TWI451479B - Manufacturing method for thin film of poly-crystalline silicon - Google Patents
Manufacturing method for thin film of poly-crystalline silicon Download PDFInfo
- Publication number
- TWI451479B TWI451479B TW099139582A TW99139582A TWI451479B TW I451479 B TWI451479 B TW I451479B TW 099139582 A TW099139582 A TW 099139582A TW 99139582 A TW99139582 A TW 99139582A TW I451479 B TWI451479 B TW I451479B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- metal
- forming
- germanium
- oxide layer
- Prior art date
Links
- 229910021420 polycrystalline silicon Inorganic materials 0.000 title claims description 53
- 238000004519 manufacturing process Methods 0.000 title claims description 29
- 239000010409 thin film Substances 0.000 title description 3
- 229910052751 metal Inorganic materials 0.000 claims description 172
- 239000002184 metal Substances 0.000 claims description 172
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 107
- 238000000034 method Methods 0.000 claims description 106
- 229910052732 germanium Inorganic materials 0.000 claims description 102
- 229910044991 metal oxide Inorganic materials 0.000 claims description 67
- 150000004706 metal oxides Chemical class 0.000 claims description 67
- 238000000137 annealing Methods 0.000 claims description 50
- 239000003054 catalyst Substances 0.000 claims description 37
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 27
- 229910001936 tantalum oxide Inorganic materials 0.000 claims description 27
- 239000000758 substrate Substances 0.000 claims description 23
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 20
- 229910052707 ruthenium Inorganic materials 0.000 claims description 20
- 229910052715 tantalum Inorganic materials 0.000 claims description 16
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 16
- 238000000151 deposition Methods 0.000 claims description 12
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 claims description 10
- 238000005530 etching Methods 0.000 claims description 9
- 229910003468 tantalcarbide Inorganic materials 0.000 claims description 9
- 239000002923 metal particle Substances 0.000 claims description 7
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 claims description 6
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 5
- 238000001459 lithography Methods 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- 238000010030 laminating Methods 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 18
- 238000002425 crystallisation Methods 0.000 description 17
- 230000008025 crystallization Effects 0.000 description 17
- 239000013078 crystal Substances 0.000 description 13
- 238000007796 conventional method Methods 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 7
- 229910021417 amorphous silicon Inorganic materials 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 238000000879 optical micrograph Methods 0.000 description 6
- 229920005591 polysilicon Polymers 0.000 description 6
- 238000004151 rapid thermal annealing Methods 0.000 description 6
- 235000012431 wafers Nutrition 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 4
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 4
- 229920001621 AMOLED Polymers 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 238000001994 activation Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910052769 Ytterbium Inorganic materials 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000000559 atomic spectroscopy Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000005224 laser annealing Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010905 molecular spectroscopy Methods 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000004958 nuclear spectroscopy Methods 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
- H01L21/02672—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using crystallisation enhancing elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1804—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
- H01L31/182—Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/186—Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
- H01L31/1872—Recrystallisation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/546—Polycrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Recrystallisation Techniques (AREA)
Description
本申請案主張於2010年7月13號向韓國智慧財產局提出申請之韓國專利申請案第10-2010-0067482號的優先權,專利申請案所揭露之內容系完整結合於本說明書中。The present application claims the priority of the Korean Patent Application No. 10-2010-0067482 filed on Jan. 13, 2010, to the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference.
本發明是有關於一種製造適用於太陽電池(solar cell)之多晶矽(poly-crystalline silicon,poly-Si)薄層之方法,且特別是有關於一種藉由利用金屬誘發結晶(metal-induced crystallization,MIC)製程使非晶矽(amorphous silicon,a-Si)層結晶而有效地製造多晶矽薄層之方法。The present invention relates to a method for producing a polycrystalline silicon (poly-crystalline silicon) layer suitable for use in a solar cell, and more particularly to a metal-induced crystallization (metal-induced crystallization, The MIC) process is a method in which an amorphous silicon (a-Si) layer is crystallized to efficiently produce a polycrystalline thin layer.
一般而言,多晶矽(poly-Si)層之製造可能行不通,主要原因在於,由於使用在受熱時易損壞之玻璃基板,因而不能在足夠高之溫度下使非晶矽薄層結晶。In general, the production of a poly-Si layer may not work, mainly because the amorphous thin layer cannot be crystallized at a sufficiently high temperature due to the use of a glass substrate which is easily damaged by heat.
在多晶矽層之製造過程中,為使非晶矽薄層結晶成晶體矽薄層以及為進行摻雜後摻雜劑活化製程(post-doping dopant activation process),可能需要高溫退火製程。In the fabrication of the polysilicon layer, a high temperature annealing process may be required in order to crystallize the amorphous germanium thin layer into a crystalline germanium thin layer and to perform a post-doping dopant activation process.
目前,已提出各種用於在玻璃基板所容許之低溫下於短時間段內形成多晶矽層之低溫多晶矽(low-temperature poly-Si,LTPS)製程。製造多晶矽薄層之典型方法可包括固相結晶(solid-phase crystallization,SPC)方法、準分子雷射退火(excimer laser annealing,ELA)方法及金屬誘發結晶(metal induced crystallization,MIC)方法。At present, various low-temperature poly-Si (LTPS) processes for forming a polycrystalline germanium layer in a short period of time at a low temperature allowed by a glass substrate have been proposed. Typical methods for producing a polycrystalline thin layer may include a solid-phase crystallization (SPC) method, an excimer laser annealing (ELA) method, and a metal induced crystallization (MIC) method.
SPC方法可能是用於使非晶矽層結晶成多晶矽層的最直接之舊有方法。在SPC方法中,可在約600℃或更高之溫度下對非晶矽薄層進行退火達數十小時,藉此形成多晶矽薄層,此多晶矽薄層具有粒徑約為數微米(μm)之晶粒。所得之多晶矽薄層在晶粒中可能具有高之缺陷密度。而且,由於需要高之退火溫度,故無法使用玻璃基板。此外,SPC方法可能涉及執行退火製程達很長的一段時間。The SPC method may be the most straightforward method for crystallizing an amorphous germanium layer into a polycrystalline germanium layer. In the SPC method, a thin layer of amorphous germanium may be annealed at a temperature of about 600 ° C or higher for several tens of hours, thereby forming a thin layer of polycrystalline germanium having a particle diameter of about several micrometers (μm). Grain. The resulting polycrystalline silicon layer may have a high defect density in the grains. Moreover, since a high annealing temperature is required, a glass substrate cannot be used. In addition, the SPC method may involve performing an annealing process for a long period of time.
ELA方法可包括將準分子雷射束在瞬間照射至非晶矽薄層達幾奈秒,以使非晶矽薄層熔化並再結晶而不會損壞玻璃基板。The ELA method can include exposing the excimer laser beam to an amorphous thin layer for a few nanoseconds in an instant to melt and recrystallize the amorphous thin layer without damaging the glass substrate.
然而,已知ELA方法在大規模生產製程中存在顯著之問題。ELA方法可導致多晶矽薄層之晶粒結構相對於雷射束之照射量非常不均勻。而且,ELA方法僅可覆蓋窄的處理範圍,因而無法製造均勻之晶體矽薄層。此外,所得之多晶矽薄層可能具有粗糙之表面,因而會不利地影響元件之特性。這些問題在有機發光二極體(organic light-emitting diode,OLED)應用中可變得更為嚴重,乃因有機發光二極體會受到薄膜電晶體(thin-film transistor,TFT)之均勻性之顯著影響。However, the ELA method is known to have significant problems in mass production processes. The ELA method can result in a very uneven grain size of the polycrystalline germanium layer relative to the laser beam. Moreover, the ELA method can only cover a narrow processing range and thus cannot produce a uniform thin layer of crystal. In addition, the resulting polycrystalline silicon layer may have a rough surface and thus adversely affect the characteristics of the element. These problems can become more serious in organic light-emitting diode (OLED) applications because the organic light-emitting diodes are significantly affected by the uniformity of thin-film transistors (TFTs). influences.
