TWI418075B - 含蒽衍生物之電致發光裝置 - Google Patents

含蒽衍生物之電致發光裝置 Download PDF

Info

Publication number
TWI418075B
TWI418075B TW096114728A TW96114728A TWI418075B TW I418075 B TWI418075 B TW I418075B TW 096114728 A TW096114728 A TW 096114728A TW 96114728 A TW96114728 A TW 96114728A TW I418075 B TWI418075 B TW I418075B
Authority
TW
Taiwan
Prior art keywords
group
layer
eil
compound
lel
Prior art date
Application number
TW096114728A
Other languages
English (en)
Other versions
TW200803006A (en
Inventor
Denis Y Kondakov
Scott R Conley
Kevin P Klubek
Original Assignee
Global Oled Technology Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/412,676 external-priority patent/US9666826B2/en
Application filed by Global Oled Technology Llc filed Critical Global Oled Technology Llc
Publication of TW200803006A publication Critical patent/TW200803006A/zh
Application granted granted Critical
Publication of TWI418075B publication Critical patent/TWI418075B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Description

含蒽衍生物之電致發光裝置
本發明係關於一種電致發光(EL)裝置,其包含一發光層且包括至少一個含有蒽衍生物之電子輸送層及至少一個鄰近該電子輸送層且含有啡啉衍生物之電子注入層。該裝置可提供理想的電致發光性質。
儘管有機電致發光(EL)裝置為人所知已有二十年以上,但其效能侷限性已成為許多所要應用之障礙。一最簡單形式之有機EL裝置係由一用於電洞注入之陽極、一用於電子注入之陰極及一夾於該等電極之間以支持產生光發射之電荷再結合的有機介質組成。該等裝置通常亦稱為有機發光二極體或OLED。早期有機EL裝置之代表為1965年3月9日頒予之Gurnee等人之美國專利第3,172,862號;1965年3月9日頒予之Gurnee之美國專利第3,173,050號;Dresner,"Double Injection Electroluminescence in Anthracene",RCA Review,30,322,(1969);及1973年1月9日頒予之Dresner之美國專利第3,710,167號。在該等裝置中通常由多環芳族烴組成之有機層非常厚(遠大於1 μm)。因此操作電壓非常高,通常高於100 V。
