TWI421962B - Light emitting diode wafer sorting method - Google Patents

Light emitting diode wafer sorting method Download PDF

Info

Publication number
TWI421962B
TWI421962B TW98142141A TW98142141A TWI421962B TW I421962 B TWI421962 B TW I421962B TW 98142141 A TW98142141 A TW 98142141A TW 98142141 A TW98142141 A TW 98142141A TW I421962 B TWI421962 B TW I421962B
Authority
TW
Taiwan
Prior art keywords
wafer
grain
die
sorting
coordinates
Prior art date
Application number
TW98142141A
Other languages
Chinese (zh)
Other versions
TW201120974A (en
Original Assignee
Mpi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mpi Corp filed Critical Mpi Corp
Priority to TW98142141A priority Critical patent/TWI421962B/en
Publication of TW201120974A publication Critical patent/TW201120974A/en
Application granted granted Critical
Publication of TWI421962B publication Critical patent/TWI421962B/en

Links

Description

發光二極體晶圓分選方法Light-emitting diode wafer sorting method

本發明係與晶圓晶粒之分選有關,更詳而言之是指一種發光二極體晶圓分選方法。The present invention relates to the sorting of wafer dies, and more particularly to a method of sorting a light emitting diode wafer.

晶圓上的每顆晶粒或因製程關係會有品質良窳之分,為確保所挑撿晶粒是合格的,通常會施以電氣測試以為檢測各晶粒的電性與光學特性等,或以影像辨識外觀是否有瑕疵,爾後復行分選出合格晶粒。Each grain on the wafer or the process relationship will have a good quality. To ensure that the selected die is qualified, electrical testing is usually performed to detect the electrical and optical properties of each die. Or use the image to identify whether there is any flaw in the appearance, and then select the qualified crystal grains.

已知晶粒的分選有兩種方法:其一是探測與分選由同一台機器完成,它的優點是可靠,但速度很慢,產能低;其二為將探測與分選分由兩台機器完成,即:先是以點測設備(prober)對一晶圓上之每一晶粒進行檢測,並根據每一晶粒之不同特性予以分級且據此產生一以行-列(Row-Column,R-C)方式標記各晶粒位置之輸出檔,之後再由一分選設備(sorter)依據該輸出檔而控制一撿取裝置對歸屬相同級別但分散各處之晶粒予以分選挑撿,也因此,撿取裝置經常需以跳躍(jump)動作來進行下一顆晶粒的拾取。惟,上述以行-列(R-C)方式標記各晶粒位置,並以跳躍動作挑撿下一顆晶粒的分選方法,容易因下列因素造成分選錯誤:There are two methods for sorting crystal grains: one is that the detection and sorting are performed by the same machine, and its advantages are reliable, but the speed is very slow, and the productivity is low; the second is to divide the detection and sorting into two. The machine is completed, that is, each die on a wafer is first detected by a spot test device, and classified according to different characteristics of each die, and a row-column is generated according to the row (Row- The column, RC) mode marks the output file of each die position, and then a sorting device (sorter) controls a pick-up device to sort and sort the dies belonging to the same level but dispersed everywhere according to the output file. Therefore, the picking device often needs to perform a jump operation to pick up the next die. However, the above-mentioned sorting method of marking each crystal grain position in a row-column (R-C) manner and provoking the next crystal grain by jumping action is liable to cause sorting errors due to the following factors:

1.在探測與分選兩個步驟間之晶粒分離過程中,可能發生晶粒外延片碎裂、局部殘缺碎裂或局部殘缺,使得實際的晶粒分散與儲存在分選機裡的資料不符,造成分選困難。1. In the process of crystal separation between the two steps of detection and sorting, chip epitaxy fragmentation, partial fragmentation or partial defects may occur, so that the actual crystal grain dispersion and the data stored in the sorting machine may occur. Inconsistent, resulting in difficulty in sorting.

2.晶粒體積小且彼此間距不大,在晶粒被挑選並為頂針自下而上頂起而相對底面所黏附作為支撐的藍膜分離時,該分離取出動作易牽扯藍膜並造成些許移位,使得其他未被挑選的晶粒發生位置變動,尤其在跳躍動作的加入,將使得分選錯誤機率提高。2. The grain size is small and the spacing between the crystals is small, and when the crystal grains are selected and the thimble is lifted from the bottom to the bottom and adhered to the blue film as the support as the support, the separation and removal action is easy to involve the blue film and cause a little Shifting causes positional changes of other unselected dies, especially in the addition of hopping actions, which will increase the probability of sorting errors.

3.晶粒被以行-列(R-C)方式標記位置,並據此以為挑撿,雖為一簡單且快速的定位與分選方法,卻因無法提供足夠的準確度以提高挑撿正確性。3. The grain is marked in a row-column (RC) manner, and accordingly it is a provocation. Although it is a simple and fast positioning and sorting method, it cannot provide sufficient accuracy to improve the provocation accuracy. .

歸納上述可知,晶粒在被分選之前雖經行-列(R-C)方式標記位置,卻因無即時監測、比對、復查等措施而導致後續發生分選錯誤情形。In summary, it can be seen that although the grain is marked by the row-column (R-C) method before being sorted, there is no immediate monitoring, comparison, review, etc., which leads to subsequent sorting errors.

有鑑於此,本發明之主要目的在於提供一種發光二極體晶圓分選方法,具有提高晶粒分選正確性與減少錯誤產生之功效。In view of this, the main object of the present invention is to provide a method for sorting a light-emitting diode wafer, which has the advantages of improving the accuracy of grain sorting and reducing the occurrence of errors.

緣以達成上述目的,本發明所提供之發光二極體晶圓分選方法包括:產生一特徵晶粒座標與一晶粒分布晶圓地圖,該晶粒分布晶圓地圖記錄有特徵晶粒之位置,並以一特殊標記表示特徵晶粒位置;利用一分選設備接收該晶粒分布晶圓地圖與該晶圓,且其一影像辨識器依該晶粒分布晶圓地圖之資料尋找各晶粒位置,在該影像辨識器之可預視範圍內涵蓋特徵晶粒時,讀入該特徵晶粒座標並與該晶粒分布晶圓地圖進行比對,若視覺辨識為特殊標記,則確認特徵晶粒之實際位置與該晶粒分布晶圓地圖所記錄特徵晶粒之位置吻合。In order to achieve the above object, the method for sorting a light-emitting diode wafer provided by the present invention comprises: generating a feature grain coordinate and a grain distribution wafer map, wherein the grain distribution wafer map records characteristic grain Position and indicate the characteristic grain position by a special mark; receive the grain distribution wafer map and the wafer by using a sorting device, and an image recognizer searches for each crystal according to the data of the die distribution wafer map The position of the grain, when the feature grain is covered in the pre-viewable range of the image identifier, the feature grain coordinates are read in and compared with the grain distribution wafer map, and if the visual recognition is a special mark, the feature is confirmed The actual position of the die coincides with the position of the feature grain recorded on the grain distribution wafer map.

另一方法則於晶粒分布晶圓地圖產生之後,該晶粒分布晶圓地圖記錄有特徵晶粒之位置,復進行晶圓掃描,並產生一晶圓晶粒座標;再比對該晶粒分布晶圓地圖與該晶圓晶粒座標以確認晶粒位置,以及比對該晶粒分布晶圓地圖與該特徵晶粒座標,若特殊標記位置與特徵晶粒位置吻合,則以一分選設備進行晶粒分選。In another method, after the grain distribution wafer map is generated, the grain distribution wafer map records the position of the characteristic grain, performs the wafer scanning, and generates a wafer die coordinate; and then compares the grain distribution a wafer map and the wafer die coordinates to confirm the grain position, and the wafer map and the feature grain coordinates of the grain distribution, if the special mark position and the feature grain position match, a sorting device is used Perform grain sorting.

再一方法係利用一點測設備探測晶圓之各晶粒,並產生一以一第一組相對座標記錄各晶粒位置之晶粒分布晶圓地圖;之後進行晶圓掃描且產生一晶圓晶粒座標,該晶圓晶粒座標記錄有各晶粒位置,前述晶粒位置被以一第二組相對座標及一絕對座標方式記錄儲存;爾後比對該第一組相對座標與該第二組相對座標所記錄晶粒位置,若兩者誤差在一預設範圍內,則利用一分選設備以該絕對座標所記錄晶粒位置進行晶粒分選。In another method, a single measuring device is used to detect each die of the wafer, and a grain distribution wafer map of each die position is recorded by a first set of relative coordinates; then wafer scanning is performed and a wafer crystal is generated. a grain coordinate, wherein the die coordinates of the wafer are recorded with respective die positions, and the die positions are recorded and stored in a second set of relative coordinates and an absolute coordinate; and then the first set of relative coordinates and the second set are compared The grain position recorded relative to the coordinates, if the two errors are within a predetermined range, the grain position is recorded by the sorting device with the absolute coordinate recorded grain position.

第一圖所示為一經切割後之晶圓示意圖,該晶圓100包括有複數個晶粒101,晶粒101又依具備功能與否而區分有正常晶粒101a與不具功能的特徵晶粒(Alignment Key)101b,其中,正常晶粒101a或因製程關係而具有不同程度的電性與光學特性之表現,而該些特徵晶粒101b則是分散於各該正常晶粒101a之中。為提高前述晶粒101分選過程中的正確性與可靠性,本發明提供以下較佳實施例之分選方法:請配合第二圖所示之比對流程圖(一),其中,特徵晶粒101b之形成係於晶圓100製作過程中利用光罩而製得,在本實施例之晶圓100製程中,將同時一併產生一特徵晶粒座標200,如第三圖所示,斜線即表示特徵晶粒101b之預設位置。The first figure shows a schematic diagram of a wafer after dicing, the wafer 100 includes a plurality of dies 101, and the dies 101 are distinguished by normal crystal grains 101a and non-functional dies (see Alignment Key) 101b, wherein the normal crystal grains 101a have different degrees of electrical and optical characteristics due to process relationships, and the characteristic crystal grains 101b are dispersed in the respective normal crystal grains 101a. In order to improve the correctness and reliability in the sorting process of the foregoing die 101, the present invention provides a sorting method of the following preferred embodiment: please cooperate with the comparison flowchart (1) shown in the second figure, wherein the characteristic crystal The formation of the particles 101b is performed by using a photomask during the fabrication of the wafer 100. In the wafer 100 process of the embodiment, a feature grain coordinate 200 is simultaneously generated, as shown in the third figure. That is, the preset position of the feature crystal grain 101b is indicated.

接著,以一點測設備(prober)對該晶圓100上之每一晶粒101進行包含電性與光學特性等之特性檢測,且根據測得之每一晶粒之不同特性予以分級,並據以產生一晶粒分布晶圓地圖300,如第四圖所示,該晶粒分布晶圓地圖300係以行-列(R-C)方式記錄正常晶粒101a位置與特徵晶粒101b位置,於本實施例中是以空洞(cavity)方式表示特徵晶粒101b所在處,圖中係以黑色方塊表示空洞。惟須說明的是,除以空洞表示特徵晶粒101b之外,亦得自被分級後的晶粒中擇一特定級別的晶粒作為特徵晶粒。又前述點測設備於本實施例係以探針卡為例,惟不以此為限。Then, each of the crystal grains 101 on the wafer 100 is subjected to characteristic detection including electrical and optical characteristics, and is classified according to the measured different characteristics of each crystal grain, and according to the probe. To generate a grain distribution wafer map 300, as shown in the fourth figure, the grain distribution wafer map 300 records the position of the normal crystal grain 101a and the position of the characteristic crystal grain 101b in a row-column (RC) manner. In the embodiment, the feature crystal 101b is represented by a cavity, and the black square indicates a void. It should be noted that, in addition to the voids representing the characteristic crystal grains 101b, a specific level of crystal grains from the graded crystal grains is selected as the characteristic crystal grains. In the embodiment, the probe card is exemplified by a probe card, but not limited thereto.

上述晶粒分布晶圓地圖300將傳輸至一具有影像辨識器的分選設備(sorter),該分選設備同時接收該晶圓100,之後,該影像辨識器將根據該晶粒分布晶圓地圖300之資料尋找各晶粒101位置,並於確認位置後控制一撿取裝置(如具真空吸力之機械手臂)進行晶粒101挑撿。在正常的情況下,晶粒101將被正確地分選撿出,而當影像辨識器之可預視範圍內涵蓋有特徵晶粒101b時,該分選設備將讀入該特徵晶粒座標200,並以之與該晶粒分布晶圓地圖300進行套圖比對,若視覺辨識為空洞,則確認特徵晶粒101b之實際位置與該晶粒分布晶圓地圖300所記錄特徵晶粒101b之位置吻合,此一確認動作有助於及時發覺晶粒101分選是否有誤,在前述位置吻合之情形下表示挑檢正確,反之,若因晶粒101在分離過程中發生實際位置與儲存資料不符時,該影像辨識器將辨識為非空洞,而係一正常晶粒101a,則表示分選有誤,應立即停止後續的分選動作。The die distribution wafer map 300 will be transmitted to a sorter having an image recognizer, the sorting device simultaneously receiving the wafer 100, and then the image recognizer will distribute the wafer map according to the die 300 data to find the position of each die 101, and after confirming the position, control a picking device (such as a vacuum suction robot) to perform the die 101 provocation. Under normal circumstances, the die 101 will be properly sorted out, and when the feature die 101b is included in the predictable range of the image recognizer, the sorting device will read the feature die coordinates 200. And performing a pattern comparison with the die distribution wafer map 300. If the visual recognition is a hole, the actual position of the feature die 101b and the position of the feature die 101b recorded by the die distribution wafer map 300 are confirmed. In agreement, this confirmation action helps to detect whether the grain 101 sorting is correct in time. In the case where the above position is consistent, the pick is correct. Conversely, if the actual position of the die 101 does not match the stored data during the separation process. When the image recognizer is identified as a non-void, and a normal die 101a indicates that the sorting is incorrect, the subsequent sorting action should be stopped immediately.

上述實施例之晶粒分布晶圓地圖300係由該點測設備產生形成一輸出檔案,再傳送至該分選設備;當然,晶粒分布晶圓地圖300亦可以當成一資料的形式,藉由網路傳輸的方式直接傳送到該分選設備。The die distribution wafer map 300 of the above embodiment is formed by the spotting device to form an output file, and then transmitted to the sorting device; of course, the die distribution wafer map 300 can also be in the form of a data. The way the network is transmitted is directly transmitted to the sorting device.

上述分選方法是在晶粒101挑撿過程中加入特徵晶粒101b位置之比對以行再確認,具有及時發現問題以中斷分選動作之效果。另說明的是,上述特徵晶粒座標200係預先為分選設備所接收,惟其亦可以儲存在分選設備以外之機具中,再由分選設備以讀入方式讀取之。又,本實施例中所述點測設備、分選設備、影像辨識器與撿取裝置係為既有設備,容不贅述。The above sorting method is to re-confirm the ratio of the positions of the characteristic crystal grains 101b during the provocation process of the crystal grain 101, and has the effect of finding a problem in time to interrupt the sorting action. In addition, the above-mentioned characteristic die coordinates 200 are received by the sorting device in advance, but they may also be stored in the implement other than the sorting device, and then read by the sorting device. In addition, the point measurement device, the sorting device, the image recognizer, and the capture device in the embodiment are both existing devices, and are not described herein.

另值得一提的是,上述實施例之特徵晶粒座標200係於晶圓100製作過程中單獨產生,該晶粒分布晶圓地圖300則是由點測設備探測晶圓而產生,惟,特徵晶粒座標200與晶粒分布晶圓地圖300的產生尚可如第五圖所示之於點測設備探測晶圓時一併產生。再說明的是,特徵晶粒座標200與晶粒分布晶圓地圖300是可以單獨方式各別儲存,亦可將特徵晶粒座標200儲存於晶粒分布晶圓地圖300中。It is also worth mentioning that the feature die coordinates 200 of the above embodiment are separately generated during the fabrication process of the wafer 100, and the die distribution wafer map 300 is generated by the spotting device detecting the wafer, however, the feature The generation of the die coordinates 200 and the die distribution wafer map 300 can also be generated as shown in the fifth figure when the spotting device detects the wafer. It is noted that the feature die coordinates 200 and the die distribution wafer map 300 can be stored separately in a separate manner, and the feature die coordinates 200 can also be stored in the die distribution wafer map 300.

在此,特徵晶粒座標200及晶粒分布晶圓地圖300係由該點測設備產生形成一輸出檔案,再傳送至該分選設備;當然,特徵晶粒座標200及晶粒分布晶圓地圖300亦可以當成一資料的形式,藉由網路傳輸的方式直接傳送到該分選設備。Here, the feature die coordinates 200 and the die distribution wafer map 300 are generated by the spotting device to form an output file, and then transmitted to the sorting device; of course, the feature die coordinates 200 and the die distribution wafer map The 300 can also be transmitted as a data to the sorting device by means of network transmission.

本發明再提供另一分選方法如後,請配合第六圖所示之比對流程圖(二),在整個比對過程中包括產生一特徵晶粒座標200、一晶粒分布晶圓地圖300以及因掃描而產生之一晶圓晶粒座標400,其中,特徵晶粒座標200與晶粒分布晶圓地圖300的產生同上述實施例,容不贅述,當然,特徵晶粒座標200亦得改在點測設備探測晶圓時產生。該晶圓晶粒座標400則是在完成該晶粒分布晶圓地圖300製作之後,復利用一具影像掃描與辨識功能之掃描裝置對晶圓100進行掃描以建立並獲得。The present invention further provides another sorting method. For example, please cooperate with the comparison flowchart (2) shown in FIG. 6 to include a feature grain coordinate 200 and a grain distribution wafer map in the whole alignment process. 300 and a wafer die coordinate 400 generated by scanning, wherein the feature die coordinates 200 and the grain distribution wafer map 300 are generated in the same manner as the above embodiment, and of course, the feature die coordinates 200 are also obtained. It is generated when the spotting device detects the wafer. The wafer die coordinates 400 are created and obtained by scanning the wafer 100 by using a scanning device with image scanning and identification functions after the die distribution wafer map 300 is completed.

本實施例於比對過程中,先是比對該晶粒分布晶圓地圖300與該晶圓晶粒座標400,即第六圖中套圖比對I的步驟,藉以確認晶粒101位置並適當補償該二者所對應指出晶粒101的位置誤差,當確認誤差仍在一預設範圍內時,復進行該晶粒分布晶圓地圖300與該特徵晶粒座標200的比對,即第六圖中套圖比對Ⅱ的步驟,此比對用意在於利用特徵晶粒101b位置之確認以提高比對準確度,若晶粒分布晶圓地圖300之空洞位置與特徵晶粒座標200之特徵晶粒101b位置吻合,則表示晶粒分選之起始點設定正確,後續分選作業將可順利進行,反之,則可及時進行修正。In the comparison process, in the comparison process, the step of comparing the wafer distribution wafer map 300 with the wafer die coordinate 400, that is, the nest pattern I in the sixth figure, is firstly performed to confirm the position of the die 101 and appropriately compensate. Corresponding to the position error of the die 101, when the confirmation error is still within a predetermined range, the alignment of the die distribution wafer map 300 with the feature die coordinate 200 is performed, that is, the sixth figure. In the middle of the step of comparing Figure II, the comparison intention is to use the confirmation of the position of the feature die 101b to improve the alignment accuracy, if the cavity location of the die distribution wafer map 300 and the feature die 101b of the feature die coordinates 200 If the position is consistent, it means that the starting point of the grain sorting is set correctly, and the subsequent sorting operation can be carried out smoothly. Otherwise, the correction can be made in time.

