TWI451541B - 用以測量微電子積體封裝組件中之溫度的方法、微電子組件和計算系統 - Google Patents

用以測量微電子積體封裝組件中之溫度的方法、微電子組件和計算系統 Download PDF

Info

Publication number
TWI451541B
TWI451541B TW96123330A TW96123330A TWI451541B TW I451541 B TWI451541 B TW I451541B TW 96123330 A TW96123330 A TW 96123330A TW 96123330 A TW96123330 A TW 96123330A TW I451541 B TWI451541 B TW I451541B
Authority
TW
Taiwan
Prior art keywords
microelectronic
carbon nanotubes
temperature
integrated circuit
substrate
Prior art date
Application number
TW96123330A
Other languages
English (en)
Other versions
TW200822332A (en
Inventor
Nachiket R Raravikar
Neha Patel
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of TW200822332A publication Critical patent/TW200822332A/zh
Application granted granted Critical
Publication of TWI451541B publication Critical patent/TWI451541B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2211/00Thermometers based on nanotechnology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/953Detector using nanostructure
    • Y10S977/955Of thermal property
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

用以測量微電子積體封裝組件中之溫度的方法、微電子組件和計算系統
本發明一般係有關測量與微電子封裝組件及構件相關的溫度。
溫度對微電子封裝組件及構件之影響可以是形形色色的,許多封裝程序涉及高溫的施加,這些高溫可能對包含封裝組件內之積體電路晶片的構件有不利的影響。除此之外,封裝組件可能暴露於各種其他的溫度影響下,其可能會對經封裝的構件有影響。而且,積體電路自己本身有時會暴露於各種的溫度狀況。
如何將積體電路溫度感測器整合於整個積體電路之內係已知的,可以從蜿蜒盤旋、集成的溫度感測器中獲得到溫度讀數。但是,這些測定的準確性在某些情況下可能會受限。況且,溫度感測器可能會在整體可供使用的積體電路空間中佔去相當大比例的空間。而且,在某些情況下,能夠形成此種溫度感測器的場所有所限制,亦即,通常對能夠收容如此之集成元件之足夠大小的區域有限制。
【發明內容】及【實施方式】
參照圖1,依據本發明的一些實施例,溫度感測器10可被形成於積體電路基板12上,多個金屬結構16可被形成,其自基板12向上延伸,金屬結構16可以是由適合於 橋形碳奈米管18之生長的材料所做的,那些碳奈米管18可用做為溫度感測器,亦即,那些碳奈米管的傳導性為溫度的函數。藉由測量碳奈米管的傳導性,經由使電流通過它們,吾人可決定局部溫度(local temperature)。