為克服上述缺點,已提出一種金屬誘發結晶(MIC)製程。MIC製程可涉及利用濺鍍(sputtering)製程或旋塗(spin coating)製程在非晶矽上塗覆金屬觸媒,並於低溫下執行退火製程以誘發非晶矽之結晶。金屬觸媒可為各種金屬其中之一,例如鎳(Ni)、銅(Cu)、鋁(Al)或鈀(Pd)。一般而言,可使用Ni作為金屬觸媒來執行MIC製程,乃因Ni之反應可易於控制並可獲得相對大之晶粒。儘管能夠於低於700℃之低溫度下達成MIC製程,然而將MIC製程應用於實際之大規模生產製程可能非常困難。具體而言,擴散入TFT之主動區(active region)中之大量金屬可造成典型之金屬污染,進而導致作為TFT特性之漏電流(leakage current)增大。To overcome the above disadvantages, a metal induced crystallization (MIC) process has been proposed. The MIC process may involve coating a metal catalyst on an amorphous crucible by a sputtering process or a spin coating process, and performing an annealing process at a low temperature to induce crystallization of the amorphous germanium. The metal catalyst may be one of various metals such as nickel (Ni), copper (Cu), aluminum (Al) or palladium (Pd). In general, Ni can be used as a metal catalyst to perform the MIC process because the reaction of Ni can be easily controlled and relatively large crystal grains can be obtained. Although the MIC process can be achieved at temperatures as low as 700 ° C, it can be very difficult to apply the MIC process to an actual mass production process. In particular, a large amount of metal diffused into the active region of the TFT can cause typical metal contamination, which in turn leads to an increase in leakage current as a characteristic of the TFT.
隨著近來主動矩陣型有機發光二極體(active-matrix light-emitting diode,AMOLED)及薄膜多晶矽太陽電池之引入,已愈來愈需要開發原先應用於液晶顯示器(liquid crystal display,LCD)之低溫多晶矽(low-temperature poly-Si,LTPS)。With the recent introduction of active-matrix light-emitting diodes (AMOLEDs) and thin-film polycrystalline silicon solar cells, it has become increasingly necessary to develop low temperatures originally used in liquid crystal displays (LCDs). Low-temperature poly-Si (LTPS).
由於對於顯示器產品而言,AMOLED將與非晶矽TFT LCD相媲美,因而對用於製造多晶矽薄層的廉價且具高生產率之方法之開發備受關注。此外,由於對於太陽電池而言,AMOLED將與晶體晶圓相媲美,因而製造多晶矽薄層之方法亦日益受到關注。因此,多晶矽層相對於非晶矽TFT LCD及晶體晶圓太陽電池之成本及市場競爭力可依賴於廉價且穩定之多晶矽層製造製程。Since AMOLEDs are comparable to amorphous germanium TFT LCDs for display products, there has been a growing interest in the development of inexpensive and highly productive methods for fabricating polycrystalline thin layers. In addition, since AMOLEDs are comparable to crystalline wafers for solar cells, methods for fabricating thin layers of polysilicon are also receiving increasing attention. Therefore, the cost and market competitiveness of the polysilicon layer relative to the amorphous germanium TFT LCD and the crystalline wafer solar cell can depend on an inexpensive and stable polysilicon layer manufacturing process.
圖1是利用MIC製程製造多晶矽薄層之習知方法之圖式。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a diagram of a conventional method for fabricating a polycrystalline germanium layer using an MIC process.
參見圖1,此習知方法可包括在諸如玻璃基板之基板1上形成由氧化矽(SiO2 )形成之緩衝層2。可利用電漿增強化學氣相沈積(plasma-enhanced chemical vapor deposition,PECVD)製程在緩衝層2上形成非晶矽層3,利用濺鍍製程將非晶矽層3塗覆諸如鎳(Ni)之金屬4,並利用快速熱退火(rapid thermal annealing,RTA)製程在約700℃之溫度下退火之,藉此使非晶矽層3結晶成晶體矽層5。然而,根據此習知方法,因無法精確地控制塗覆於非晶矽層3上之金屬之量,故移除所塗覆之過量金屬頗為麻煩。相應地,移除過量金屬之製程可造成製造成本增加並影響晶體矽之品質。Referring to FIG. 1, the conventional method may include forming a buffer layer 2 formed of yttrium oxide (SiO 2 ) on a substrate 1 such as a glass substrate. The amorphous germanium layer 3 may be formed on the buffer layer 2 by a plasma-enhanced chemical vapor deposition (PECVD) process, and the amorphous germanium layer 3 is coated with, for example, nickel (Ni) by a sputtering process. The metal 4 is annealed at a temperature of about 700 ° C by a rapid thermal annealing (RTA) process, whereby the amorphous germanium layer 3 is crystallized into a crystalline germanium layer 5. However, according to this conventional method, since the amount of the metal coated on the amorphous germanium layer 3 cannot be precisely controlled, it is quite troublesome to remove the applied excess metal. Accordingly, the process of removing excess metal can result in increased manufacturing costs and affect the quality of the crystal crucible.
本發明提供一種利用金屬誘發結晶(MIC)製程來製造多晶矽(poly-Si)層之方法,藉此精細地控制金屬觸媒之量並於低溫下達成結晶製程。The present invention provides a method of fabricating a poly-Si layer using a metal induced crystallization (MIC) process whereby the amount of metal catalyst is finely controlled and a crystallization process is achieved at a low temperature.
根據本發明之一態樣,提供一種製造多晶矽(poly-Si)薄層之方法,包括:在絕緣基板上形成金屬層;藉由對所述金屬層之表面進行退火而形成金屬氧化物層,或沈積所述金屬氧化物層;在所述所形成金屬氧化物層上堆疊第一矽層;藉由利用第一退火製程使金屬觸媒之原子自所述金屬層移動至所述第一矽層,而形成金屬矽氧化物層;藉由在所述金屬矽氧化物層上堆疊非晶矽(a-Si)層,而形成第二矽層;以及藉由使用所述金屬矽氧化物層之粒子作為觸媒執行第二退火製程,而使所述非晶矽層結晶成所述多晶矽層。According to an aspect of the present invention, a method of manufacturing a polycrystalline silicon (poly-Si) thin layer is provided, comprising: forming a metal layer on an insulating substrate; forming a metal oxide layer by annealing a surface of the metal layer, Or depositing the metal oxide layer; stacking a first germanium layer on the formed metal oxide layer; moving atoms of the metal catalyst from the metal layer to the first germanium by using a first annealing process And forming a metal tantalum oxide layer; forming a second tantalum layer by stacking an amorphous germanium (a-Si) layer on the metal tantalum oxide layer; and by using the metal tantalum oxide layer The particles perform a second annealing process as a catalyst, and the amorphous germanium layer is crystallized into the polycrystalline germanium layer.
