TWI459711B - 電動馬達及操作一馬達的方法 - Google Patents

電動馬達及操作一馬達的方法 Download PDF

Info

Publication number
TWI459711B
TWI459711B TW099139801A TW99139801A TWI459711B TW I459711 B TWI459711 B TW I459711B TW 099139801 A TW099139801 A TW 099139801A TW 99139801 A TW99139801 A TW 99139801A TW I459711 B TWI459711 B TW I459711B
Authority
TW
Taiwan
Prior art keywords
motor
value
duty cycle
rotor
zero
Prior art date
Application number
TW099139801A
Other languages
English (en)
Other versions
TW201136135A (en
Inventor
Lynn R Kern
Scott C Mcleod
Kenneth W Gay
Original Assignee
Standard Microsyst Smc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Standard Microsyst Smc filed Critical Standard Microsyst Smc
Publication of TW201136135A publication Critical patent/TW201136135A/zh
Application granted granted Critical
Publication of TWI459711B publication Critical patent/TWI459711B/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/004Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying driving speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

電動馬達及操作一馬達的方法
本發明一般而言關於用在各種應用的DC(直流電)馬達,例如,硬碟驅動馬達,冷卻風扇,用於電器的驅動馬達等。
一電動馬達使用電能產生機械能,電動馬達用於大量的電器中,包括,一些不同的家電用品,泵,冷卻風扇等。一般,馬達可分類為交流(AC)馬達、或直流(DC)馬達。
一般,馬達包括轉子,其是馬達的非靜止(移動)部分,以及定子,其是馬達的靜止部分。一般,定子操作為場磁鐵(例如,電磁鐵),與電樞相互影響而在轉子中引發運動。馬達的金屬線以及磁場(通常在定子中)配置為使轉矩沿著轉子的軸發展,造成轉子的轉動。馬達通常亦包括換向器,其是將電動馬達中的電流方向週期性反向的電開關,幫助在轉子中引發運動。換向器在馬達中攜帶電流,且一般被定向至磁場以及被產生之轉矩的法線。換向器的目的是攜帶電流穿越磁場,以因此在馬達中產生軸轉矩,以及產生電動勢(「EMF」)。
在一典型的有刷DC馬達中,轉子包括環繞軸的一、或多個金屬線線圈。電刷被用來造成與該轉子上的一組電接觸(稱為換向器)的機械接觸,以形成該DC電源以及該等電樞線圈繞組之間的一電路。當該電樞在軸上旋轉時,該等靜止電刷會與轉動中的換向器的不同區段接觸。該電樞以及電刷系統形成一組電開關,每一個輪流發動,因而使得電力總是會流經最靠近該靜止定子(永久磁鐵)的電樞線圈。因此,一電力源會被連接至該轉子線圈,造成電流流動以及產生電磁。電刷被用來壓抵於該轉子上的該換向器,以及提供電流至該轉動中的軸。當該轉子轉動時,該換向器造成該等線圈中的電流被切換,以避免該轉子的該等磁極與該定子場的磁極總是完全對準,因此維持該轉子的轉動。電刷的使用會在該馬達中產生摩擦力,造成維修問題以及降低的效率。
在無刷式DC馬達設計中,該換向器/電刷裝置組合(其為有效的機械「轉動開關」)被與該轉子位置同步的外部電子開關所取代。因此,無刷式DC馬達會具有電子控制的通訊系統,以取代以電刷為基礎的機械通訊系統。在無刷DC馬達中,該等電磁鐵不會移動,而是該永久磁鐵轉動,以及該電樞維持靜止。此避免了必須將電流轉移至該移動中電樞的問題。無刷式DC馬達所提供優於有刷DC馬達的優點包括,較高的效率以及穩定性,降低的噪音,較長的壽命(無電刷侵蝕),消除來自該換向器的電離火花,以及電磁干擾(EMI)的整體降低。
被用來降低在一些應用中的所需電力的技術是,導入三相無刷式馬達。典型地,用於這些馬達的驅動電子電路所仰賴的是霍爾元件(Hall effect element)(霍爾效應感測器),以在所有時間偵測該轉子的絕對位置,以及切換驅動電晶體,進而維持馬達轉動。一霍爾效應感測器是一轉換器,其會回應磁場中的改變而變化其輸出電壓。該等馬達通常會電連接成一「Y」架構,其命名是由於類似於字母「Y」。該三個線圈的共點會被連接至該電源,以及該驅動電子電路會切換該等驅動電晶體,以維持轉動該馬達所需的該轉動中電磁場。
第二種方法需要使用六(6)個驅動電晶體。在此架構中,一對高端以及低端在任何時間點皆為開啟,以透過該馬達的三隻腳中的二隻來完成該電子電路。將未供應能量的線圈使用作為磁性感測器而來決定該轉子位置係已知為反電動勢(BEMF)偵測。此技術的動機是除去相對而言較貴的霍爾元件以及相關連的電子電路。BEMF交換技術已成功地應用於大範圍的馬達。
為了將馬達的速度控制為特定的指令(不論是電壓、或PWM工作週期),發展出了錯誤訊號。理論上的方法是,在該轉子通過該定子線圈時測量該BEMF訊號的斜率,並使用該資訊來決定該轉子的位置。此想法是,若該BEMF訊號自其中點偏移,就表示該轉子正在偏離該電性換向。若該BEMF訊號太高且太早,就表示該轉子的旋轉比該電性換向更快。同樣地,太慢且太晚的BEMF訊號就表示該轉子的旋轉比該電性換向更慢。在過去,於數位電路中發展此種型態的錯誤訊號需要微控制器、或微處理器,以及高速類比數位轉換器(ADC)。替代地是,發展類比電路來產生參考脈衝列,以及使用類比元件來對該BEMF訊號進行鎖相。
這些解決方法提供某些程度上的電力節省,但並未到所預期的程度。大部分,若並非所有的這些解決方案都被設計用於特殊的馬達型態,再加上不同應用間、甚至不同製造者之間未良好地變換。每一種馬達型態都需要調諧電容器來調整換向以及啟動頻率,以及在換向順序中的跨越以及滯定位置。
習知解決方法中唯一的最大不足是,缺乏電力節省的實現。所有文獻討論的是比其他解決方法節省15-30%範圍的電力,最多是被驅動馬達的中間範圍50%。當一些應用文獻討論用來降低利用PWM方法切換靜止電磁鐵時所產生的聲頻噪音的技術的同時,並未提到在此方法中驅動馬達線圈所需要的額外電力。此想法在於降低當驅動電晶體被關閉時所造成的整體感應尖波。文獻主張,以比該換向頻率高上非常非常多的速率切換線圈將可「軟化」該切換以及降低該聲頻記號。取決於「軟化」上升以及下降邊緣二者所需要的時間量,發現最多30%的整體時間中所有三個驅動電晶體傳導、增加1/3電流消耗,因為所有3個線圈都進行傳導。
一些實施並未控制到達驅動電晶體的PWM訊號的頻率、或工作週期,而是讓進入的PWM直接調變訊號。無能力限制頻率、或工作週期就表示,該馬達無法在一特定的操作點被理想地驅動,而是在能夠、或不能夠瞭解馬達限制的外部裝置的控制下。此將造成該馬達使用比所需更多的電流,產生必須要從系統移除的額外熱量。
PWM控制亦有問題存在。典型地,習知方法需要能夠執行比例-積分-微分(PID)控制操作之分開的速度控制裝置,以維持固定的RPM。該馬達驅動器通常被假設僅知即時角速度,要瞭解真實RPM所需要的總是在該馬達驅動器裝置的外部。
因此,有需要改善馬達設計以及操作。
