TWI432975B - 數據分析與重現方法以及其計算機系統 - Google Patents

數據分析與重現方法以及其計算機系統 Download PDF

Info

Publication number
TWI432975B
TWI432975B TW098120450A TW98120450A TWI432975B TW I432975 B TWI432975 B TW I432975B TW 098120450 A TW098120450 A TW 098120450A TW 98120450 A TW98120450 A TW 98120450A TW I432975 B TWI432975 B TW I432975B
Authority
TW
Taiwan
Prior art keywords
intrinsic mode
mode function
dimensional
component
data
Prior art date
Application number
TW098120450A
Other languages
English (en)
Other versions
TW201015345A (en
Inventor
Norden E Huang
Zhaohua Wu
Xianyao Chen
Original Assignee
Univ Nat Central
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Central filed Critical Univ Nat Central
Publication of TW201015345A publication Critical patent/TW201015345A/zh
Application granted granted Critical
Publication of TWI432975B publication Critical patent/TWI432975B/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/02Preprocessing
    • G06F2218/04Denoising
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/08Feature extraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10108Single photon emission computed tomography [SPECT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30016Brain
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30096Tumor; Lesion

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Processing (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

數據分析與重現方法以及其計算機系統
本發明是有關於一種分解物理數據之方法,且特別是有關於一種分解與分析空間物理數據之方法。
美國國家航空暨太空總署(National Aeronautics and Space Administration,NASA)的專利號碼1至5中(US Patent 5,983,162、US Patent 6,311,130 B1、US Patent 6,381,559 B1、US Patent 6,738,734 B1以及US20080065337A1),將經驗模態分解法(Empirical Mode Decomposition,EMD)與希爾伯特-黃頻譜分析(Hilbert Spectral Analysis,HSA)結合稱為希爾伯特-黃轉換(Hilbert-Huang Transform,HHT),此分析轉換提供時間-頻率分析的另一範例。希爾伯特-黃轉換自從1940年代(蓋伯Gabor 1946)開始便已廣為人知且廣泛使用於信號處理領域。然而當應用於計算瞬間頻率時,希爾伯特-黃轉換仍有許多缺點(貝德羅西安Bedrosian 1963、納托爾Nuttall 1966)。最嚴重的缺點是當信號不是單一分量或為調頻/調幅可分開的振盪信號時,則信號的導出瞬間頻率會失去其物理意義(黃等人1998)。最初發展經驗模態分解法是用來克服此缺點,使得數據可以在物理上有意義的時間-頻率-振幅空間中被檢驗。經驗模態分解法在改進之後,成為信號處理以及科學數據分析的強大工具。
幾乎與所有先前分解方法相反,經驗模態分解法為經驗的、直覺的、直接的以及可調適的,而不需要預先的基底函式。此分解法以可在局部時間尺度內的任一數據中,尋找振盪信號的各種簡單內在模式。一個簡單的振盪模式(simple oscillatory mode)會被稱為內在模式函數(intrinsic mode function,IMF),此內在模式函數滿足下列條件:(a)在整個數據集合當中,極值(最大值或最小值)的數目以及零點交叉(zero-crossing)的數目必須相同或是最多相差1;以及(b)在任一時間點,局部最大值所定義的上包絡值和局部最小值所定義的下包絡值之平均為0。
經驗模態分解法僅篩選局部極值。從任何數據rj-1來說,其過程如下所述:1)找出所有局部極值,並利用三次樣條函數(cubic spline)將所有的局部最大值(最小值)連接,做為上包絡線(下包絡線);2)將數據與兩包絡線的局部平均值相減,以取得第一分量h;以及3)將h視為數據rj-1,重複步驟1和步驟2,直到包絡線對稱於特定標準下的零平均值。最後的h會被指定為cj。當剩餘量rn變成單調函數,或是僅有一個極值的函數而無法再找出更多內在模式時,則停止篩選過程。簡而言之,經驗模態分解法是一種適配法,按照內在模式函數cj以及剩餘分量rn來分解數據x(t),意即,
在等式(1)中,剩餘分量rn可以是常數、單調函數或是僅包含單一極值的函數,此包含單一極值的函數無法再取得更多內在模式函數。如此一來,此分解法為可調適的,且因此為高效率的。由於此分解法是基於數據的局部特徵,因此亦可以使用在非線性以及非平穩程序當中。
雖然經驗模態分解法是一個簡單的分解法,此方法卻擁有許多其它分解法所缺少的優點。福蘭德林等人(Flandrin and Goncalves 2004年以及2005年),福蘭德林和貢薩爾維斯(2004年)研究分數高斯雜訊(Fractional Gaussian noise)的內在模式函數之傅立葉頻譜,其被廣泛地用於信號處理領域或是財務數據模擬。他們發現除了第一個分數高斯雜訊以外,所有內在模式函數的頻譜沿著頻率對數的軸線摺疊成單一形狀。相鄰內在模式函數頻譜之中心頻率大約被減為一半(周期因此變成兩倍);所以,經驗模態分解法實質上是二元濾波器的組合(dyadic filter bank)。福蘭德林等人(2005年)證明當經驗模態分解法應用於差量函數時(delta function),其運作如同三次樣條波函數。吳及黃(2004,2005a)亦獨立地在白雜訊(分數高斯雜訊的一個特殊狀況)中發現一樣的結果。除此之外,吳及黃(2004,2005a)主張使用中心極限定理(central limit theorem),其中每一個高斯雜訊的內在模式函數大約呈現高斯分布,因此每一個內在模式函數的能量必為卡方(X2)分布。由此特徵,吳及黃(2004,2005)更進一步地導出預估的白雜訊之內在模式函數的能量分布。藉著決定每一個雜訊之內在模式函數卡方分布的自由度數目,可導出內在模式函數的能量之展開函式的解析形式。由這些結果,吾人將可區別出帶有訊號的內在模式函數與白雜訊。
