填充到其間的部份空隙中。詳細來說,此複合材料在多孔性PTFE和COC間顯示良好的機械性附著。和標準多孔性PTFE比較,此複合膜之多孔性顯著地減少。
結果二:複合多孔性PTFE/COC層之駐極體性質
於室溫下,駐極體樣本之電荷儲存能力是由測量隨時間而殘餘的表面電位來決定。標準多孔性PTFE和複合多孔性PTFE/COC層均先經過薄膜電暈處理。然後,於室溫下隨時間作測量與紀錄(如25℃及30%RH)這些樣本之駐極體性質。對每一種樣品至少取3個樣本測量。實驗結果(請參照圖9)顯示,標準多孔性PTFE膜之表面電位為約-410V的穩定表面電位,而複合多孔性PTFE/COC層則為約-750V的穩定表面電位。即,在相同的充電條件下,複合多孔性PTFE/COC層之特徵是比標準多孔性PTFE膜具有更好的電荷儲存能力。於室溫下,與標準多孔性PTFE膜相比,在於室溫下將具PTFE質量之約20%質量的COC塗佈到多孔性PTFE膜上後,複合多孔性PTFE/COC層之表面電位顯然有效地增加了約80%。
對於未來於汽車上的應用,具有良好耐熱性的駐極體振膜是必要的。將標準多孔性PTFE和複合多孔性PTFE/COC層置於100℃烤箱並以和電暈充電相同的條件下觀察表面電位的衰減。更精確地說,是研究其耐熱性(temperature resistance)的儲存電荷穩定性。由實驗結果可知(請參照圖10),在初期階段由於高溫影響,電荷快速地流失。在五小時後,表面電位到達一穩定狀況。結果顯示24μm厚的標準多孔性PTFE在高溫下電荷儲存能力差。至於25μm厚之複合多孔性PTFE/COC層之表面電位,和標準多孔性PTFE相比則擁有極佳的電荷儲存能力。因此,顯然於100℃下複合多孔性PTFE/COC層能有效地增強穩定的表面電位到約140V。
現在對於電荷儲存的機制仍不清楚。可能的原因包括以下數點:(1)COC為非晶型共聚物,其具有高達攝氏140℃之玻璃轉換溫度。COC也擁有良好的駐極體性質並且有比PP更好的耐熱性。當COC和多孔性PTFE合在一起而形成複合多孔性PTFE/COC層時,形成愈多的界面而導致愈高的儲存能力。(2)COC和纖維PTFE的適當比例已被研究。多孔性PTFE原本的開放結構轉形成為半開放的結構因而降低了其多孔性。可能造成複合膜之電荷儲存能力增加的原因包括於膜中的半開放多孔結構產生一屏障(barrier),而防止了電荷漂移。此外,COC可能是PTFE熱膨脹的邊界變體(bound variant),所以可減少其於100℃下的分子鏈移動,繼而減少電荷損失。
結果3:複合多孔性PTFE/COC層之機械性質
樣本之彈性模數為在彈性限度範圍內之應力與應變之比例。標準多孔性PTFE之彈性模數的應變落在0到0.02 mm/mm的範圍之內,並且具有一平均值30.79Mpa。比較標準多孔性PTFE和複合多孔性PTFE/COC層間的彈性模數(請參照圖11),複合多孔性PTFE/COC層明顯地具有較高的彈性模數。複合多孔性PTFE/COC層之彈性模數為228.86,高達標準多孔性PTFE之彈性模數的643.3%。於圖11中,標準多孔性PTFE於低應力下產生一大的拉伸應變,當應用於駐極體喇叭時會造成問題。在表1中,發現添加0.2204mg/cm2 的COC量,可有效地增加機械強度且可克服標準多孔性PTFE的低應力形變。
為達到低成本及易於生產,可使用鋁層作為上述複合多孔性PTFE/COC層之電極層。為解決鋁層和PTFE間附著性差的問題,可利用聚合物EEA作為接合層。交叉切割試驗為ASTM D3359。根據結果,EEA可有效地改善鋁層和複合多孔性PTFE/COC層之間的附著力。所得表面測量值3B(5%~15%損傷)表示其遠較原先材料所具有的數值0B(100%損傷)更佳。
實驗三:製造可撓式喇叭
在如以上所述製造出駐極體振膜之後,如圖12所示製造可撓式喇叭1200。駐極體振膜1202先以一系列電暈放電進行充電,並保留其中之空間電荷。然後用間隔片1204設出帶電之駐極體振膜1202和有孔電極層1206之間的空隙;並用間隔片1208設出帶電之駐極體振膜1202和有孔平板1210之間的空隙。此外,以緯線和經線配置的間隔片1204及1210亦決定了圖12中各個單元致動器。帶電駐極體振膜1202和有孔電極層1206之間空隙為150μm,且有孔電極層1206具有30%的開孔率。此外,帶電駐極體振膜1202和有孔平板1210之間的空隙亦為150μm,且有孔平板1210具有30%的開孔率