較新之有機EL裝置在陽極與陰極之間包括一由極薄層(例如小於1.0 μm)組成之有機EL元件。本文中,術語"有機EL元件"涵蓋陽極與陰極之間的層。減小其厚度可降低有機層之電阻且使裝置能夠於遠遠更低之電壓下工作。在一基礎雙層EL裝置結構中(在US 4,356,429中首次描述),特定選擇鄰近陽極之EL元件之一有機層以輸送電洞,且因此將其稱為電洞輸送層;且特定選擇另一有機層以輸送電子,且將其稱為電子輸送層。注入之電洞與電子在有機EL元件內之再結合導致有效電致發光。
亦已提議在電洞輸送層與電子輸送層之間含有一有機發光層(LEL)之三層有機EL裝置,諸如由C.Tang等人(J.Applied Physics,第65卷,3610(1989))所揭示者。發光層通常由經客體材料(或稱為摻雜劑)摻雜之主體材料組成。在US 4,769,292中亦進一步提議一種包含一電洞注入層(HIL)、一電洞輸送層(HTL)、一發光層(LEL)及一電子輸送/注入層(ETL)之四層EL元件。該等結構已導致改良之裝置效率。
自該等早期發明以來,裝置材料之進一步改良已導致在諸如顏色、穩定性、發光效率及可製造性之屬性方面的改良效能,例如尤其在US 5,061,569、US 5,409,783、US 5,554,450、US 5,593,788、US 5,683,823、US 5,908,581、US 5,928,802、US 6,020,078及US 6,208,077中所揭示。
已證實發射白光之EL裝置非常有用。其可與彩色濾光片一起用於製造全色顯示器裝置。其亦可與彩色濾光片一起用於其他多色或功能性彩色顯示器裝置中。用於該等顯示器裝置之白光EL裝置易於製造,且其在顯示器之各像素中均產生可靠之白光。儘管將OLED稱為白色的,但其可顯現白色或灰白色,對於該應用而言,由OLED所發射光之CIE座標不如各彩色濾光片所通過之光譜分量均以足夠強度存在於彼光中之要求重要。因此需要可提供高發光強度以用於白光OLED裝置中的新材料。亦需要具有以低電壓進行操作之裝置。
用於多種OLED裝置中之最常用材料中之一者為參(8-喹啉根基)鋁(III)(Alq)。該金屬錯合物為極佳電子輸送材料,且已在工業中使用多年。然而,其他材料(諸如蒽衍生物)亦已被報導為適用電子輸送材料,例如參看JP 2005/174675。
Ara Kensuke及同事(JP 2003/338377)報導了一種EL裝置,其中電子輸送層含有并四苯衍生物及/或蒽衍生物,但較佳為并四苯衍生物。該裝置亦較佳包括一具有較佳為0.6 nm至20 nm且尤其較佳為1 nm至10 nm厚度之電子注入層。然而,該裝置可能無法得到最理想之電致發光性質。因此需要尋找材料及架構,以提供具有低電壓或高效率(或兩者)之裝置。
本發明提供一種電致發光裝置,其包含一陰極、一陽極,且在其間具有一發光層(LEL),該裝置進一步含有一在該LEL之該陰極側上包含蒽化合物之電子輸送層(ETL)及一在該ETL與該陰極之間包含啡啉化合物之有機電子注入層(EIL),其中該EIL及該LEL之厚度係以使得該EIL與該LEL之厚度比大於0.125。本發明之裝置提供諸如驅動電壓及效率之改良電致發光性質。
本發明大體上係如上所概述。本發明提供一種多層電致發光裝置,其包含一陽極、一陰極及至少一個發光層(LEL)。該裝置進一步含有一在LEL之該陰極側上之電子輸送層(ETL),該層包括蒽化合物。
在一適宜實施例中,該蒽化合物僅含有一個蒽核,以使昇華溫度保持在適宜溫度範圍內。在另一實施例中,該蒽化合物僅包括6至12個環,或甚至僅6至10個環。理想地,該等環為碳環。