當冷卻任何計算平台時,必須要消耗電力來移除在該系統中的其他零件所產生的熱。傳統上,對此並未太過關心,因為平台所消耗的電力比起風扇要高上許多。當所有平台的電力消耗被降低時,該冷卻系統消耗的電力不是可用來延長膝上型電腦的電池壽命,就是可降低伺服系統的碳足跡。因此,亦有需要改善於冷卻系統中使用的馬達。
各種實施例呈現用於控制無刷式三相DC馬達的系統以及方法。該馬達可以是電動馬達,且可包括具有一、或多個永久磁鐵的轉子。該一、或多個永久磁鐵可於物理上位在該馬達的靜止區段的內側或外側,稱之為定子,其可包括複數電磁鐵。該馬達可包括電壓感測器,被配置用於測量跨越一、或多個電磁鐵所感應的電壓。該電壓感測器可是該電磁鐵的一部分。每一個電磁鐵可包括如此的一電壓感測器,或替代地,一電壓感測器可用於測量一些或所有電磁鐵的電壓。替代地,該馬達可包括一或多個霍爾感測器、或其他用來測量電壓的等義感測器。
該系統可包括用於控制該馬達的操作的邏輯。該邏輯可以是類比的、或數位的,例如,該邏輯可包括一、或多個以狀態機為基礎的控制器及/或是一、或多個專用積體電路。作為替代(或額外地),該馬達可包括一處理器,例如,一微控制器,以及儲存有可執行來控制該馬達的程式指令的一電腦可存取記憶媒體。該處理器可被配置為執行來自該記憶媒體的程式指令,以控制該馬達。
該邏輯可被配置用於反覆地執行下列的步驟:可於第一預期零交叉數值處測量電壓。在一實施例中,可於第一預期零交叉數值處取樣該轉子的旋轉所感應產生的電壓。該電壓是跨越複數個電磁鐵的未驅動電磁鐵所感應產生的。取樣此感應電壓可產生第一取樣電壓數值。計算複數個取樣電壓數值的平均。該複數個取樣電壓數值可包括在複數個先前預期零交叉數值處所取樣的電壓數值以及該第一取樣電壓。接著,計算所得的該平均會被減去該第一取樣電壓數值,以產生零交叉誤差差值。該零交叉誤差差值可被用於調整一脈寬調變(PWM)工作週期。
在一些實施例中,該零交叉誤差差值可乘上一第一常數,其中,該第一常數可代表該馬達的電機特性。因此,以該零交叉誤差差值為基礎而調整該PWM工作週期牽涉到以該倍增的零交叉誤差差值為基礎而調整該PWM工作週期。替代地,在一些實施例中,該倍增零交叉誤差差值被除以第二常數(例如,產生一依比例零交叉誤差差值),接著被截短,例如,成一整數,以產生截短的依比例零交叉誤差差值。在一些實施例中,調整該PWM工作週期的步驟可以該依比例截短零交叉誤差差值為基礎。
調整該PWM工作週期可包括調整一基礎PWM工作週期。該基礎PWM工作週期可根據最小工作週期以及輸入指令而計算。該輸入指令可由最小工作週期擴展至最大工作週期。該輸入指令能夠以一可調整間隔進行更新,例如,該方法的反複數量,或時間量。在一些實施例中,該可調整間隔的調整依據可為1)自該方法的初始(例如,初始反覆)起的已發生間隔數量;或2)自該方法的初始起的已發生時間量;或3)該馬達的已評估、或已計算速度。
該(已調整)PWM工作週期可被用於控制該轉子的轉速。在一些實施例中,角速度亦可被用於控制該轉子的該轉速。該角速度數值可根據該輸入指令而決定。因此,在一些實施例中,在該定子上的複數個電磁鐵可受到頻率以及功率是由該PWM工作週期所規定的電流的週期性叢發的驅動,進而在一特定轉速驅動該轉子,在此同時,該角速度數值可被用來決定可用於決定該定子上的電磁鐵的換向時間的一、或多個時間數值,以使得該定子的電磁場可於實質上維持與該轉子的最佳對準,進而實現對於處在該個特定轉速的轉子的有效電力轉移。
前述的方法可重複複數個反覆,在一實施例中,來自在前反覆的下一個預期零交叉數值會被使用做下一個反覆的該第一預期零交叉數值。
相較於習知設計,上述方法提供顯著的馬達效能,例如,增加的效率。特別地是,上述的方法更正確地藉由簡單地回應一特定負載,而將該負載的所需電流相配至所需的轉速,而實現更有效率的能量使用。此外,上述方法由於截短步驟而可降低停頓發生的頻率,進而潛在地造成平穩的執行以及額外的能量節省。再者,該方法相較於習知設計的複雜度降低允許了更堅實以及有效的控制機制設計,其更進一步降低整體的電力使用。
在本發明允許各種修正及替代形式的同時,其特殊實施例亦經由圖式中的例子作為顯示且在此進行詳細敘述。然而,應該瞭解的是,圖式以及詳細敘述並非意欲於將本發明限制為所揭示的特別形式,相反的,目的在於涵蓋落在本發明藉由所附申請專利範圍而定義的精神與範疇內的所有修正、等義、以及替代。
圖1A以及圖1B-示範性風扇以及風扇馬達
圖1A以及圖1B舉例說明根據一實施例的示範性風扇組合110。該風扇110可以是冷卻風扇,舉例而言,用於膝上型電腦、或桌上型電腦的風扇。該風扇110可替代地為商用、或工業用風扇,或一般而言,由馬達所驅動的任何型態風扇。該風扇組合110可包括馬達組合100以及風扇葉片120。該馬達組合100可包括馬達(102,圖2),以及用於控制該馬達102的驅動電路(402,圖4)。
雖然圖1A以及圖1B舉例說明作為該馬達所驅動的負載的風扇,應該要注意地是,在此所敘述之控制馬達的系統以及方法適合於驅動任何各種型態的負載,包括,但不限於,硬碟機,用於電器、推進器、輪子、泵、或其他負載的驅動馬達。
圖2-無刷式四極三相馬達
圖2舉例說明示範性無刷式四極三相馬達102的一簡示圖。該馬達102具電力供應,例如,藉由直流(DC)電。該馬達亦可被電子式控制。該馬達102可包括轉子202,其可包括一、或多個永久磁鐵。該轉子202可具有四個磁極,如圖所示。取代地,該轉子202可包括二、六、或其他數量的磁極。該馬達可包括構成為環繞該轉子202的定子204,其包括複數個電磁鐵206。可以有六個電磁鐵206,其可配置在該定子204周圍等距處。該電磁鐵206可以配置為三對電磁鐵206,以使得每一對電磁鐵都能各自以不同於其他對的相位被供給電力。該三對電磁鐵206可以連接成「Y」架構。因此,該馬達102可以是一三相馬達。該馬達102可以是無刷式,例如,不包括任何連接電流至該轉子202的電刷。此外,該馬達102可以是無感測器的,例如,不包括離散轉子位置偵測機制,例如,一、或多個霍爾感測器。在另一實施例中,該馬達102包括霍爾感測器。在該定子204上的該三對電磁鐵的其中二對可在任何特定的時間受到驅動而引發、或維持該轉子202的轉動。接著,該馬達102利用該定子204的其中一個未受驅動電磁鐵而間接地偵測該轉子202的位置(或可以利用霍爾感測器)。該定子204的相位能夠以被理想配置用於引發該轉子202的轉動的模式而進行驅動。電磁鐵206的極性可以週期性地換向,以作為此模式的一部分。
圖3-無刷三相馬達的換向模式
圖3舉例說明描繪根據一實施例之無刷三相馬達的換向模式的簡化電路圖。該馬達102可以是如上所述的無刷三相DC馬達。電磁鐵206可以如所顯示地連結成「Y」架構。該馬達102亦可以如前所述地為無感測器馬達,例如,可利用未驅動定子電磁鐵來間接偵測該轉子的位置(或是該馬達102可以包括霍爾感測器)。該馬達102能夠以讓該轉子202以所需的轉速旋轉的方式而決定該換向模式的每一個換向時機。為了控制該轉子202的旋轉,在該定子204上的二對電磁鐵可以在任一時間被驅動,特定的一對可以在「高端」、或「低端」上被驅動。以指示直流電已流經該對電磁鐵的繞組。取決於在該轉子中磁極的數量,一對電磁鐵中的電磁鐵的被纏繞方向可以為相同、或相反。舉例而言,當具有一四極轉子(如圖2所示)時,繞組可以被配置使得一對電磁鐵的相反側對該轉子呈現相同的磁性(例如,「S」),當具有一二極轉子時,繞組可被配置為相對側呈現相對的極性(例如,一「S」,一「N」)。因此,在一些情況下,用來定義「高端」以及「低端」所指出的磁性的慣例是取決於轉子磁力學,也有可能是其他的命名及/或驅動慣例。
一換向循環可以包括六個相位。這些相位可以對應於在圖3中所編號的箭頭。在圖3中,每一個箭頭都是由高端驅動對指向低端驅動對。因此,舉例而言,「1」可指出在該循環的第一相位中,「U」電磁鐵對302可以在該高端被驅動,此時,「V」電磁鐵對304可以在該低端被驅動,此時,「W」電磁鐵對306可以維持未驅動。接著,「2」可指出在該循環的第二相位中,「U」電磁鐵對306可再次於該高端被驅動,此時,「W」電磁鐵對304可以在該低端被驅動,此時,「V」電磁鐵對302可以維持未驅動。剩下的已編號相位的每一個都可以以類似的方式操作,以產生完整的換向循環,其可重複來增加、維持、或另一方面影響該轉子的轉動。