強而有力的經驗模態分解法刺激了二維經驗模態分解法的發展(或雙向二維經驗模態分解法,BEMD)。到目前為止,許多研究人員探嘗試將經驗模態分解法擴大應用至多維空間-時間數據分析和二維空間圖像分析。一種方法是將二維圖像視為一維切片的集合,然後用一維EMD方法分解每個切片。這是一個擬雙向EMD(pseudo-two-dimensional)方法。這種方法後來被使用於波數據,產生優良的模型以及基本長波的表面波統計數字。一般情況下,當時空數據的主要方向明確時,這種做法能夠產生良好的效果。然而,在擬BEMD的大多數情況下,空間結構主要取決於尺度(textual scale)。如果不同尺度的空間結構能夠很容易得被區隔分開,且有明確的方向性並具有連續性,這種做法是適當的,否則此一方式並不適用。此一方式的主要缺點是:導因於切片之間的不連續,EMD對於微小數據擾動、不連續以及方向變化相當敏感。
第二種類型是直接將EMD的技術和演算法應用至圖像分解。如前所述,EMD是一種一維數據分解法,其基本步驟係使用三次樣條(cubic spline)或低階多項式來擬合帶有上部和下部曲線(包絡線;envelope)的一維數據極值,其中此低階多項式直接適用於兩個二維圖像,以擬合曲面取代擬合曲線。目前有多個實體二維EMD方法,每一方法均自行選取合適的物質表面。Nunes(2003年,2005年)使用徑向基函數來解釋物質表面,並使用Riesz變換而非Hilbert變換來計算局部波數目(local wave number)。Linderhed(2005)利用薄板樣條(thin-plate spline)解釋物質表面,來制定應用於圖像數據壓縮的二維EMD方法,比起任何利用小波基數的數據壓縮方法,此方式已被證明能夠維持較高的傳真度(fidelity)。許多先進(Song與Zhang 2001年、Damerval,2005年、Yuan,2008年)採用了第三種方式,此一方式以德洛涅三角剖分(Delaunay Triangulation)和分段的三次方多項式為基礎,取得實體物質的上表面和下表面。他人(Xu 2006年)則提供第四種辦法,此第四種辦法係利用以有限元素為基礎的網格擬合(mesh fitting)方法。這些BEMDs方法已成功適用於各個領域的工程和科學。
然而,目前真正BEMDs的應用遇到一些難題。第一個是極值的定義。所有二維數據均具有鞍點(saddle),脊點(ridge)以及槽結構(trough structure),因此需要決定是否將鞍點和脊(槽)點視為極大值(極小值)。曲面擬合的結果將因是否將脊(槽)點視為極值而大不相同。因此,分解結果將大不相同。第二個困難是,曲面擬合需要大量的計算。在許多情況下,曲面擬合涉及非常大的矩陣及其特徵值的計算,且此曲面擬合僅提供一個近似值,並不能適用於所有的實際極值。第三個困難,也是最嚴重的問題,在於模式的混合(mode mixing),也就是尺度的混合(scale mixing)。在一維EMD中,尺度混合是指一個單一的IMF由尺度廣泛的不同信號所組成,或同一尺度的信號分散在不同的IMF分量當中,起因於時間軸上的極值分佈不均(Huang,1999年、Wu與Huang 2005b,2008)。尺度混合可能會在BEMD中導致類似的問題。例如,分解帶有部分(假設在左下部分)雜訊的二維正弦波,可能導致沒有二維正弦波的結構。由於二維數據可能含有噪音,使用BEMD來分解是不穩定的,可能對噪音非常敏感,並導致物理上無法解釋的結果,類似於一維情況(Huang,1999年、Wu與Huang,2005b,2008)。
因此,本發明之一方面在解決訊號不連續所造成的模態混合(mode/scale mixing)以及頻域分佈失真現象,並解決模態混合所造成的輸入輸出信號不一致的現象。
依據本發明一實施例,計算機實施之數據分析以及重現方法,以取得物理數據之內在模式函數(intrinsic mode function),數據分析以及重現方法包含接收代表物理現象之物理數據;加入第一類白雜訊(white noise)序列至物理數據;將加入第一類白雜訊序列之物理數據分解為內在模式函數;取得內在模式函數的平均值;以及依據平均值,重現人眼可見影像。
本發明之另一方面在分析、應用以及重現二維或多維空間/影像數據,解決二維/多維空間訊號不連續所造成的模態混合(mode/scale mixing)以及頻域分佈失真現象。
依據本發明之另一實施例,計算機實施之二維數據分析以及重現方法,係由計算機實施以處理及應用二維物理數據,並分析包含二維物理數據之資訊,二維數據分析以及重現方法包含:接收代表物理現象之二維物理數據;沿第一方向分解二維物理數據,以取得第一內在模式函數分量;合成第一內在模式函數分量;沿第二方向分解合成後之第一內在模式函數分量,以取得第二內在模式函數分量;合成第二內在模式函數分量;以及依據第二內在模式函數分量,重現人眼可見影像。
本發明之又一方面在分析、應用以及重現多維時間-空間數據,並解決多維時間-空間訊號不連續所造成的模態混合(mode/scale mixing)以及頻域分佈失真現象。
依據本發明又一實施例,計算機實施之多維數據分析以及重現方法包含:接收空間點之時間序列,其中空間點係相應於多維時間-空間數據;分解時間序列以取得內在模式函數分量(intrinsic mode function);依空間點之順序合成內在模式函數分量,以得到多維時間-空間之多維內在模式函數分量;以及依據多維內在模式函數分量,重現人眼可見影像。
本發明之再一方面在簡化曲面擬合(surface fitting)所需要的計算量,以降低所需要的系統硬體規格,並解決訊號不連續所造成的模態混合(mode/scale mixing)以及頻域分佈失真現象。
依據本發明之再一實施例,計算機系統用以處理及應用物理數據,並分析包含物理數據之資訊,計算機系統包含記憶體以儲存計算機可執行指令,執行指令用以接收代表物理現象之物理數據;沿第一方向分解物理數據,以取得第一內在模式函數分量;合成第一內在模式函數分量;沿第二方向分解合成後之第一內在模式函數分量,以取得第二內在模式函數分量;合成第二內在模式函數分量;以及組合合成後之第二內在模式函數分量,以重現人眼可見影像。
根據上述實施例,計算機系統及其所實施的數據分析以及重現方法,能夠適用於多維時間-空間數據、二維空間數據以及多維空間數據,解決訊號不連續所造成的模態混合(mode/scale mixing)以及頻域分佈失真現象,並解決模態混合所造成的輸入輸出信號不一致的現象。
以下實施例係提出分解與分析多維時間-空間數據以及多維空間數據(如同影像或可變密度固體)之裝置、計算機程式產品與方法。對於多維時間-空間數據,系集經驗模態分解法(ensemble empirical mode decomposition,EEMD),或稱整體經驗模態分解法,是用於每一個空間點的時間序列,以取得不同時間尺度的類內在模式函數分量。所有空間點的所有時間序列之第i個類內在模式函數分量皆被配置以取得第i個時間-空間多維類內在模式函數分量。
對於二維空間數據或影像f(x,y)而言,我們將數據(或影像)視為沿著y方向空間點之x方向中之一維序列集合。相同的方法被用在時間-空間數據分解法中,以取得二維類內在模式函數分量的結果。每一個二維類內在模式函數分量的結果皆被視為新的二維數據,用來做更進一步的分解法,但此數據被視為沿著x方向空間點之y方向中之一維序列集合。如此可以取得二維分量的集合。這些直接取得的結果更進一步利用最小尺度合成方法,結合成縮減後的最終分量。