在本發明的一些實施例中,許多直立的金屬結構16可被形成,它們可以用有規律的陣列之方式來予以形成,在一些實施例中,使用眾所周知的技術,該等陣列可以由內部立柱14所組成,而內部立柱14可以是構成該等直立的金屬結構16的非金屬材料及金屬塗層。
碳奈米管18可橋接於相鄰的金屬結構之間。因此,多個碳奈米管18可被隨機地配置成通常橫貫於直立的金屬結構16的水平組態。
在本發明的一些實施例中,金屬結構16可被直接地形成於基板12上。金屬結構16可包含內部立柱14,在本發明的一個實施例中,係被金屬催化劑所覆蓋而形成金屬結構16,適合的金屬催化劑包含鐵、鈷、及鎳。做為一例,金屬結構16可具有約一微米的高度。
舉例來說,該等金屬結構可藉由掠射角沉積法來予以形成。藉由控制基板12轉動運動,包含其角度和速度兩者,金屬結構16高度能夠被控制。雖然可利用不同的金屬催化劑來形成金屬結構16,但是因為鎳可以提供與隨後被形成之碳奈米管18間較低的接觸電阻,所以鎳可能係較佳的。
在本發明的一些實施例中,基板12上的某些直立的 金屬結構16可被用來做成可分離單元20,如圖2所示。可分離單元20可由基板12的一部分所構成,其厚度已經被縮減,使得基板厚度並不會不利地影響溫度測量。因此,基板12可在尺寸及厚度上做縮減以形成可分離單元20,而具有某些更少數目的直立的金屬結構16形成於其上。
如圖1所示,可使碳奈米管18生長,以便橋接介於金屬結構16之間,這當以規律的列和行方式來設置大陣列的金屬結構16時係特別有用的。在一個實施例中,可使用氣態化學氣相沉積法來使碳奈米管生長。在本發明的一個實施例中,可使用甲烷做為碳源,以供碳奈米管的生長。結果,奈米管可自其中一個直立的金屬結構延伸至另一個直立的金屬結構。氬氣可被供應於碳奈米管的沉積期間,以減少氧化。在甲烷氛圍中,於一個實施例中,可利用約500Torr的壓力和在包含(但並非限定於)攝氏800度到950度之範圍中的爐溫。
有利的是,相鄰的金屬結構16係合理、鄰近地隔開,使得給定長度之碳奈米管(圖3)可以橫跨於它們之上。
金屬結構16,於一個實施例中,可藉由對基板12實施沉積催化劑於內部立柱14之上來予以形成。舉例來說,內部立柱14可以是矽或二氧化矽立柱。舉例來說,內部立柱可藉由生長或沉積立柱材料、遮罩遮蔽、及蝕刻而以所想要的組態形成該等內部立柱來予以形成。在一些 實施例中,該等內部立柱中的至少兩個內部立柱可以和在基板為結晶系半導體的實施例中該基板12之結晶平面對齊。
在催化劑膜沉積期間,基板12可被傾斜兩次約+/- 45度,以散佈催化劑遍佈於內部立柱14之上而形成金屬結構16。碳奈米管18稍後形成於內部立柱14之有催化劑存在的頂部和側壁上。在一些實施例中,催化劑可以不完全地覆蓋內部立柱。
在一些實施例中,可生長出一陣列的內部立柱(未顯示出),但是僅其中一些內部立柱可以由催化劑來予以活化。舉例來說,僅兩個內部立柱可以由催化劑來予以活化,所以碳奈米管僅橋接該兩個受催化劑活化的內部立柱。選擇性活化可以使用遮罩或選擇性活化沉積來予以完成。在圓柱形的金屬結構16被描述的同時,也可以使用其他形狀。
通常,碳奈米管18大致或概略地沿著金屬結構16,自頂部水平地生長至底部,碳奈米管像橋一樣地橫越於基板12之上。
在一些實施例中,基板12(圖1)隨後可被減薄而形成可分離單元20(圖2),使得其本身厚度對於正在測量其溫度之晶粒的溫度之改變並沒有助益。然後,減薄之可分離單元20可以被膠合於任何聚合或陶瓷的表面上。
參照圖3,碳奈米管18然後可使用金屬線30而被電耦接至外部的溫度感測器(未顯示出)。特別是,可分離 單元20可被黏著而固定於即將測量其溫度之結構32。然後,金屬線30可被沉積或者形成至金屬結構16。然後,金屬線30可使該陣列之碳奈米管18的每一側連接至適合的墊塊(pad)(未顯示出),而溫度感測電路可被附接至該適合的墊塊。可以使用例如網版印刷或電鍍法之習知製程來印刷金屬線30和墊塊。