在此,晶粒分布晶圓地圖300係由該點測設備產生形成一輸出檔案,再傳送至該分選設備;當然,晶粒分布晶圓地圖300亦可以當成一資料的形式,藉由網路傳輸的方式直接傳送到該分選設備。Here, the die distribution wafer map 300 is generated by the spotting device to form an output file, and then transmitted to the sorting device; of course, the die distribution wafer map 300 can also be in the form of a data. The way of transmission is directly transmitted to the sorting device.

在該實施例中,掃描裝置為該分選設備之一部分,惟,掃描裝置亦可為獨立之裝置而位於點測設備與分選設備之間,如第七圖所示之比對流程圖(三),晶圓晶粒座標400的產出是以獨立於分選設備以外的另一設備(即掃描裝置)而獲得,該配置方式使得晶圓於探測及至分選過程中更具靈活性。In this embodiment, the scanning device is part of the sorting device, but the scanning device may also be a separate device located between the spotting device and the sorting device, as shown in the seventh figure. c) The output of the wafer die coordinates 400 is obtained independently of another device (ie, a scanning device) other than the sorting device, which makes the wafer more flexible in the detection and sorting process.

在此,晶圓晶粒座標400係由該掃瞄設備產生形成一輸出檔案,再傳送至該分選設備;當然,晶圓晶粒座標400亦可以當成一資料的形式,藉由網路傳輸的方式直接傳送到該分選設備。Here, the wafer die coordinates 400 are generated by the scanning device to form an output file, and then transmitted to the sorting device; of course, the wafer die coordinates 400 can also be transmitted as a data in the form of a network. The way is directly transmitted to the sorting device.

上述第二圖所示之比對流程與第六及七圖所示比對流程不同處在於:前者是於晶粒分選挑撿過程中藉由引入特徵晶粒101b位置的確認而達成及時發現問題與中斷分選動作之目的;後二者則以兩階段的比對來達成確認晶粒分選之起始點設定正確與否。惟不論如何,本發明皆可達成正確分選及減少錯誤產生之功效。The comparison process shown in the second figure above differs from the comparison process shown in the sixth and seventh figures in that the former is found in the process of grain sorting provocation by the confirmation of the location of the feature grain 101b. The problem is related to the purpose of interrupting the sorting action; the latter two are compared by a two-stage comparison to confirm whether the starting point of the grain sorting is set correctly or not. However, in any case, the present invention can achieve the correct sorting and reduce the effect of errors.

本發明之發光二極體晶圓分選方法尚可為如下實施例揭示之步驟:請配合第八圖所示之比對流程圖(四),其中,晶粒分布晶圓地圖500的產生同樣經由一點測設備探測晶圓之各晶粒後而產出,該晶粒分布晶圓地圖500是以一第一組相對座標方式記錄各晶粒之位置。The method for sorting the light-emitting diode wafer of the present invention may be the steps disclosed in the following embodiments: please cooperate with the comparison flowchart (4) shown in the eighth figure, wherein the generation of the grain distribution wafer map 500 is the same. The wafers are generated by detecting a plurality of grains of the wafer through a spot measuring device. The grain distribution wafer map 500 records the positions of the respective grains in a first set of relative coordinates.

接著,一具有影像掃描與辨識功能之掃描裝置對晶圓上之各晶粒進行掃描,同時產生一晶圓晶粒座標600,前述掃描裝置係為分選設備之一部分,而該晶圓晶粒座標600記錄有各晶粒位置,各晶粒位置同時被以一第二組相對座標及一絕對座標方式記錄儲存,必須說明的是,該第二組相對座標的產生是在:以該第一組相對座標提供的資訊控制掃描裝置改變影像辨識位置至預定晶粒上方後,該掃描裝置之即時影像資訊補償所對應晶粒位置之誤差而據此產生該第二組相對座標。Then, a scanning device having an image scanning and identification function scans each of the crystal grains on the wafer, and simultaneously generates a wafer die coordinate 600, and the scanning device is a part of the sorting device, and the wafer die Coordinates 600 record the position of each die, and each die position is simultaneously recorded and stored in a second set of relative coordinates and an absolute coordinate. It must be noted that the second set of relative coordinates is generated by: The information provided by the group relative to the coordinate control scanning device changes the image recognition position to the top of the predetermined crystal grain, and the instantaneous image information of the scanning device compensates for the error of the corresponding crystal grain position to generate the second group of relative coordinates.

之後進行該第一組相對座標與該第二組相對座標所記錄晶粒位置之比對,即第八圖中套圖比對I的步驟,若兩者誤差在一預設範圍內,則該分選設備以該絕對座標所記錄晶粒位置進行晶粒分選,反之,第一組相對座標與第二組相對座標所記錄晶粒位置比對後之誤差超出預設範圍,則及時進行修正或中止分選動作。And then performing a comparison between the first set of relative coordinates and the recorded position of the second set of opposite coordinates, that is, the step of comparing the I in the eighth figure, if the error between the two is within a preset range, the score The device selects the die position recorded by the absolute coordinate to perform grain sorting. Otherwise, if the error between the first set of relative coordinates and the recorded position of the second set of opposite coordinates exceeds the preset range, the correction is performed in time or Suspend the sorting action.

在此,晶粒分布晶圓地圖500係由該點測設備產生形成一輸出檔案,再傳送至該分選設備;當然,晶粒分布晶圓地圖500亦可以當成一資料的形式,藉由網路傳輸的方式直接傳送到該分選設備。Here, the grain distribution wafer map 500 is generated by the spotting device to form an output file, and then transmitted to the sorting device; of course, the grain distribution wafer map 500 can also be formed into a form of data. The way of transmission is directly transmitted to the sorting device.

上述實施例之掃描裝置為分選設備之一部分,惟,掃描裝置亦可為獨立之裝置而位於點測設備與分選設備之間。The scanning device of the above embodiment is part of the sorting device, but the scanning device can also be a separate device located between the spotting device and the sorting device.

以上所述僅為本發明較佳可行實施例而已,舉凡應用本發明說明書及申請專利範圍所為之等效結構及製作方法變化,理應包含在本發明之專利範圍內。The above description is only for the preferred embodiments of the present invention, and the equivalent structures and manufacturing methods of the present invention and the scope of the patent application are intended to be included in the scope of the present invention.

100...晶圓100. . . Wafer

101...晶粒101. . . Grain

101a...正常晶粒101a. . . Normal grain

101b...特徵晶粒101b. . . Characteristic grain

200...特徵晶粒座標200. . . Characteristic grain coordinates

300...晶粒分布晶圓地圖300. . . Grain distribution wafer map

400...晶圓晶粒座標400. . . Wafer die coordinates

500...晶粒分布晶圓地圖500. . . Grain distribution wafer map

600...晶圓晶粒座標600. . . Wafer die coordinates

第一圖為一般晶圓之示意圖。The first picture is a schematic diagram of a general wafer.

第二圖為本發明較佳實施例之比對流程圖(一)。The second figure is a comparison flowchart (1) of a preferred embodiment of the present invention.

第三圖為本發明較佳實施例之特徵晶粒座標示意圖。The third figure is a schematic diagram of a feature grain coordinate of a preferred embodiment of the present invention.

第四圖為本發明較佳實施例之晶粒分布晶圓地圖示意圖。The fourth figure is a schematic diagram of a grain distribution wafer map in accordance with a preferred embodiment of the present invention.

第五圖為本發明上述較佳實施例之另一比對流程圖,說明特徵晶粒座標與晶粒分布晶圓地圖係同時產生。The fifth figure is another alignment flowchart of the above preferred embodiment of the present invention, illustrating that the feature die coordinates and the die distribution wafer map system are simultaneously generated.

第六圖為本發明較佳實施例之比對流程圖(二)。Figure 6 is a flow chart (2) of a comparison of preferred embodiments of the present invention.

第七圖為本發明較佳實施例之比對流程圖(三)。Figure 7 is a flow chart (3) of a comparison of preferred embodiments of the present invention.

第八圖為本發明較佳實施例之比對流程圖(四)。The eighth figure is a comparison flowchart (4) of a preferred embodiment of the present invention.

200...特徵晶粒座標200. . . Characteristic grain coordinates

300...晶粒分布晶圓地圖300. . . Grain distribution wafer map

Claims (17)