若該馬達102是一DC供應馬達,轉速可藉由電磁鐵的脈寬調變(PWM)裝置而進行控制。一般而言,PWM工作週期可指出該轉子202應該要轉多快。更特別地是,該PWM工作週期可明確規定要多常以及要用多少電力來驅動該轉子的電磁鐵。因此,被用來在任何特定時間驅動該馬達102的該PWM工作週期可典型地以該轉子202的一所需轉速為基礎。此外,根據在此所敘述的一些實施例中,可基於該轉子202的真實位置以及該轉子202的預期位置之間的差異而在該馬達的操作期間對該PWM工作週期進行調整。
正如前面所提及,一對電磁鐵可在該換向循環的每一個相位期間維持未驅動。若該轉子202正在旋轉,在該轉子202中的該一、或多個永久磁鐵通過該未驅動電磁鐵的移動將在該未驅動電磁鐵中造成感應電壓。因此,在該換向循環的每一個相位期間,無論是哪一對電磁鐵為未驅動,都可被用來取樣在那些電磁鐵的其中一、或二者中因該轉子202中的永久磁鐵的轉動所感應產生的電壓。此亦已知為BEMF取樣,所取樣的電壓可被用來幫助決定該轉子202現在的位置及/或轉速。該取樣電壓、或由該取樣電壓推論而得的資訊可被用來控制PWM工作週期、未來的換向時機,及/或根據各式實施例的其他方面馬達控制。正如前面所提及,在一實施例中,該馬達102包括霍爾元件(霍爾效應感測器),以偵測該轉子的絕對位置,而此實施例中,不會使用BEMF取樣。
圖4-具驅動控制邏輯馬達的電路圖
圖4舉例說明馬達以及其驅動控制邏輯402的簡化電路圖。該馬達可以如前所示且如於各個圖式中所舉例說明的是一無刷式三相馬達。正如所示,該馬達可包括一定子204,其可包括三對電磁鐵,每一對電磁鐵可具有一對相對應的電晶體,例如,場效電晶體(FETs)。電晶體可被配置為使每一對電磁鐵於實際上為雙極,例如,極性為可逆。換言之,對每一對電磁鐵而言,一電晶體在高端驅動該對,或另一個電晶體在低端驅動該對。舉例而言,FET 404可為該「U」對302的高端電晶體,而FET 406可為該「U」電磁鐵對302的低端電晶體。類似地,FETs 414、416可分別為該「V」電磁鐵對304的高端以及低端電晶體,而FETs 424、426可分別為該「W」電磁鐵對306的高端以及低端電晶體。除了特別實施例所顯示的以外,任何數量的其他繞組架構(例如,利用不同數量或型態的電晶體)都是有可能的。
每一對電磁鐵的電晶體可以受到驅動控制邏輯402的控制。該驅動控制邏輯402可以是配置為執行在此所述的各種操作的電子邏輯,如,例如,跨越電磁鐵所感應產生的取樣電壓,執行用以決定用於控制電磁鐵的數值的計算(例如,簡單積分運算或更複雜的操作),及/或發送控制及/或電力訊號至電磁鐵。該驅動控制邏輯402亦可接收來自一、或多個外部控制裝置(例如,風扇速度控制裝置)的訊號。舉例而言,風扇速度控制裝置可週期性地發送一輸入指令,以根據外部狀況,例如,一環境溫度,而指示馬達速度的所需改變,該驅動控制邏輯402可將此併入其控制計算中。其他的外部控制裝置亦是可預想的。替代地,如此的控制裝置可以併入該驅動控制邏輯402本身之中。
除了在此所敘述的任何靜止狀態或自然換向控制邏輯功能之外,該驅動控制邏輯402具有用於在其他狀況下控制該馬達的邏輯;舉例而言,該驅動控制邏輯402可包括用於DC激發操作的邏輯;以在轉動開始之前將該轉子校準至一已知位置;用於使該轉子開始轉動的強迫換向操作的邏輯;用於停止該轉子的轉動的邏輯;用於決定是否存在一停頓狀況的邏輯、及/或用於其他功能的邏輯,以及用於在一適當時間從一功能切換至另一功能的邏輯。
該驅動控制邏輯402本身可以是任何各種型態的邏輯,例如,類比的或數位的、或是其結合。舉例而言,該驅動控制邏輯402可以實施為一處理器,例如,一微控制器,執行包括在一記憶媒體上的指令,一以狀態機為基礎的數位控制器,一現場可程式閘陣列(FPGA)、及/或一混合訊號專用積體電路(ASIC)。替代地,該驅動控制邏輯402可包括上述的任何結合。因此,該驅動控制邏輯可利用任何的各種數位或類比技術、或其結合而實施,正如對本領域具通常知識者而言很明顯一樣。
圖5-舉例說明控制馬達的靜止狀態操作的方法的流程圖
圖5舉例說明根據一實施例之控制馬達的靜止狀態操作的方法。馬達的靜止狀態亦已知為該馬達的自然換向操作。靜止狀態或自然換向可關連於該轉子已在旋轉時的馬達操作。換言之,自然換向可關連於在該轉子已動作後維持或調整該轉子的轉速。在一些實施例中,馬達可使用不同於其用來維持或調整已在轉動轉子的轉速的方法(例如:不同的控制邏輯)而起始靜止轉子的轉動。
該馬達102可以是如前所述以及如在各個圖式中所舉例說明的無刷式三相馬達。因此,該馬達102可包括轉子202,其可包括一、或多個永久磁鐵。在該轉子202上的該一、或多個永久磁鐵可包括四個磁極;替代地,該永久磁鐵可包括二、六、或其他數量的磁極。該馬達亦可包括定子204。該定子204可位在該轉子202的周圍,並可包括複數個電磁鐵206。舉例而言,可以有六個電磁鐵206在該定子204上,其可操作為三對電磁鐵206,每一對電磁鐵302、304、306可以彼此相對,該複數個電磁鐵206可以平均地分佈在該定子204周圍、各個不同的所述電磁鐵可在不同時間、及/或在不同相位中受到各式電壓及電流的驅動,以使該轉子202受到電磁感應而旋轉。
在圖5中所舉例說明以及接下來所敘述的方法,能夠根據各式的實施例而以反覆的方式操作。當該轉子202旋轉時,該馬達102的控制需要時常地調整,例如,為了更有效率的馬達操作而將該PWM工作週期調整為相配於電磁鐵的換向時機。因此,下述方法的中一些或全部步驟可根據各式的實施例而在該馬達102的操作期間重複無限數量的反覆。
該方法是藉由該馬達組合100中所包含的邏輯402而實現;舉例而言,該邏輯402(其執行在此所述的該方法)可包括處理器,例如,微控制器,執行包含在記憶媒體上的指令;以狀態機為基礎的數位控制器;及/或混合訊號專用積體電路(ASIC)。替代地,該方法可利用上述的任何結合而實現。
在502中,感應電壓在預期的零交叉處進行取樣,以產生第一電壓值。當該轉子202(例如,包括永久磁鐵)轉動時,其可在依次通過該複數的電磁鐵206的每一個時,於其中感應產生電壓。在驅動該馬達102的過程中,當電磁鐵的其中之一未被驅動活化時,例如,可能未供應電力,就有可能測量該轉子202橫跨該電磁鐵的轉動所感應產生的電壓。類似的感應電壓可在複數個先前所預測的零交叉處取樣,基於如此的事先感應電壓取樣,當橫跨特定的未供電電磁鐵的該電壓被預期與零交叉時,可以有特定的時間。因此,在此預期零交叉處取樣該感應電壓可提供指示該轉子202的真實位置及/或速度的資訊。舉例而言,小的、或大的正、或負電壓可指示該轉子202的位置是比預期的更靠近或遠離該個電磁鐵的前方或後方。在此預期零交叉處對於該感應電壓的取樣於此稱之為「第一電壓值」。該第一電壓值可接著被用在接續的步驟中,以決定馬達控制中的任何調整。
在一替代實施例中,霍爾元件(霍爾效應感測器)被用來偵測該轉子的絕對位置,以取代BEMF取樣。在本發明使用霍爾感測器的實施例中,在此所敘述的某些訊號處理可被輕微地修正。舉例而言,接下來的計算仍會執行,但可包括偏移以及不同的增益數值。作為一個例子,該霍爾感測器測量可受到處理而表現為BEMF訊號,並且,可接著執行下面所敘述的方法。
在504中,計算在複數個預期零交叉數值處所取樣的先前電壓值以及該第一電壓值的平均。跨越未使用電磁鐵的感應電壓可類似地在事先預測的零交叉處進行取樣。因此,就有可能計算數個事先取樣電壓值與該第一電壓值的平均。舉例而言,該平均可包括遍佈整個換向循環取樣的電壓值。例如,若一個換向循環有六個電磁鐵以及六個相位,5個事先取樣電壓值可與該第一取樣電壓值進行平均,因此,所計算的平均可在計算預期零交叉時提供最近平均誤差的指標。