在其他實施例中,碳奈米管可以使用高的立柱圖案(例如,使用釘書針而被固定於基板之高的立柱圖案)而被製備於基板12上。藉由“高的”,想要指的是具有0.7釐米等級(但並非限定於)之高度的金屬結構16。隨後,碳奈米管被生長,且金屬化被完成。其他的金屬結構16也可以被利用來生長橋形碳奈米管,包含電話線桿(telephone pole)和以足球球門(soccer goal)為導向之辦公室釘書針(office staple)。照字面地,直立的辦公室釘書針可藉由使用適當的黏著劑(例如,碳膠帶)而將它們固定於矽晶圓來予以利用,釘書針可具有其針點直立(“電話線桿”)或倒立(“足球球門”)且延伸進入基板中。
然後,可使用化學氣相沉積法,在凱式(Kelvin)溫度1373度的爐中,於約100m Torr真空下使碳奈米管生長,將二體積百分比的噻吩(thiophene)添加至0.02g/ml的二茂鐵(ferrocene)溶液和10ml的己烷中,己烷可用作為碳源,且二茂鐵用作為用於碳奈米管之氣體擴散形成的催化劑,溶液可被加熱至150℃,而後以每分鐘 0.1mls之平均速率被導入於水平的石英管爐中,持續10分鐘,其他的製程參數亦可被使用。
在氫氣氛圍中,噻吩係已知用來促進單一壁碳奈米管之形成,而在沒有氫氣氛圍下,發現多重壁碳奈米管優勢地生長。可藉由透過控制爐中之氫氣濃度來控制碳奈米管生長條件而使用單一壁碳奈米管或多重壁碳奈米管(沒有給予多重壁碳奈米管之氫氣氛圍,而氫氣氛圍可促進單一壁碳奈米管生長)。
雖然推薦上述的配方和數字以使碳奈米管生長,但是生長條件並不限定於此配方或這些數字,而是包含它們。在一些溫度感測應用中,多重壁碳奈米管可能是有利的。
參照圖4,依據本發明的一個實施例,與表面安裝技術相關的溫度可藉由使遍佈第二層互連結構(interconnect)上之碳奈米管生長(例如,焊錫球或表面安裝墊塊26a)來予以測量,墊塊26a可安裝焊錫球34可將封裝組件耦接至外部的印刷電路板(未顯示出),例如,主機板。
碳奈米管18可以被生長以便橫跨於足夠鄰近的墊塊26a之間。在某些情況中,僅部分的墊塊26a可被使用於溫度測量,且其他的墊塊可能沒有如此之功能,反而是如同第二層互連結構一樣習知地作用。在某些情況中,墊塊26a或者可以在電氣上沒有功能的,且僅可使用於溫度測量用途。
墊塊26a可被形成於適合的基板36上,而在積體電路晶粒40係安裝於基板36之上。外殼38可覆蓋晶粒40 且係固定於基板36,第一層互連結構44可位於晶粒40與基板36之間。
參照圖5,基本上顯示同一封裝組件。但是,在此情況中,碳奈米管18係生長於第一層互連結構44之間,而不是在第二層互連結構之間,如同圖4所描述的。這樣,碳奈米管18可以被選擇性地生長在適當隔開的元件之間,以便進行第一及/或第二層互連結構的溫度測量。
在某些情況中,碳奈米管的長度針對不同的應用而可能是不同的,以便橫跨必要的間隔。舉例來說,在某些情況中,可能需要具有1微米等級之碳奈米管,以便橫跨於晶粒上的金屬線之間;10到50微米等級之碳奈米管,以便橫跨於相鄰的表面安裝墊塊之間;以及一直到1釐米等級之碳奈米管,以便橫跨於相鄰的焊錫凸塊(bumps)之間。
通常,可以利用不同的技術而形成碳奈米管於不同的應用中。在一個實施例中,某些互連結構(例如,焊錫球26)可以被遮蔽住,而其他的互連結構(例如,墊塊26a)可以不被遮蔽住,使得碳奈米管僅形成於露出的墊塊之間。做為另一例,可分離單元20可被層疊在相鄰墊塊26a之間的位置中,以達成可比較的效果。做為又一例,溶劑液中的奈米管於室溫時在所選擇的位置處可被分散做為液體,且允許乾燥。做為又一選項,可以利用電沉積法。
對於第一層互連結構而言,可能需要使用電沉積或液 體沉積技術,以避免使基板或晶粒40暴露於過多的溫度,而在某些碳奈米管製程中可能需要過多的溫度。