所得之喇叭長度為90mm,寬度為90mm,且厚度為0.3mm。所得之喇叭的單元致動器具有8mm2 面積並排列形成一陣列結構。
圖13表示不同材料的可撓式喇叭之軸上音壓強度(SPL)曲線。測量距離為25cm。結果顯示使用複合多孔性PTFE/COC層的喇叭之SPL值在2kHz時約為88dB,而使用原多孔性PTFE的喇叭之SPL值在2kHz時約為13.6dB。改良之喇叭的頻率響應在1.2k至20kHz間平緩,此種聲音品質在聲音的需求上已足以欣賞其內容。
此複合多孔性PTFE/COC層可改善彈性模數且對於鋁層之貼附較佳。此外,厚度為25μm之複合多孔性PTFE/COC層駐極體膜之表面電位和多孔性PTFE相較下亦擁有極佳的電荷儲存能力。對於可撓式喇叭之應用而言,可由此改良的駐極體振膜獲得上述表現。所以,顯然複合多孔性PTFE/COC可有效地使表面電位增加約80%,且和原材料相比只增加了19%的重量。因此,根據庫倫定律和駐極體致動器之結構,改良的駐極體振膜對於增加可撓式駐極體喇叭之SPL值會有幫助。
所屬技術領域中具有通常知識者,在不脫離揭露於此之範圍和精神內,可對所揭露之實施例作不同修正與異動。
綜上所述,在不脫離下述之申請專利範圍及其均等範圍的情況下,揭露於此之內容涵蓋揭露於此之內容的修正與異動。
100...駐極體振膜
102...駐極體層
104...接合層
106...表面
108...鋁電極層
110...乙烯基聚合物
112...氟聚合物基材
200...圖案
202...厚部
204...薄部
206...導線
208...邊緣
300...圖案
302...皺褶
400、500...捲對捲設備
402、502...捲駐極體層
404...網板
406...印刷裝置
408...紅外光源
504...模具
600...喇叭
602...駐極體振膜
604...駐極體層
606...接合層
608...表面
610...鋁電極膜
612...有孔電極層
614...有孔平板
616...第一間隔元件
618...第二間隔元件
620...框架支撐元件
622...氟聚合物基材
624...乙烯基聚合物
626...聲室構造
628...表面
1200...可撓式喇叭
1202...帶電駐極體振膜
1204...間隔片
1206...有孔電極層
1208...間隔片
1210...有孔平板
所附之圖式是為了提供進一步的理解,引用於並構成本說明書的一部分。圖式用以圖示實施例,並搭配敘述用以解釋本發明之原理。
圖1為根據本發明之一實施例所示的一種駐極體振膜之剖面示意圖。
圖2A及2B為圖1之駐極體振膜的兩例之剖面示意圖。
圖2C為圖1之駐極體振膜的另一例的剖面示意圖。
圖2D為圖1中圖案化之接合層及圖案化之鋁電極層的一例的平面示意圖。
圖3A及3B為圖1中駐極體層的另外兩例之剖面示意圖。
圖4為用以製造圖2A-2C中之駐極體層的捲對捲設備的剖面示意圖。
圖5為用以製造圖3A及3B中之駐極體層的捲對捲設備的剖面示意圖。
圖6為根據本發明之另一實施例所示的一種喇叭之剖面示意圖。
圖7為標準多孔性PTFE之掃描式電子顯微鏡(SEM)影像。
圖8為複合多孔性PTFE/COC層之SEM影像。
圖9為於室溫下對多孔性PTFE以及複合多孔性PTFE/COC層測量靜態的表面電位之曲線。
圖10為於100℃下對多孔性PTFE以及複合多孔性PTFE/COC層測量靜態的表面電位之曲線。
圖11為多孔性PTFE以及複合多孔性PTFE/COC層的工程應力-應變曲線。
圖12為實驗三的一種可撓式喇叭的分解圖。
圖13為具多孔性PTFE以及複合多孔性PTFE/COC層的可撓式喇叭之軸上音壓強度(SPL)曲線圖。
100...駐極體振膜
102...駐極體層
104...接合層
106...表面
108...鋁電極層
110...乙烯基聚合物
112...氟聚合物基材