此用於二維空間數據的方法可以擴展至多維數據。系集經驗模態分解法可應用於第一方向(dimension),接著是第二方向,再接著是第三方向等等,這些幾乎相同的程序亦使用於二維空間數據。類似的最小尺度合成方法亦可用來將所有直接取得的分量合成為一個多維最終分量的小集合。
在接下來的實施方式中,介紹一個採用系集經驗模態分解法(EEMD)的新多維經驗模態分解法,其係利用雜訊附加數據分解法,來克服許多經驗模態分解法的缺點,例如分解法對於小型數據擾動的敏感度。我們將證明利用系集經驗模態分解法的良好性質,虛擬雙向經驗模態分解法(pseudo-BEMD)的切片間不連續不再是令人困擾的問題。首先應用系集經驗模態分解法於第一方向的空間數據(虛擬雙向經驗模態分解法),接下來,沿著第二方向將系集經驗模態分解法應用於上述第一維空間分解的結果,接著再合成適當的分量,便可以取得影像的分解。接下來將呈現此基於系集經驗模態分解法的方法可被延伸至任何數目維度的空間數據。
如同較早先所提及,經驗模態分解法最主要的缺點之一為模態混合(mode mixing),模態混合係指單一內在模式函數含有尺度極為不同的信號,或是相似尺度信號卻分散於不同的內在模式函數分量中。模態混合是信號間歇(intermittency)的結果。信號間歇間歇不只會造成時間-頻率分布中的混擾,也會使得單一內在模式函數失去其清楚的物理意義。模態混合的另一個缺點是缺乏物理獨特性。以下實施例係為兩個相應於海面溫度(sea surface temperature,SST)觀察的時間序列分解,其中海面溫度在任何時間都會有些微的改變。如第1圖所示,由於尺度混合,可能會使得此分解有很大的不同。
請參照第1圖,其係繪示小擾動的經驗模態分解法的模態(尺度)混合以及敏感度。兩個海面溫度觀察(see Rayner等人1996)的數據,其空間位置為西20度,北60度以及西19度,北60度,分別被標記為黑線101以及綠線103。相應的分量分別被標記為藍線105以及紅線107。垂直尺度中的數目提供觀察以及其分量的變化度之尺度。
很清楚地,在此實施方式中1960間年與1970年間,所相應的分量有著顯著的不同。然而,原先輸入的信號僅有些微不同,卻造成分解後的數據存在顯著的不同,這產生了一個問題:哪一個分解法才是可靠的?
答案不是絕對的。然而,由於造成這些問題的原因是模態(尺度)混合,若是模態混合的問題可以被減輕或是消除,則可以期望此分解法變得可靠。為了達到此目的,黃等人(1999年)提出間歇測試。然而此種方法本身亦有其問題:第一,此測試是奠基於主觀選擇的尺度,使得經驗模態分解法不再能完全為可調適的分解法。第二,如果這些主觀選擇的尺度不能被明顯地分開,則也許這些尺度不能運作。為了克服尺度混合的問題,提出一個新的雜訊附加的數據分析方法,也就是系集經驗模態分解法(EEMD),此系集經驗模態分解法將真正的內在模式函數分量定義為整體試驗結果的平均值,且每一內在模式函數分量都帶有信號以及有限振幅的白雜訊。
系集經驗模態分解法演算包含下列步驟:步驟a,加入白雜訊序列至目標數據;步驟b,將加入白雜訊的數據分解為內在模式函數;步驟c,重複步驟a和步驟b,但每次皆使用不同的白雜訊序列;以及步驟d,取得分解後的相應內在模式函數之(系集)平均值,做為最後結果。
系集經驗模態分解法的原理很簡單:加入的白雜訊會與不同尺度的構成分量一起,均勻地佈滿在整個時間-頻率(time-frequency)空間中。當信號被加入至此均勻的參考基礎後(uniform background),不同尺度信號的位元會自動地映射至由白雜訊所建立的參考基礎上的適當的尺度中。雖然每一個別的試驗可能會產生非常雜亂的結果,所幸,每一個試驗中的雜訊會被足夠的系集平均所抵消;系集平均被認為是真正的答案。
系集經驗模態分解法的重要觀念是基於下列的觀察:白雜訊的集合在時間空間系集平均(time space ensemble mean)中互相抵消;因此,只有信號可被保留在附加了雜訊的最終整體信號(final noise-added signal)平均值中。
為了驅使整體數據能夠耗盡所有可能的解答,帶有有限振幅的白雜訊是必須的;有限振幅的雜訊促使不同尺度信號歸屬於相應的內在模式函數,這些內在模式函數則由二元濾波器組所指定,並使得系集平均的結果更為有意義。
為了在物理上具有意義,經驗模態分解法需要加入雜訊;其物理意義為雜訊附加信號的大量試驗之整體平均值。
對於可被重複許多次的類似物理實驗,加入的白雜訊被視為在量測過程中可能遇到的隨機雜訊。在此狀況下,第i個”人工的”觀察將是
x i (t )=x (t )+w i (t ), (2)
其中wi(t)是第i個白雜訊序列的具體值。以此方法,模擬出多個人工的觀察。
隨著整體數目(ensemble number)接近無窮大,系集經驗模態分解法將實值定義為
其中,c j (t )+r k (t ) (4)
係為雜訊附加信號的第j個內在模式函數之第k個試驗。雜訊wi(t)的振幅不一定需要很小,但試驗的系集/整體數目N必定很大。實值與系集結果的差別被廣為人知的統計規則所控制:以N的平分根之1遞減。
請參照第2圖,其繪示模態(尺度)混合以及經驗模態分解法對於小型擾動的分解之敏感度。如第2圖所示,系集經驗模態分解法可以大幅地減少模態混合,且大幅改善微差異數據分解後的連續度,如同RSS T2以及UAH T2(黑線101幾乎與綠線103相同,而紅線107幾乎與藍線105相同)。的確,系集經驗模態分解法大幅改善原來的經驗模態分解法。加入雜訊的程度並不是很重要,因為在大量的整體數目之下,雜訊的振幅會顯得相當有限。系集經驗模態分解法可以在沒有重大的主觀干預時使用;因此可以提供真正地可調適的數據分析法。消除模態混合的問題後,可產生一組內在模式函數來涵蓋每一個內在模式函數分量的完整物理意義,以及沒有轉換間距(transitional gap)的時間-頻率分布。使用系集方法的經驗模態分解法在非線性以及非穩定的時間序列(以及其他一維數據)分析上,已發展為更成熟的工具。
系集經驗模態分解法大幅改善模態混合的問題,亦可能解決物理獨特性的問題,由加入雜訊所帶來的有限大小擾動,產生所有可能的鄰近區域之平均值。
擬雙向經驗模態分解法如同以下所述:假設有一個時間-空間區域f (,t )場函數,此場函數含有空間位置且每一個含有時間紀錄:
其中每一行是在空間位置中數量演變的時間序列。我們將網格數據(gridded data)的第m行寫為
其利用經驗模態分解法的分解為
在每一行原始數據都被分解過後,重新安排分解後的輸出到J個矩陣,第J個矩陣為
因此,我們取得原始數據f (m ,n )的J個分量。由於前述經驗模態分解法的尺度混合問題,如同第3圖所繪示,切片之間不連續(inter-slice discontinuity)的問題相當地嚴重。
請參照第3圖,其係繪示利用基於經驗模態分解法之虛擬雙向經驗模態分解法,沿著緯度北60度由西30度至西10度的海面溫度分解。面板由左至右為海面溫度、其高頻率分量、年週期(MAC,annual cycle)以及低頻率分量。底部的色彩條紋提供左面板陰影間隔(shaded interval)。從左邊數來的區塊2到4,陰影間隔分別由色彩條紋乘以1/3、5/6以及1/6,其中此沿著北60度由西30度至西10度所觀察到的海面溫度之分解被繪於其上。顯然地,第3圖所有分量中含有更難闡釋其物理意義的雜亂散大值(scatted large value)。
請參照第4圖,其係繪示使用基於系集經驗模態分解法的虛擬雙向經驗模態分解法,沿著緯度60度北由30度西至10度西的海面溫度分解海面溫度。如同第3圖,由左至右之面板1到4為海面溫度、高頻率分量、年週期以及低頻率分量。由於系集經驗模態分解法大幅消除了尺度混合問題並保留分量的物理獨特性,如第4圖所繪示,使用系集經驗模態分解法取代經驗模態分解法可以顯現出分量的結構連貫性結構(coherent structure)。如此一來,虛擬雙向經驗模態分解法可用於顯示數據的空間結構結構之演變。