在一些實施例中,對於第一層互連結構而言,從矽到基板,可能需要連接至係真正有效(非溫度感測)互連結構的第二層互連結構,即使具有碳奈米管介於它們之間的第一層互連結構可能在電氣上沒有功能的,以供其有規律的互連結構(非溫度感測)用途。因此,具有碳奈米管連接至它們的第一層互連結構可能僅具有感測溫度的功能,但是可被連接至係有效用的第二層互連結構,而第二層互連結構真正僅有用於運輸訊號往來於第一層互連結構的碳奈米管。同樣地,在一些實施例中,具有碳奈米管之第二層互連結構可能僅為了提供訊號往來於碳奈米管之目的而有功能,以便進行溫度測量而不實施其他的互連(interconnection)功能。
在一些實施例中,奈米管可以是高度準備的溫度指示器,因為它們在長度尺寸上具有各向異性特性,且具有橫貫於長度尺寸之非常小的尺寸。碳奈米管可傾向於在自動相對上的完美且在化學上的穩定,而因此,做為感測器可以比類似尺寸之金屬結構更加可靠。除此之外,在某些情況中,可以測量在難以到達之位置中的溫度。
參照圖6,在另一實施例中,可分離單元20可被固定於積體電路晶粒40的相反側。在一個實施例中,可分離單元20可被固定於晶粒40的前側42,而在另一實施例中,可分離單元20可被固定於晶粒40的背側,如所示。 在某些情況中,溫度感測之可分離單元20可被設置於兩個晶粒側上,連同適合的金屬化至外部的溫度感測器。適合的金屬化可被提供給電流源,而電流源提供電流給可分離單元20中的碳奈米管,及測量來自那裡的最終電流,以依據已知技術來決定溫度。
參照圖7,依據本發明之另一實施例,隔開的金屬線30可以藉由碳奈米管18來予以橋接,碳奈米管18可橫跨中間的底層溝槽24及基板22。金屬線30可以是僅供溫度目的之假的金屬線,或在某些情況中,可以是真的金屬線。在金屬線30是真的金屬線之情況中,這些金屬線可隨後被使用來承載訊號,舉例來說,藉由在已經使用過碳奈米管18之後先將碳奈米管18毀壞,如果需要的話,以供溫度測量。或者,金屬線30可被耦接至溫度感測器,其使用奈米管的可變電阻,以發展溫度指示。
最後,參照圖8,依據本發明的一些實施例,具有集成之溫度感測器的積體電路或封裝裝置可被結合入包含處理器10之系統中,處理器10可藉由匯流排38而被耦接至動態隨機存取記憶體40及輸入/輸出裝置42。雖然顯示出簡單的架構,但許多其他的實施例係可能的。
此說明書通篇之“一個實施例”或“一實施例”意謂著與該實施例相關所述之特別的特徵、結構、或特性係包含在本發明內所包括的至少一實施中。因此,用語“一個實施例”或“一實施例”的出現並不一定指同一實施例。此外,除了所例舉出之特別的實施例以外,可以用其他適合的形 式來建構該等特別的特徵、結構、或特性,且此等形式可被包含在本發明的申請專利範圍之內。
雖然已針對有限數目的實施例來說明本發明,但是習於此技藝者將可領會到,無數的修正及改變可以被做成。因此,打算附加之申請專利範圍涵蓋所有如此的修正及改變,如同落在本發明之真正的精神和範疇內。
10‧‧‧溫度感測器
12‧‧‧積體電路基板
14‧‧‧內部立柱
16‧‧‧金屬結構
18‧‧‧碳奈米管
20‧‧‧可分離單元
30‧‧‧金屬線
32‧‧‧結構
26‧‧‧焊錫球
26a‧‧‧墊塊
34‧‧‧焊錫球
37‧‧‧封裝組件
36‧‧‧基板
38‧‧‧外殼
40‧‧‧晶粒
44‧‧‧第一層互連結構
42‧‧‧前側
38‧‧‧匯流排
42‧‧‧輸入/輸出裝置
40‧‧‧動態隨機存取記憶體
10‧‧‧處理器
圖1係本發明之一個實施例的放大、局部、剖面視圖;圖2係圖1所示之實施例在進一步處理之後的放大、局部、剖面視圖;圖3係圖2之實施例在積體電路或其他微電子封裝組件上之適當位置的頂部平面視圖;圖4係依據本發明之一個實施例之封裝組件的放大、剖面視圖;圖5係依據本發明之另一個實施例之封裝組件的放大、剖面視圖;圖6係依據本發明之一個實施例之積體電路的放大、剖面視圖;圖7係本發明之另一個實施例,使用兩個隔開之金屬線的放大、剖面視圖;圖8係依據本發明之一個實施例的系統描述。
10‧‧‧溫度感測器
12‧‧‧積體電路基板
14‧‧‧內部立柱
16‧‧‧金屬結構
18‧‧‧碳奈米管