在另一實施例中,該蒽化合物在2-位、9-位及10-位上經芳族基取代。該類取代得到理想電化學性質。在一適當實施例中,單蒽化合物在9-位上經萘基或聯苯基取代,且在10-位上經獨立選擇之萘基或聯苯基取代。合適基團之實例包括2-萘基、1-萘基、4-聯苯基及3-聯苯基。適用基團亦包括苯基及聯三苯基。在一適宜實施例中,單蒽化合物在2-位上經芳基取代,該芳基包括不超過2個稠環,例如4-甲基苯基、2-萘基或未經取代之苯基。
在又一實施例中,單蒽化合物在6-位上經氫或烷基取代。烷基之實例包括甲基及第三丁基。
在一替代實施例中,單蒽化合物在6-位上經芳族基取代。理想地,該芳族基為具有不超過2個稠環之碳環基,諸如苯基或萘基。
在另一適當實施例中,蒽化合物係由式(1)表示。
在式(1)中,w1 、w3 、w4 、w5 、w6 、w7 及w8 表示氫或獨立選擇之取代基,諸如烷基(例如甲基或第三丁基)或芳族基(諸如苯基或萘基)。
取代基w2 、w9 及w10 表示獨立選擇之芳族基。例示性實例包括苯基、聯三苯基、萘基、聯苯基、苯并咪唑基及噻吩基。在一適宜實施例中,w2 、w9 及w10 表示獨立選擇之碳環芳族基。在另一實施例中,w2 、w9 及w10 表示獨立選擇之芳族基,其中各芳族基包括不超過2個之稠環。在另一實施例中,取代基w1 至w10 各包含不超過2個之稠環。在一適當實施例中,w2 、w6 、w9 及w10 可相同或不同,且各表示獨立選擇之芳族基,諸如苯基或萘基。
在另一實施例中,以使得該蒽化合物具有-2.4 eV至-2.6 eV範圍內之LUMO(最低未佔據分子軌道)能值之方式來選擇蒽化合物上之取代基。理想地,該範圍為-2.45 eV至-2.55 eV。
合適蒽化合物可藉由文獻中所述之多種合成途徑或藉由該等途徑之變體而製備,例如在US 2005/211958中所報導者。以下展示適用蒽化合物之實例。
電子輸送層可包括多於一種類型之蒽化合物。在一適宜實施例中,ETL僅包括蒽化合物。電子輸送層之適宜厚度通常為1 nm至100 nm,往往為5 nm至5o nm,且一般為10 nm至40 nm。
在ETL之陰極側上且鄰近於ETL存在一電子注入層(EIL)。該EIL包括啡啉化合物。在一適宜實施例中,該啡啉化合物包括1,10-啡啉基。在另一實施例中,該啡啉化合物係由式(2)表示。在式(2)中,各r相同或不同且各表示取代基,諸如甲基或苯基。在式(2)中,m及p獨立地為0至4,且n為0至2。
在一適當實施例中,式(2)中至少一個r表示包括至少3個稠環之芳族基,例如蒽基或芘基。在該實施例中,m、n及p中之至少一者為1或以上。適用啡啉材料包括彼等在2005年11月30日申請之共同讓渡之第11/289,856號及第11/290,214號中所述者。
在另一實施例中,該啡啉化合物包括多於一個1,10-啡啉核。適當地,該啡啉化合物包括兩個彼此直接鍵結之1,10-啡啉核。在另一適當實施例中,該啡啉化合物包括兩個藉由鍵聯基團而連接之1,10-啡啉核。在一適當實施例中,該啡啉化合物係由式(3)表示。
在式(3)中,如上所述,各r相同或不同且各表示取代基。在該式中,m及x獨立地為0至4;n、v、q及u獨立地為0至2。L表示二價鍵聯基團,亦即將兩個獨立選擇之啡啉基鍵結在一起之二價物質。舉例而言,該鍵聯基團可為二價芳族基、二價烷基或二價雜原子。以下展示鍵聯基團之非限制性實例。
以下列出適用1,10-啡啉材料之實例。