所述金屬層可具有為約5埃至1500埃之厚度,所述金 屬氧化物層可具有為約1埃至300埃之厚度,所述第一矽層可具有為約5埃至1500埃之厚度,且所述金屬層之厚度對所述第一矽層之厚度之比率可介於1:0.5至1:20範圍內。The metal layer may have a thickness of about 5 angstroms to 1500 angstroms, the gold The oxide layer may have a thickness of about 1 angstrom to 300 angstroms, the first ruthenium layer may have a thickness of about 5 angstroms to 1500 angstroms, and the thickness of the metal layer is opposite to the thickness of the first ruthenium layer. The ratio can range from 1:0.5 to 1:20.
所述形成所述金屬氧化物層可在約50℃至1000℃之退火溫度下執行,且所述形成所述金屬矽氧化物層可在約50℃至1000℃之退火溫度下執行。The forming the metal oxide layer may be performed at an annealing temperature of about 50 ° C to 1000 ° C, and the forming the metal tantalum oxide layer may be performed at an annealing temperature of about 50 ° C to 1000 ° C.
所述方法可更包括在所述形成所述金屬層之後且在所述形成所述金屬氧化物層之前,利用微影及蝕刻製程將所述金屬層局部地圖案化,以暴露出所述金屬層。The method may further include partially patterning the metal layer by a lithography and etching process after the forming the metal layer and before forming the metal oxide layer to expose the metal Floor.
根據本發明之另一態樣,提供一種製造多晶矽(poly-Si)薄層之方法,包括:在絕緣基板上形成金屬層;藉由對所述金屬層之表面進行退火而形成金屬氧化物層,或在所述金屬層上沈積所述金屬氧化物層;藉由在所述金屬氧化物層上堆疊非晶矽層而形成第一矽層;藉由利用第一退火製程使金屬觸媒之原子自所述金屬層移動至所述第一矽層,而形成金屬矽氧化物層;藉由在所述金屬矽氧化物層上堆疊非晶矽鍺(a-SiGe)層或非晶碳化矽(a-SiC)層,而形成第二矽層;以及藉由使用所述金屬矽氧化物層之金屬粒子作為觸媒執行第二退火製程,而使所述第二矽層結晶成晶體SiGe層或晶體SiC層。According to another aspect of the present invention, a method of fabricating a polycrystalline silicon (poly-Si) thin layer comprising: forming a metal layer on an insulating substrate; forming a metal oxide layer by annealing a surface of the metal layer Or depositing the metal oxide layer on the metal layer; forming a first germanium layer by stacking an amorphous germanium layer on the metal oxide layer; using a first annealing process to cause a metal catalyst Moving atoms from the metal layer to the first germanium layer to form a metal germanium oxide layer; by stacking an amorphous germanium (a-SiGe) layer or an amorphous tantalum carbide on the metal tantalum oxide layer a (a-SiC) layer to form a second germanium layer; and performing a second annealing process by using metal particles of the metal germanium oxide layer as a catalyst to crystallize the second germanium layer into a crystalline SiGe layer Or a crystalline SiC layer.
根據本發明之另一態樣,提供一種製造多晶矽(poly-Si)薄層之方法,包括:在絕緣基板上形成金屬層;藉由對所述金屬層之表面進行退火而形成金屬氧化物層,或在所述金屬層上沈積所述金屬氧化物層;藉由在所述金屬氧化物層上堆疊矽鍺(SiGe)層或碳化矽(SiC)層而形成第一矽層;藉由利用第一退火製程使金屬觸媒之原子自所述金屬層移動至所述第一矽層,而形成金屬SiGe氧化物層或金屬SiC層;藉由在所述金屬矽氧化物層上堆疊非晶SiGe(a-SiGe)層或非晶SiC(a-SiC)層,而形成第二矽層;以及藉由使用所述金屬矽氧化物層或所述金屬SiC層之金屬粒子作為觸媒執行第二退火製程,而使所述第二矽層結晶成晶體SiGe層或晶體SiC層。According to another aspect of the present invention, a method of fabricating a polycrystalline silicon (poly-Si) thin layer comprising: forming a metal layer on an insulating substrate; forming a metal oxide layer by annealing a surface of the metal layer Or depositing the metal oxide layer on the metal layer; forming a first germanium layer by stacking a germanium (SiGe) layer or a tantalum carbide (SiC) layer on the metal oxide layer; The first annealing process moves atoms of the metal catalyst from the metal layer to the first germanium layer to form a metal SiGe oxide layer or a metal SiC layer; by stacking amorphous on the metal germanium oxide layer a SiGe (a-SiGe) layer or an amorphous SiC (a-SiC) layer to form a second germanium layer; and performing the same by using the metal tantalum oxide layer or the metal particles of the metal SiC layer as a catalyst The second annealing process is performed to crystallize the second layer to form a crystalline SiGe layer or a crystalline SiC layer.
根據本發明之另一態樣,提供一種製造多晶矽(poly-Si)薄層之方法,包括:在絕緣基板上形成第一金屬層;藉由對所述第一金屬層之表面進行退火而形成第一金屬氧化物層,或在所述第一金屬層上沈積所述第一金屬氧化物層;藉由在所述第一金屬氧化物層上堆疊非晶矽(a-Si)層而形成第一矽層;藉由利用第一退火製程使金屬觸媒之原子自所述第一金屬層移動至所述第一矽層,而形成第一金屬矽氧化物層;在所述金屬矽氧化物層上形成第二金屬層;藉由對所述第二金屬層之表面進行退火而形成第二金屬氧化物層,或在所述第二金屬層上沈積所述第二金屬氧化物層;藉由在所述第二氧化物層上堆疊非晶矽層而形成第二矽層;藉由利用第二退火製程使金屬觸媒之原子自所述第二金屬層移動至所述第二矽層,而形成第二金屬矽氧化物層;藉由在所述第二金屬矽氧化物層上堆疊非晶矽層,而形成第三矽層;以及藉由使用所述第一金屬層及所述第二金屬層或所述第一金屬氧化物層抑或所述第二金屬氧化物層之金屬粒子作為觸媒執行第三退火製程,而使所述第三矽層結晶成晶體矽層。According to another aspect of the present invention, a method of fabricating a polycrystalline silicon (poly-Si) thin layer is provided, comprising: forming a first metal layer on an insulating substrate; forming by annealing an surface of the first metal layer a first metal oxide layer, or depositing the first metal oxide layer on the first metal layer; formed by stacking an amorphous germanium (a-Si) layer on the first metal oxide layer a first ruthenium layer; forming a first metal ruthenium oxide layer by moving a metal catalyst atom from the first metal layer to the first ruthenium layer by using a first annealing process; oxidizing the metal ruthenium layer Forming a second metal layer on the object layer; forming a second metal oxide layer by annealing the surface of the second metal layer, or depositing the second metal oxide layer on the second metal layer; Forming a second germanium layer by stacking an amorphous germanium layer on the second oxide layer; moving atoms of the metal catalyst from the second metal layer to the second germanium by using a second annealing process a layer to form a second metal tantalum oxide layer; And stacking an amorphous germanium layer on the compound layer to form a third germanium layer; and by using the first metal layer and the second metal layer or the first metal oxide layer or the second metal oxide The metal particles of the layer perform a third annealing process as a catalyst, and the third germanium layer is crystallized into a crystalline germanium layer.