Claims (23)

  1. 一種用以測量微電子積體電路封裝組件中之溫度的方法,包括:形成一對間隔分開的垂直結構於基板上,及在凱式溫度1373度之溫度的等級下使碳奈米管生長於該對垂直結構之間,而各個垂直結構皆包含內部立柱和金屬結構;然後,使該基板固定於微電子積體電路;以及使用該等碳奈米管來測量該微電子積體電路上之溫度。
  2. 如申請專利範圍第1項之方法,包含藉由減少該基板厚度而形成一可分離單元。
  3. 如申請專利範圍第2項之方法,包含使該可分離單元固定於微電子積體電路的封裝組件。
  4. 如申請專利範圍第3項之方法,包含使該可分離單元固定於第一層互連結構。
  5. 如申請專利範圍第3項之方法,包含使該可分離單元固定於第二層互連結構。
  6. 如申請專利範圍第4項之方法,包含經由第二層互連結構而提供電流給第一層互連結構中的該可分離單元。
  7. 如申請專利範圍第1項之方法,包含提供多個延伸遍佈相鄰的互連結構之上的碳奈米管。
  8. 如申請專利範圍第1項之方法,包含提供至少兩個碳奈米管於積體電路晶粒的背側上,以測量該晶粒上的 溫度。
  9. 一種微電子組件,包括:微電子元件,具有一對間隔分開的垂直結構,而各個垂直結構皆包含內部立柱和金屬結構;以及一對碳奈米管,在凱式溫度1373度之溫度的等級下生長於該微電子元件的該等金屬結構之間,以測量該微電子元件的溫度。
  10. 如申請專利範圍第9項之微電子組件,其中,該微電子組件為第一層互連結構。
  11. 如申請專利範圍第9項之微電子組件,其中,該微電子組件為第二層互連結構。
  12. 如申請專利範圍第9項之微電子組件,其中,該微電子組件為積體電路封裝組件的部分。
  13. 如申請專利範圍第9項之微電子組件,其中,該微電子組件為積體電路晶粒。
  14. 如申請專利範圍第13項之微電子組件,包含在該積體電路晶粒之相反側上的該碳奈米管。
  15. 如申請專利範圍第9項之微電子組件,其中,該等碳奈米管係安裝在固定於該微電子組件之基板上。
  16. 如申請專利範圍第15項之微電子組件,其中,該等碳奈米管係膠合於該微電子組件。
  17. 如申請專利範圍第9項之微電子組件,其中,該微電子組件為第一層互連結構且係耦接至第二層互連結構。
  18. 如申請專利範圍第9項之微電子組件,其中,該等碳奈米管延伸在一對金屬結構之間。
  19. 一種計算系統,包括:一處理器;一動態隨機存取記憶體,係耦接至該處理器;以及該處理器包含一微電子元件及一對碳奈米管,該微電子元件具有一對間隔分開的垂直結構,而各個垂直結構皆包含內部立柱和金屬結構,該對碳奈米管在凱式溫度1373度之溫度的等級下生長於該微電子元件的該等金屬結構之間,以測量該微電子元件的溫度。
  20. 如申請專利範圍第19項之系統,其中,該處理器係呈晶粒的形式,而該晶粒具有該碳奈米管於該晶粒的兩相反側上。
  21. 如申請專利範圍第19項之系統,其中,該處理器包含一封裝組件及碳奈米管於該基板上。
  22. 如申請專利範圍第19項之系統,其中,該處理器包含一晶粒,而該晶粒具有碳奈米管形成於該晶粒的至少一側上。
  23. 如申請專利範圍第22項之系統,其中,該等碳奈米管係形成於基板上且固定於該晶粒。
TW96123330A 2006-06-29 2007-06-27 用以測量微電子積體封裝組件中之溫度的方法、微電子組件和計算系統 TWI451541B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/477,267 US20080002755A1 (en) 2006-06-29 2006-06-29 Integrated microelectronic package temperature sensor