理想地,啡啉化合物之LUMO能階與ETL中所含蒽材料之LUMO能階相等或幾乎相同。在一實施例中,啡啉化合物之LUMO能階與蒽材料之LUMO能階相等或較其更正。適當地,EIL啡啉化合物與ETL蒽材料在LUMO能階上之差為0.50 eV或以下、0.40 eV或以下、0.30 eV或以下、0.20 eV或以下或甚至0.10 eV或以下。理想地,EIL中啡啉化合物具有與ETL中蒽化合物之LUMO能值相等或較其更正之LUMO能值。
電子注入層之適宜厚度通常為1 nm至30 nm,往往為5 nm至20 nm,且一般在10 nm至20 nm之範圍內。為獲得最優裝置效能,使EL裝置各層之厚度最優化係重要的。吾人已發現EIL厚度對於LEL之厚度的相對值亦為重要的。EIL厚度與LEL厚度之比率應大於0.125。理想地,該比率為0.25或以上,或甚至為0.50或以上。在一實施例中,EIL厚度與LEL厚度之比率在0.125至1.50之範圍內或理想地在0.125至1.25之範圍內。
在另一適宜實施例中,在陰極與EIL之間且鄰近於EIL存在另一層。該層表示一額外電子注入層。理想地,該另一層包括無機材料,諸如低功函數鹼金屬或鹼土金屬(諸如Li、Cs、Ca、Mg)。另外,經該等低功函數金屬摻雜之有機材料亦可有效地用作電子注入層。實例為Li摻雜或Cs摻雜之Alq。在一適當實施例中,該另一層包括諸如LiF之鹼金屬化合物。該另一層通常為一沈積至0.1 nm至3.0 nm範圍內適當厚度之薄層。
一發光層係位於電子輸送層之陽極側上。發光層可由單一材料組成,但更通常係由經一或多種客體發射材料摻雜之主體材料組成,其中光發射主要來自該等發射材料且可為任何顏色。
在本發明之一態樣中,發光層包括主體材料及發光材料。理想地,ETL中蒽化合物之LUMO能階與發光層中主體之LUMO能階相近或較其略低。在一實施例中,LEL包括主體材料,該主體材料具有與ETL中蒽化合物之LUMO能值相差不超過0.2 eV或甚至不超過0.1 eV之LUMO能值。在另一實施例中,ETL蒽化合物之LUMO能階與發光層中主體之LUMO能階相等。
在一適當實施例中,發光層包括蒽主體材料。尤其適用之蒽主體材料包括在9-位及10-位上經芳族基取代之蒽。在一適宜實施例中,蒽主體材料在2-位、9-位及10-位上攜有芳族基。該等基團之實例包括苯基、萘基及聯苯基。
用於發光層之蒽材料之例示性實例包括:2-(4-甲基苯基)-9,10-二-(2-萘基)-蒽;9-(2-萘基)-10-(1,1'-聯苯基)-蒽;9,10-雙[4-(2,2-二苯基乙烯基)苯基]-蒽,以及下列化合物。
在一實施例中,發光層中存在聯合主體。舉例而言,該聯合主體可為電洞輸送材料,諸如三級胺或該等化合物之混合物。適用電洞輸送聯合主體材料之實例為4,4'-雙[N -(1-萘基)-N -苯胺基]聯苯(NPB),及4,4'-雙[N -(1-萘基)-N -(2-萘基)胺基]聯苯(TNB)。
在另一實施例中,存在作為電子輸送材料之聯合主體。8-羥基喹啉及類似衍生物之金屬錯合物(亦稱為金屬螯合類咢辛化合物)構成一類適用之聯合主體化合物。電子輸送聯合主體材料之一適用實例為參(8-喹啉根基)鋁(III)(Alq)。
當存在時,聯合主體處於以該層體積計通常為1%至50%、往往為1%至20%且一般為5%至15%之含量。
除了主體之外,LEL包括發光材料,其適宜地以發光層體積計至多15%、一般0.1%至10%且更通常0.5%至8.0%之量存在。
理想地,發光層包括一種發光螢光材料。關於選擇與主體一起使用之發光螢光材料的重要關係為主體與螢光材料之激發單重態能量的比較。使發光材料之激發單重態能量低於主體材料之激發單重態能量係高度理想的。將激發單重態能量定義為發射單重態與基態之間的能量差。對於非發射性主體而言,將與基態相同之電子自旋的最低激發態視為發射狀態。
該層可視發光材料之性質而發射在藍光至紅光範圍內之光。通常將藍光定義為具有在電磁波譜450 nm至480 nm之可見區內的波長範圍,藍綠光為480 nm至510 nm,綠光為510 nm至550 nm,綠黃光為550 nm至570 nm,黃光為570 nm至590 nm,橙光為590 nm至630 nm且紅光為630 nm至700 nm,如R.W.Hunt,The Reproduction of Colour in Photography,Printing & Television ,第四版1987,Fountain Press中所定義。該等組份之適當組合產生白光。
在一實施例中,一適用裝置包括一或多種發射藍光或藍綠光之材料。多種發射藍光或藍綠光之材料在此項技術中已知,且涵蓋用於本發明之實務中。特別適用類別之藍光發射體包括苝及其衍生物,諸如攜有一或多個諸如烷基或芳基之取代基的苝核。用作發射材料之適宜苝衍生物為2,5,8,11-四第三丁基苝。
另一類適用螢光材料包括苯乙烯基芳烴之藍光或藍綠光發光衍生物,諸如二苯乙烯基苯及二苯乙烯基聯苯,包括US 5,121,029中所述之化合物。在提供藍光或藍綠光發光之苯乙烯基芳烴之衍生物中,彼等經二芳基胺基取代之衍生物(亦稱為苯乙烯基胺)尤其適用。實例包括彼等以下列出之式(4a)所表示者,其中Ar1 、各Ar2 及Ar3 至Ar8 為獨立選擇之芳基或雜芳基,其可含有額外稠環且其限制條件為兩個芳基或雜芳基環可藉由環稠合而接合,m為0或1。在一實施例中,Ar1 、各Ar2 及Ar3 至Ar8 表示伸苯基或苯基。
適用苯乙烯基胺之例示性實例為以下列出之藍光或藍綠光發射體。
Margaret J.Helber等人之於2004年10月29日申請之題為Organic Element for Electroluminescent Devices的共同受讓之第10/977,839號描述了其他適用之乙烯基芳烴藍光或藍綠光發光材料。適用發光材料係由式(4b)表示。
在式(4b)中,Ar1 、各Ar2 及Ar7 可相同或不同且各表示二價芳族基。該等基團之例示性實例包括伸苯基、伸萘基、喹啉二基及噻吩二基。Ar3 、Ar4 、Ar5 及Ar6 可相同或不同且各表示芳族基,諸如苯基、稠合芳族環基團(諸如萘基、蒽基或菲基)、雜環芳族環基團或單價鍵聯之芳族環基團(諸如聯苯基)。另外,Ar3 與Ar4 以及Ar5 與Ar6 可直接接合或經由額外原子接合,以形成碳環或雜環。在該式中,p為1、2或3。以下展示適用材料之例示性實例。
另一類適用發射體包含硼原子。含有硼之適宜發光材料包括彼等在US 2003/0198829、US 2003/0201415及US 2005/0170204中所述之材料。合適發光材料(包括彼等發射藍光或藍綠光之材料)係由結構式(5)表示。
在式(5)中,Ara 及Arb 獨立地表示形成五員或六員芳族環基團(諸如吡啶基)所必需之原子。Za 及Zb 表示獨立選擇之取代基,諸如氟基取代基。在式(5)中,w表示N或C-Y,其中Y表示氫或取代基,諸如芳族基(諸如苯基或甲苯基)、烷基(諸如甲基)、氰基取代基或三氟甲基取代基。以下列出適用含硼螢光材料之例示性實例。
在另一實施例中,發光層發射綠光。一種尤其適用之綠光發光材料包括喹吖啶酮化合物,諸如彼等由式(6)所表示之化合物。在US 2004/0001969、US 6,664,396、US 5,593,788及JP 09-13026中描述了合適之喹吖啶酮。
在式(6)中,s1 至s10 獨立地表示氫或獨立選擇之取代基,諸如苯基、甲苯基、鹵素(諸如F)或烷基(諸如甲基)。相鄰取代基可組合以形成環,諸如稠合苯環基團。
在式(6)中,s11 及s12 獨立地表示烷基或芳族基。在一適當實施例中,s11 及s12 獨立地表示苯基環基團,諸如苯基環或甲苯基環。
以下展示適用喹吖啶酮化合物之例示性實例。
另一類適用之綠光發光材料包括香豆素化合物,諸如彼等由式(7)所表示者。
在Tang等人之US 4,769,292及US 6,020,078中描述了合適之香豆素。
在式(7)中,w11 及w12 表示獨立選擇之取代基,諸如烷基或芳基,其限制條件為w11 及w12 可彼此組合或與w13 及w14 組合以形成環。理想地,w11 及w12 適宜地表示獨立選擇之烷基,其限制條件為w11 及w12 可彼此組合或與w13 及w14 組合以形成飽和環。在式(7)中,w13 至w16 獨立地表示氫或獨立選擇之取代基,諸如苯基環基團或甲基。相鄰取代基可組合以形成環,諸如稠合苯環。在式(7)中,w17 表示組成雜芳族環(諸如苯并噻唑環基團)所必需之原子。以下展示適用香豆素化合物之例示性實例。
額外適用發光材料之實例包括蒽衍生物、茀衍生物、二茚并苝(periflanthene)衍生物及茚并苝衍生物。
在一實施例中,一適用裝置包括一層,該層包括發一種發射藍光或藍綠光之發光材料,且一額外層發射黃光或紅光且含有紅螢烯衍生物。
在本發明之另一實施例中,當存在額外層以致發射光為白光時,可將能夠控制白光光譜分量(諸如紅、綠及藍)之濾光片上覆該裝置而置放,以提供適用於彩色顯示器之裝置。
LEL之厚度通常在5 nm至50 nm之範圍內,往往在10 nm至40 nm之範圍內,且一般在20 nm至30 nm之範圍內。
除非另外特別指出,否則術語"經取代"或"取代基"之使用意謂除氫以外之任何基團或原子。另外,除非另外特別指出,否則當識別具有可取代氫之化合物或使用術語"基團"時,不僅意欲涵蓋取代基之未經取代形式,亦涵蓋其經如本文中所提及之任意取代基進一步取代之形式,其限制條件為取代基不破壞裝置效用所必須之性質。適當地,取代基可為鹵素或可藉由碳原子、矽原子、氧原子、氮原子、磷原子、硫原子、硒原子或硼原子鍵結至分子剩餘部分。取代基可為(例如)鹵素,諸如氯基、溴基或氟基;硝基;羥基;氰基;羧基;或可經進一步取代之基團,諸如烷基,包括直鏈或支鏈烷基或環烷基,諸如甲基、三氟甲基、乙基、第三丁基、3-(2,4-二第三戊基苯氧基)丙基及十四烷基;烯基,諸如乙烯基、2-丁烯基;烷氧基,諸如甲氧基、乙氧基、丙氧基、丁氧基、2-甲氧基乙氧基、第二丁氧基、己氧基、2-乙基己氧基、十四烷氧基、2-(2,4-二第三戊基苯氧基)乙氧基及2-十二烷氧基乙氧基;芳基,諸如苯基、4-第三丁基苯基、2,4,6-三甲基苯基、萘基;芳氧基,諸如苯氧基、2-甲基苯氧基、α-或β-萘氧基及4-甲苯氧基;碳醯胺基,諸如乙醯胺基、苯甲醯胺基、丁醯胺基、十四醯胺基、α-(2,4-二第三戊基-苯氧基)乙醯胺基、α-(2,4-二第三戊基苯氧基)丁醯胺基、α-(3-十五烷基苯氧基)-己醯胺基、α-(4-羥基-3-第三丁基苯氧基)-十四醯胺基、2-側氧基-吡咯啶-1-基、2-側氧基-5-十四烷基吡咯啉-1-基、N-甲基十四醯胺基、N-琥珀醯亞胺醯基、N-鄰苯二醯亞胺基、2,5-二側氧基-1-噁唑啶基、3-十二烷基-2,5-二側氧基-1-咪唑基及N-乙醯基-N-十二烷基胺基、乙氧基羰胺基、苯氧基羰胺基、苄氧基羰胺基、十六烷氧基羰胺基、2,4-二第三丁基苯氧基羰胺基、苯基羰胺基、2,5-(二第三戊基苯基)羰胺基、對十二烷基-苯基羰胺基、對甲苯基羰胺基、N-甲基脲基、N,N-二甲基脲基、N-甲基-N-十二烷基脲基、N-十六烷基脲基、N,N-二(十八烷基)脲基、N,N-二辛基-N'-乙基脲基、N-苯基脲基、N,N-二苯基脲基、N-苯基-N-對甲苯基脲基、N-(間十六烷基苯基)脲基、N,N-(2,5-二第三戊基苯基)-N'-乙基脲基及第三丁基碳醯胺基;磺醯胺基,諸如甲基磺醯胺基、苯磺醯胺基、對甲苯基磺醯胺基、對十二烷基苯磺醯胺基、N-甲基十四烷基磺醯胺基、N,N-二丙基-胺磺醯胺基及十六烷基磺醯胺基;胺磺醯基,諸如N-甲基胺磺醯基、N-乙基胺磺醯基、N,N-二丙基胺磺醯基、N-十六烷基胺磺醯基、N,N-二甲基胺磺醯基、N-[3-(十二烷氧基)丙基]胺磺醯基、N-[4-(2,4-二第三戊基苯氧基)丁基]胺磺醯基、N-甲基-N-十四烷基胺磺醯基及N-十二烷基胺磺醯基;胺甲醯基,諸如N-甲基胺甲醯基、N,N-二丁基胺甲醯基、N-十八烷基胺甲醯基、N-[4-(2,4-二第三戊基苯氧基)丁基]胺甲醯基、N-甲基-N-十四烷基胺甲醯基及N,N-二辛基胺甲醯基;醯基,諸如乙醯基、(2,4-二第三戊基苯氧基)乙醯基、苯氧基羰基、對十二烷氧基苯氧基羰基、甲氧基羰基、丁氧基羰基、十四烷氧基羰基、乙氧基羰基、苄氧基羰基、3-十五烷氧基羰基及十二烷氧基羰基;磺醯基,諸如甲氧磺醯基、辛氧磺醯基、十四烷氧磺醯基、2-乙基己氧磺醯基、苯氧磺醯基、2,4-二第三戊基苯氧磺醯基、甲磺醯基、辛磺醯基、2-乙基己磺醯基、十二烷磺醯基、十六烷磺醯基、苯磺醯基、4-壬基苯磺醯基及對甲苯磺醯基;磺醯基氧基,諸如十二烷磺醯基氧基及十六烷磺醯基氧基;亞磺醯基,諸如甲基亞磺醯基、辛基亞磺醯基、2-乙基己基亞磺醯基、十二烷基亞磺醯基、十六烷基亞磺醯基、苯基亞磺醯基、4-壬基苯基亞磺醯基及對甲苯基亞磺醯基;硫基,諸如乙硫基、辛硫基、苄硫基、十四烷硫基、2-(2,4-二第三戊基苯氧基)乙硫基、苯硫基、2-丁氧基-5-第三辛基苯硫基及對甲苯硫基;醯氧基,諸如乙醯氧基、苯甲醯氧基、十八烷醯氧基、對十二烷醯胺基苯甲醯氧基、N-苯基胺甲醯氧基、N-乙基胺甲醯氧基及環己基羰氧基;胺基,諸如苯基苯胺基、2-氯苯胺基、二乙胺基、十二烷胺基;亞胺基,諸如1(N-苯基亞胺基)乙基、N-琥珀醯亞胺醯基或3-苄基乙內醯脲基;磷酸酯基,諸如二甲基磷酸酯基及乙基丁基磷酸酯基;亞磷酸酯基,諸如二乙基亞磷酸酯基及二己基亞磷酸酯基;雜環基團、雜環氧基或雜環硫基,其各者可經取代且含有3至7員雜環,該雜環係由碳原子及至少一個選自由下列各原子組成之群的雜原子組成:氧、氮、硫、磷或硼,諸如2-呋喃基、2-噻吩基、2-苯并咪唑基氧基或2-苯并噻唑基;四級銨,諸如三乙基銨;四級鏻,諸如三苯基鏻;及矽烷氧基,諸如三甲基矽烷氧基。
必要時,取代基可自身經所述取代基進一步取代一或多次。所用之特定取代基可由熟習此項技術者進行選擇以獲得對於特定應用所要之性質,且可包括(例如)吸電子基、推電子基及立體障礙基。當分子可能具有兩個或兩個以上取代基時,該等取代基可接合在一起以形成諸如稠環之環(除非另有限制)。一般而言,上述基團及其取代基可包括彼等具有至多48個碳原子、通常1至36個碳原子且往往小於24個碳原子之基團,但更大之數目亦為可能的,其係視所選擇之特定取代基而定。