為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。The above and other objects, features and advantages of the present invention will become more <RTIgt;
圖2為繪示根據本發明之一實施例之製造製程之圖式。圖3為其中形成有圖2之第一矽層40之所得結構之剖視圖。圖4為其中形成有圖2之過量觸媒捕獲層之所得結構之剖視圖。圖5為被執行圖2之蝕刻製程之所得結構之剖視圖。圖6為其上形成有圖2之第二矽層60之所得結構之剖視圖。此外,圖7為在執行圖2之結晶製程後其中形成有多晶矽(poly-Si)薄層之所得結構之示意性剖視圖。2 is a diagram showing a manufacturing process in accordance with an embodiment of the present invention. Figure 3 is a cross-sectional view showing the resultant structure in which the first layer 40 of Figure 2 is formed. 4 is a cross-sectional view showing the resultant structure in which the excess catalyst trap layer of FIG. 2 is formed. Figure 5 is a cross-sectional view showing the resulting structure in which the etching process of Figure 2 is performed. Figure 6 is a cross-sectional view showing the resultant structure in which the second layer 60 of Figure 2 is formed. Further, Fig. 7 is a schematic cross-sectional view showing the resultant structure in which a polycrystalline silicon (poly-Si) thin layer is formed after the crystallization process of Fig. 2 is performed.
參見圖1至圖7,根據本實施例的製造多晶矽薄層之方法(以下稱為「製造方法」)可包括形成金屬層30(操作S1)、形成金屬氧化物層(操作S2)、執行圖案化製程(操作S3)、形成第一矽層(操作S4)、形成過量觸媒捕獲層(操作S5)、執行第一退火製程(操作S6)、執行蝕刻製程(操作S7)、形成第二矽層(操作S8)及執行結晶製程(操作S9)。Referring to FIGS. 1 through 7, a method of manufacturing a polycrystalline silicon thin layer (hereinafter referred to as "manufacturing method") according to the present embodiment may include forming a metal layer 30 (operation S1), forming a metal oxide layer (operation S2), and performing a pattern. a process (operation S3), forming a first germanium layer (operation S4), forming an excess catalyst trap layer (operation S5), performing a first annealing process (operation S6), performing an etching process (operation S7), forming a second defect The layer (operation S8) and the crystallization process (operation S9).
在操作S1中,可在諸如玻璃基板之絕緣基板10上由諸如鎳(Ni)之金屬形成金屬層30。絕緣層10可包括由諸如氧化矽(SiO2 )之材料形成之緩衝層20。緩衝層20可用作絕緣體。此外,緩衝層20可被製備成防止在操作S2、S6或S9期間雜質自基板10擴散入第一矽層40或第二矽層60(將於下文予以說明),進而不會以雜質污染第一矽層40或第二矽層60。金屬層30可使用已知之製程形成,例如使用濺鍍製程或電漿增強化學氣相沈積(PECVD)製程形成。金屬層30可具有約5埃至1500埃之厚度。當金屬層30具有小於5埃之厚度時,製程之重現性(reproducibility)可能因金屬層30之厚度過小而劣化,且當金屬層沈積於大的面積上時,金屬層30之均勻性可能劣化。此外,當金屬層30具有大於1500埃之厚度時,過大量之金屬可能會滲透入第二矽層60(將於下文予以說明)中,進而使金屬污染第二矽層60。如此一來,包含在操作S9(將於下文予以說明)期間所形成之晶體矽的元件之特性可能會劣化。In operation S1, the metal layer 30 may be formed of a metal such as nickel (Ni) on the insulating substrate 10 such as a glass substrate. The insulating layer 10 may include a buffer layer 20 formed of a material such as yttrium oxide (SiO 2 ). The buffer layer 20 can be used as an insulator. Further, the buffer layer 20 may be prepared to prevent impurities from diffusing from the substrate 10 into the first ruthenium layer 40 or the second ruthenium layer 60 (described later) during operation S2, S6 or S9, thereby preventing contamination by impurities. A layer 40 or a second layer 60. Metal layer 30 can be formed using known processes, such as using a sputtering process or a plasma enhanced chemical vapor deposition (PECVD) process. Metal layer 30 can have a thickness of between about 5 angstroms and 1500 angstroms. When the metal layer 30 has a thickness of less than 5 angstroms, the reproducibility of the process may be deteriorated due to the thickness of the metal layer 30 being too small, and when the metal layer is deposited over a large area, the uniformity of the metal layer 30 may be Deterioration. Moreover, when the metal layer 30 has a thickness greater than 1500 angstroms, an excessive amount of metal may penetrate into the second ruthenium layer 60 (described below), thereby causing the metal to contaminate the second ruthenium layer 60. As such, the characteristics of the elements including the crystal defects formed during operation S9 (which will be described later) may be deteriorated.
在操作S2中,可在選自由真空、空氣、氧氣及氮氣所組成之群之任何氣氛中對金屬層30進行退火,藉此在金屬層30之表面上形成金屬氧化物層35,例如氧化鎳(NiO或Ni2 O3 )層。另一選擇為,金屬氧化物層35可沈積於金屬層30上。金屬氧化物層35可在約50℃至1000℃之退火溫度下形成。當金屬氧化物層35是在低於約50℃之退火溫度下形成時,可能無法有效地形成鎳(Ni)之氧化物。此外,當在高於約1000℃之退火溫度下形成金屬氧化物層35時,由玻璃形成之基板10可能會因熱衝擊(thermal shock)而變形或破裂。在操作S2中,可利用爐式製程(furnace process)、快速熱退火(rapid thermal annealing,RTA)製程或紫外光(ultraviolet,UV)加熱製程來執行退火製程。金屬氧化物層35可用於降低在操作S6(將於下文予以說明)中在金屬矽氧化物層55形成期間使金屬觸媒擴散之活化能量。金屬氧化物層35可具有約1埃至300埃之厚度。當金屬氧化物層35具有小於1埃之厚度時,金屬氧化物層35可因其厚度過小而無法恰當地執行功能。此外,當金屬氧化物層35具有大於約300埃之厚度時,則可使來自金屬層30之金屬觸媒無法滲透。In operation S2, the metal layer 30 may be annealed in any atmosphere selected from the group consisting of vacuum, air, oxygen, and nitrogen, thereby forming a metal oxide layer 35, such as nickel oxide, on the surface of the metal layer 30. (NiO or Ni 2 O 3 ) layer. Alternatively, metal oxide layer 35 can be deposited on metal layer 30. The metal oxide layer 35 can be formed at an annealing temperature of about 50 ° C to 1000 ° C. When the metal oxide layer 35 is formed at an annealing temperature of less than about 50 ° C, an oxide of nickel (Ni) may not be efficiently formed. Further, when the metal oxide layer 35 is formed at an annealing temperature higher than about 1000 ° C, the substrate 10 formed of glass may be deformed or broken due to thermal shock. In operation S2, the annealing process may be performed using a furnace process, a rapid thermal annealing (RTA) process, or an ultraviolet (UV) heating process. Metal oxide layer 35 can be used to reduce the activation energy that diffuses the metal catalyst during formation of metal tantalum oxide layer 55 in operation S6 (described below). Metal oxide layer 35 can have a thickness of from about 1 angstrom to 300 angstroms. When the metal oxide layer 35 has a thickness of less than 1 angstrom, the metal oxide layer 35 may not function properly due to its thickness being too small. Moreover, when the metal oxide layer 35 has a thickness greater than about 300 angstroms, the metal catalyst from the metal layer 30 can be rendered impermeable.
在操作S2之後,可在操作S3中利用微影(photolithography)及蝕刻製程而將金屬氧化物層35局部地圖案化及移除,藉此暴露出金屬層30。若需要,可省卻操作S3。可執行操作S3以使晶體矽之生長核(growth nucleus)均勻地分佈。After operation S2, the metal oxide layer 35 may be partially patterned and removed using photolithography and etching processes in operation S3, thereby exposing the metal layer 30. If necessary, the operation S3 can be omitted. Operation S3 can be performed to evenly distribute the growth nucleus of the crystal crucible.