在506中,該計算所得平均可被減去該第一電壓值,以產生一零交叉誤差差值。在任何馬達內部的真實世界狀況將會是非均勻的,換言之,在該馬達102內部的任何磁場,及/或該馬達102的電磁鐵206,永久磁鐵,以及其他部分或方面並不會完全均勻地相同。藉由建立非零平均(在步驟504中),以及自該平均減去該第一電壓值(在步驟506中),此操作平衡於整個換向循環過程中,在一特定已取樣電壓中,真實世界非均勻的任何效應。因此,利用此零交叉誤差差值(例如,在更進一步的計算之後)做為馬達控制的一部分是讓馬達磁力學能大致上保持理想地對準驅動定子電磁學的方法。
在一些實施例中,將該零交叉誤差差值乘上該第一常數以產生一增加的零交叉誤差差值。該第一常數代表馬達的機電特性。及/或被驅動之負載的特性。各種馬達架構具有不同的電機特性。此外,若該馬達102正在驅動負載,就需要考慮該負載的特性。舉例而言,若該馬達正在驅動風扇,在該馬達上所呈載的負載就會不同於該馬達正在驅動輪子。因此,該第一常數可根據特定馬達的電機特性以及正在驅動的負載而決定。該第一常數的決定可使得,當其乘上該零交叉誤差差值時,在考慮到該馬達102的電流狀態的情形下,其將會產生對讓該馬達102以理想的效率運轉可用(例如,直接、或間接地)的數值,由該第一取樣電壓值以及事先取樣的電壓值做為代表。
在一示範性實施例中,用於特定馬達設計的該第一常數的最佳數值可依實驗決定。該第一常數的數值的決定可舉例而言藉由首先將該常數設定為一任意的數值(例如,任意低值),然後在該馬達的操作期間觀察當該第一常數的數值變化時的轉速計頻率及/或電流突波(例如,藉由使用示波器),以及最後將該第一常數決定為轉速計頻率及/或電流突波的變化最小時的數值。在一些實施例中,該第一常數的數值可以部分關連於第二常數的數值而決定,如下所述。該轉速計頻率以及電流突波可以是該零交叉誤差預測於換向循環中的平衡程度的指標。換言之,若該轉速計頻率不穩定、或在馬達電流中有大突波,其可表示電磁鐵並非以均勻的間隔進行換向,其可能是該控制迴路不穩定的指示(例如,過度調整、或調整不足)。因此,決定可最小化該轉速計頻率變化、及/或電流突波的該第一常數的數值可讓該控制迴路的穩定性最佳化。在一些實施例中,該第一常數的最佳數值可在轉速計頻率以及電流突波中產生少於1%的變化量。在一些實施例中,一旦已依實驗而決定特定馬達設計的該第一常數的最佳數值後,該第一常數可被用於相同設計的任何馬達。
在一些實施例中,將該零交叉誤差差值乘上該第一常數所產生的數值接著被除以第二常數,舉例而言,在利用積分運算的系統中。除以第二常數(若使用積分運算)的一個優點是,可以截短(亦即,稍微地減少)該數值。藉由截短此數值,該馬達102可在稍低於峰值的效率操作,為了保留一些調整任何環境條件改變(例如,額外轉矩的需求)的能力,而不造成停頓狀況,這可能是需要的。因為其需要較不複雜的計算電路,利用積分運算有助於利用自身的力量。利用在積分運算除法中為固有的該截短能力可提供此額外的優勢。該第二常數可關連於該第一常數而決定,例如,以同時最小化轉速計頻率變化以及電流突波,以及在適當的解析度截短該數值。替代地,在該第一常數是考慮到該第二常數而決定的同時,該第二常數可最佳地決定為可用於所有的馬達(例如,理想的第二常數不取決於特定的馬達型態)。該第二常數亦可在一開始依實驗決定,以最佳化該馬達的效率。舉例而言,若該第二常數太小,該驅動控制方法可能變得容易不穩定(例如,可能相對而言較頻繁地發生停頓狀況)。另一方面,若該第二常數太大,效率會被降低。因此,產生良好效率以及穩定性的最佳中間值可依實驗而決定。因此,在一些實施例中,在除以該第二常數後所得的數值可以是依比例截短的零交叉誤差差值。
根據一實施例,該零交叉誤差差值的一個例子可以是-14、該第一常數可以是30,而該第二常數可以為16。因此,步驟506可包括計算式int(-14*30)=420以及int(420/16)=26。在此例子中,該依比例截短零交叉誤差差值則可為-26。
在508中,脈寬調變(PWM)工作週期可依據該零交叉誤差差值而進行調整。在許多實施例中,此可包括依據由該零交叉誤差差值計算所得的數值,例如,如上所述的該倍增零交叉誤差差值、或該依比例截短的零交叉誤差差值,而調整該PWM工作週期。
所調整的該PWM工作週期可以是被計算來將在特定轉速驅動該馬達的基礎PWM工作週期。該基礎PWM工作週期可以是依據最小工作週期以及輸入指令而計算得出。該最小工作週期可以是驅動該定子上的電磁鐵的線圈所需要的最小工作週期。該輸入指令可以由數值零,或在一些實施例中,由小的非零數值(在此情況下,該PWM工作週期(精確地、或大略地)為該最小工作週期)擴展至最大值(在此情況下,該PWM工作週期利用該馬達可得的最大驅動電流而驅動該馬達)。初始輸入指令可為預設,或替代地,可接收自控制裝置。該輸入指令可由該控制裝置進行週期性地更新。該輸入指令的更新週期可長於該方法反覆的週期,在該方法於該輸入指令的更新之間的任何反覆中,該輸入指令的最新更新繼續被用於PWM工作週期計算。
對於該輸入指令的更新可指示維持、增加、或減少該馬達102的轉速的需求。發送該輸入指令及/或輸入指令更新的該控制裝置可以是一個控制裝置,例如,風扇速度控制裝置。若舉例而言,該馬達102正在驅動冷卻風扇110,該風扇速度控制裝置可根據在欲冷卻位置所測量的一、或多個溫度而更新該輸入指令。因此,在此實例中,若所測得的溫度太熱,該控制裝置可發送一輸入指令來增加該PWM工作週期驅動,例如,增加該轉子202的轉速,以藉此增加空氣循環以及移除過量的熱。應該要注意地是,其他型態的控制裝置,例如,用於其他型態的馬達負載,也是可預想的。
因此,該基礎PWM工作週期可如上所述地進行計算。接著,為了保持該轉子理想地與該換向模式以及時機對準該依比例截短零交叉誤差差值可被使用作為校正真實轉子位置的任何偏移的調整。舉例而言,在一實施例中,該基礎PWM工作週期可減去該依比例截短零交叉誤差差值而得出一已調整PWM工作週期。
該已調整PWM工作週期可被用於控制該轉子的轉速。在一些實施例中,該PWM工作週期可與一、或多個其他數值一起用於控制該轉子的轉速。舉例而言,在一些實施例中,一角速度數值可用於控制該馬達中電磁鐵的換向時機。在一些實施例中,一角速度數值亦可是依據該輸入指令而產生。該輸入指令所產生的角速度數值可代表該PWM工作週期應該產生的轉速,以及因此,可與該PWM工作週期一起用來使該轉子以所需的轉速旋轉,亦即,控制該馬達的靜態操作。
在一些實施例中,一角速度數值可用於產生一或多個時間數值。該一、或多個時間數值可代表一期間,舉例而言,該轉子的部份繞轉的時間期間。該期間可以是7.5度、或機械繞轉的1/48。該一、或多個時間數值可代表電磁鐵的下一個換向之前的時間量。換言之,在一些實施例中,該一、或多個時間數值可代表下一個預期的零交叉數值。
在一些實施例中,一、或多個計算式可被用於自該角速度數值產生該一、或多個時間數值。舉例而言,可以有第三常數被用於將最終角速度數值擴展成為時間數值,該第三常數可簡單地為用於將單位由該些角速度(例如,每毫秒弧度)改變為時間(例如,毫秒)時所必要的轉換因子。在此為一個實例的同時,應該要注意的是,於其他實施例中,在剛剛所敘述的該些之外、或作為替代,也可使用其他的計算式來產生該一、或多個時間數值,例如,利用其他數值。舉例而言,應該要注意地是,亦可產生其他的時間數值(例如,在旋轉週期之外、或作為替代者)。
正如先前所提及的,在一些實施例中,可根據該角速度數值(例如,利用該一、或多個時間數值)以及該PWM工作週期而控制該馬達102的操作。該一、或多個時間數值可代表電磁鐵的下一個換向之前的時間量。該一、或多個時間數值亦可代表下一個預期的零交叉數值。這些數值可以是相同的數值、或是不同的數值,可根據該數值而換向電磁鐵,例如,在所述(多個)數值所指示的時間。亦可根據該數值而取樣該下一個零交叉電壓值,例如,在所述(多個)數值所指示的時間。