Publications (2)

Publication Number Publication Date
TW200822332A TW200822332A (en) 2008-05-16
TWI451541B true TWI451541B (zh) 2014-09-01

Family

ID=38876632

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96123330A TWI451541B (zh) 2006-06-29 2007-06-27 用以測量微電子積體封裝組件中之溫度的方法、微電子組件和計算系統

Country Status (4)

Country Link
US (2) US20080002755A1 (zh)
CN (1) CN101097164B (zh)
HK (1) HK1116537A1 (zh)
TW (1) TWI451541B (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8941094B2 (en) * 2010-09-02 2015-01-27 Nantero Inc. Methods for adjusting the conductivity range of a nanotube fabric layer
US7510323B2 (en) * 2006-03-14 2009-03-31 International Business Machines Corporation Multi-layered thermal sensor for integrated circuits and other layered structures
US7534648B2 (en) * 2006-06-29 2009-05-19 Intel Corporation Aligned nanotube bearing composite material
US8413704B2 (en) * 2007-05-30 2013-04-09 Ramot At Tel-Aviv University Ltd. Nanotube network and method of fabricating the same
ITSA20080022A1 (it) * 2008-08-08 2010-02-08 Univ Degli Studi Salerno Sensore di temperatura basato su reti di nanotubi di carbonio autosostenute.
US8529124B2 (en) * 2009-06-03 2013-09-10 California Institute Of Technology Methods for gas sensing with single-walled carbon nanotubes
US8568027B2 (en) 2009-08-26 2013-10-29 Ut-Battelle, Llc Carbon nanotube temperature and pressure sensors
CN102359828B (zh) * 2011-07-12 2013-04-24 东南大学 一种微电子温度传感器及其制备工艺
US9022644B1 (en) * 2011-09-09 2015-05-05 Sitime Corporation Micromachined thermistor and temperature measurement circuitry, and method of manufacturing and operating same
US9240552B2 (en) * 2011-12-27 2016-01-19 Intel Corporation Carbon nanotube semiconductor devices and deterministic nanofabrication methods
US20130195140A1 (en) * 2012-01-31 2013-08-01 Vittorio Scardaci Temperature Sensor
ITSA20120011A1 (it) * 2012-07-12 2014-01-13 Univ Degli Studi Salerno Dosimetro di radiazione "in tempo reale" basato su nanomateriali di carbonio (carbon nanomaterials based real time radiation dosimeter).
US10067006B2 (en) 2014-06-19 2018-09-04 Elwha Llc Nanostructure sensors and sensing systems
US10285220B2 (en) 2014-10-24 2019-05-07 Elwha Llc Nanostructure heaters and heating systems and methods of fabricating the same
US10785832B2 (en) * 2014-10-31 2020-09-22 Elwha Llc Systems and methods for selective sensing and selective thermal heating using nanostructures
CN104501982A (zh) * 2014-12-19 2015-04-08 桂林电子科技大学 一种改性碳纳米管温度传感器
US10178763B2 (en) 2015-12-21 2019-01-08 Intel Corporation Warpage mitigation in printed circuit board assemblies
US10260961B2 (en) * 2015-12-21 2019-04-16 Intel Corporation Integrated circuit packages with temperature sensor traces
US10880994B2 (en) 2016-06-02 2020-12-29 Intel Corporation Top-side connector interface for processor packaging
US10564047B2 (en) 2017-02-16 2020-02-18 International Business Machines Corporation Carbon nanotube-based multi-sensor
US10371581B2 (en) * 2017-06-02 2019-08-06 Sensata Technologies, Inc. Alumina diffusion barrier for sensing elements
FR3075392B1 (fr) * 2017-12-14 2020-09-11 Thales Sa Surveillance d'un defaut dans un equipement electrique