值得注意的是「虛擬雙向經驗模態分解法」不僅限於一個空間維度,甚至可以應用於任意個空間-時間維度的數據。由於空間結構本質上是由每一位置的物理數量變化度之空間尺度來決定位置,且分解完全基於在每一個空間位置的個別時間序列特徵而得,此物理數量的空間連貫性結構不需要先前所述的假設。當連貫性空間結構顯現時,其反映出一個更佳的物理過程,驅使每一分量的時間尺度的物理數量之演變。因此,我們期待此方法可以應用於更重要的空間-時間數據分析中。
系集經驗模態分解法是由二元濾波器視窗所指定的空間-時間的局部濾波方法(spatial-temporally local filtering method),仍然保持其可適應的本質,因此可以配置二維數據的變化度至適當的特定時間尺度之分量。由於空間二維數據或影像通常沒有沿著特定方向的較佳結構,(否則二維數據或影像會退化至一維數據)此數據或影像應該在任何特定且互相垂直的方向被同等地討論。因此一維分解,例如虛擬雙向經驗模態分解法是不夠的,且此分解應該在兩個互相垂直的方向而執行。現在假設等式(5)中的f (m ,n )代表空間二維數據或影像f (x ,y ),在其於一方向(例如y方向)被分解之後,我們取得例如等式(8)所表示的分量g j (m ,n ),更進一步地使用如前所述的系集經驗模態分解法來分解g j (m ,n )的每一列。細節如下所述。
請參照第5圖,其係繪示依照本發明一實施方式利用系集經驗模態分解法以處理及應用多維時間-空間物理數據的一種流程圖。對於多維時間-空間數據來說,系集經驗模態分解法被應用於每一空間位置的時間序列以取得不同時間尺度的類內在模式函數分量。所有這些第i個空間位置的時間序列之類內在模式函數分量被配置以取得第i個時間-空間多維類內在模式函數分量。
根據第5圖,此方法處理且應用多維時間-空間數據,其中多維時間-空間數據相應於至少三個方向。此方法首先接收每一空間位置的時間序列f(s1 ,t)~f(s M ,t),並分解時間序列f(s1 ,t)~f(s M ,t)以取得內在模式函數分量C1 (s 1 ,t),C1 (s 2 ,t),C1 (s M ,t)...C J (s M ,t)。接著,含有不同空間位置S1 ,S2 ...S M 的內在模式函數分量C1 (s 1 ,t),C1 (s 2 ,t),C1 (s M ,t)...C J (s M ,t)被合成以得出多維時間-空間內在模式函數
請參照第6、7、8圖,第6圖、第7圖以及第8圖係繪示本發明一實施方式利用系集經驗模態分解法來處理及應用二維空間-時間物理數據的方法之流程圖,其中第6圖繪示概觀圖,第7圖繪示第一方向的分解法,而第8圖繪示在第二方向的分解法。
如第6圖所示,此方法用以處理及應用物理數據,例如二維空間數據或影像f(x,y),此方法採用與時間-空間數據分解方法相似的方式,來取得二維類內在模式函數分量g1 (x ,y )~g J (x ,y ),其中首先將f(x,y)視為一組沿著y方向的x方向一維序列。接著,每一個類內在模式函數分量g1 (x ,y )~g J (x ,y )做為更進一步分解的新二維數據,但此時此新二維數據被視為一組沿著x方向的y方向一維序列。如此一來可取得一組二維分量h j ,1 (x ,y )~h j , K (x ,y )。這些直接得到結果的分量h j , 1 (x ,y )~h j , K (x ,y )更進一步被合成為一組基於最小尺度合成方法之簡化的最後分量C1 ,C2 ...。
如第7圖所示,此方法可用於處理及應用二維物理數據f(x,y),例如空間數據或影像,首先接收代表物理現象之二維物理數據f(x,y),及藉由系集經驗模態分解法分解在第一方向之二維物理數據f(x,y),來取得第一內在模式函數分量C1 (X 1 ,y)...C J (X M ,y),再合成第一內在模式函數分量C1 (X 1 ,y)...C J (X M ,y)以得出g1 (x ,y )~g J (x ,y )。
接著如第8圖所示,藉由系集經驗模態分解法,在第二方向分解此合成之後的分量g j (x ,y ),以取得第二內在模式函數分量D j , 1 (x,y1 )...D j , k (x,y N ),並合成第二內在模式函數分量Dj,1 (x,y1 )...D j , k (x,y N )以得出h j ,1 (x ,y )~h j , K (x ,y )。
此二維空間數據的方法可以拓展至多維數據。系集經驗模態分解法被應用於第一維度,再用於第二方向,接著再用於第三方向等,使用幾乎相同於二維空間數據的過程。相似的最小尺度合成法可以被應用於將所有直接得到的結果分量合成為一組小的多維最後分量。
請參閱第9圖,其係繪示本發明一實施方式2005年麗塔颶風在500百帕時的數位模擬之垂直速度。暖色901代表上升氣流而冷色903代表下降氣流,其單位為公尺/秒。為了方便起見,我們將f (m ,n )的第n列之第j個分量g j (~,n )以及其系集經驗模態分解法分別寫成,
相似於虛擬雙向經驗模態分解法的例子,我們將分解分量重新配置為
完整的分解法為 (12)
在第9圖和第10圖所示分解法例子當中,第9圖係顯示原本的數據(每一個尺寸為水平及垂直的格點97),其為1992年安德魯颶風在500百帕的數位模擬之垂直速度(約在對流層的中間),而第10圖顯示其分量。
請參閱第10圖其係繪示第9圖所顯示的垂直速度之系集經驗模態分解法分量。在每一個區塊中,色彩尺度都是不同的,藍線1001相應於零值。第10圖所示的結果並未提供有關於安德魯颶風的對流結構之重要資訊。每一個分量的結構顯示定向(orientation,不同空間尺度在不同方向的合成),舉例來說,零位線h 1,5 幾乎皆為垂直定向而h 5,1 皆為水平定向。這使得我們懷疑,在兩個方向互相垂直的架構當中,雙向經驗模態分解法是否可以用來的顯示物理系統的影像之重要資訊。
先考慮二維分解法最重要的能力是什麼。假設我們有一個如同第11圖所顯示的矩形,當使用二維分解法來分解時,需要一個可以掌握整個矩形的分量。很明顯地矩形含有多個空間尺度:線厚度之小空間尺度,不同邊長之大空間尺度。當系集經驗模態分解法被應用於垂直與水平方向時,因為系集經驗模態分解法是二元濾波器,原則上,沒有任何一個分量的分解結果可以掌握整個矩形。然而,這些分量之一含有關於線厚度的水平尺度以及關於垂直線長度的垂直尺度,此分量掌握矩形的兩條垂直線。同樣地,這些分量之另一掌握兩條矩形的水平線。這兩個分量的合成掌握整個矩形。明顯地,這兩個分量共同的特點在於他們的最小尺度是線厚度,也就是兩個分量中的最小空間尺度。
上述討論中,基於系集經驗模態分解法的雙向經驗模態分解法包含新的合成方法:在所有應用於兩個互相垂直方向的系集經驗模態分解法所導出的分量當中,相同最小尺度的數個分量會被合成為一個分量。
由上面的敘述看來,似乎需要檢驗每一個分解所得分量之最小尺度。事實上並非如此。使用系集經驗模態分解法的分解已被實現,例如第10圖所顯示的分量,分量每一列含有大約相同的水平尺度且每一行含有大約相同的垂直尺度。這樣的性質是很容易驗證的。