正如先前所提及的,在一些實施例中,在圖4中所顯示的方法可以重複,例如,複數個反覆。而致能該方法的連續反覆的一個可能方法的執行可如下述,該一或多個時間數值的其中之一可以是下一個預期零交叉數值。然後,接下來的反覆可包括將該下一個預期零交叉數值使用作為其第一個預期零交叉數值。若該輸入指令未被更新,可根據該最小工作週期以及與先前的反覆相同的輸入指令而計算該基礎PWM工作週期。替代地,可根據該最小工作週期以及更新的輸入指令而計算該基礎PWM工作週期。類似地,也可根據該相同的輸入指令、或一更新的輸入指令而計算該角速度數值,取決於該輸入指令是否已被更新、接著,該方法的剩餘步驟可再次以類似的方式執行,以產生該馬達的穩定狀態操作。
規則的時間間隔執行,例如,每1 ms一次。在其他實施例中,該方法能以規則的角度間隔執行,其可能是可變的時間間隔。舉例而言,該方法可每個機械繞轉執行12次,或每次旋轉30度,此間隔可以是可變的時間量,取決於該馬達自轉的速度多快。替代地,該方法可仰賴二或多個非同步控制迴路。在如此的情況下,該方法的不同部分可在不同規則(可變的、或特殊的)的間隔執行。此時,該方法整體即以不規則的間隔執行。在一組實施例中,可以有負責於特定的時間(例如,在產生自該角速度數值的該一或多個時間數值)取樣感應電壓(例如,步驟502)的換向迴路。在一些實施例中,該換向迴路亦可以負責換向電磁鐵。該換向迴路亦可負責計算該零交叉誤差差值(例如,步驟504以及506)。也可以有使用該零交叉誤差差值的速度控制迴路,以調整該PWM工作週期(例如,步驟508)。在一些實施例中,該速度控制迴路亦可由該輸入指令產生該角速度,以及由該角速度產生的該一或多個時間數值。
控制迴路可以不同的速率操作,例如,非同步的。舉例而言,該換向迴路可取決於該馬達的速度而以可變的速度操作,同時,該速度控制迴路可以固定的速率操作,例如,每1 ms。在這些實施例中,該方法的步驟可以沒有固定的順序,舉例而言,一些步驟可在其他被執行前重複多次。舉例而言,若該馬達正以高速自轉,例如,8000 rpm,該換向迴路可在該速度控制迴路得到該(最新)零交叉誤差差值並使用該零交叉誤差差值來產生該一或多個時間數值之前,先換向電磁鐵,取樣第一電壓值,計算複數個取樣電壓值的平均,以及將該計算所得平均值減去該第一取樣電壓值,以產生零交叉誤差差值多次。在其他的馬達速度(例如,較慢)時,亦有可能該速度控制迴路比該換向迴路更常循環,例如,可連續重複使用相同的零交叉誤差差值數值,直到該換向迴路取樣下一個取樣電壓以及計算新的零交叉誤差差值為止。
該輸入指令,正如先前所提及的,可以是可與最小工作週期一起用來計算該基礎PWM工作週期的指令,以及在一些實施例中,計算該角速度數值的指令。換言之,該輸入指令可以是控制裝置用以將所需轉速輸入控制演算式的裝置,該輸入指令可週期性地更新。換言之,在一些實施例中,該輸入指令可僅在特定的間隔進行更新。該間隔可以是該方法的反複數量,舉例而言,該輸入指令可以於每128次該方法的反覆後更新一次。替代地,該間隔可以是用於執行該方法的其中一個控制迴路(舉例而言,該速度控制迴路)的反複數量。該間隔可以是可調整的間隔,舉例而言,該間隔可在自該速度控制迴路的初始反覆起經過特定數量的間隔之後被調整。舉例而言,該輸入指令可在每128次反覆之後初始更新(例如,在一實施例中,在128 ms之後),然而,在該輸入指令已經被更新8次之後,該輸入指令可於每連續64次反覆後更新,例如,該間隔可藉由因子2而減少。替代地,該間隔也可藉由不同的因子而減少、或增加,或在已經過不同數量的間隔之後進行調整;一般而言,該間隔能夠以任何數量的方式進行調整。
該間隔可被調整多於一次,例如,複數次。舉例而言,在已接收8次輸入指令更新後,該間隔可藉由因子2而減少,並且,在接收另外8次(或16次,或其他數量)輸入指令更新之後,該間隔可再次藉由因子2、或藉由因子4、或藉由一些其他的因子而更進一步地被減少。也可使用其他的調整準則,或作為替代,而決定輸入指令被更新的頻率於何時改變,舉例而言,根據自該方法的初始反覆起的時間數量,根據該馬達的當前轉速,或任何數量的準則。
該輸入指令每次被更新,該轉子的轉速會改變(例如,於數個反覆期間)。此會影響用於接在該更新後的該方法的一些反覆之相關於預期零交叉數值的真實零交叉數值。為了這個理由,尤其是當該馬達剛剛開始自轉時,會希望該輸入指令僅不頻繁地更新,例如,該可調整間隔初始時相對而言較長。因此,該速度控制迴路可執行較大數量的反覆(例如,128次反覆),以讓該平均零交叉誤差能夠在該輸入指令再次更新前穩定(例如,達到最小)。另一方面,一旦該馬達正在自轉、且該預期零交叉數值相對而言較正確且穩定,即需要該輸入指令更頻繁的更新。因此,該間隔可被減少(例如,為64,32,或其他數量的反覆),以改善馬達對於所需之馬達中轉速改變的反應。
圖6A以及圖6B-馬達驅動訊號以及時機
圖6A以及圖6B舉例說明根據一實施例的馬達驅動訊號以及時機。在所顯示的實施例中,該轉子可以是四極轉子,以使得一個機械繞轉有二個電性繞轉(或換向循環)。在6A中,顯示了每一個線圈於該轉子的一個機械繞轉期間的驅動/換向模式。每一對電磁鐵(「U」302、「V」304、「W」306)可以相同的模式、但不同於其他對電磁鐵的相位進行驅動。每一條虛線標示一個先前暫停期間的末端以及下一個暫停期間的開始,例如,從「A」602至「B」604是一個暫停期間,而從「C」606至「D」608是另一個暫停期間。在每一個暫停期間的開始,都有一對電磁鐵會被換向。
圖6B顯示該驅動循環中,開始於時間「A」602以及結束於時間「D」608的「W」對306的放大部份。在所顯示的實施例中,就在時間「A」602前,電磁鐵對「W」306於「低端」被驅動。在時間「A」602,該對會被換向,並接著可維持未驅動,直到下一個暫停期間於時間「B」604開始為止。在「W」對306為未驅動的同時,會進行一或多個感應電壓取樣,這些已取樣電壓數值可以如前所述地是藉由該轉子的永久磁鐵的轉動所感應產生的電壓(BEMF)。舉例而言,介於時間「A」602以及時間「B」604之間的該時間「Vzero_cross」650可以是預期零交叉數值,以及因此,就可在該個時間取樣電壓。此可以是使用在圖5所顯示的方法中、用來決定對該PWM工作週期的調整的該第一取樣電壓。
正如在圖6B中所示以及如先前所提及,在一些實施例中,在介於時間「A」602以及時間「B」604間的期間內,也可以自電磁鐵對「W」306取樣一或多個其他電壓,這些數值可包括感應電壓的斜率的一或多個取樣,及/或感應電流、及/或馬達電流的一或多個取樣。在一些實施例中,該驅動控制邏輯可使用這些取樣數值來檢查停頓狀況、或非靜止狀態馬達情況的其他指示,或檢查其他驅動控制功能。
在時間「B」604,「W」對306在「高端」被驅動,「W」對306可連續在介於時間「B」604以及時間「C」606間的二個暫停期間內被驅動為「高」。於此時間中,在「U」對302被驅動為「低」的同時,第一對「V」304為未驅動,並被用來取樣感應電壓及/或電流,然後,在「V」對304被驅動為「低」的同時,「U」對302為未驅動,並被用來取樣感應電壓及/或電流。在時間「C」606,「W」對306可再次被換向,並且於暫停期間內未驅動,持續直到時間「D」608為止。在此暫停期間,再次於「W」對306上取樣包括Vzero_cross 650的一或多個電壓,之後,在時間「D」608,「W」對306被驅動為「低」。
圖6A描繪用於一個機械繞轉的二個完整換向循環,其如先前所提及的,可對應於利用四極轉子的馬達。在其他的實施例中,例如,利用具有二、六、或其他數量磁極的轉子,換向循環與機械繞轉的關係可為不同。此外,也有可能是其他的驅動模式,舉例而言,「U」對302以及「V」對304的相位可以反相,以產生相反方向的旋轉。正如先前所提及,圖5的方法可反覆地執行,應該要注意地是,的確,根據一實施例,圖6A描繪圖5所顯示方法的12個反覆,例如,每一個暫停期間一次。
圖7-驅動控制邏輯的方塊圖
圖7為根據一實施例之用於控制馬達的自然換向狀態操作的驅動控制邏輯的示範性方塊圖。顯示在圖4中以及關於無刷式三相馬達的各種實施例而敘述的該驅動控制邏輯402,可作為舉例而如圖7所顯示地操作。然而,在顯示於圖7中的該驅動控制邏輯是無刷式三相馬達的驅動控制邏輯的示範性實施例的同時,其他可能的實施例也是可預想的。