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040266065A1 (en) * 2003-06-25 2004-12-30 Yuegang Zhang Method of fabricating a composite carbon nanotube thermal interface device
TWI256877B (en) * 2005-04-15 2006-06-11 Hon Hai Prec Ind Co Ltd Thermal interface material and method of making the same
TWI256660B (en) * 2005-04-22 2006-06-11 Hon Hai Prec Ind Co Ltd Carbon nanotube array and method for making the same

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100360476B1 (ko) * 2000-06-27 2002-11-08 삼성전자 주식회사 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터 및 그제조방법
US6778316B2 (en) * 2001-10-24 2004-08-17 William Marsh Rice University Nanoparticle-based all-optical sensors
US6919730B2 (en) * 2002-03-18 2005-07-19 Honeywell International, Inc. Carbon nanotube sensor
US20070114573A1 (en) * 2002-09-04 2007-05-24 Tzong-Ru Han Sensor device with heated nanostructure
US20070045756A1 (en) * 2002-09-04 2007-03-01 Ying-Lan Chang Nanoelectronic sensor with integral suspended micro-heater
JP3921533B2 (ja) * 2002-12-04 2007-05-30 独立行政法人物質・材料研究機構 温度感知素子とその製造方法ならびにナノ温度計
US8920619B2 (en) * 2003-03-19 2014-12-30 Hach Company Carbon nanotube sensor
US20040188780A1 (en) * 2003-03-25 2004-09-30 Kurtz Anthony D. Nanotube semiconductor structures with varying electrical properties
US20040238907A1 (en) * 2003-06-02 2004-12-02 Pinkerton Joseph F. Nanoelectromechanical transistors and switch systems
US7112472B2 (en) * 2003-06-25 2006-09-26 Intel Corporation Methods of fabricating a composite carbon nanotube thermal interface device
US20050036905A1 (en) * 2003-08-12 2005-02-17 Matsushita Electric Works, Ltd. Defect controlled nanotube sensor and method of production
US7105851B2 (en) * 2003-09-24 2006-09-12 Intel Corporation Nanotubes for integrated circuits
US7011737B2 (en) * 2004-04-02 2006-03-14 The Penn State Research Foundation Titania nanotube arrays for use as sensors and method of producing
US7194912B2 (en) * 2004-07-13 2007-03-27 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Carbon nanotube-based sensor and method for continually sensing changes in a structure
US7247877B2 (en) * 2004-08-20 2007-07-24 International Business Machines Corporation Integrated carbon nanotube sensors
US7135679B2 (en) * 2004-12-06 2006-11-14 Thermophotonics Inc. Method and system for enhanced radiation detection
DE102005005704B4 (de) * 2005-02-03 2010-08-12 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Verwendung von Partikeln für die Ermittlung der lokalen Temperatur in organischen und nichtorganischen Körpern
US7733479B2 (en) * 2005-06-01 2010-06-08 Chwen-Yang Shew Charged carbon nanotubes for use as sensors
US8133465B2 (en) * 2005-09-12 2012-03-13 University Of Dayton Polymer-carbon nanotube composite for use as a sensor
TWI299399B (en) * 2005-12-13 2008-08-01 Jung Tang Huang Method to integrate carbon nanotube with cmos chip into array-type microsensor
US7465605B2 (en) * 2005-12-14 2008-12-16 Intel Corporation In-situ functionalization of carbon nanotubes
US7335983B2 (en) * 2005-12-16 2008-02-26 Intel Corporation Carbon nanotube micro-chimney and thermo siphon die-level cooling
US7545030B2 (en) * 2005-12-30 2009-06-09 Intel Corporation Article having metal impregnated within carbon nanotube array
US7713858B2 (en) * 2006-03-31 2010-05-11 Intel Corporation Carbon nanotube-solder composite structures for interconnects, process of making same, packages containing same, and systems containing same
US8623509B2 (en) * 2006-05-06 2014-01-07 Anchor Science Llc Thermometric carbon composites
US8174084B2 (en) * 2006-09-19 2012-05-08 Intel Corporation Stress sensor for in-situ measurement of package-induced stress in semiconductor devices
ITSA20080022A1 (it) * 2008-08-08 2010-02-08 Univ Degli Studi Salerno Sensore di temperatura basato su reti di nanotubi di carbonio autosostenute.
US8529124B2 (en) * 2009-06-03 2013-09-10 California Institute Of Technology Methods for gas sensing with single-walled carbon nanotubes
US8568027B2 (en) * 2009-08-26 2013-10-29 Ut-Battelle, Llc Carbon nanotube temperature and pressure sensors
JP5374354B2 (ja) * 2009-12-25 2013-12-25 日東電工株式会社 カーボンナノチューブ複合構造体および粘着部材
US20130195140A1 (en) * 2012-01-31 2013-08-01 Vittorio Scardaci Temperature Sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040266065A1 (en) * 2003-06-25 2004-12-30 Yuegang Zhang Method of fabricating a composite carbon nanotube thermal interface device
TWI256877B (en) * 2005-04-15 2006-06-11 Hon Hai Prec Ind Co Ltd Thermal interface material and method of making the same
TWI256660B (en) * 2005-04-22 2006-06-11 Hon Hai Prec Ind Co Ltd Carbon nanotube array and method for making the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Small,No.11,1088-1093,2005. *
詹家俍,(高騏),選擇性橫向奈米碳管之成長與其應用於溫度感測器之探討,成功大學,中華民國94年7月1日 *