Claims (21)

  1. 一種駐極體振膜,包括:一駐極體層,其至少包括乙烯基聚合物與一氟聚合物基材,該乙烯基聚合物填入該氟聚合物基材中之孔洞;一接合層,其附著至該駐極體層之一表面,其中該接合層之材料包括乙烯/丙烯酸乙酯共聚物(EEA)或乙烯/醋酸乙烯酯共聚物(EVA);以及一鋁電極層,其附著至該接合層。
  2. 如申請專利範圍第1項所述之駐極體振膜,其中該氟聚合物基材包括織物型聚合物、不織布型聚合物或者多孔型聚合物。
  3. 如申請專利範圍第2項所述之駐極體振膜,其中該多孔型聚合物包括多孔性聚四氟乙烯(e-PTFE)。
  4. 如申請專利範圍第1項所述之駐極體振膜,其中該乙烯基聚合物包括環烯烴共聚物(COC)、聚氯乙烯(PVC)或者聚乙烯(PE)。
  5. 如申請專利範圍第1項所述之駐極體振膜,其中該駐極體層具有一圖案,該圖案是由複數個厚部與複數個薄部組成。
  6. 如申請專利範圍第5項所述之駐極體振膜,其中該鋁電極層位於該些薄部以外的該些厚部中。
  7. 如申請專利範圍第1項所述之駐極體振膜,其中該駐極體層具有由複數個皺褶形成的圖案。
  8. 如申請專利範圍第1項所述之駐極體振膜,其中該 接合層和該鋁電極層被圖案化成預定形狀。
  9. 如申請專利範圍第1項所述之駐極體振膜,其中該接合層和該鋁電極層被圖案化成不連通的陣列圖案。
  10. 如申請專利範圍第1項所述之駐極體振膜,其中該接合層和該鋁電極層被圖案化成部分連通和部分不連通的陣列圖案。
  11. 一種喇叭,包括:一有孔電極層;以及至少一駐極體振膜,相對於該有孔電極層,其中該駐極體振膜包括一駐極體層、附著至該駐極體層之一表面的一接合層、以及附著在該接合層上之一鋁電極層,其中該駐極體層至少包括一乙烯基聚合物材料與一氟聚合物基材,該乙烯基聚合物材料填入該氟聚合物基材中之孔洞,而該接合層之材料包括乙烯/丙烯酸乙酯共聚物(EEA)或乙烯/醋酸乙烯酯共聚物(EVA)。
  12. 如申請專利範圍第11項所述之喇叭,其中該氟聚合物基材包括織物型聚合物、不織布型聚合物或者多孔型聚合物。
  13. 如申請專利範圍第12項所述之喇叭,其中該多孔型聚合物包括多孔性聚四氟乙烯(e-PTFE)。
  14. 如申請專利範圍第11項所述之喇叭,其中該乙烯基聚合物材料由環烯烴共聚物(COC),聚氯乙烯(PVC)或者聚乙烯(PE)構成。
  15. 如申請專利範圍第11項所述之喇叭,其中該駐極 體層具有一圖案,該圖案是由複數個厚部與複數個薄部組成。
  16. 如申請專利範圍第15項所述之喇叭,其中該鋁電極層位於該些薄部以外的該些厚部中。
  17. 如申請專利範圍第11項所述之喇叭,其中該接合層和鋁電極層被圖案化成預定形狀。
  18. 如申請專利範圍第11項所述之喇叭,其中該接合層和該鋁電極層被圖案化成不連通的陣列圖案。
  19. 如申請專利範圍第11項所述之喇叭,其中該接合層和該鋁電極層被圖案化成部分連通和部分不連通的陣列圖案。
  20. 如申請專利範圍第11項所述之喇叭,其中該駐極體層具有由複數個皺褶形成的圖案。
  21. 如申請專利範圍第11項所述之喇叭,更包括一第一間隔元件,介於該駐極體振膜以及該有孔電極層之間。
TW099136143A 2009-10-22 2010-10-22 駐極體振膜與使用此駐極體振膜的喇叭 TWI465118B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US25410409P 2009-10-22 2009-10-22