該驅動控制邏輯402可包括多個控制迴路,其可以同步、或非同步。在所顯示的實施例中,有二個非同步控制迴路:換向迴路700以及速度控制迴路750。
該換向迴路700可以規律的角度間隔而於一些步驟中循環。舉例而言,可以有四個步驟,且以7.5度的間隔執行。因此,該循環每30度重複一次,或是每個繞轉有12次。在0度710處,該驅動邏輯可換向定子電磁鐵。此外,該驅動邏輯可執行一或多個其他功能,例如,計算驅動電流及/或檢查停頓狀況。該些其他功能可用於控制、或用於決定是否應該改變驅動控制的一或多個其他操作狀態。例如,除了自然換向操作狀態以外的方面,舉例而言,若偵測到停頓狀況,該馬達驅動控制邏輯需要從自然換向進行切換操作,以停止以及重新開始該馬達。在7.5度720處,該驅動控制邏輯可自該定子上的未驅動電磁鐵取樣感應電壓。在一些實施例中,此感應電壓亦可被用於控制或決定是否應該改變驅動控制的一或多個其他操作狀態,而非用於控制自然換向狀態操作。跨越該未驅動電磁鐵所感應產生的電壓的該零交叉數值可預期發生在15度730處,以及該驅動控制邏輯可在此步驟取樣該第一取樣電壓數值。該驅動控制邏輯亦可計算該零交叉誤差差值,並將其儲存在該速度控制迴路750可於此步驟存取的記憶位置799之中。在22.5度740處,可自該定子上的未驅動電磁鐵取樣另一個感應電壓,其亦可被使用作為驅動控制一或多個其他操作狀態的一部分。在30度以後,循環重設,並再次開始於0度710。
正如所提及,每一個步驟之間的間隔可以是7.5度(1/48個繞轉)。用於每一個間隔的時間可被儲存,例如,在該換向迴路可存取的記憶位置798之中作為旋轉期間暫停(RPT)。因此,在0度(例如,在前RPT的末端)處,該驅動控制邏輯可以在上述的其他功能以外(從記憶位置798)再負載新的RPT。在該個RPT的末端處,該驅動控制邏輯可執行指定為7.5度的功能,包括負載新的RPT。該驅動控制邏輯可繼續以此方式循環該換向迴路,只要該馬達正在該自然換向狀態中操作。
該速度控制迴路750可以規律的時間間隔而於一些步驟中循環。舉例而言,可以有暫停A 760。該暫停A 760可以是1 ms,或任何時間數值。在一些實施例中,用於暫停A 760的典型數值可介於1-10 ms之間。亦可以有暫停B770、該暫停B 770可以是128 ms,或任何時間數值。在一些實施例中,用於暫停B 770的典型數值可為128 ms,64 ms,或32 ms。
該速度控制迴路750可包括步驟780,其可在每一個暫停A 760之後執行。在步驟780中,該驅動控制邏輯可計算該PWM工作週期以及計算該RPT。該驅動控制邏輯可使用該零交叉誤差差值以及該輸入指令來計算該PWM工作週期(舉例而言,如在圖5的步驟508中所敘述者),以及可使用該輸入指令來計算該RPT。該零交叉誤差差值可得自記憶位置799,在此同時,對該輸入指令的更新可在步驟790中的每一個暫停B770之後進行檢索。步驟790可更進一步包括改變一或多個其他數值,舉例而言,在一實施例中,該驅動控制邏輯可改變比例增益常數(Kp)以及RPM速率。當在步驟780中計算該RPT後,該驅動控制邏輯可將該RPT儲存在構成該換向迴路700的該驅動控制邏輯可存取的記憶位置798之中。
因此,該速度控制迴路750以及該換向迴路700二者可使用其他控制迴路所提供的資訊。換言之,該速度控制迴路750可使用該換向迴路700所計算的該零交叉誤差差值來計算該PWM工作週期,而該換向迴路700可使用該RPT來控制其取樣該第一取樣電壓值的時機,並據此計算該零交加誤差差值。
方法的優點
在此所敘述的方法原則上比大多數的解決方法要簡單上許多,因為沒有對於轉速以及位置的預測性評估。在直接了當的方式中,該馬達會被校準,並被強迫以已知的週期以及PWM工作週期進行旋轉。在一個機械繞轉的結尾處,該BEMF誤差會被用於調整該PWM工作週期,以在此同時加速至所指示的RPM。此方法的一個優點是,可大量減少類比以及數位電路。某些實施例所需要的不超過比例控制(P),以及在這些實施例中,將不需要幾乎所有習知解決方法都需要之用於PID控制的積分(I)以及微分(D)計算。
本發明的實施例可操作來在控制該馬達的速度時調變二個驅動電晶體。在任何時間點,會有一個高端以及一個低端電晶體是活化的。該輸入指令被用於決定所指示之最大轉速的百分比,但此外部訊號並不直接被用來調變線圈。
整體設計的簡單性是獨特的。習知技術所採用的方法需要用於支持演算式所需要的運算的微控制器。本發明的至少一些實施例會使用簡單的積分運算,且僅需要比例控制來完成方法。
習知的解決方法需要複雜的座標轉換,並且要仰賴關於馬達的固有資料的瞭解,例如,電感,線圈電阻,轉矩,轉子質量等。在此所敘述的實施例可僅需要基本的初始狀態資訊(何時換向以及何時取樣該BEMF,線圈驅動的最小PWM工作週期),旋轉方向,以及最大速度。不需要仰賴預測以及評估,在此所敘述的實施例提供非常直接了當的瞭解該PWM工作週期需要為何的方法,以及調整的方法,以最小化該零交叉誤差。
部分的此簡單性是來自於瞭解絕對最大效率於何處發生。這發生在所有供應能量被使用的時候,表示沒有「額外的」轉矩可得自該馬達。這情況在環境情況若改變時會導致停頓,以反應欲自馬達取得額外轉矩、但卻無法獲得的需求。此環境改變對觀察者而言是無法察覺的,並產生不規則的行為。在一實施例中,藉由將馬達的運轉控制在稍微低於最大效率,讓該控制迴路有執行期間調整時所需的時間來容納額外的轉矩需求。此是藉由截短計算式中的錯誤訊號、留下小的剩餘零交叉誤差而完成。因為沒有積分或預測計算所帶來的暫時延緩,此穩定迴路,並允許在PWM工作週期中的快速改變。
與混合訊號微控制器方法相較,既然演算式不需要較高級的數學計算式,執行就可在以狀態機為基礎的數位控制器以及混合訊號ASIC中達成。電力需求的降低表示,對相同的馬達而言,裝置的整體足跡可以小上許多。本發明的其他實施例利用混合訊號微控制器方法。
另一個優點是,移除對於回饋控制系統的需求。典型地,習知解決方法仰賴速度控制裝置來關閉控制迴路以及調節RPM。藉由此方法,可透過程式化的常數來設定RPM,以及該RPM可以是當前工作週期以及該常數所設定的RPM範圍的線性關係式。
在一些實施例中,演算式可傾向於發現「整體的最小值」,例如,馬達無法在不導入停頓的情形下轉得更快、或更慢的位置,並且,線圈上的額外能量亦引發停頓。克服此問題的一個可能解決方法是,在受控的每一個所需改變間下達「停止」指令。
雖然實施例已經相當詳細地進行敘述,但對本領域具通常知識者而言,只要完全瞭解前面的揭示後,眾多的變化以及修飾都將變得明顯。旨在於利用接下來申請專利範圍的解析來囊括所有如此的變化以及修飾。
100...馬達組合
102...馬達
110...風扇組合
120...風扇葉片
202...轉子
204...定子
206...電磁鐵
302...「U」電磁鐵對
304...「V」電磁鐵對
306...「W」電磁鐵對
402...驅動控制邏輯
404...FET
406...FET
414...FET
416...FET
424...FET
426...FET
700...換向迴路
750...速度控制迴路
798...記憶位置
799...記憶位置
圖1A以及圖1B舉例說明根據一實施例的示範性風扇以及風扇馬達的不同視圖;
圖2舉例說明根據一實施例的無刷式四極三相電動馬達的簡單圖式;
圖3舉例說明根據一實施例的無刷式三相電動馬達的換向模式;
圖4為根據一實施例之具有驅動控制邏輯的馬達的電路圖;
圖5為敘述根據一實施例之一種操作無刷式三相馬達的方法的流程圖;
圖6A以及圖6B舉例說明根據一實施例的馬達驅動訊號以及時機;及
圖7為描繪根據一實施例之驅動控制邏輯的方塊圖。
102...馬達
204...定子
402...驅動控制邏輯
404...FET
406...FET
414...FET
416...FET
424...FET
426...FET