請參閱第12圖,其係繪示沿著每一列中心垂直線和水平線的第一行分量、第一列分量的垂直速度振盪。第一線群線群1201(以及第二線群1203)(從頂部看來)是沿著每一分量的中間水平(垂直)線的第一列分量(如第10圖顯示)的速度振盪;而第三類線1205(以及第四線群1207)(從頂部)是沿著每一分量的中間水平(垂直)線的第一行分量(如第10圖顯示)的第一行之速度振盪。在此第12圖中,不同的顏色相應至不同的區塊,藍線1209相應至i或j,為區塊1,紅線1211相應至區塊2;綠線1213相應至區塊3,紫紅色線1215相應至區塊4,而青藍色線相應至區塊5。雖然每一條線的詳細內容都不一樣,第一列h 1, k 之最小空間尺度(在水平方向)以及第一行h j ,1 之最小空間尺度(在垂直方向)大約相同,雖然當k(j)增加時,第一列(行)的垂直(水平)尺度也隨之增加。
根據上述結果以及討論,這些模態的合成可以非常地簡單:分解的最後第i個分量C i 可以寫成(13),顯示在表格1。
表格1係應用EEMD處理兩個方向互相垂直的數據所得到的虛擬架構,即等式(11)在J=k時的分量。將下列相同顏色和符號(+,-*/)的方格中的分量相加起來以形成最後模態。在等示(11)中表示最後分量。
第13圖根據本發明一實施方式繪示安德魯颶風的最後分量。此分解結果揭露安德魯颶風有趣的特徵,例如安德魯漩渦所吸入的質量、重力波以及漩渦羅斯貝波(vortex Rossby wave)。第一分量C1代表最細微結構,此最細微結構無法由直接檢視原始垂直速度場(vertical velocity field)可得;而第二分量分量C2掌握原始垂直速度場的總體印象。分量C1和分量C2皆顯示漩渦的吸入結構,且與此颶風的席捲降雨帶(sweeping rain band)一致(相應至向上移動帶,upward motion band)。的確,此結果與安德魯颶風的雷達反射信號(radar reflection signal)的消退是非常相似的。分量C3與重力波相關,而分量C4和C5(其餘分量)與在原始風場(wind field)中所未見的大尺度波(羅斯貝波)相關。這些波沿著颶風軌道偏振,顯示出這些波對於決定颶風的軌道是很重要的,且可能提供颶風軌道的預測技術。
第13圖指出顯示的結果對於南北軸線(在先前的圖片中顯示的垂直方向)或東西軸線(水平方向)皆不敏感。颶風的漩渦式結構(vortex-type structure)以及其最終結構實質上意味著只要選擇與互相垂直的座標系統相同的網格間距,此分解結果與選中的互相垂直的座標系統便沒有關係。
在此提出的分解法可以拓展至任何多維數據,例如不同密度的固體數據或是其他可測量的性質寫為
I =f(x 1 ,x 2 , ‧‧‧‧,x n )  (14)
下標n代表維度的數目,過程與上面所描述的相同:分解由第一維度開始,然後再進行至第二和第三維度直到所有維度都執行完畢,分解仍由切片來實現。第14圖根據本發明一實施方式繪示分解的示意圖以及多維系集經驗模態分解法的重建。在第14圖中,大紅點1401以及小黃點1403分別表示原本的數據(三維)以及最後的內在模式函數。紅色箭頭1405、黃色箭頭1407以及紫紅色箭頭1409分別代表第一、第二以及第三分解方向。最小尺度的合成係沿著顏色相同的三個平面取得。第14圖繪示三維數據重建的示意圖。因為此數據分析基本上是一維系集經驗模態分解法,所以沒有執行上的困難。
接著將呈現基於系集經驗模態分解法的雙向經驗模態分解法,對於不同種類的數據之應用例子。此方法的優點將會經由這些例子證明。第15圖繪示根據本發明一實施方式使用二維經驗模態分解法分解點源[δ(x ,y )函式]。
在此狀況下,差量函數δ(x ,y )被指定。這個函式除了原點數值為10之外,所有其他網格皆為數值0。如第15圖所示,給出一些在x和y方向的數據點(data point),此分解並非與原點圓形對稱,且相似於使用二維小波分解法(2D wavelet decomposition)的相同函式之分解。此對方向敏感(orientation-sensitive)的結果看似與方向獨立之(orientation independent)新的雙向經驗模態分解法矛盾。然而,方向敏感的理由是因為差量函數除了在原點之外並沒有其他任何的極值。在某種意義上,就不應該被視為真的二維區域(two-dimensional field)。如果我們將差量函數視為許多狀況下擾亂差量函數的雜訊之平均值,亦即,
其中n =1,…,N ,且是差量函數相同順序的振幅之二維高斯雜訊白雜訊的實現,接著藉由分解δ(x ,y )+W n (x ,y ) (15)
使用基於系集經驗模態分解法之雙向經驗模態分解法並對相應的分量實現平均作用(average action)(假設所有分量為相同的等級),此分量是由系集經驗模態分解法的二元濾波器性質所指定,結果分量顯示環狀結構。如此一來這個明顯的矛盾便可以解決了。
在二維小波分解上有一個主要的改善。當差量函數(delta function),例如信號,被移動,使用本法的分解會得到幾乎相同的結果,除了所有的分量會集中在差量函數非零的位置(non-zero location),例如信號。當應用二維小波分解時,差量函數的量值位置(valued location)移動時,例如信號移動時,分量會有明顯不同結構,小波工具(wavelet tool)會有缺乏局部性和適應性的結果。此結果可以容易地被驗證。
在摻雜雜訊的二維信號之分解中,使用此方法分解二維合成數據,來說明此方法在去雜訊(de-noising)上的能力。此合成的數據為,其中w(x,y)是均勻分布的雜訊,此雜訊數值範圍是由0到1。
第16圖根據本發明一實施方式繪示參雜雜訊的二維信號之分解。左上區塊:雜訊N;中上區塊:指定信號(S);右上區塊:參雜二維信號的合成雜訊(S+N);左下區塊:分解的小尺度分量之總和(取得雜訊,N' );中下區塊:分解的大尺度分量之總和(取得信號,S' );以及右下區塊:真實信號之差(S)以及取得信號(S' )。
原本的信號以及分解被繪示在第16圖。此取得雜訊區域(extracted noise field)相似於特定的雜訊場(specified noise field),其關聯係數(correlation coefficient)超過0.95。由於特定雜訊包含大尺度結構而取得雜訊並不包含,此取得信號並非完全為指定信號。然而,由於此包含雜訊的大尺度信號無法與大尺度信號區分,這並非為此方法的缺點。一般而言,這個分解分法可以將特定的訊號回復地很完善。從這個意義上來說,此方法可以用來在多種應用上取得二維雜訊。
第三個實施方式是有名影像麗娜(Lena)的分解。麗娜在影像處理領域內是一張有名的影像,且被用做為測試許多方法的標竿比較影像(bench-mark image)。第17圖所顯示的分解以及其Matlab碼(一種指令化字碼,scripting code)在此實施方式的描述之最後部份提供。
第17圖根據本發明一實施方式繪示麗娜(128*128畫素)的分解。在取得n個分量之後,上方的區塊為原本的圖像以及剩餘物,其中n=1,2,3,4。下方的區塊是分量1到4,尺度由小到大排列。
仔細檢驗過後會得到一個結果,使用此分解法會比使用其他方法來的更好,這裡所指的其他方法包含一些真正的二維經驗模態分解法。最重要的改善是消除了在其他二維分解法為了保持可適應性而出現的尺度混合問題。第一分量僅為麗娜的線條圖(line drawing),其線條含有銳利的邊。第二分量提供模糊版本的麗娜。此二分量的合成提供原本影像的銳利版本。
另一個主要的改善是大尺度的人工結構(artificial structure)之消除。當尺度混合發生時,常見在分量特定位置之相對較大的正值會伴隨著在鄰近分量相同位置之相對較大的負值,這樣成對的結構是人工的。在較早使用其他二維經驗模態分解法的分解中,例如in Linderhed(2005),在大尺度分量中這樣的成對結構是非常明顯的。然而,使用我們的方法消除尺度混合的問題後,人工結構便消失了。