Publications (2)

Publication Number Publication Date
TW201129112A TW201129112A (en) 2011-08-16
TWI465118B true TWI465118B (zh) 2014-12-11

Family

ID=44788224

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099136143A TWI465118B (zh) 2009-10-22 2010-10-22 駐極體振膜與使用此駐極體振膜的喇叭

Country Status (2)

Country Link
US (1) US8503702B2 (zh)
TW (1) TWI465118B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI343756B (en) * 2009-08-10 2011-06-11 Ind Tech Res Inst Flat loudspeaker structure
JP5404220B2 (ja) * 2009-07-09 2014-01-29 株式会社オーディオテクニカ コンデンサマイクロホン
TWI434576B (zh) * 2010-02-02 2014-04-11 Ef Materials Ind Inc 聚合物駐電薄膜及製作方法
KR101781551B1 (ko) * 2011-07-20 2017-09-27 삼성전자주식회사 전기에너지 발생 소자 및 그 구동방법
TWI455603B (zh) * 2011-08-18 2014-10-01 Univ Nat Taiwan 駐極體揚聲裝置
JP5834800B2 (ja) * 2011-11-15 2015-12-24 オムロン株式会社 表面電位センサ及び複写機
TWM457365U (zh) * 2012-11-09 2013-07-11 Raytrend Technology Corp 具多聲道輸出的靜電式喇叭
KR102102791B1 (ko) * 2013-02-27 2020-05-29 삼성전자주식회사 전자 장치
KR102329387B1 (ko) 2014-10-10 2021-11-22 삼성디스플레이 주식회사 고분자 일렉트렛트 및 이의 제조방법
CN106060721B (zh) * 2016-08-02 2021-12-03 常州阿木奇声学科技有限公司 一种振膜及其涂布方法
US11176918B2 (en) * 2016-11-30 2021-11-16 Yupo Corporation Piezoelectric element and musical instrument
CN110049411B (zh) * 2018-12-29 2021-01-15 瑞声科技(新加坡)有限公司 振膜及发声器件
CN110271119B (zh) * 2019-05-23 2021-07-20 深圳市伊声声学科技有限公司 一种利用模具制造防水透气膜的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4891843A (en) * 1983-02-24 1990-01-02 At&T Technologies, Inc. Electret microphone
US20020080684A1 (en) * 2000-11-16 2002-06-27 Dimitri Donskoy Large aperture vibration and acoustic sensor
JP2005191467A (ja) * 2003-12-26 2005-07-14 Nippon Valqua Ind Ltd エレクトレット固定電極用積層板の製造方法
US20090245547A1 (en) * 2008-03-10 2009-10-01 National Taiwan University Electret materials, electret speakers, and methods of manufacturing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4527218A (en) 1981-06-08 1985-07-02 At&T Bell Laboratories Stable positively charged Teflon electrets
US6432175B1 (en) 1998-07-02 2002-08-13 3M Innovative Properties Company Fluorinated electret
TWI264960B (en) 2004-12-20 2006-10-21 Ind Tech Res Inst Electrostatic electro-acoustic transducer
TW200726290A (en) 2005-12-16 2007-07-01 Ind Tech Res Inst Electro-acoustic transducer and manufacturing method thereof
US8098855B2 (en) * 2008-01-04 2012-01-17 National Taiwan University Flexible electret actuators and methods of manufacturing the same
JP5055203B2 (ja) * 2008-05-30 2012-10-24 株式会社オーディオテクニカ コンデンサマイクロホン用の振動板およびその製造方法並びにコンデンサマイクロホン
TWI462598B (zh) 2008-08-06 2014-11-21 Univ Nat Taiwan 駐極體薄膜之製造方法及包含該駐極體薄膜之揚聲器
US8855350B2 (en) * 2009-04-28 2014-10-07 Cochlear Limited Patterned implantable electret microphone

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4891843A (en) * 1983-02-24 1990-01-02 At&T Technologies, Inc. Electret microphone
US20020080684A1 (en) * 2000-11-16 2002-06-27 Dimitri Donskoy Large aperture vibration and acoustic sensor
JP2005191467A (ja) * 2003-12-26 2005-07-14 Nippon Valqua Ind Ltd エレクトレット固定電極用積層板の製造方法
US20090245547A1 (en) * 2008-03-10 2009-10-01 National Taiwan University Electret materials, electret speakers, and methods of manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R. Gerhard-Multhaupt, et al.,"Preliminary study of multi-layer space-charge electrets with piezoelectric properties from porous and non-porous Teflon films",10th International Symposium on Electrets IEEE,1999 *

Also Published As

Publication number Publication date
TW201129112A (en) 2011-08-16
US20110255720A1 (en) 2011-10-20
US8503702B2 (en) 2013-08-06

Similar Documents

Publication Publication Date Title
TWI465118B (zh) 駐極體振膜與使用此駐極體振膜的喇叭
JP5615988B1 (ja) 圧電積層体
Gheibi et al. Piezoelectric electrospun nanofibrous materials for self-powering wearable electronic textiles applications
TWI434576B (zh) 聚合物駐電薄膜及製作方法
TWI386074B (zh) 駐極體材料、駐極體揚聲器與其製造方法
US20090245547A1 (en) Electret materials, electret speakers, and methods of manufacturing the same
US9484524B2 (en) Piezoelectric compositions
JP2013513230A (ja) 圧電性ポリマーフィルム素子、特にポリマー箔、およびその製造方法
CN100505359C (zh) 一种可控微孔结构压电功能膜的制备方法
US20140134418A1 (en) Forming a piezoelectric membrane
JP2014212307A (ja) 電気音響変換フィルム
KR101285415B1 (ko) 압전 복합 소재
CN101654524A (zh) 驻极体材料、驻极体扬声器及其制造方法
TW201021259A (en) Electromechanical transducers, processes for producing the same and uses therefor
CN114008804A (zh) 压电薄膜
TWI827851B (zh) 高分子複合壓電體及壓電薄膜
Xu et al. Micropatternable elastic electrets based on a PDMS/carbon nanotube composite
TWI491273B (zh) 駐極體揚聲裝置
JP2007227001A (ja) 高分子柔軟電極およびそれを用いたエレクトロデバイス
JP6340156B2 (ja) ナノファイバー構造体
TW202136034A (zh) 壓電薄膜
TWI462598B (zh) 駐極體薄膜之製造方法及包含該駐極體薄膜之揚聲器
Lee et al. Frequency Selectivity via Inner Boundary Conditions for A Self‐Powered Multiresonant Acoustic Sensing Array with Broad Bandwidth
CN114303394B (zh) 压力波产生元件及其制造方法
WO2017030045A1 (ja) 電気音響変換フィルム、電気音響変換フィルムの製造方法および電気音響変換器