Claims (18)

  1. 一種操作一馬達的方法,其中該馬達包括一轉子以及複數個電磁鐵,該方法包括下列步驟:於一第一預期零交叉數值處取樣該轉子的旋轉所感應產生的一電壓,其中該取樣產生一第一取樣電壓數值;計算複數個取樣電壓數值的一平均,其中該複數個取樣電壓數值包括在複數個先前預期零交叉數值處所取樣的電壓數值,以及該第一取樣電壓數值;將計算所得的該平均減去該第一取樣電壓數值,以產生一零交叉誤差差值;以及以該零交叉誤差差值作為基礎而調整一脈寬調變(PWM)工作週期,其中該PWM工作週期被用於控制該轉子的一轉速。
  2. 如請求項1的方法,更包括:將該零交叉誤差差值乘上一第一常數,其中該第一常數代表該馬達的電機特性,其中該調整該PWM工作週期的步驟是以該倍增的該零交叉誤差差值為基礎。
  3. 如請求項2的方法,更包括:將倍增的該零交叉誤差差值除以一第二常數,以產生一依比例零交叉誤差差值;以及將該依比例零交叉誤差差值截短至一整數數值,其中該調整該PWM工作週期的步驟是以該依比例截短零交叉誤差差值為基礎。
  4. 如請求項1的方法,其中該調整該PWM工作週期的步驟包括調整一基礎PWM工作週期,其中該基礎PWM工作週期的計算是根據一最小工作週期以及一輸入指令。
  5. 如請求項4的方法,其中該輸入指令以一可調整間隔進行更新。
  6. 如請求項5的方法,其更包括;重複該方法複數個反覆,其中該可調整間隔包括該方法的反複數量,其中該可調整間隔是根據自該方法的初始起的已發生間隔數量而進行調整。
  7. 如請求項1的方法,更包括:根據一輸入指令而決定一角速度數值,其中,該角速度數值亦被用於控制該轉子的該轉速。
  8. 如請求項1的方法,更包括:決定一下一個預期零交叉數值;以及重複該方法複數個反覆,其中,該方法的每一個反覆的基礎都是,將先前反覆的該下一個預期零交叉數值使用作為該第一預期零交叉數值。
  9. 一電動馬達,包括:一轉子,包括一永久磁鐵;一定子,包括複數個電磁鐵;一電壓感測器,被配置為測量橫跨該複數個電磁鐵的一電磁鐵所感應產生的一電壓;以及邏輯,被配置用於: 利用該電壓感測器而於一預期零交叉數值處取樣橫跨該複數個電磁鐵的該電磁鐵的一電壓,以產生一第一取樣電壓數值,其中跨越該電磁鐵的該電壓是由該轉子的旋轉所感應產生;計算在複數個預期零交叉數值處所取樣的先前電壓數值以及該第一取樣電壓數值的一平均;將計算所得的該平均減去該第一取樣電壓數值,以產生一零交叉誤差差值;以及以該零交叉誤差差值作為基礎而調整一脈寬調變(PWM)工作週期,其中該PWM工作週期被用於控制該轉子的一轉速。
  10. 如請求項9的電動馬達,其中該邏輯更被配置用於:將該零交叉誤差差值乘上一第一常數,其中該第一常數代表該馬達的電機特性,其中,該調整該PWM工作週期的步驟是以倍增的該零交叉誤差差值為基礎。
  11. 如請求項10的電動馬達,該邏輯更被配置用於:將倍增的該零交叉誤差差值除以一第二常數,以產生一依比例零交叉誤差差值;以及將該依比例零交叉誤差差值截短至一整數數值,其中該調整該PWM工作週期的步驟是以該依比例截短零交叉誤差差值為基礎。
  12. 如請求項9的電動馬達,其中該調整該PWM工作週期的步驟包括調整一基礎PWM工作週期,其中該基礎PWM工 作週期的計算是根據一最小工作週期以及一輸入指令。
  13. 如請求項12的電動馬達,其中該輸入指令以一可調整間隔進行更新。
  14. 如請求項13的電動馬達,其中該邏輯更被配置用於:在複數個反覆中重複該利用、計算、減去及調整,其中該可調整間隔包括反複數量,其中該可調整間隔是根據自一第一反覆的已發生間隔數量而進行調整。
  15. 如請求項9的電動馬達,其中該邏輯更被配置用於:根據一輸入指令而決定一角速度數值,其中該角速度數值亦被用於控制該轉子的該轉速。
  16. 如請求項9的電動馬達,其中該邏輯更被配置用於:決定一下一個預期零交叉數值;以及在複數個反覆中重複該利用、計算、減去及調整,其中該方法的每一個反覆的基礎都是,將先前反覆的該下一個預期零交叉數值使用作為該第一預期零交叉數值。
  17. 如請求項9的電動馬達,其中該邏輯包括一以狀態機為基礎的數位控制器,以及一混合訊號專用積體電路。
  18. 如請求項9的電動馬達,其中該邏輯包括儲存可執行來實行該利用、計算、減去及調整的程式指令的一電腦可讀取記憶媒體,以及用於執行程式指令的一處理器。
TW099139801A 2009-11-18 2010-11-18 電動馬達及操作一馬達的方法 TWI459711B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/620,726 US8368334B2 (en) 2009-11-18 2009-11-18 Brushless, three phase motor drive