在操作S4中,可利用諸如PECVD製程之已知製程而在金屬氧化物層35上形成由非晶矽形成之第一矽層40。第一矽層40可具有約5埃至1500埃之厚度。當第一矽層40具有小於5埃之厚度時,可能因第一矽層40之厚度過小而使製程之重現性劣化,且當在大的面積上沈積第一矽層40時,第一矽層40之均勻性可能會劣化。此外,當第一矽層40具有大於1500埃之厚度時,第一矽層40可能會與金屬層30相結合,進而造成化合(chemical combination),而此種化合是使用第一矽層40形成金屬矽氧化物層55時所不需要的。此外,金屬層30之厚度對第一矽層40之厚度之比率可介於1:0.5至1:20範圍內。當金屬層30之厚度對第一矽層40之厚度之比率偏離上述範圍時,可如上文所述造成在形成金屬矽氧化物層55時所不需要之化合。亦即,可能會形成成分並非金屬誘發耦合(metal inductive coupling)所需之矽化物成分之化合,進而妨礙誘發結晶。In operation S4, the first germanium layer 40 formed of amorphous germanium may be formed on the metal oxide layer 35 by a known process such as a PECVD process. The first layer 40 can have a thickness of between about 5 angstroms and 1500 angstroms. When the first ruthenium layer 40 has a thickness of less than 5 angstroms, the reproducibility of the process may be deteriorated because the thickness of the first ruthenium layer 40 is too small, and when the first ruthenium layer 40 is deposited over a large area, the first The uniformity of the ruthenium layer 40 may be degraded. In addition, when the first ruthenium layer 40 has a thickness greater than 1500 angstroms, the first ruthenium layer 40 may be combined with the metal layer 30 to cause a chemical combination, and the compound is formed using the first ruthenium layer 40. The metal ruthenium oxide layer 55 is not required. Further, the ratio of the thickness of the metal layer 30 to the thickness of the first ruthenium layer 40 may range from 1:0.5 to 1:20. When the ratio of the thickness of the metal layer 30 to the thickness of the first tantalum layer 40 deviates from the above range, the combination which is not required at the time of forming the metal tantalum oxide layer 55 can be caused as described above. That is, it is possible to form a combination of the telluride components which are not required for metal inductive coupling, thereby hindering the induction of crystallization.
在操作S5中,在第一矽層40上形成氮化矽(SiN)層50。SiN層50之形成可包括利用諸如PECVD製程之已知製程在第一矽層40上堆疊SiN粒子。SiN層50可形成至約100埃或以上之厚度。當SiN層50具有小於約100埃之厚度時,SiN層50可能會因其厚度過小而無法均勻地形成於大的面積上,進而無法有效地捕獲過量之觸媒。In operation S5, a tantalum nitride (SiN) layer 50 is formed on the first tantalum layer 40. The formation of the SiN layer 50 can include stacking SiN particles on the first germanium layer 40 using a known process such as a PECVD process. The SiN layer 50 can be formed to a thickness of about 100 angstroms or more. When the SiN layer 50 has a thickness of less than about 100 angstroms, the SiN layer 50 may not be uniformly formed over a large area because its thickness is too small, so that an excessive amount of catalyst may not be effectively captured.
在操作S6中,可利用第一退火製程使金屬觸媒(例如鎳(Ni))之原子自金屬層30穿過金屬氧化物層35移動至第一矽層40,以形成金屬矽氧化物層55。操作S6中之第一退火製程可利用爐式製程、RTA製程或UV加熱製程而執行。在操作S6中所形成之金屬矽氧化物層55可在操作S9中用作使非晶矽(a-Si)結晶之核。In operation S6, a first annealing process may be used to move atoms of a metal catalyst (eg, nickel (Ni)) from the metal layer 30 through the metal oxide layer 35 to the first germanium layer 40 to form a metal germanium oxide layer. 55. The first annealing process in operation S6 can be performed using a furnace process, an RTA process, or a UV heating process. The metal tantalum oxide layer 55 formed in operation S6 can be used as a core for crystallizing amorphous germanium (a-Si) in operation S9.
在操作S6之後,可在操作S7中移除在操作S5中所堆疊之SiN層50。因SiN層50之移除可利用已知之蝕刻製程移除,故不再予以贅述。After operation S6, the SiN layer 50 stacked in operation S5 may be removed in operation S7. Since the removal of the SiN layer 50 can be removed by a known etching process, it will not be described again.
在操作S8中,可在金屬矽氧化物層55上堆疊非晶矽,藉此形成第二矽層60。第二矽層60之形成可利用例如已知之PECVD製程執行。In operation S8, an amorphous germanium may be stacked on the metal tantalum oxide layer 55, thereby forming the second tantalum layer 60. The formation of the second germanium layer 60 can be performed using, for example, a known PECVD process.
在操作S9中,可使用金屬矽氧化物層55之金屬粒子、利用退火製程而使由非晶矽形成之第二矽層60結晶成晶體矽層70。在操作S9中,可使用RTA設備在例如約630℃之溫度下執行此退火製程。In operation S9, the metal layer of the metal tantalum oxide layer 55 may be used to crystallize the second tantalum layer 60 formed of amorphous germanium into the crystalline germanium layer 70 by an annealing process. In operation S9, this annealing process can be performed using, for example, a temperature of about 630 ° C using an RTA apparatus.
為查看使用上述方法製成之多晶矽薄層之狀態,利用光學顯微鏡及Raman光譜法(spectroscopy)對多晶矽薄層之晶粒之粒徑以及多晶矽薄層在最高強度下之波數進行了分析。In order to examine the state of the polycrystalline silicon thin layer produced by the above method, the particle size of the polycrystalline tantalum thin layer and the wave number of the polycrystalline thin layer at the highest intensity were analyzed by optical microscopy and Raman spectroscopy.
圖8為非晶矽之表面之光學顯微影像。圖9為對圖8所示非晶矽之波數進行分析之曲線圖。圖10為晶體矽晶圓之表面之光學顯微影像。圖11為對圖10所示晶體矽晶圓之波數進行分析之曲線圖。圖12為利用習知金屬誘發結晶(MIC)製程所製成之多晶矽薄層之表面之光學顯微影像。圖13為對圖12所示多晶矽薄層之波數進行分析之曲線圖。圖14為利用根據本發明實施例之方法所製成的多晶矽薄層之表面之光學顯微影像。此外,圖15為對圖14所示多晶矽薄層之波數進行分析之曲線圖。Figure 8 is an optical microscopic image of the surface of an amorphous crucible. Fig. 9 is a graph showing the analysis of the wave number of the amorphous ytterbium shown in Fig. 8. Figure 10 is an optical microscopy image of the surface of a crystalline germanium wafer. Fig. 11 is a graph showing the analysis of the wave number of the crystal germanium wafer shown in Fig. 10. Figure 12 is an optical micrograph of the surface of a thin layer of polycrystalline silicon produced by a conventional metal induced crystallization (MIC) process. Fig. 13 is a graph showing the analysis of the wave numbers of the polycrystalline silicon thin layer shown in Fig. 12. Figure 14 is an optical microscopy image of the surface of a polycrystalline silicon thin layer made using a method in accordance with an embodiment of the present invention. Further, Fig. 15 is a graph for analyzing the wave numbers of the polycrystalline thin layer shown in Fig. 14.