第18圖根據本發明一實施方式繪示一醫學應用。此例子的影像係取自哈佛醫學院放射線學的網站(Website of Harvard Medical School for Radiology),其網址為http://www.med.harvard.edu/AANLIB/cases/case1/mr1-t14/029.html。此影像顯示T2加權磁共振(T2-weighted MR)(左邊)、鉈顯像(Thallium SPECT)(右邊),以及他們的疊加圖像(overlay)(中間)。在鉈顯像中紅黃色明亮的區域代表積極腫瘤病灶(active tumor lesion)。請注意在此右圖的鉈顯像並未涵蓋所有的異常區域。
臨床上形容此狀況為:「一名51歲的老婦人因逐漸地右肢癱瘓(right hemiparesis)以及視力減退(hemianopia)尋求醫療協助,在顱骨切開術(craniotomy)(8/90)中找到左頂葉間變性星形細胞瘤(left parietal anaplastic astrocytoma)。阿右額葉病變(right frontal lesion)被活檢。藉由此影像基礎,醫療團隊懷疑有復發性腫瘤(Recurrent tumor),並由病理所證實。」
第18圖所繪示的影像係利用二維系集經驗模態分解法做分析。第19圖根據本發明一實施方式繪示磁共振影像(MR image)的分解結果。上方的區塊是分量n,其中n=1,2,3。下方的區塊是分量4至6。此順序代表尺度由小到大的影像結構(image textural)。
在此,原本的影像被分解為6個分別代表不同尺度範圍的分量。第一個分量代表最小的尺度的最佳結構,而最後一個分量則是影像的強度總體平均趨勢(overall mean trend)之最大尺度。這些分量的合成可以被用來強調影像的不同結構以及強度變化。例如,分量1和5的合成被用在接下來的影像中。這個影像強調仍保留原本影像(分量5)的一些結構之最佳結構(分量1)以及強度變化。
第20圖根據本發明一實施方式繪示重疊在鉈顯像影像(Thallium SPECT image)上的磁共振影像分解之再合成。這兩個區塊皆來自分量1和5的合成,但含有不同的輪廓選擇(contour selection):左區塊代表由1至30的輪廓線,右面板代表由1到40的輪廓線。請注意接近腫瘤病變的集中輪廓區域(concentrated contour area)。
由第20圖可以看見輪廓線強調腫瘤病灶所影響的區域。雖然確切的臨床意義需要更多的研究,能夠強調選擇區域的能力是有潛力性的發展。在此狀況中,輪廓線密集區(contour intensive area)事實上包含整個異常區域。舉例來說,輪廓線區域也許不代表積極腫瘤病灶,而是腦組織水腫(edematous brain tissue);輪廓線可以讓我們量化病灶以及腫瘤的嚴重程度,當然其他的合成也是有可能的,此例子僅指出分解結果的一種未來可能的應用。
在一實施方式中,我們發展出一種基於系集經驗模態分解法的二維經驗模態分解法。此方法是基於與真正的二維經驗模態分解法完全不同的思考上。我們的方法忽略在定義極值以及取得膜擬合(membrane fitting)方面最主要的阻礙和困難,主要改善了尺度混合問題的消除以及分解的人工結構。
基於雙向經驗模態分解法的系集經驗模態分解法可以輕易且沒有阻礙地擴展至空間三維或多維區域。真正二維方法是無法擴展至多維區域的,因為對於真正二維方法,多維數據適應空間散數據(spatially scatted data)將涉及多維的膜高(membrane of higher manifold),導致失去直接的幾何意義;且即使相關的大量計算可被執行,執行的代價可能是很昂貴的。
本切片方法可以被清楚且系統化地應用。而且,更高階的鞍點(saddle point)、脊值(ridge)以及谷值的等值在本方法中不會造成問題。加入系集經驗模態分解法,則模態混合將不會造成問題,並克服所有在傳統方法中會造成問題的方法。
以下提供分解圖像「麗娜」的MATLAB程序以說明這個新提出的方法將如何運作。應了解到,我們顯示MATLAB程序,而不是使用些其他主要計算機編程語言的程序,如C、C++以及Fortran等,是基於Matlab更是一個描述性計算機語言(scripting computational language),可以用更簡潔且明確的方式來闡述此方法。此專利不應僅限於使用MATLAB程序,而更包括使用任何計算機語言的多維經驗模態分解法。
程序模組如下所述:
雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何在本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
101...黑線
103...綠線
105...藍線
107...紅線
901...暖色
903...冷色
1001...藍線
1201...第一線群
1203...第二線群
1205...第三線群
1207...第四線群
1209...藍線
1211...紅線
1213...綠線
1215...紫紅色線
1401...大紅點
1403...小黃點
1405...紅色箭頭
1407...黃色箭頭
1409...紫紅色箭頭
C1...第一分量
C2...第二分量
C3...第三分量
C4...第四分量
C5...第五分量
為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,專利或申請文件包含至少一彩色圖示。此彩色圖示之專利或專利申請文件,將會在客戶提出要求以及支付所需費用之狀況下由事務所提供。所附圖式之說明如下:
第1圖係繪示模態(尺度)混合以及經驗模態分解法對於小型擾動的分解之敏感度;
第2圖係繪示模態(尺度)混合以及經驗模態分解法對於小型擾動的分解之敏感度;
第3圖係繪示使用基於經驗模態分解法(EMD-based pseudo-BEMD)的擬雙向經驗模態分解法,沿著緯度60度北由30度西至10度西的海面溫度(sea surface temperature,SST)分解;
第4圖係繪示使用基於系集經驗模態分解法(EEMD-based pseudo-BEMD)的擬雙向經驗模態分解法,沿著緯度60度北由30度西至10度西的海面溫度分解;
第5圖係繪示依照本發明一實施方式的空間-時間多維經驗模態分解法之一種流程圖;
第6圖係繪示依照本發明一實施方式的空間-時間二維經驗模態分解法的一種概觀圖;
第7圖係繪示依照本發明一實施方式的沿著第一方向的空間-時間二維經驗模態分解法;
第8圖係繪示依照本發明一實施方式的沿著第二方向空間-時間二維經驗模態分解法;
第9圖係繪示依照本發明一實施方式的2005年麗塔颶風在500百帕的數值模擬之垂直速度速度;
第10圖係繪示依照本發明一實施方式的2005年麗塔颶風在500百帕的垂直速度之系集經驗模態分解法分量速度;
第11圖係繪示依照本發明一實施方式的矩形;
第12圖係繪示依照本發明一實施方式的沿著每一列的中央垂直線以及水平線的第一列分量以及第一行分量之垂直速度振盪;
第13圖係繪示依照本發明一實施方式的安德魯颶風之最後分量;
第14圖係繪示依照本發明一實施方式的多維系集經驗模態分解法的分解以及重建之概要圖;
第15圖係繪示依照本發明一實施方式使用二維經驗模態分解法的點源(point source)[δ(x ,y )函式]之分解;
第16圖係繪示依照本發明一實施方式參雜二維信號的雜訊之分解;
第17圖係繪示依照本發明一實施方式的麗娜(Lena,128*128畫素)之分解;
第18圖係繪示依照本發明一實施方式的醫學應用;
第19圖係繪示依照本發明一實施方式的影像分解;以及
第20圖係繪示依照本發明一實施方式在鉈顯像(Thallium SPECT)影像上重疊的磁振造影(MR image)影像的分解之再合成。