Publications (2)

Publication Number Publication Date
TW201136135A TW201136135A (en) 2011-10-16
TWI459711B true TWI459711B (zh) 2014-11-01

Family

ID=44010815

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099139801A TWI459711B (zh) 2009-11-18 2010-11-18 電動馬達及操作一馬達的方法

Country Status (2)

Country Link
US (1) US8368334B2 (zh)
TW (1) TWI459711B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8896246B2 (en) * 2010-05-28 2014-11-25 Standard Microsystems Corporation Method for aligning and starting a BLDC three phase motor
KR101234778B1 (ko) * 2011-10-05 2013-02-20 이상현 센서리스 bldc 모터의 감속장치 및 방법
US8653773B2 (en) * 2012-02-02 2014-02-18 Lexmark Internatonal, Inc. Method for calibrating a drive motor for a toner metering device in an imaging apparatus
US8766578B2 (en) 2012-02-27 2014-07-01 Canadian Space Agency Method and apparatus for high velocity ripple suppression of brushless DC motors having limited drive/amplifier bandwidth
GB2507538A (en) * 2012-11-02 2014-05-07 Control Tech Ltd Circuit for monitoring the operation of an electric motor using a low frequency characteristic such as the back EMF ripple
TWI506959B (zh) 2012-12-18 2015-11-01 Ind Tech Res Inst 調變方法以及應用該調變方法之控制裝置
US9281769B2 (en) * 2013-05-14 2016-03-08 Allegro Microsystems, Llc Electronic circuit and method for adjusting start-up characteristics of drive signals applied to an electric motor
US9172320B2 (en) 2013-05-14 2015-10-27 Allegro Microsystems, Llc Electronic circuit and method for synchronizing electric motor drive signals between a start-up mode of operation and a normal mode of operation
CN103825510B (zh) * 2014-02-14 2016-05-04 中国航天时代电子公司 一种小型数字化直流伺服电机驱动电路
US10243490B2 (en) * 2016-06-17 2019-03-26 Semiconductor Components Industries, Llc Controlling multiple facets of duty cycle response using a single motor integrated circuit pin
CN107294432A (zh) * 2017-06-21 2017-10-24 苏州华铭威智能科技有限公司 一种电机的控制方法和控制系统
CN109802604A (zh) * 2019-01-30 2019-05-24 深圳市泰道精密机电有限公司 一种永磁电机驱动方法及系统
CN110311599B (zh) * 2019-04-29 2021-07-06 深圳市英威腾电动汽车驱动技术有限公司 永磁同步电机磁极位置的校正方法、系统、介质及设备
CN111946653A (zh) * 2020-08-27 2020-11-17 英业达科技有限公司 风扇的管理方法、系统及服务器
CN113406513B (zh) * 2021-06-08 2022-11-15 北京理工大学 基于新能源汽车数据插值的电压估计方法
TWI779774B (zh) * 2021-08-16 2022-10-01 茂達電子股份有限公司 馬達鎖轉系統
CN113972878B (zh) * 2021-10-25 2023-10-13 南京航空航天大学 基于迭代自适应控制的电励磁双凸极电机电流控制方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5488281A (en) * 1994-09-28 1996-01-30 Allen-Bradley Company, Inc. Method and apparatus for predicting winding failure using zero crossing times
US5614797A (en) * 1995-02-28 1997-03-25 Sgs-Thomson Microelectronics, Inc. Stator coil driver circuit for a brushless DC motor
US5731670A (en) * 1995-03-31 1998-03-24 Sgs-Thomson Microelectronics S.R.L. Method for driving a brushless DC electric motor
US5929577A (en) * 1995-10-13 1999-07-27 Unitrode Corporation Brushless DC motor controller
US5834930A (en) * 1997-03-12 1998-11-10 Industrial Technology Research Institute Device for sensing the period of a digitized signal including noise evaluation and averaging over a plurality of zero crossing
DE19942493A1 (de) * 1999-09-06 2001-03-08 Wilo Gmbh Verfahren zum Betrieb von Brushless DC-Motoren bei kleinen Drehzahlen
JP2002223583A (ja) * 2001-01-25 2002-08-09 Nec Kansai Ltd ブラシレスモータ駆動装置
JP3832257B2 (ja) * 2001-02-26 2006-10-11 株式会社日立製作所 同期モータの起動制御方法と制御装置
US6826499B2 (en) * 2001-10-01 2004-11-30 Delphi Technologies, Inc. Method and apparatus for calibrating and initializing an electronically commutated motor
US7054980B2 (en) * 2002-05-02 2006-05-30 Standard Microsystems Corporation Multiple drive controller
US7096134B2 (en) * 2002-07-01 2006-08-22 Standard Microsystems Corporation Method and apparatus for measuring the rotational speed of a fan
US6975951B1 (en) * 2004-06-10 2005-12-13 Raton Corporation Meter apparatus and method for phase angle compensation employing linear interpolation of digital signals
US7432677B2 (en) * 2004-12-16 2008-10-07 Seagate Technology Llc Closed-loop rotational control of a brushless dc motor
US7183734B2 (en) * 2005-02-18 2007-02-27 Atmel Corporation Sensorless control of two-phase brushless DC motor
WO2007097424A1 (ja) * 2006-02-23 2007-08-30 Matsushita Electric Industrial Co., Ltd. モータ駆動装置およびモータ駆動方法
JP2008301588A (ja) * 2007-05-30 2008-12-11 Aisan Ind Co Ltd ブラシレスモータの駆動装置
KR101546648B1 (ko) * 2007-08-17 2015-08-25 삼성전자주식회사 이동식 저장매체 또는 네트워크를 이용한 콘텐츠 구매 방법및 장치
GB0717851D0 (en) * 2007-09-13 2007-10-24 Melexis Nv Improvements relating to driving brushless dc (bldc) motors
US8054033B2 (en) * 2008-10-24 2011-11-08 Standard Microsystems Corporation Brushless, three phase motor drive
US8633662B2 (en) * 2009-06-12 2014-01-21 Standard Microsystems Corporation Drive method to minimize vibration and acoustics in three phase brushless DC (TPDC) motors
US9385641B2 (en) * 2009-11-18 2016-07-05 Standard Microsystems Corporation System and method for inducing rotation of a rotor in a sensorless motor
US8378602B2 (en) * 2009-11-18 2013-02-19 Standard Microsystems Corporation System and method for aligning a rotor to a known position
US8698432B2 (en) * 2010-08-31 2014-04-15 Standard Microsystems Corporation Driving low voltage brushless direct current (BLDC) three phase motors from higher voltage sources
US8436564B2 (en) * 2010-09-01 2013-05-07 Standard Microsystems Corporation Natural commutation for three phase brushless direct current (BLDC) motors

Also Published As

Publication number Publication date
US8368334B2 (en) 2013-02-05
TW201136135A (en) 2011-10-16
US20110115423A1 (en) 2011-05-19

Similar Documents

Publication Publication Date Title
TWI459711B (zh) 電動馬達及操作一馬達的方法
TWI405400B (zh) 用於操作一馬達之方法及電動馬達
US8436564B2 (en) Natural commutation for three phase brushless direct current (BLDC) motors
US8896246B2 (en) Method for aligning and starting a BLDC three phase motor
EP2959573B1 (en) Method and system for determining the position of a synchronous motor's rotor
TWI446704B (zh) 用於操作一馬達之方法以及馬達系統
US8587232B2 (en) System and method for aligning a resting rotor to a known position
KR100713776B1 (ko) 검출 전류의 비교를 통한 에스알엠의 여자 위치 검출 방법및 장치
JP6081734B2 (ja) 半導体装置、電子機器、及び制御信号生成方法
TWI459712B (zh) 晶片,電腦可讀記憶媒體,電動馬達及用於起始一馬達中的一轉子的旋轉的方法
US7002311B2 (en) Motor speed sensor advancement emulation and compensation
US8698432B2 (en) Driving low voltage brushless direct current (BLDC) three phase motors from higher voltage sources
TWI581559B (zh) 具有一個霍爾感測器運轉的系統及其方法
JP2019017235A (ja) 電動機の界磁位置検出方法
WO2023100549A1 (ja) モータ駆動制御装置、モータユニット、およびモータ駆動制御方法
JP2017070208A (ja) 半導体装置、電子機器、及び制御信号生成方法
Hirave et al. Speed Control of BLDC Motor Using DSPIC30F4011 Processor
KR20090008944A (ko) 무정류자 직류 모터용 구동 장치 및 방법
CN117280180A (zh) 状态机电机控制器
KR20220016333A (ko) 상 저항을 적용한 전동 압축기 모터 제어 시스템 및 그 방법
JP2021027747A (ja) モータ駆動制御装置、モータユニット、およびモータ駆動制御方法
JP2019208300A (ja) 電動機の界磁位置検出方法
Ekram et al. Intelligent embedded controller for optimal triggering

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees