TW201120974A - Method for sorting LED wafer. - Google Patents

Method for sorting LED wafer. Download PDF

Info

Publication number
TW201120974A
TW201120974A TW98142141A TW98142141A TW201120974A TW 201120974 A TW201120974 A TW 201120974A TW 98142141 A TW98142141 A TW 98142141A TW 98142141 A TW98142141 A TW 98142141A TW 201120974 A TW201120974 A TW 201120974A
Authority
TW
Taiwan
Prior art keywords
grain
wafer
die
sorting
characteristic
Prior art date
Application number
TW98142141A
Other languages
Chinese (zh)
Other versions
TWI421962B (en
Inventor
Zhen-Yang Cai
sheng-ming Ou
Jian-De Li
Jian-Fa Chen
Original Assignee
Mpi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mpi Corp filed Critical Mpi Corp
Priority to TW98142141A priority Critical patent/TWI421962B/en
Publication of TW201120974A publication Critical patent/TW201120974A/en
Application granted granted Critical
Publication of TWI421962B publication Critical patent/TWI421962B/en

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

A method for sorting LED wafer is to create a characteristic die coordinates by using the unique characteristics dies of the wafer, then using a prober to detect the wafer and establish a die distribution wafer map. During the subsequent sorting process, the characteristic die positions with the addition of characteristic die coordinates are compared with the hole positions of the die distribution wafer map to confirm whether or not dies sorting is correct. After the die distribution wafer map is created, then performing an initial scan of the wafer and creating the die coordinates of the wafer for comparing with the characteristic die coordinates. This can improve die sorting processes with satisfactory accuracy and reduce errors.

Description

201120974 六、發明說明: 【發明所屬之技術領域】 本發明係與晶圓晶粒之分選有關,更詳而言之是扑一種發 光二極體晶圓分選方法。 x 【先前技術】 晶圓上的每顆晶粒或因製程關係會有品質良窳之分,為確 • 贿挑撿晶粒是合格的’通常會施以電氣測試以為檢測各晶粒 的電性與光學特性等,或以影像辨識外觀是否有瑕疲,爾後復 行分選出合格晶粒。 已知晶粒的分選有兩種方法:其—是探顺分選由同一台 機器完成’它的優點是可靠,但速度很慢,產能低;其二為將 探測與分選分由兩台機器完成,即:先是以點測設備(prober) 對b曰圓上之每一晶粒進行檢測,並根據每一晶粒之不同特性 _ 予以分級且據此產生一以行_列(R〇w-Cdumn,R_c)方式標 。己各晶粒位置之輸出檔,之後再由一分選設備依據該輸 出標而控制-撿取裳置對歸屬相同級別但分散各處之晶粒予 以刀選挑檢,也因此,撿取裝置經常需以跳躍Gump)動作來 進仃下一顆晶粒的拾取。惟,上述以行-列(R_C)方式標記各 曰曰粒位置’並以跳躍動作挑撿下一顆晶粒的分選方法,容易因 下列因素造成分選錯誤: 1.在探測與分選兩個步驟間之晶粒分離過程中,可能發生 201120974 :二偽延片碎^、物_料局職缺,使得實際的晶粒 1存在分選機裡的資料不符,造成分選困難。 曰曰粒體積小且彼此間距不大,在晶粒被挑選並為頂針自 :上頂起*相對底崎_作為捕的賊分糾,該分離 動作易牽扯藍膜並造_許移位,使得其他未被挑選的晶 2生位置變動’尤其在卿動作的加人,將使得分選錯誤機 率提高。 、/被以行-列(R·0)方式標記位置,並據此以為挑撿, 雖為-簡單且贿的定_分選方法,_無法提供足夠的準 確度以提高挑撿正確性。 ②f内上述可知’晶粒在被分選之前雖經行-列(r_c)方式 標記位置,卻因無即時監測、比對、復查等措施而導致後續發 生分選錯誤情形。 【發明内容】 。八有鐘於此,本發明之主要目的在於提供—種發光二極體晶 圓分選方法,具有提高晶粒分選正確性與減少錯誤產生之功 效。 、緣以達成上述目的,本發明所提供之發{二極體晶圓分竭 方法包括.產生-舰晶粒座標與—晶粒分布晶圓地圖,該羞 粒分布晶圓地目記錄有特徵晶粒之位置,並以—特殊標記表开 特徵晶粒位置:姻—分選設備接收該晶粒分布晶圓地圖與該 201120974 曰° ^ ,5V像辨識器依該晶粒分布晶圓地圖之資料尋找各 置在該影像辨識器之可預視範圍内涵蓋特徵晶粒時, 與二特徵日日粒座標並與該晶粒分布晶圓地圖進行比對,若視 ^辨識為特殊標記,财認特徵^粒之實際位置與該晶粒分布 日日圓地圖所記錄特徵晶粒之位置吻合。 另方法則於晶粒分布晶圓地圖產生之後,該晶粒分布晶 圓地圖記錄有特徵晶粒之位置,復進行晶睛描,並產生一晶 圓晶粒座標;再比對該晶粒分布關地_該晶圓晶粒座標以 確》uaa粒位置’以及比對該晶粒分布晶圓地圖與該特徵晶粒座 標,若特殊標記位置與特徵晶粒位置吻合,則以一分選設備進 行晶粒分選。 再一方法係利用一點測設備探測晶圓之各晶粒,並產生一 以一第一組相對座標記錄各晶粒位置之晶粒分布晶圓地圖;之 後進行晶圓掃描且產生一晶圓晶粒座標,該晶圓晶粒座標記錄 有各晶粒位置,前述晶粒位置被以一苐二組相對座標及一絕對 座標方式記錄儲存;爾後比對該第一組相對座標與該第二組相 對座標所記錄晶粒位置’若兩者誤差在一預設範圍内,則利用 一分選設備以該絕對座標所記錄晶粒位置進行晶粒分選。 【實施方式】 第一圖所示為一經切割後之晶圓示意圖,該晶圓100包括 有複數個晶粒101 ’晶粒101又依具備功能與否而區分有正常 201120974 晶粒跑與不具功能簡徵晶粒(AlignmentKey)咖,其 中’正承曰曰粒101a或因製程關係而具有不同程度的電性與光 子特f生之表現’崎些特徵晶粒馳則是分散於各該正常晶 粒腕之中。為提高前述晶粒分選過程中的正確性與可 靠性,本發痛做下較趙施狀分選方法: 請配合第二圖所示之比對流程圖㈠,其中,特徵晶粒 l〇lb之形成係於晶圓100製作過程中利用光罩而製得,在本 實施例之晶11⑽製程中,將同時—併產生—特徵晶粒座標 200 ’如第三圖所#,斜線即表示特徵晶粒驅之預設位置。 接著’以一點測設備(prober)對該晶圓1〇〇上之每一晶 粒101進行包3電性與光學特性等之特性檢測,且根據測得之 母日日粒之不同特性予以分級,並據以產生一晶粒分布晶圓地 圖300 ’如第四圖所示’該晶粒分布晶圓地圖300係以行-列 (R-C)方式記錄正常晶粒驗位置與特徵晶粒祕位置, 於本實施例中是以空洞(eavity)方式表示特徵晶粒丨鳴所在 處’圖中係以黑色方塊表示空洞。惟須說明的是’除以空洞表 示特徵晶粒101b之外’亦得自被分級後的晶粒中擇一特定級 別的晶粒作為特徵晶粒。讀述點測設備於本實施例係以探針 卡為例,惟不以此為限。 上述晶粒分布晶圓地圖300將傳輸至一具有影像辨識器的 分選设備(sorter),該分選設備同時接收該晶圓ι〇〇,之後, 該影像辨識器將根據該晶粒分布晶圓地圖300之資料尋找各 201120974 晶粒101位置,並於確認位置後控制一撿取裝置(如具真空吸 力之機械手臂)進行晶粒101挑檢。在正常的情況下,晶粒 1—01將被正確地分選撿出,而當影像辨識器之可預視範圍内涵 盍有特徵晶粒嶋該分選設備將讀入該特徵晶粒座標 200 ’並以之與該晶粒分布晶圓地圖3〇〇進行套圖比對,若視 覺辨識為空洞’ _認特徵晶粒咖之實置與該晶粒分 布晶圓地圖300所記錄特徵晶粒騰之位置吻合,此 •動作有助於及時發覺晶粒叫選是否有誤,在前述位置吻: 之情形下表示挑檢正確,反之,若因晶粒101在分離過程中發 生實際位置與儲存資料不符時,該影像辨識器將辨識為非空 洞,而係-正常晶粒1()la,則表示分選有誤,應立即停止後 續的分選動作。 ,上述實施例之晶粒分布晶圓地圖300係由該點測設備產生 _ 軸一輸出檔案,再傳送至該分選設備;當然,晶粒分布晶圓 地圖300亦可以當成一資料的形式,藉由網路傳輸的方式直接 傳送到該分選設備。 上述分選方法是在晶粒1G1挑撿_巾加人特徵晶粒 101b位置之比對以行再確認,具有及時發現問題以中斷分選 動作之效果。另說明的是,上述特徵晶粒座標朋係預先為分 選設備所接收,惟其亦可以儲存在分選設備以外之機且中,再 由分選設備以讀人方式讀取之。又,本實施财所述點測設 備、分選設備、影像辨識器與撿取裝置係為既有設備,容不贊 201120974 述。 另值得一提的是,上述實施例之特徵晶粒座標2〇〇係於晶 圓100製作過程中單獨產生’該晶粒分布晶圓地圖300則是由 點測設備探測晶圓而產生,惟,特徵晶粒座標200與晶粒分布 晶圓地圖300的產生尚可如第五圖所示之於點測設備探測晶 圓時一併產生。再說明的是’特徵晶粒座標2〇〇與晶粒分布晶 圓地圖300是可以單獨方式各別儲存,亦可將特徵晶粒座標 200儲存於晶粒分布晶圓地圖3⑻中。 在此’特徵晶粒座標200及晶粒分布晶圓地圖300係由該 點測没備產生形成—輸㈣案,再傳送至該分選設備;當然, 特徵晶粒座標200及晶粒分布晶圓地圖300亦可以當成一資料 的形式,藉由網路傳輸的方式直接傳送到該分選設備。 本發明再提供另一分選方法如後,請配合第六圖所示之比 、十八程圖(一)’在整個比對過程中包括產生一特徵晶粒座標 200、一晶粒分布晶圓地圖3〇〇以及因掃描而產生之一晶圓晶 粒座標400 ’其特徵晶粒座標200與晶粒分布晶圓地圖3〇〇 的產生同上述實施例’容不贅述,當然,特徵晶粒座標200亦 付改在點測設備探測晶圓時產生。該晶圓晶粒座標400則是在 完成該晶粒分布晶圓地圖300製作之後,復利用一具影像掃描 與辨識功能之掃描裝置對晶圓100進行掃描以建立並獲得。 本實施例於比對過程中,先是比對該晶粒分布晶圓地圖 3〇〇與該晶圓晶粒座標4〇〇,即第六圖中套圖比對j的步驟, 201120974 藉以確認晶粒10U立置並適當補償該二者所對應指出晶粒ι〇ι 的位置誤差’當顧誤差仍在—職細㈣,復進行該晶粒 分布晶圓地圖300與該特徵晶粒座標200的比對,即第六圖中 套圖比對Π的步驟’此比對用意在於利用特徵晶粒1〇lb位置 之確認以提冑比對準確度,若晶粒分布晶圓地圖3〇〇之空洞位 置與特徵晶粒座標200之特徵晶粒1〇lb位置吻合,則表示晶 粒分選之起始點設定正確,後續分選作業將可順利進行,反 之’則可及時進行修正。 在此,晶粒分布晶圓地圖3〇〇係由該點測設備產生形成一 輸出檔案’再傳送至該分選設備;#然,晶粒分布晶圓地圖 3〇〇亦可以當成-資料卿式,藉由醜傳輸的方式直接傳送 到該分選設備。 在該實施例中,掃描裝置為該分選設備之一部分,惟,掃 描裴置亦可為獨立之裝置而位於點測設備與分選設備之間,如 第七圖所示之比對流程圖(三),晶圓晶粒座標4〇〇的產出是 以獨立於分選賴以外的另—設備(即掃描裝置)而獲得,該 配置方式使得晶圓於探測及至分選過程中更具靈活性。 在此,晶圓晶粒座標400係由該掃瞄設備產生形成一輸出 檔案’再傳送至該分選設備;當然,晶圓晶粒座標·亦可以 當成一資料的形式’藉由網路傳輸的方式直接傳送到該分選設 備。 上述第二圖所示之比對流程與第六及七圖所示比對流程 201120974 ‘選動作之目 :處在於:前者是於晶粒分選挑撿過程化㈣人特徵晶粒 位置的確認而達叙時魏斷分’ ^後二者則以兩階段的比對來達成確認晶粒^之 定正確射。_論如何,本㈣皆 ^起始點汉 誤產生之功效。 _了達歧確麵及減少錯 本發明之發光二極體晶圓分選方 示之步驟: —方料可為如下實施例揭 请配合第八圖所示之比對流程圖(四),射,晶粒分布 晶圓地圖·的產生同樣經由—點測設備探測晶圓之各晶粒 後而產出’該晶粒分布晶圓地圖5GGS以—第—組相對座標方 式。己錄各晶粒之位置。 接著,一具有影像掃描與辨識功能之掃描裝置對晶圓上之 各晶粒進行掃描’同時產生—晶圓晶粒座標_,前述婦描裝 置係為分選②備之—部分’崎晶圓晶粒絲_記錄有各晶 粒位置,各晶粒位置啊被以—第二組_座標及—絕對座標 方式記錄儲存’必須說明的是’該第二組相對座標的產生是 在:以該第一組相對座標提供的資訊控制掃描裝置改變影像辨 識位置至預定晶粒上方後,該掃贿置之即時雜資訊補償所 對應晶粒位置之誤差而據此產生該第二組相對座標。 之後進行該第一組相對座標與該第二組相對座標所記錄 晶粒位置之比對’即第八圖中套圖比對I的步驟,若兩者誤差 在一預設範圍内,則該分選設備以該絕對座標所記錄晶粒位置 201120974 進行晶粒分選’反之’第-組相對座標與第二組相對座標所記 錄晶粒位置比舰之誤差柳預設翻,财時進行修正 止分選動作。 3 在此’晶粒分布晶圓地圖5〇0係由該點測設備產生形成一 輸出檔案,再傳送至該分選設備;錢,晶粒分布晶圓_ 5〇〇亦可以當成-資料的形式,#由網路傳輸的方式直接傳送 到該分選設備。 ' * 上述實施例之掃描裝置為分選設備之-部分,惟,掃描裝 置亦可為獨立之裝置她於點測設備與分選設備之間。 、以上所述僅為本發明較佳可行實施例*已,舉凡應用本發 月說明書及申請專利範圍所為之等效結構及製作方法變化,理 應包含在本發明之專利範圍内。201120974 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to the sorting of wafer dies, and more specifically to a light-emitting diode wafer sorting method. x [Prior Art] Every grain on the wafer or the process relationship will have a good quality. To ensure that the die is qualified, it is usually qualified to test the electrical output of each die. Sexual and optical characteristics, etc., or whether the appearance of the image is exhausted by the image, and then the qualified crystal grains are sorted. There are two methods for sorting crystal grains: they are - the process of sorting is done by the same machine. 'The advantage is reliable, but the speed is very slow, the capacity is low; the other is to divide the detection and sorting into two. The machine is completed, that is, first, each spot on the b-circle is detected by a probe device, and is classified according to different characteristics of each die, and a row_column is generated according to this. 〇w-Cdumn, R_c) mode mark. The output file of each die position is controlled by a sorting device according to the output target - the picking device picks up the die that belongs to the same level but is scattered everywhere, and therefore, the picking device It is often necessary to use the jump Gump action to pick up and pick up a die. However, the above-mentioned sorting method of marking each grain position in the row-column (R_C) manner and provoking the next grain by jumping action is liable to cause sorting errors due to the following factors: 1. Detection and sorting During the process of crystal separation between the two steps, 201120974 may occur: the second pseudo-segment is broken, and the material is missing, which makes the actual grain 1 in the sorting machine inconsistent, resulting in difficulty in sorting. The granules are small in size and not spaced apart from each other, and the granules are selected and thimbles are lifted from the top: relative to the bottom _ as a trapping thief, the separation action is easy to involve the blue membrane and make a shift. The change in the position of the other unselected crystals, especially in the addition of the Qing action, will increase the probability of sorting errors. / is marked by the row-column (R·0) method, and accordingly it is provocative, although it is a simple and bribe _ sorting method, _ can not provide sufficient accuracy to improve provocation. In the above 2f, it can be seen that the grain is marked by the row-column (r_c) mode before being sorted, but there is no immediate monitoring, comparison, review, etc., which leads to subsequent sorting errors. SUMMARY OF THE INVENTION In view of the above, the main object of the present invention is to provide a method for sorting a light-emitting diode crystal, which has the advantages of improving the accuracy of grain sorting and reducing the occurrence of errors. In order to achieve the above object, the present invention provides a method for producing a diode dipole wafer including a generation-ship grain coordinate and a grain distribution wafer map, and the shame particle distribution wafer has a characteristic crystal. The position of the grain, and the feature grain position is marked by a special mark: the marriage-sorting device receives the grain distribution wafer map and the 201120974 曰° ^, 5V image recognizer according to the grain distribution wafer map information When the feature dies are included in the pre-view range of the image discriminator, the two feature day granule coordinates are compared with the grain distribution wafer map, and if the identification is a special mark, the confession is recognized. The actual position of the feature grain coincides with the position of the characteristic grain recorded on the grain distribution day circle map. In another method, after the grain distribution wafer map is generated, the grain distribution wafer map records the position of the characteristic crystal grain, repeats the crystallographic drawing, and generates a wafer grain coordinate; The grounding _ the wafer die coordinates to confirm the "uaa grain position" and the ratio of the grain distribution wafer map to the feature grain coordinates, if the special mark position and the feature grain position match, then a sorting device Perform grain sorting. In another method, a single measuring device is used to detect each die of the wafer, and a grain distribution wafer map of each die position is recorded by a first set of relative coordinates; then wafer scanning is performed and a wafer crystal is generated. The grain coordinates, the grain coordinates of the wafer are recorded with respective grain positions, and the grain positions are recorded and stored in one or two sets of relative coordinates and an absolute coordinate; then the first set of relative coordinates and the second group are compared If the error is recorded within a predetermined range, the grain position recorded by the absolute coordinate is used for grain sorting by a sorting device. [Embodiment] The first figure shows a schematic diagram of a wafer after dicing. The wafer 100 includes a plurality of dies 101. The dies 101 are differentiated according to whether they are functional or not. The normal 201120974 die runs and has no function. AlignmentKey coffee, in which 'the 曰曰 曰曰 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 Among them. In order to improve the correctness and reliability of the above-mentioned grain sorting process, the present pain is compared with the Zhao Shi-like sorting method: Please cooperate with the comparison flowchart (1) shown in the second figure, wherein the characteristic grain l〇 The formation of lb is made by using a photomask during the fabrication process of the wafer 100. In the process of the crystal 11 (10) of the embodiment, the feature grain coordinates 200' will be simultaneously generated and generated as shown in the third figure, the oblique line indicates The preset position of the feature grain drive. Then, each of the crystal grains 101 on the wafer 1 is subjected to characteristic detection of electrical properties and optical characteristics, and is classified according to the measured characteristics of the mother day and the solar particles. And according to the production of a grain distribution wafer map 300 ' as shown in the fourth figure 'The grain distribution wafer map 300 is a row-column (RC) method to record the normal grain inspection position and feature grain secret position In the present embodiment, the feature grain humming is represented by an eavity method. The black square indicates the hole in the figure. It is to be noted that 'divided by the voids to represent the characteristic crystal grains 101b' also results in a particular level of crystal grains selected as the characteristic crystal grains from the classified crystal grains. In the present embodiment, the probe card is taken as an example, but not limited thereto. The above-described grain distribution wafer map 300 is transmitted to a sorting device having an image recognizer, and the sorting device simultaneously receives the wafer, and then the image recognizer will be distributed according to the grain The wafer map 300 data is used to find the position of each of the 201120974 die 101, and after confirming the position, a picking device (such as a vacuum suction robot) is used to perform the die 101 picking. Under normal conditions, the die 1-01 will be correctly sorted out, and when the image recognizer's predictable range contains the characteristic grain, the sorting device will read the feature die coordinate 200. 'And compare it with the grain distribution wafer map 3〇〇, if the visual identification is void' _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The position is consistent, and this action helps to detect whether the grain selection is wrong in time. In the case of the kiss: the situation indicates that the pick is correct, and vice versa, if the actual position and storage data of the die 101 occur during the separation process. If the discriminator does not match, the image recognizer will recognize that it is not a void, and the normal-grain 1()la indicates that the sorting is incorrect, and the subsequent sorting action should be stopped immediately. The die-distributed wafer map 300 of the above embodiment is generated by the spotting device and output to the sorting device; of course, the die-distributed wafer map 300 can also be in the form of a data. Directly transmitted to the sorting device by means of network transmission. The above sorting method is to reconfirm the alignment of the grain 1G1 捡 巾 加 加 特征 特征 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 In addition, the above-mentioned characteristic die coordinate system is previously received by the sorting device, but it can also be stored in the machine other than the sorting device, and then read by the sorting device in a reading manner. Moreover, the spot measuring device, the sorting device, the image recognizer, and the picking device described in the present embodiment are both existing devices, and it is not mentioned in 201120974. It is also worth mentioning that the feature die coordinates 2 of the above embodiment are separately generated during the fabrication process of the wafer 100. The die distribution wafer map 300 is generated by the spotting device detecting the wafer, but The generation of the feature grain coordinates 200 and the grain distribution wafer map 300 can also be generated as shown in the fifth figure when the spotting device detects the wafer. It is further illustrated that the 'feature grain coordinates 2 〇〇 and the grain distribution crystal circle map 300 can be stored separately in a separate manner, and the feature grain coordinates 200 can also be stored in the grain distribution wafer map 3 (8). Here, the 'characteristic grain coordinates 200 and the grain distribution wafer map 300 are formed by the spot test, and then transmitted to the sorting device; of course, the characteristic grain coordinates 200 and the grain distribution crystal The circular map 300 can also be directly transmitted to the sorting device by means of network transmission in the form of a data. The present invention further provides another sorting method. For example, please cooperate with the ratio shown in the sixth figure, and the eighteenth pattern (1) includes generating a characteristic grain coordinate 200 and a grain distribution crystal in the whole alignment process. The circular map 3〇〇 and one wafer grain coordinate 400' generated by scanning, the characteristic grain coordinates 200 and the grain distribution wafer map 3〇〇 are generated in the same manner as the above embodiment, of course, the characteristic crystal The grain coordinates 200 are also changed when the spotting device detects the wafer. The wafer die coordinates 400 are created and obtained by scanning a wafer 100 using a scanning device for image scanning and identification after the die distribution wafer map 300 is completed. In the comparison process, in the comparison process, the step of comparing the wafer distribution map and the wafer die coordinate 4〇〇, that is, the step of the pattern comparison j in the sixth figure, 201120974 is used to confirm the crystal grain. The 10U is placed upright and appropriately compensated for the position error of the grain ι〇ι corresponding to the two. When the error is still in the job (4), the ratio of the grain distribution wafer map 300 to the characteristic grain coordinate 200 is repeated. Yes, that is, the step of the comparison of the pattern in the sixth figure' is intended to use the confirmation of the position of the feature grain 1 lb to improve the alignment accuracy, if the grain distribution wafer map 3 hole position Consistent with the characteristic grain 1 lb position of the characteristic grain coordinate 200, it indicates that the starting point of the grain sorting is set correctly, and the subsequent sorting operation can be smoothly performed, otherwise, the correction can be performed in time. Here, the grain distribution wafer map 3 is generated by the spotting device to form an output file and then transmitted to the sorting device; #然, the grain distribution wafer map 3 can also be regarded as a data material , directly transmitted to the sorting device by means of ugly transmission. In this embodiment, the scanning device is part of the sorting device, but the scanning device can also be a separate device and located between the spot measuring device and the sorting device, as shown in the seventh figure. (3) The output of the wafer die coordinate 4〇〇 is obtained independently of the other device (ie, scanning device) other than the sorting, which makes the wafer more in the process of detection and sorting. flexibility. Here, the wafer die coordinates 400 are generated by the scanning device to form an output file 're-transferred to the sorting device; of course, the wafer die coordinates can also be transmitted as a data form by network transmission The way is directly transmitted to the sorting device. The comparison process shown in the second figure above and the comparison process shown in the sixth and seventh figures 201120974 'The purpose of the selection action is: the former is the process of the process of selecting the profiling of the grain sorting (4) the confirmation of the position of the human characteristic grain In the case of Daxu, Wei broke the score '^ and then the two were compared in two stages to confirm the correct shot of the grain ^. _On how, this (four) are ^ the starting point of the error produced. _ 达 确 确 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光The generation of the grain distribution wafer map is also generated by detecting the respective crystal grains of the wafer through the spot measuring device, and the 'grain distribution wafer map 5GGS is the first-group relative coordinate method. The position of each die has been recorded. Then, a scanning device with image scanning and recognition function scans each die on the wafer to generate a wafer die coordinate _, and the aforementioned device is a sorting device. The grain wire _ records the position of each grain, and each grain position is recorded and stored in the second group _ coordinate and the absolute coordinate method. It must be stated that the generation of the second group of relative coordinates is: After the information provided by the first set of relative coordinates controls the scanning device to change the image recognition position to above the predetermined crystal grain, the instant information of the bribe is compensated for the error of the corresponding crystal grain position to generate the second set of relative coordinates. Then, the ratio of the relative position of the first set of relative coordinates to the recorded position of the second set of relative coordinates is performed, that is, the step of comparing the set I in the eighth figure, if the error between the two is within a preset range, then the score The selected device performs the grain sorting with the die position 201120974 recorded by the absolute coordinate. In contrast, the grain position of the first set of relative coordinates and the second set of relative coordinates is compared with the error of the ship, and the correction is made. Sorting action. 3 In this 'grain distribution wafer map 5〇0 is generated by the point measurement device to form an output file, and then transmitted to the sorting device; money, grain distribution wafer _ 5 〇〇 can also be regarded as - data The form, # is transmitted directly to the sorting device by means of network transmission. * The scanning device of the above embodiment is a part of the sorting device, but the scanning device can also be a separate device between the spot measuring device and the sorting device. The above description is only a preferred embodiment of the present invention. The equivalent structure and manufacturing method variations of the present specification and the scope of the patent application are included in the patent scope of the present invention.

11 201120974 【圖式簡單說明】 第一圖為一般晶圓之示意圖。 第一圖為本發明較佳實施例之比對流程圖(一)。 第三圖為本發雜佳實酬之特徵晶粒座標示意圖。 第四圖為本發雜佳實施例之晶粒分布晶圓細示意圖。 第五圖為本發明上述較佳實施例之另一比對流程圖,說明特徵 晶粒座標與晶粒分布晶圓地圖係同時產生。 第六圖為本發明較佳實施例之比對流程圖(二)。 · 第七圖為本發明較佳實施例之比對流程圖(三)。 第八圖為本發明較佳實施例之比對流程圖(四)。 【主要元件符號說明】 100晶圓 101晶粒 101a正常晶粒 101b特徵晶粒 籲 200特徵晶粒座標 300晶粒分布晶圓地圖 400晶圓晶粒座標 500晶粒分布晶圓地圖 600晶圓晶粒座標 IS1 1211 201120974 [Simple description of the diagram] The first picture is a schematic diagram of a general wafer. The first figure is a comparison flowchart (1) of a preferred embodiment of the present invention. The third figure is a schematic diagram of the characteristic grain coordinates of the best-selling. The fourth figure is a detailed schematic diagram of the grain distribution wafer of the present invention. The fifth figure is another alignment flowchart of the above preferred embodiment of the present invention, illustrating that the feature die coordinates are simultaneously generated with the die distribution wafer map system. Figure 6 is a flow chart (2) of a comparison of preferred embodiments of the present invention. The seventh figure is a comparison flowchart (3) of a preferred embodiment of the present invention. The eighth figure is a comparison flowchart (4) of a preferred embodiment of the present invention. [Main component symbol description] 100 wafer 101 die 101a normal die 101b feature die call 200 feature die coordinates 300 die distribution wafer map 400 wafer die coordinates 500 die distribution wafer map 600 wafer crystal Grain coordinates IS1 12

Claims (1)

201120974 七、申請專利範圍: 1、 一種發光二極體晶圓分選方法,包含下列步驟: 產生-特徵晶粒座標與-晶粒分布晶圓地圖,該晶粒分布晶圓 地圖記錄有繼晶粒之位置,並以—特賴記絲魏晶粒位置; 利用-分選設備接收該晶粒分布晶圓地圖與該晶圓,且其一影 像辨識器依該晶粒分布晶圓關之資料尋找各晶粒位置,在該影 像辨識器之可預視範圍⑽蓋特徵晶㈣,讀人該特徵晶粒座標 並與該晶粒分布晶圓地圖進行比對,若視覺辨識為特殊標記,則 喊認特徵晶粒之實際位置與該晶粒分布晶圓地圖所記錄特徵晶粒 之位置吻合。 2、 如請求項1所述之發光二極體晶®分選方法,其中在確認 特徵晶粒之實際位置與晶粒分布晶圓地圖所記錄特徵晶粒位置吻 合時,該分選設備繼續挑檢晶粒。 3、 如請求項1所述之發光二極體晶圓分選方法,其中該特徵 晶粒座標與該晶粒分布晶圓地圖係由—點測設備探測晶圓而產 生。 4、 如請求項1所述之發光二極體晶圓分選方法,其中該特徵 晶粒座標係於晶_作雜中單生,該晶粒分布晶圓地圖係 由一點測設備探測晶圓而產生。 5、 如請求項1所述之發光二極體晶圓分選方法,其中該特殊 才示圯是以空洞方式表示特徵晶粒位置。 6、 如請求項1所述之發光二極體晶圓分選方法,其中該特殊 13 201120974 標記是代表預定級別之晶粒的位置。 7、 如請求項1所述之發光二極體晶圓分選方法,其中該特徵 晶粒座標係與該晶粒分布晶圓地圖一起為該分選設備接收。 8、 如請求項1所述之發光二極體晶圓分選方法,其中該特徵 晶粒座標係自分選設備外部讀入。 ^ 9、 一種發光二極體晶圓分選方法,包含下列步騍: 產生-特徵晶粒座標與-晶粒分布晶圓地圖,該晶教分布 地圖δ己錄有特徵晶粒之位置,並以—特殊標記表示特徵晶粒位置; 進行晶圓掃描,並產生一晶圓晶粒座標; 比對該晶粒分布晶圓地圖與該晶圓晶粒座標以確認晶粒位 置’以及比對該晶粒分布晶圓地圖與該特徵晶粒座標,若特殊標 ,己位置與特徵晶粒位置吻合,_—分選設備進行晶粒分選。 1〇、如請求項9所述之發光二極體晶圓分選方法,係以—具〒 像掃描與職魏,财置晶®進行娜,祕描裳置^ 為該分選設備之一部分。 〃 /、如請求項9所述之發光二極體晶圓分選方法,係以一具影 像掃描與辨識功能之翻裝置對為圓進行掃描,該掃描裳^ 於該點測設備與該分選設備之間。 曰、/2、如請求項9所逑之發光二極體晶圓分選方法,其中該特徵 =立座標與該晶粒分布晶圓地圖係由—點·備探測晶圓而產 13、如請求項9所述之發光二極體晶圓分選方法,其中該特徵 201120974 晶粒座標係於晶圓製作過財單獨產生,該晶粒分布晶圓地圖係 由一點測設備探測晶圓而產生。 14、 如睛求項9所述之發光二極體晶圓分選方法,其中該特殊 標記是以雜方絲示特徵晶粒位置。 15、 如請求項9所述之發光二極體分選方法,射該特殊 才示記疋代表預定級別之晶粒的位置。 16、 一種發光二極體晶圓分選方法,包含下列步驟: 利用點測叹備探測晶圓之各晶粒,並產生一晶粒分布晶圓地 圖,該晶粒分布晶圓地圖以一第一組相對座標記錄各晶粒位置; 進行晶圓掃描,並產生一晶圓晶粒座標,該晶圓晶粒座標記錄 有各aa粒位置,前述晶粒位置被以一第二組相對座標及一絕對座 標方式記錄儲存; 比對該第一組相對座標與該第二組相對座標所記錄晶粒位 置’若兩者誤差在一預設範圍内’則一分選設備以該絕對座標所 5己錄晶粒位置進行晶粒分選。 17、 如請求項16所述之發光二極體晶圓分選方法,係以該第 一組相對座標提供的資訊控制一掃描裝置改變影像辨識位置至預 定晶粒上方’該掃描裝置之即時影像資訊補償所對應晶粒位置之 誤差’並據以產生該第二組相對座標。 15201120974 VII. Patent application scope: 1. A method for sorting a light-emitting diode wafer, comprising the following steps: generating a characteristic grain coordinate and a grain distribution wafer map, wherein the grain distribution wafer map is recorded with a crystal The position of the granules, and the position of the granules of the granules; the granule distribution wafer map and the wafer are received by the sorting device, and an image discriminator according to the granule distribution data Finding the position of each crystal grain, and covering the characteristic crystal (4) in the pre-viewable range (10) of the image discriminator, reading the characteristic grain coordinates and comparing with the grain distribution wafer map, if the visual recognition is a special mark, The actual position of the characterization feature grain coincides with the location of the feature grain recorded on the grain distribution wafer map. 2. The method according to claim 1, wherein the sorting device continues to pick when the actual position of the feature grain is confirmed to coincide with the characteristic grain position recorded by the grain distribution wafer map. Check the grain. 3. The method according to claim 1, wherein the characteristic die coordinates and the die distribution wafer map are generated by detecting a wafer by a spotting device. 4. The method of sorting a light emitting diode according to claim 1, wherein the characteristic grain coordinate is monosexual in the crystal, and the wafer distribution wafer is detected by a spot measuring device. And produced. 5. The method of sorting a light-emitting diode wafer according to claim 1, wherein the special feature indicates that the feature grain position is indicated by a void. 6. The method of sorting a light emitting diode according to claim 1, wherein the special 13 201120974 mark is a position representing a predetermined level of the die. 7. The method according to claim 1, wherein the characteristic die coordinate is received with the die distribution wafer map for the sorting device. 8. The method according to claim 1, wherein the characteristic die coordinate is read from outside the sorting device. ^ 9. A method for sorting a light-emitting diode wafer, comprising the steps of: generating a characteristic grain coordinate and a grain distribution wafer map, wherein the crystal teaching distribution map δ has recorded the position of the characteristic grain, and Marking the feature grain position with a special mark; performing wafer scanning and generating a wafer die coordinate; distributing the wafer map and the wafer die coordinates to confirm the grain position ' The grain distribution wafer map and the characteristic grain coordinates, if the special mark, the position and the characteristic grain position are consistent, the _-sorting device performs grain sorting. 1 . The method for sorting a light-emitting diode wafer according to claim 9 is characterized in that the image is scanned with the employee Wei, and the product is processed by the product, and the secret image is set to be part of the sorting device. . 〃 /, according to claim 9, the method for sorting the light-emitting diode wafer is performed by scanning a circle with an image scanning and recognition function, and the scanning device is used for the point measuring device and the point Choose between devices.曰, /2, the light-emitting diode wafer sorting method according to claim 9, wherein the feature=the vertical coordinate and the die-distributed wafer map are produced by the point-to-point probe wafer, such as The method of claim 2, wherein the feature 201120974 die coordinate is generated separately from the wafer fabrication process, and the die distribution wafer map is generated by the spot measuring device detecting the wafer. . 14. The method of sorting a light emitting diode according to claim 9, wherein the special mark is a characteristic grain position of the dotted wire. 15. The method of sorting a light-emitting diode according to claim 9, wherein the special mark indicates a position of the die representing a predetermined level. 16. A method for sorting a light-emitting diode wafer, comprising the steps of: detecting a die of a wafer by using a spot test, and generating a grain distribution wafer map, wherein the die distribution wafer map is A set of relative coordinates records each grain position; performing wafer scanning and generating a wafer die coordinate, wherein the wafer die coordinates record respective aa grain positions, and the die position is a second set of relative coordinates and Recording and storing in an absolute coordinate manner; comparing the grain position recorded by the first set of relative coordinates and the second set of opposite coordinates, if the error between the two is within a predetermined range, then a sorting device is the absolute coordinate The grain position is recorded for grain sorting. 17. The method of sorting a light-emitting diode according to claim 16, wherein the information provided by the first set of relative coordinates is used to control a scanning device to change the image recognition position to above the predetermined die. The error of the grain position corresponding to the information compensation is 'and the second set of relative coordinates are generated accordingly. 15
TW98142141A 2009-12-09 2009-12-09 Light emitting diode wafer sorting method TWI421962B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98142141A TWI421962B (en) 2009-12-09 2009-12-09 Light emitting diode wafer sorting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98142141A TWI421962B (en) 2009-12-09 2009-12-09 Light emitting diode wafer sorting method

Publications (2)

Publication Number Publication Date
TW201120974A true TW201120974A (en) 2011-06-16
TWI421962B TWI421962B (en) 2014-01-01

Family

ID=45045384

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98142141A TWI421962B (en) 2009-12-09 2009-12-09 Light emitting diode wafer sorting method

Country Status (1)

Country Link
TW (1) TWI421962B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452296B (en) * 2011-07-28 2014-09-11 Chroma Ate Inc The Operation System and Operation Method of LED Grain Scanning and Spotting
CN104715101A (en) * 2013-12-12 2015-06-17 北京确安科技股份有限公司 Automatic generating method for pick-up file in wafer testing process
TWI494560B (en) * 2013-11-12 2015-08-01 Mpi Corp Method for selecting a die and method for generating a bad die map
CN113140490A (en) * 2021-04-22 2021-07-20 扬州乾照光电有限公司 Method for sorting LED crystal grains in wafer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4928002A (en) * 1988-12-05 1990-05-22 Motorola Inc. Method of recording test results of die on a wafer
US7345254B2 (en) * 2003-12-09 2008-03-18 Asm Assembly Automation Ltd. Die sorting apparatus and method
TWI351070B (en) * 2007-07-31 2011-10-21 King Yuan Electronics Co Ltd Method for marking wafer, method for marking failed die, method for aligning wafer and wafer test equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452296B (en) * 2011-07-28 2014-09-11 Chroma Ate Inc The Operation System and Operation Method of LED Grain Scanning and Spotting
TWI494560B (en) * 2013-11-12 2015-08-01 Mpi Corp Method for selecting a die and method for generating a bad die map
CN104715101A (en) * 2013-12-12 2015-06-17 北京确安科技股份有限公司 Automatic generating method for pick-up file in wafer testing process
CN113140490A (en) * 2021-04-22 2021-07-20 扬州乾照光电有限公司 Method for sorting LED crystal grains in wafer

Also Published As

Publication number Publication date
TWI421962B (en) 2014-01-01

Similar Documents

Publication Publication Date Title
US11016035B2 (en) Smart defect calibration system and the method thereof
CN102101112B (en) Light emitting diode wafer sorting method
JP5406480B2 (en) Probe method and probe program
CN101740431B (en) Detecting and sorting method for posterior flow of LED (Light Emitting Diode)
US8817251B2 (en) Defect inspection method
WO2015021206A1 (en) Setting up a wafer inspection process using programmed defects
JP2012049503A (en) Inspection device for semiconductor device, and inspection method for semiconductor device
CN108122801B (en) Wafer marking method and wafer marking system
JP2007078533A (en) Method of inspecting substrate
TW201120974A (en) Method for sorting LED wafer.
US20070170937A1 (en) Evaluation method of probe mark of probe needle of probe card
US20040029306A1 (en) Method of search and identify reference die
TW201024712A (en) Method and system of classifying defects on a wafer
JP2007188968A (en) Analysis method and analysis program of wafer map data
TWI380036B (en)
CN113299572A (en) Chip defect detection method
CN116934732A (en) Photovoltaic module detection method and device and electronic equipment
TWI360854B (en) Carrier wafer position device and examination meth
JP2005150224A (en) Semiconductor testing apparatus using probe information and testing method
US20100237894A1 (en) Method to determine needle mark and program therefor
CN111442906B (en) Display panel detection method and device
JP4706366B2 (en) Position detection method
TWI599410B (en) Method for sorting a light emitting diode wafer
JP2008311430A (en) Semiconductor chip detection device, and semiconductor chip detection method using it
CN115861183A (en) Wafer offset detection method and system, storage medium and electronic equipment