Claims (19)

  1. 一種計算機實施之二維數據分析以及重現方法,係由一計算機實施以處理及應用一二維物理數據,以顯示與該二維物理數據相關之一人眼可見影像,該二維數據分析以及重現方法包含:接收代表物理現象之該二維物理數據;由一微處理器沿一第一方向分解該二維物理數據,以取得複數個第一內在模式函數分量;合成該些第一內在模式函數分量;沿一第二方向分解合成後之該些第一內在模式函數分量,以取得至少一第二內在模式函數分量;依據該些第一內在模式函數分量以及該些第二內在模式函數分量,取得至少一分解分量;合成該分解分量;以及依據合成後之該分解分量,重現一人眼可見影像。
  2. 如請求項1所述之二維數據分析以及重現方法,其中分解該二維物理數據之步驟包含:加入一類白雜訊序列至該物理數據;將加入該白雜訊序列之該物理數據分解為至少一內在模式函數;以及取得該內在模式函數之至少一平均值,以得出該些第一內在模式函數分量。
  3. 如請求項1所述之二維數據分析以及重現方法,其中該第一方向與該第二方向係為互相垂直。
  4. 如請求項1所述之二維數據分析以及重現方法,其中被合成之該些第二內在模式函數分量具有相同之一尺度。
  5. 如請求項4所述之二維數據分析以及重現方法,其中該尺度係為空間尺度。
  6. 如請求項4所述之二維數據分析以及重現方法,其中該些尺度相對於波長。
  7. 如請求項4所述之二維數據分析以及重現方法,其中該尺度為實體物質的厚度、寬度、長度或高度。
  8. 如請求項1所述之二維數據分析以及重現方法,更包含顯示由該些合成後之該第二內在模式函數分量所組成之影像。
  9. 一種計算機實施之多維數據分析以及重現方法,以處理及應用一多維時間-空間數據,以顯示與該多維時間-空間數據相關之一人眼可見影像,該多維數據分析以及重 現方法包含:接收複數個空間點之複數個時間序列,其中該些空間點係相應於該多維時間-空間數據;在x方向上且沿著y方向空間點,由一處理器分解該些時間序列以取得複數個內在模式函數分量(intrinsic mode function);依該些空間點之順序合成該些內在模式函數分量,以得到一多維時間-空間內在模式函數分量,其中尺度實質相同的該些內在模式函數分量會被合成;以該多維時間-空間內在模式函數分量為一新的二維數據來進行再次分解,其中該新的二維數據被視為在y方向上且沿著x方向空間點的一維序列集合;以及依據再次分解結果,重現一人眼可見影像。
  10. 如請求項9所述之多維數據分析以及重現方法,其中分解該些時間序列之步驟包含:加入一類白雜訊序列至該些時間序列;將加入該白雜訊序列之該些時間序列分解為至少一內在模式函數;以及取得該內在模式函數之至少一平均值,以得出該些內在模式函數分量。
  11. 如請求項9所述之多維數據分析以及重現方法,其中被合成之該些內在模式函數分量具有相同之一尺度。
  12. 如請求項11所述之多維數據分析以及重現方法,其中該尺度係為空間尺度。
  13. 一種計算機系統,用以處理及應用一物理數據,並顯示與該物理數據相關之一人眼可見影像,該計算機系統包含一記憶體以儲存複數個計算機可執行指令,該些執行指令用以:接收代表物理現象之該物理數據;由一處理器沿一第一方向分解該物理數據,以取得複數個第一內在模式函數分量;合成該些第一內在模式函數分量;沿一第二方向分解合成後之該些第一內在模式函數分量,以取得一第二內在模式函數分量;依據該些第一內在模式函數分量以及該些第二內在模式函數分量,取得至少一分解分量;合成該分解分量;以及依據合成後的分解分量,以重現一人眼可見影像。
  14. 如請求項13所述之計算機系統,其中分解該物理數據之步驟包含:加入一類白雜訊序列至該物理數據;將加入該白雜訊序列之該物理數據分解為至少一內在模式函數;以及 取得該內在模式函數之至少一平均值,以得出該些第一內在模式函數分量。
  15. 如請求項13所述之計算機系統,其中該第一方向與該第二方向係相互垂直。
  16. 如請求項13所述之計算機系統,其中被合成之該些第二內在模式函數分量具有相同之一尺度。
  17. 如請求項16所述之計算機系統,其中該尺度係為空間尺度。
  18. 如請求項16所述之計算機系統,其中該尺度係為波長長度。
  19. 如請求項16所述之計算機系統,其中該尺度係為一實體物質的厚度、寬度、長度或高度。
TW098120450A 2008-10-10 2009-06-18 數據分析與重現方法以及其計算機系統 TWI432975B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US19589408P 2008-10-10 2008-10-10
US12/411,539 US8798399B2 (en) 2008-10-10 2009-03-26 Data decomposition method and computer system therefrom

Publications (2)

Publication Number Publication Date
TW201015345A TW201015345A (en) 2010-04-16
TWI432975B true TWI432975B (zh) 2014-04-01

Family

ID=42098880

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098120450A TWI432975B (zh) 2008-10-10 2009-06-18 數據分析與重現方法以及其計算機系統

Country Status (2)

Country Link
US (1) US8798399B2 (zh)
TW (1) TWI432975B (zh)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9837013B2 (en) * 2008-07-09 2017-12-05 Sharp Laboratories Of America, Inc. Methods and systems for display correction
CN101853401B (zh) * 2010-06-25 2012-05-30 哈尔滨工业大学 一种基于二维经验模态分解的多分组图像分类方法
US8660848B1 (en) * 2010-08-20 2014-02-25 Worcester Polytechnic Institute Methods and systems for detection from and analysis of physical signals
TW201217993A (en) * 2010-10-20 2012-05-01 Huafan University employing operation on decomposed matrices to reduce operation amount for single matrix per unit time for light-weighting matrix operation process in simpler operation circuit
CN102254103B (zh) * 2011-07-27 2013-08-28 西安交通大学 自适应总体平均经验模式分解eemd筛选次数确定方法
US11587172B1 (en) 2011-11-14 2023-02-21 Economic Alchemy Inc. Methods and systems to quantify and index sentiment risk in financial markets and risk management contracts thereon
US9013490B2 (en) * 2012-05-17 2015-04-21 The United States Of America As Represented By The Administrator Of The National Aeronautics Space Administration Hilbert-huang transform data processing real-time system with 2-D capabilities
CN104679718A (zh) * 2013-11-28 2015-06-03 长沙理工大学 一种可消除模态混叠的地下水信号分解方法
TWI506583B (zh) * 2013-12-10 2015-11-01 國立中央大學 分析系統及其方法
US10354422B2 (en) * 2013-12-10 2019-07-16 National Central University Diagram building system and method for a signal data decomposition and analysis
CN103900815A (zh) * 2014-04-02 2014-07-02 兰州交通大学 一种基于eemd和分布拟合检验的滚动轴承故障诊断方法
US20150301984A1 (en) * 2014-04-21 2015-10-22 National Taiwan University Signal decomposition system with low-latency empirical mode decomposition and method thereof
CN105095559A (zh) * 2014-05-09 2015-11-25 中央大学 实施全息希尔伯特频谱分析的方法与系统
CN104034974A (zh) * 2014-05-09 2014-09-10 西南交通大学 一种复合电能质量扰动信号的识别方法
CN104236911B (zh) * 2014-09-28 2017-07-21 江苏润仪仪表有限公司 一种列车转向架轴承服役过程监测与故障诊断系统及方法
CN104483127B (zh) * 2014-10-22 2017-12-29 徐州隆安光电科技有限公司 一种行星齿轮微弱故障特征信息提取方法
CN104596780B (zh) * 2015-02-12 2017-04-26 清华大学 一种动车组制动系统传感器故障的诊断方法
US9646264B2 (en) * 2015-02-25 2017-05-09 International Business Machines Corporation Relevance-weighted forecasting based on time-series decomposition
US20160258991A1 (en) * 2015-03-02 2016-09-08 Hangzhou Shekedi Biotech Co., Ltd Method and System of Signal Processing for Phase-Amplitude Coupling and Amplitude-Amplitude coupling
TWI552004B (zh) * 2015-03-12 2016-10-01 國立交通大學 信號分解方法及其電子裝置
CN104951755B (zh) * 2015-06-04 2018-04-10 广东工业大学 一种基于emd的智能文档图像块检测方法
CN105030232A (zh) * 2015-06-30 2015-11-11 广东工业大学 一种心电信号的基线漂移校正方法
CN106610918A (zh) * 2015-10-22 2017-05-03 中央大学 自适应性二进、共轭屏蔽网格之经验模态分解方法及其系统
CN106096164B (zh) * 2016-06-21 2019-03-29 西南交通大学 一种接触网结构波长自动提取方法
CN106706122B (zh) * 2017-01-24 2019-07-12 东南大学 基于相关系数和emd滤波特性的碰摩声发射信号降噪方法
CN107063306A (zh) * 2017-04-14 2017-08-18 东南大学 一种基于改进的eemd和排列熵的光纤陀螺振动补偿算法
US11037526B2 (en) * 2017-04-24 2021-06-15 Hewlett-Packard Development Company, L.P. Ambient light color compensation
WO2019032803A1 (en) * 2017-08-10 2019-02-14 Mayo Foundation For Medical Education And Research ULTRASONIC PROBE OSCILLATING WAVE ELASTOGRAPHY
CN108171741B (zh) * 2017-12-22 2022-02-11 河南科技大学 一种基于自适应多向经验模式分解的图像纹理分解方法
CN108363994A (zh) * 2018-03-19 2018-08-03 浙江师范大学 基于经验模态分解改进的乘性噪声去除技术
CN109271406A (zh) * 2018-09-26 2019-01-25 东莞幻鸟新材料有限公司 一种基于大数据的桥梁结构健康监测系统
CN109374119A (zh) * 2018-09-29 2019-02-22 国网山西省电力公司阳泉供电公司 变压器振动信号特征量提取方法
CN109632945A (zh) * 2019-01-21 2019-04-16 中国计量大学 一种适用于脉冲涡流检测信号的降噪方法
CN111401168B (zh) * 2020-03-06 2023-11-17 上海神添实业有限公司 一种无人机的多层雷达特征提取与选择方法
KR102495244B1 (ko) * 2020-04-23 2023-02-02 인하대학교 산학협력단 시계열 분해를 적용한 딥러닝 기반 예측 시스템
CN111597494B (zh) * 2020-05-07 2022-06-17 山东大学 一种基于非平稳时间序列分解的统计降尺度方法
CN113052370B (zh) * 2021-03-15 2024-06-14 哈尔滨工程大学 一种基于时空经验正交函数的海洋环境要素统计预测方法
CN113269715B (zh) * 2021-04-08 2022-09-09 之江实验室 广义Bedrosian准则下的各向同性图像分解方法
CN113238190B (zh) * 2021-04-12 2023-07-21 大连海事大学 一种基于emd联合小波阈值的探地雷达回波信号去噪方法
CN113297932A (zh) * 2021-05-11 2021-08-24 中铁第四勘察设计院集团有限公司 一种卫星数据去噪方法、装置、设备和存储介质
CN114238038B (zh) * 2022-03-01 2022-05-06 湖南云箭智能科技有限公司 一种板卡温度监控方法、装置、设备及可读存储介质
US11996883B2 (en) 2022-08-09 2024-05-28 Ka Luen FUNG Method and device for recovering sub-signals from composite signal of blind source
CN115328289B (zh) * 2022-10-14 2022-12-20 湖南云箭智能科技有限公司 一种板卡温度控制方法、装置、设备及可读存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5983162A (en) * 1996-08-12 1999-11-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Computer implemented empirical mode decomposition method, apparatus and article of manufacture
US6738734B1 (en) * 1996-08-12 2004-05-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Empirical mode decomposition apparatus, method and article of manufacture for analyzing biological signals and performing curve fitting
US6381559B1 (en) * 1996-08-12 2002-04-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Empirical mode decomposition apparatus, method and article of manufacture for analyzing biological signals and performing curve fitting
US6311130B1 (en) * 1996-08-12 2001-10-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Computer implemented empirical mode decomposition method, apparatus, and article of manufacture for two-dimensional signals
US7941298B2 (en) * 2006-09-07 2011-05-10 DynaDx Corporation Noise-assisted data analysis method, system and program product therefor

Also Published As

Publication number Publication date
US20100092028A1 (en) 2010-04-15
TW201015345A (en) 2010-04-16
US8798399B2 (en) 2014-08-05

Similar Documents

Publication Publication Date Title
TWI432975B (zh) 數據分析與重現方法以及其計算機系統
Kutyniok et al. Shearlab 3D: Faithful digital shearlet transforms based on compactly supported shearlets
AlZubi et al. Multiresolution analysis using wavelet, ridgelet, and curvelet transforms for medical image segmentation
Lewis Generalized stochastic subdivision
US6782124B2 (en) Three dimensional empirical mode decomposition analysis apparatus, method and article manufacture
Bertschinger Multiscale Gaussian random fields and their application to cosmological simulations
Hjörleifsdóttir et al. Effects of three-dimensional Earth structure on CMT earthquake parameters
Li et al. Refraction corrected transmission ultrasound computed tomography for application in breast imaging
CN109164483B (zh) 多分量地震数据矢量去噪方法及多分量地震数据矢量去噪装置
Bonar et al. Complex spectral decomposition via inversion strategies
CN103679643B (zh) 一种多条纹噪声定位滤除方法
Laine Wavelets in temporal and spatial processing of biomedical images
US20090285462A1 (en) Image texture characterization of medical images
Liu et al. Functional overestimation due to spatial smoothing of fMRI data
Amlani et al. An FC-based spectral solver for elastodynamic problems in general three-dimensional domains
Li et al. Wavelet-based higher order correlative stacking for seismic data denoising in the curvelet domain
US10401520B2 (en) Method for processing seismic data with a sobel filter
Quilfen et al. On denoising satellite altimeter measurements for high-resolution geophysical signal analysis
CN102012466A (zh) 数字x射线成像系统的噪声测量方法
Zhou et al. A denoising scheme for DSPI fringes based on fast bi-dimensional ensemble empirical mode decomposition and BIMF energy estimation
Patel et al. Medical image fusion based on multi-scaling (DRT) and multi-resolution (DWT) technique
US8908992B1 (en) System and methods of regularized optimization for matrix factorization and image and video reconstruction
Qu et al. A novel denoising method based on Radon transform and filtered back-projection reconstruction algorithm
CN103020907A (zh) 基于二维集合经验模态分解的dspi条纹滤波系统
CN113311485B (zh) 地震沉积特征加强滤波方法及装置