一種發光二極體晶圓分選方法,包含下列步驟:取得一特徵晶粒座標與產生一晶粒分布晶圓地圖,該晶粒分布晶圓地圖記錄有特徵晶粒之位置,並以一特殊標記表示特徵晶粒位置;利用一分選設備接收該晶粒分布晶圓地圖與該晶圓,且其一影像辨識器依該晶粒分布晶圓地圖之資料尋找各晶粒位置,在該影像辨識器之可預視範圍內涵蓋特徵晶粒時,讀入該特徵晶粒座標並與該晶粒分布晶圓地圖進行比對,若視覺辨識為特殊標記,則確認特徵晶粒之實際位置與該晶粒分布晶圓地圖所記錄特徵晶粒之位置吻合。 A method for sorting a light-emitting diode wafer, comprising the steps of: obtaining a feature grain coordinate and generating a grain distribution wafer map, wherein the grain distribution wafer map records the position of the characteristic grain and is a special The mark indicates the feature grain position; the grain distribution wafer map and the wafer are received by a sorting device, and an image recognizer searches for the die position according to the data of the die distribution wafer map, in the image When the feature dies are covered in the predictable range, the feature grain coordinates are read and compared with the grain distribution wafer map. If the visual identification is a special mark, the actual position of the feature dies is confirmed. The position of the characteristic crystal grains recorded on the grain distribution wafer map is consistent. 如請求項1所述之發光二極體晶圓分選方法,其中在確認特徵晶粒之實際位置與晶粒分布晶圓地圖所記錄特徵晶粒位置吻合時,該分選設備繼續挑檢晶粒。 The method for sorting a light emitting diode according to claim 1, wherein the sorting device continues to pick crystal when the actual position of the feature grain is confirmed to coincide with the position of the characteristic grain recorded by the grain distribution wafer map. grain. 如請求項1所述之發光二極體晶圓分選方法,其中該特徵晶粒座標與該晶粒分布晶圓地圖係由一點測設備探測晶圓而產生。 The method according to claim 1, wherein the characteristic die coordinates and the die distribution wafer map are generated by a spotting device detecting a wafer. 如請求項1所述之發光二極體晶圓分選方法,其中該特徵晶粒座標係於晶圓製作過程中單獨產生,該晶粒分布晶圓地圖係由一點測設備探測晶圓而產生。 The method according to claim 1, wherein the characteristic die coordinates are separately generated in a wafer fabrication process, and the die distribution wafer map is generated by a spot measuring device detecting a wafer. . 如請求項1所述之發光二極體晶圓分選方法,其中該特殊標記是以空洞方式表示特徵晶粒位置。 The method of sorting a light emitting diode according to claim 1, wherein the special mark is a void pattern indicating a feature grain position. 如請求項1所述之發光二極體晶圓分選方法,其中該特殊標記是代表預定級別之晶粒的位置。 The method of sorting a light emitting diode according to claim 1, wherein the special mark is a position representing a predetermined level of the die. 如請求項1所述之發光二極體晶圓分選方法,其中該特徵晶粒座標係與該晶粒分布晶圓地圖一起為該分選設備接收。 The method of claim 2, wherein the characteristic die coordinate is received with the die distribution wafer map for the sorting device. 如請求項1所述之發光二極體晶圓分選方法,其中該特徵晶粒座標係自分選設備外部讀入。 The method according to claim 1, wherein the characteristic die coordinate is read from outside the sorting device. 一種發光二極體晶圓分選方法,包含下列步驟:產生一特徵晶粒座標與一晶粒分布晶圓地圖,該晶粒分布晶圓地圖記錄有特徵晶粒之位置,並以一特殊標記表示特徵晶粒位置;進行晶圓掃描,並產生一晶圓晶粒座標;比對該晶粒分布晶圓地圖與該晶圓晶粒座標以確認晶粒位置,以及比對該晶粒分布晶圓地圖與該特徵晶粒座標,若特殊標記位置與特徵晶粒位置吻合,則以一分選設備進行晶粒分選。 A method for sorting a light-emitting diode wafer, comprising the steps of: generating a feature grain coordinate and a grain distribution wafer map, wherein the grain distribution wafer map records the position of the characteristic grain and is marked with a special mark Representing the characteristic grain position; performing wafer scanning and generating a wafer die coordinate; distributing the wafer map and the wafer die coordinates to confirm the grain position, and comparing the grain distribution crystal The circular map and the characteristic grain coordinates, if the special mark position coincides with the feature grain position, the grain sorting is performed by a sorting device. 如請求項9所述之發光二極體晶圓分選方法,係以一具影像掃描與辨識功能之掃描裝置對該晶圓進行掃描,該掃描裝置係為該分選設備之一部分。 The method for sorting a light-emitting diode wafer according to claim 9 is to scan the wafer by a scanning device having an image scanning and identification function, and the scanning device is a part of the sorting device. 如請求項9所述之發光二極體晶圓分選方法,係以一具影像掃描與辨識功能之掃描裝置對該晶圓進行掃描,該掃描裝置位於該點測設備與該分選設備之間。 The method for sorting a light-emitting diode wafer according to claim 9, wherein the wafer is scanned by a scanning device having an image scanning and identification function, and the scanning device is located in the spot measuring device and the sorting device. between. 如請求項9所述之發光二極體晶圓分選方法,其中該特徵晶粒座標與該晶粒分布晶圓地圖係由一點測設備探測晶圓而產生。 The method of claim 2, wherein the characteristic die coordinates and the die distribution wafer map are generated by a spotting device detecting a wafer. 如請求項9所述之發光二極體晶圓分選方法,其中該特徵晶粒座標係於晶圓製作過程中單獨產生,該晶粒分布晶圓地圖係由一點測設備探測晶圓而產生。 The method according to claim 9, wherein the characteristic die coordinates are separately generated in a wafer fabrication process, and the die distribution wafer map is generated by a spot measuring device detecting a wafer. . 如請求項9所述之發光二極體晶圓分選方法,其中該特殊標記是以空洞方式表示特徵晶粒位置。 The method of claim 2, wherein the special mark is a void pattern representing a feature grain position. 如請求項9所述之發光二極體晶圓分選方法,其中該特殊標記是代表預定級別之晶粒的位置。 The method of sorting a light emitting diode according to claim 9, wherein the special mark is a position representing a predetermined level of the die. 一種發光二極體晶圓分選方法,包含下列步驟:利用一點測設備探測晶圓之各晶粒,並產生一晶粒分布晶圓地圖,該晶粒分布晶圓地圖以一第一組相對座標記錄各晶粒位置;進行晶圓掃描,並產生一晶圓晶粒座標,該晶圓晶粒座標記錄有各晶粒位置,前述晶粒位置被以一第二組相對座標及一絕對座標方式記錄儲存;比對該第一組相對座標與該第二組相對座標所記錄晶粒位置,若兩者誤差在一預設範圍內,則一分選設備以該絕對座標所記錄晶粒位置進行晶粒分選。 A method for sorting a light-emitting diode wafer, comprising the steps of: detecting a die of a wafer by using a point measuring device, and generating a grain distribution wafer map, wherein the grain distribution wafer map is in a first group relative Coordinates record each die position; perform wafer scanning and generate a wafer die coordinate, the wafer die coordinates record each die position, and the die position is a second set of relative coordinates and an absolute coordinate Mode record storage; if the error between the first set of relative coordinates and the second set of relative coordinates is recorded, if the error between the two is within a preset range, a sorting device records the die position with the absolute coordinate Perform grain sorting. 如請求項16所述之發光二極體晶圓分選方法,係以該第一組相對座標提供的資訊控制一掃描裝置改變影像辨識位置至預定晶粒上方,該掃描裝置之即時影像資訊補償所對應晶粒位置之誤差,並據以產生該第二組相對座標。 The method for sorting a light-emitting diode according to claim 16, wherein the information provided by the first set of relative coordinates is used to control a scanning device to change the image recognition position to above the predetermined die, and the image information of the scanning device is compensated. The error of the corresponding grain position, and accordingly the second set of relative coordinates.
TW98142141A 2009-12-09 2009-12-09 Light emitting diode wafer sorting method TWI421962B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98142141A TWI421962B (en) 2009-12-09 2009-12-09 Light emitting diode wafer sorting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98142141A TWI421962B (en) 2009-12-09 2009-12-09 Light emitting diode wafer sorting method