參見圖8及圖9,由非晶矽形成之第二矽層60在480 cm-1 之波數處具有最高強度。在圖9中,橫座標表示波數(cm-1 ),其對應於頻率。波數是原子光譜學、分子光譜學及核譜學(nuclear spectroscopy)中的頻率單位,其等於實際頻率除以光速,因此等於單位距離中的波之數目。任何波之頻率(以希臘字母v表示)皆等於光速c除以波長λ:因此v=c/λ。光譜之可見光區域中之典型光譜線具有5.8×10-5 公分之波長,根據此方程式,此對應於5.17×1014 赫茲之頻率(v)(赫茲等於每秒一個周波)。因此頻率非常大,方便之作法是將此數除以光速,藉此減小其大小。頻率除以光速等於v/c,根據上述方程式,其為1/λ。當波長以米(m)來計量時,1/λ即表示在一米長度內所存在的波列(wave train)之波的數目,或者若波長以公分來計量,1/λ則表示在一公分內之波的數目。此數目被稱為光譜線之波數。波數通常以米之倒數(1/m或m-1 )及公分之倒數(1/cm或cm-1 )為單位來計量。Referring to Figures 8 and 9, the second tantalum layer 60 formed of amorphous germanium has the highest intensity at a wavenumber of 480 cm -1 . In Fig. 9, the abscissa indicates the wave number (cm -1 ), which corresponds to the frequency. Wavenumbers are frequency units in atomic spectroscopy, molecular spectroscopy, and nuclear spectroscopy that are equal to the actual frequency divided by the speed of light and are therefore equal to the number of waves in a unit distance. The frequency of any wave (indicated by the Greek letter v) is equal to the speed of light c divided by the wavelength λ: thus v = c / λ. A typical spectral line in the visible region of the spectrum has a wavelength of 5.8 x 10 -5 cm, which according to this equation corresponds to a frequency (v) of 5.17 x 10 14 Hz (Hertz is equal to one cycle per second). Therefore, the frequency is very large, and it is convenient to divide this number by the speed of light, thereby reducing its size. The frequency divided by the speed of light is equal to v/c, which is 1/λ according to the above equation. When the wavelength is measured in meters (m), 1/λ represents the number of waves of the wave train existing within one meter of length, or if the wavelength is measured in centimeters, 1/λ means The number of waves within the cent. This number is called the wave number of the spectral line. The wave number is usually measured in units of the reciprocal of meters (1/m or m -1 ) and the reciprocal of the centimeters (1/cm or cm -1 ).
在圖9中,縱座標是以每單位時間所計量之波數之和,其對應於強度(每秒之個數(Count Per Second,CPS))。在圖11、圖13及圖15中,橫座標及縱座標之單位與圖9中的相同。相比之下,參見圖10及圖11,由晶體矽形成之典型矽晶圓在520cm-1 之波數處具有最高強度。參見圖12及圖13,多晶矽薄層在相似於圖10及圖11所示晶體矽晶圓之波數處具有最高強度。然而,根據圖12中多晶矽薄層之表面之光學顯微影像(其被放大1000倍),可以觀察到,晶粒較圖10中之晶體矽晶圓為小。In Figure 9, the ordinate is the sum of the number of waves measured per unit time, which corresponds to the intensity (Count Per Second (CPS)). In Figs. 11, 13, and 15, the units of the abscissa and the ordinate are the same as those in Fig. 9. In contrast, referring to Figures 10 and 11, a typical tantalum wafer formed of crystalline germanium has the highest intensity at a wavenumber of 520 cm -1 . Referring to Figures 12 and 13, the polysilicon layer has the highest intensity at wave numbers similar to those of the wafer wafers shown in Figures 10 and 11. However, according to the optical microscopic image of the surface of the polycrystalline thin layer in Fig. 12 (which is magnified 1000 times), it can be observed that the crystal grains are smaller than the crystal germanium wafer in Fig. 10.
參見圖15,可以看出,根據本發明所製成之多晶矽薄層在最高強度處之波數大約與圖11所示晶體矽晶圓一樣顯著。此外,當將圖14之光學顯微影像(其被放大1000倍)與圖12之光學顯微影像相比較時,可以看出,根據本發明所製成之多晶矽薄層之晶粒遠大於使用習知方法製成之多晶矽薄層之晶粒。根據上述實驗結果,可得出如下結論:根據本發明的製造多晶矽薄層之方法優於習知方法。 此外,根據本發明之方法,可在較習知方法為低之溫度下達成結晶製程。在本發明之方法中,金屬觸媒(其對應於自非晶矽結晶成晶體矽所需之反應核)可設置於非晶矽層之下,因而可預先精確地控制金屬觸媒之量,並可使金屬觸媒擴散入非晶矽層中。結果,可防止雜質之擴散,並可降低活化能量。Referring to Figure 15, it can be seen that the polycrystalline silicon layer produced in accordance with the present invention has a wave number at the highest intensity which is approximately as significant as the crystalline germanium wafer shown in Figure 11. In addition, when the optical microscopic image of FIG. 14 (which is magnified 1000 times) is compared with the optical microscopic image of FIG. 12, it can be seen that the crystal grains of the polycrystalline silicon thin layer produced according to the present invention are much larger than the use. The crystal grains of a thin layer of polycrystalline silicon produced by a conventional method. Based on the above experimental results, it can be concluded that the method for producing a polycrystalline silicon thin layer according to the present invention is superior to the conventional method. Further, according to the method of the present invention, the crystallization process can be achieved at a temperature lower than the conventional method. In the method of the present invention, a metal catalyst (which corresponds to a reaction nucleus required for crystallizing from an amorphous germanium to a crystalline germanium) may be disposed under the amorphous germanium layer, so that the amount of the metal catalyst can be precisely controlled in advance. And the metal catalyst can be diffused into the amorphous germanium layer. As a result, diffusion of impurities can be prevented, and activation energy can be lowered.
在第一實施例中,儘管描述在形成金屬氧化物層35之操作S2之後且在形成第一矽層40之操作S4之前執行利用微影及蝕刻製程來將金屬氧化物層35局部地圖案化之操作S3,然而在需要時亦可省卻操作S3。In the first embodiment, although the lithography and etching process is performed to locally pattern the metal oxide layer 35 after the operation S2 of forming the metal oxide layer 35 and before the operation S4 of forming the first germanium layer 40 is described. Operation S3, however, operation S3 may be omitted when needed.
在第一實施例中,儘管描述在用於形成第一矽層40之操作S4之後接著執行在第一矽層40上形成SiN層50之操作S5、且在用於執行第一退火製程之操作S6之後接著執行藉由蝕刻而移除SiN層50之操作S7,然而不執行操作S5及操作S7亦可達成本發明之目標。In the first embodiment, although the operation S5 of forming the SiN layer 50 on the first germanium layer 40 is performed after the operation S4 for forming the first germanium layer 40, and the operation for performing the first annealing process is performed. S6 is followed by operation S7 of removing the SiN layer 50 by etching, but the object of the present invention can also be achieved without performing operation S5 and operation S7.