Also Published As

Publication number Publication date
US9028142B2 (en) 2015-05-12
TW200822332A (en) 2008-05-16
HK1116537A1 (zh) 2008-12-24
US20080002755A1 (en) 2008-01-03
CN101097164B (zh) 2014-02-12
US20120199830A1 (en) 2012-08-09
CN101097164A (zh) 2008-01-02

Similar Documents

Publication Publication Date Title
TWI451541B (zh) 用以測量微電子積體封裝組件中之溫度的方法、微電子組件和計算系統
Tang et al. A highly aligned nanowire‐based strain sensor for ultrasensitive monitoring of subtle human motion
Jian et al. Flexible and highly sensitive pressure sensors based on bionic hierarchical structures
TWI220162B (en) Integrated compound nano probe card and method of making same
Demami et al. Silicon nanowires based resistors as gas sensors
Evoy et al. Dielectrophoretic assembly and integration of nanowire devices with functional CMOS operating circuitry
Saif Islam et al. A novel interconnection technique for manufacturing nanowire devices
CN105699693B (zh) 具有减少漂移功能的z轴微机电检测结构
JP6076345B2 (ja) 3軸磁場センサ
Xiao et al. Directed Integration of Tetracyanoquinodimethane‐Cu Organic Nanowires into Prefabricated Device Architectures
TW200532170A (en) Fluid sensor and methods
US9863901B2 (en) Semiconductor sensor having a suspended structure and method of forming a semiconductor sensor having a suspended structure
EP1751055A1 (en) Nanostructures and method for making such nanostructures
CN106629578A (zh) 具有微桥结构的红外探测器及其制造方法
US20070298525A1 (en) Integrated microelectronic package stress sensor
US9418857B2 (en) Sensor component for a gas and/or liquid sensor, production method for a sensor component for a gas and/or liquid sensor, and method for detecting at least one material in a gaseous and/or liquid medium
Qin et al. Highly sensitive NO2 sensors based on core‐shell array of silicon nanowires/polypyrrole and new insight into gas sensing mechanism of organic/inorganic hetero‐contact
Zhang et al. Carbon nanotube integrated 3-dimensional carbon microelectrode array by modified SU-8 photoresist photolithography and pyrolysis
Qin et al. Stable clusters array of silicon nanowires developed by top-plating technique as a high-performance gas sensor
EP2981816B1 (en) Method of manufacturing a sensor device having a porous thin-film metal electrode
Santra et al. Ambient temperature carbon nanotube ammonia sensor on CMOS platform
CN113029403B (zh) 压力传感器及其制作方法、及电子设备
CN107144744B (zh) 一种测量纳米尺度材料/结构中的电子输运性能的电极系统
CN107607152A (zh) 传感器的制造方法及传感器
Abbas et al. Monolithic fabrication of vertical silicon nanowire gas sensor with a top porous copper electrode using glancing angle deposition