Publications (2)

Publication Number Publication Date
TW201120974A TW201120974A (en) 2011-06-16
TWI421962B true TWI421962B (en) 2014-01-01

Family

ID=45045384

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98142141A TWI421962B (en) 2009-12-09 2009-12-09 Light emitting diode wafer sorting method

Country Status (1)

Country Link
TW (1) TWI421962B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452296B (en) * 2011-07-28 2014-09-11 Chroma Ate Inc The Operation System and Operation Method of LED Grain Scanning and Spotting
TWI494560B (en) * 2013-11-12 2015-08-01 Mpi Corp Method for selecting a die and method for generating a bad die map
CN104715101B (en) * 2013-12-12 2018-07-24 北京确安科技股份有限公司 A kind of picking up piece file automatic generation method in wafer testing procedure
CN113140490A (en) * 2021-04-22 2021-07-20 扬州乾照光电有限公司 Method for sorting LED crystal grains in wafer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4928002A (en) * 1988-12-05 1990-05-22 Motorola Inc. Method of recording test results of die on a wafer
US20050130333A1 (en) * 2003-12-09 2005-06-16 Zhong Wei M. Die sorting apparatus and method
TW200905774A (en) * 2007-07-31 2009-02-01 King Yuan Electronics Co Ltd Method for marking wafer, method for marking failed die, method for aligning wafer and wafer test equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4928002A (en) * 1988-12-05 1990-05-22 Motorola Inc. Method of recording test results of die on a wafer
US20050130333A1 (en) * 2003-12-09 2005-06-16 Zhong Wei M. Die sorting apparatus and method
TW200905774A (en) * 2007-07-31 2009-02-01 King Yuan Electronics Co Ltd Method for marking wafer, method for marking failed die, method for aligning wafer and wafer test equipment

Also Published As

Publication number Publication date
TW201120974A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
US11016035B2 (en) Smart defect calibration system and the method thereof
US6021380A (en) Automatic semiconductor wafer sorter/prober with extended optical inspection
US6096567A (en) Method and apparatus for direct probe sensing
CN102101112B (en) Light emitting diode wafer sorting method
US10388609B2 (en) Die attach pick error detection
TWI421962B (en) Light emitting diode wafer sorting method
CN101740431B (en) Detecting and sorting method for posterior flow of LED (Light Emitting Diode)
US6756796B2 (en) Method of search and identify reference die
CN109616426A (en) Intelligent defect correcting system and its implementation method
US7649370B2 (en) Evaluation method of probe mark of probe needle of probe card using imaginary electrode pad and designated determination frame
US6830941B1 (en) Method and apparatus for identifying individual die during failure analysis
US7345254B2 (en) Die sorting apparatus and method
TWI380036B (en)
CN113299572A (en) Chip defect detection method
TWI599410B (en) Method for sorting a light emitting diode wafer
JP2005150224A (en) Semiconductor testing apparatus using probe information and testing method
US7556973B2 (en) Manufacturing method for semiconductor device
US20030072481A1 (en) Method for evaluating anomalies in a semiconductor manufacturing process
JP2009135130A (en) Apparatus and method for manufacturing semiconductor device
WO2021208478A1 (en) Display panel detection method and apparatus
JP4384899B2 (en) Device chip position measurement method
CN111106025B (en) Edge defect inspection method
WO2022176664A1 (en) Inspection device set-up method and inspection device
JP4788131B2 (en) Defect analysis method
CN112730248A (en) Method and system for preventing chip test pattern from deviating