與在第一實施例中不同,一種製造多晶矽薄層之方法可包括藉由在絕緣基板上堆疊非晶矽而形成第一矽層。利用金屬與此金屬之氧化物之混合物,在非晶矽上形成金屬氧化物層。可藉由在金屬氧化物層上堆疊非晶矽而形成第二矽層。可藉由使用金屬氧化物層之金屬粒子作為觸媒執行退火製程,將第一矽層之非晶矽結晶成晶體矽。亦即,可對其中在基板上不形成金屬層而是形成金屬氧化物層之所得結構執行與本發明第一實施例中相同之製程。Unlike in the first embodiment, a method of manufacturing a polysilicon thin layer may include forming a first germanium layer by stacking amorphous germanium on an insulating substrate. A metal oxide layer is formed on the amorphous germanium by using a mixture of a metal and an oxide of the metal. The second layer of germanium can be formed by stacking amorphous germanium on the metal oxide layer. The amorphous germanium of the first tantalum layer can be crystallized into a crystalline germanium by performing an annealing process using metal particles of the metal oxide layer as a catalyst. That is, the same process as in the first embodiment of the present invention can be performed on the resulting structure in which a metal layer is not formed on the substrate but a metal oxide layer is formed.
本發明之第二實施例是第一實施例之修改實施例。根據第二實施例的製造多晶矽薄層之方法與根據第一實施例之方法的不同之處在於,並非在第一實施例之操作S8中堆疊非晶矽層,而是堆疊非晶矽鍺(a-SiGe)層或非晶碳化矽(a-SiC)層。因此,與在第一實施例中不同,根據第二實施例,在結晶操作期間可形成晶體SiGe層或晶體SiC層。The second embodiment of the present invention is a modified embodiment of the first embodiment. The method of manufacturing a polycrystalline silicon thin layer according to the second embodiment is different from the method according to the first embodiment in that an amorphous germanium layer is not stacked in operation S8 of the first embodiment, but an amorphous germanium is stacked ( An a-SiGe layer or an amorphous tantalum carbide (a-SiC) layer. Therefore, unlike in the first embodiment, according to the second embodiment, a crystalline SiGe layer or a crystalline SiC layer may be formed during the crystallization operation.
本發明之第三實施例是第二實施例之修改實施例。根據第三實施例的製造多晶矽薄層之方法與第二實施例之方法的不同之處在於,並非在第一實施例之操作S4中堆疊非晶矽層,而是堆疊a-SiGe層或a-SiC層。The third embodiment of the present invention is a modified embodiment of the second embodiment. The method of manufacturing a polycrystalline silicon thin layer according to the third embodiment is different from the method of the second embodiment in that an amorphous germanium layer is not stacked in operation S4 of the first embodiment, but an a-SiGe layer or a is stacked. - SiC layer.
本發明之第四實施例是第一實施例之修改實施例。一種製造多晶矽薄層之方法與第一實施例的不同之處在於,形成金屬層30之操作S1、形成金屬氧化物層35之操作S2、形成第一矽層40之操作S4及執行第一退火製程之操作S6被依序重複兩次。具體而言,根據第四實施例之方法可包括在絕緣基板上形成第一金屬層。可對第一金屬層之表面進行退火,或者可在第一金屬層上沈積第一金屬氧化物層,藉此形成第一金屬氧化物層。可在第一金屬氧化物層上堆疊非晶矽層,藉此形成第一矽層。可利用第一退火製程而使金屬觸媒之原子自第一金屬層移動至第一矽層中,藉此形成第一金屬矽氧化物層。可在金屬矽氧化物層上形成第二金屬層。可對第二金屬層之表面進行退火,或者可在第二金屬層之表面上沈積第二金屬氧化物層,藉此形成第二金屬氧化物層。可在第二氧化物層上堆疊非晶矽層,藉此形成第二矽層。可藉由利用第二退火製程而使金屬觸媒之原子自第二金屬層移動至第二矽層中,藉此形成第二金屬矽氧化物層。可在第二金屬矽氧化物層上堆疊非晶矽層,藉此形成第三矽層。可使用第一金屬層及第二金屬層、第一金屬氧化物層或第二金屬氧化物層作為觸媒來執行退火製程,藉此使第三矽層結晶成晶體矽層。The fourth embodiment of the present invention is a modified embodiment of the first embodiment. A method of manufacturing a polycrystalline silicon thin layer is different from the first embodiment in that an operation S1 of forming the metal layer 30, an operation S2 of forming the metal oxide layer 35, an operation S4 of forming the first germanium layer 40, and performing the first annealing are performed. The operation S6 of the process is repeated twice in sequence. Specifically, the method according to the fourth embodiment may include forming a first metal layer on the insulating substrate. The surface of the first metal layer may be annealed, or a first metal oxide layer may be deposited on the first metal layer, thereby forming a first metal oxide layer. An amorphous germanium layer may be stacked on the first metal oxide layer, thereby forming a first germanium layer. The first annealing process can be utilized to move atoms of the metal catalyst from the first metal layer into the first germanium layer, thereby forming a first metal tantalum oxide layer. A second metal layer can be formed on the metal tantalum oxide layer. The surface of the second metal layer may be annealed or a second metal oxide layer may be deposited on the surface of the second metal layer, thereby forming a second metal oxide layer. An amorphous germanium layer may be stacked on the second oxide layer, thereby forming a second germanium layer. The second metal ruthenium oxide layer can be formed by moving the atoms of the metal catalyst from the second metal layer into the second ruthenium layer by using a second annealing process. An amorphous germanium layer may be stacked on the second metal tantalum oxide layer, thereby forming a third tantalum layer. The annealing process may be performed using the first metal layer and the second metal layer, the first metal oxide layer or the second metal oxide layer as a catalyst, whereby the third germanium layer is crystallized into a crystalline germanium layer.
根據上述第一實施例,第二實施例至第四實施例對於熟習此項技術者將顯而易見。According to the first embodiment described above, the second to fourth embodiments will be apparent to those skilled in the art.
在根據本發明的製造多晶矽薄層之方法中,擴散入非晶矽層中並在非晶矽層中用作結晶核之金屬觸媒之量可得到精確控制,藉此達成多晶矽薄層之有效製造。此外,根據本發明,非晶矽可在低於習知情形之溫度下結晶。In the method for producing a polycrystalline silicon thin layer according to the present invention, the amount of the metal catalyst diffused into the amorphous germanium layer and used as a crystal nucleus in the amorphous germanium layer can be precisely controlled, thereby achieving the effectiveness of the polycrystalline thin layer. Manufacturing. Further, according to the present invention, the amorphous germanium can be crystallized at a temperature lower than the conventional one.
雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.
1‧‧‧基板1‧‧‧Substrate
2‧‧‧緩衝層2‧‧‧buffer layer
3‧‧‧非晶矽層3‧‧‧Amorphous layer
4‧‧‧金屬4‧‧‧Metal
5‧‧‧晶體矽層5‧‧‧crystal layer
10‧‧‧絕緣基板10‧‧‧Insert substrate
20‧‧‧緩衝層20‧‧‧buffer layer
30‧‧‧金屬層30‧‧‧metal layer
35‧‧‧金屬氧化物層35‧‧‧ metal oxide layer
40‧‧‧第一矽層40‧‧‧ first layer
50‧‧‧氮化矽層50‧‧‧矽 nitride layer
55‧‧‧金屬矽氧化物層55‧‧‧metal ruthenium oxide layer
60‧‧‧第二矽層60‧‧‧Second layer
70‧‧‧晶體矽層70‧‧‧crystal layer
S1~S9‧‧‧操作S1~S9‧‧‧ operation
藉由參照附圖詳細說明本發明之例示性實施例,本發明之上述及/或其他特徵及優點將變得更加顯而易見,附圖中:The above and/or other features and advantages of the present invention will become more apparent from the detailed description of the exemplary embodiments of the invention.
圖1為繪示利用金屬誘發結晶(MIC)製程來製造多晶矽(poly-Si)薄層之習知方法之圖式。1 is a diagram showing a conventional method for producing a polycrystalline silicon (poly-Si) thin layer using a metal induced crystallization (MIC) process.
圖2為繪示根據本發明之一實施例之製造製程之圖式。2 is a diagram showing a manufacturing process in accordance with an embodiment of the present invention.
圖3為其中形成有圖2之第一矽層之所得結構之剖視圖。Figure 3 is a cross-sectional view showing the resultant structure in which the first layer of Figure 2 is formed.
圖4為其中形成有圖2之過量觸媒捕獲層之所得結構之剖視圖。4 is a cross-sectional view showing the resultant structure in which the excess catalyst trap layer of FIG. 2 is formed.
圖5為被執行圖2之蝕刻製程之所得結構之剖視圖。Figure 5 is a cross-sectional view showing the resulting structure in which the etching process of Figure 2 is performed.
圖6為其上形成有圖2之第二矽層之所得結構之剖視圖。Figure 6 is a cross-sectional view showing the resultant structure in which the second layer of Figure 2 is formed.
圖7為在執行圖2之結晶製程後其中形成有多晶矽(poly-Si)薄層之所得結構之示意性剖視圖。Fig. 7 is a schematic cross-sectional view showing the resultant structure in which a polycrystalline silicon (poly-Si) thin layer is formed after the crystallization process of Fig. 2 is performed.
圖8為非晶矽(a-Si)之表面之光學顯微影像。Figure 8 is an optical microscopic image of the surface of amorphous germanium (a-Si).
圖9為對圖8所示非晶矽之波數進行分析之曲線圖。Fig. 9 is a graph showing the analysis of the wave number of the amorphous ytterbium shown in Fig. 8.
圖10為晶體矽晶圓之表面之光學顯微影像。Figure 10 is an optical microscopy image of the surface of a crystalline germanium wafer.
圖11為對圖10所示矽晶圓之波數進行分析的曲線圖。Fig. 11 is a graph for analyzing the wave numbers of the tantalum wafer shown in Fig. 10.
圖12為利用習知金屬誘發結晶(MIC)製程所製成之多晶矽薄層之表面之光學顯微影像。Figure 12 is an optical micrograph of the surface of a thin layer of polycrystalline silicon produced by a conventional metal induced crystallization (MIC) process.
圖13為對圖12所示多晶矽薄層之波數進行分析之曲線圖。Fig. 13 is a graph showing the analysis of the wave numbers of the polycrystalline silicon thin layer shown in Fig. 12.
圖14為利用根據本發明實施例之方法所製成的多晶矽薄層之表面之光學顯微影像。Figure 14 is an optical microscopy image of the surface of a polycrystalline silicon thin layer made using a method in accordance with an embodiment of the present invention.
圖15為對圖14所示多晶矽薄層之波數進行分析之曲線圖。Fig. 15 is a graph showing the analysis of the wave number of the polycrystalline thin layer shown in Fig. 14.
S1~S9...操作S1 ~ S9. . . operating
Claims (7)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100067482A KR101118275B1 (en) | 2010-07-13 | 2010-07-13 | Manufacturing method for thin film of poly-crystalline silicon |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201203319A TW201203319A (en) | 2012-01-16 |
TWI451479B true TWI451479B (en) | 2014-09-01 |
Family
ID=45612397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW099139582A TWI451479B (en) | 2010-07-13 | 2010-11-17 | Manufacturing method for thin film of poly-crystalline silicon |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101118275B1 (en) |
TW (1) | TWI451479B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI791481B (en) * | 2017-01-30 | 2023-02-11 | 德商麥克專利有限公司 | Method for forming an organic electroluminescence (el) element |
KR101959754B1 (en) * | 2018-02-27 | 2019-03-19 | 한국과학기술원 | Forming method of sensing film for uncooled type infrared sensor, sensing film formed by the method, manufacturing method of uncooled type infrared sensor and uncooled type infrared sensor manufactured by the method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200811959A (en) * | 2004-09-17 | 2008-03-01 | Jae-Sang Ro | Method for annealing silicon thin films using conductive layer and polycrystalline silicon thin films prepared therefrom |
US20090178711A1 (en) * | 2008-01-16 | 2009-07-16 | Snu R&Db Foundation | Polycrystalline silicon solar cell having high efficiency and method for fabricating the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100949762B1 (en) * | 2007-12-10 | 2010-03-25 | 한국과학기술연구원 | Composite electrolyte and the fabrication method thereof, and dye-sensitized solar cell based on electrolyte with hollow particles of metal oxides using the same |
-
2010
- 2010-07-13 KR KR1020100067482A patent/KR101118275B1/en not_active IP Right Cessation
- 2010-11-17 TW TW099139582A patent/TWI451479B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200811959A (en) * | 2004-09-17 | 2008-03-01 | Jae-Sang Ro | Method for annealing silicon thin films using conductive layer and polycrystalline silicon thin films prepared therefrom |
US20090178711A1 (en) * | 2008-01-16 | 2009-07-16 | Snu R&Db Foundation | Polycrystalline silicon solar cell having high efficiency and method for fabricating the same |
Also Published As
Publication number | Publication date |
---|---|
KR101118275B1 (en) | 2012-03-20 |
KR20120006821A (en) | 2012-01-19 |
TW201203319A (en) | 2012-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060113596A1 (en) | Single crystal substrate and method of fabricating the same | |
TWI244214B (en) | Semiconductor device and method of fabricating a LTPS film | |
JP2009016410A (en) | Thin film transistor and manufacturing method thereof | |
US8367527B2 (en) | Method of fabricating polycrystalline silicon thin film | |
TWI451479B (en) | Manufacturing method for thin film of poly-crystalline silicon | |
US6312979B1 (en) | Method of crystallizing an amorphous silicon layer | |
JP2009135488A (en) | Crystallization method of silicon | |
JP3924828B2 (en) | Method for manufacturing crystalline semiconductor film and method for manufacturing thin film transistor | |
KR101044415B1 (en) | Manufacturing method for thin film of poly-crystalline silicon | |
KR20130060002A (en) | Manufacturing method for thin film of poly-crystalline material | |
KR101064325B1 (en) | Manufacturing method for thin film of poly-crystalline silicon | |
KR101011806B1 (en) | Manufacturing method for thin film of poly-crystalline silicon | |
KR101057147B1 (en) | Manufacturing method for thin film of poly-crystalline silicon | |
KR101131216B1 (en) | Manufacturing method for thin film of poly-crystalline silicon | |
KR101079302B1 (en) | Manufacturing method for thin film of poly-crystalline silicon | |
KR101281132B1 (en) | Manufacturing method for thin film of poly-crystalline material | |
KR101123373B1 (en) | Manufacturing method for thin film of poly-crystalline silicon | |
KR101193226B1 (en) | Manufacturing method for thin film of poly-crystalline silicon | |
KR101117291B1 (en) | Manufacturing method for thin film of poly-crystalline silicon | |
KR100583512B1 (en) | Method of fabricating polysilicon film by Nickel and Copper induced lateral crystallization | |
KR101179223B1 (en) | Manufacturing method for thin film of Poly-Crystalline Silicon | |
KR101095621B1 (en) | Manufacturing method for thin film of poly-crystalline silicon | |
KR101131217B1 (en) | Manufacturing method for thin film of poly-crystalline silicon | |
Benazouz et al. | The effect of dehydrogenation step on the nickel-induced crystallization of hydrogenated amorphous silicon | |
TWI278916B (en) | Semiconductor film and method of forming the same, and semiconductor device and display apparatus using the semiconductor film |