出於本發明之目的,彼等包括配位鍵或配價鍵之環亦包括在雜環之定義中。配位鍵之定義可見於Grant & Hackh's Chemical Dictionary,第91頁中。大體上,當富電子原子(諸如O或N)向缺電子原子(諸如Al或B)供給電子對時形成配位鍵。
判定特定基團是否為推電子或吸電子基團係完全屬於此項技術之技能範疇。最常用之推電子及吸電子性質之量度係根據哈墨特(Hammett)σ值而言的。氫具有為零之哈墨特σ值,而推電子基團具有負哈墨特σ值且吸電子基團具有正哈墨特σ值。Lange's handbook of Chemistry,第12版,McGraw Hill,1979,表3-12,第3-134頁至第3-138頁(其以引用之方式併入本文中)列出大量常見基團之哈墨特σ值。哈墨特σ值係基於苯基環取代而賦值,但其提供對定性選擇推電子基團及吸電子基團的實際指導。
合適之推電子基團可選自-R'、-OR及-NR'(R"),其中R'為含有至多6個碳原子之烴,且R"為氫或R'。推電子基之特定實例包括甲基、乙基、苯基、甲氧基、乙氧基、苯氧基、-N(CH3 )2 、-N(CH2 CH3 )2 、-NHCH3 、-N(C6 H5 )2 、-N(CH3 )(C6 H5 )及-NHC6 H5
合適之吸電子基團可選自由下列各基團組成之群:氰基、α-鹵烷基、α-鹵烷氧基、醯胺基、磺醯基、羰基、羰氧基及氧基羰基取代基,其含有至多10個碳原子。特定實例包括-CN、-F、-CF3 、-OCF3 、-CONHC6 H5 、-SO2 C6 H5 、-COC6 H5 、-CO2 C6 H5 及-OCOC6 H5
一般裝置架構
本發明可用於許多使用小分子材料、寡聚材料、聚合材料或其組合之OLED裝置構造中。該等構造包括包含單個陽極及陰極之極簡單之結構至較複雜之裝置,諸如由陽極與陰極之正交陣列組成以形成像素的被動型矩陣顯示器,及其中各像素獨立地(例如)由薄膜電晶體(TFT)控制之主動型矩陣顯示器。
存在眾多可使本發明得以成功實施之有機層的構造。一OLED之基本必備條件為一陽極、一陰極及一定位於該陽極與該陰極之間的有機發光層。如下文更充分之描述可採用額外層。
在圖式中展示一特別適用於小分子裝置之典型結構,且其係由一基板101、一陽極103、一電洞注入層105、一電洞輸送層107、一發光層109、一電子輸送層110、一電子注入層111、一視情況可選之第二電子注入層112及一陰極113組成。在下文中詳細地描述該等層。應注意該基板或可相鄰該陰極而定位,或該基板可實際上構成陽極或陰極。將陽極與陰極之間的有機層便利地稱為有機EL元件。又,該等有機層之總組合厚度理想地小於500 nm。
經由電導體160將該OLED之陽極及陰極連接至一電壓/電流源150。藉由在陽極與陰極之間施加電位以使得陽極處於較陰極更正之電位,從而操作該OLED。自陽極將電洞注入有機EL元件中,且在陰極處將電子注入有機EL元件中。當OLED係以AC模式(在循環中之某些時段電位偏壓反向且無電流流動)操作時,有時可達成增強之裝置穩定性。在US 5,552,678中描述一AC驅動之OLED的實例。
基板
本發明之OLED裝置通常係提供於一支撐基板101上,其中陰極抑或陽極可與該基板接觸。該基板可為包含多層材料之複合結構。對於其中在OLED層下提供TFT之主動型矩陣基板而言通常為該種情況。該基板仍然有必要至少在發射性像素化區域中由基本上透明之材料組成。將與基板接觸之電極便利地稱為底電極。習知上底電極為陽極,但本發明不限於彼構造。該基板可為透光的抑或不透光的,此係視所需光發射方向而定。對於透過基板觀察EL發射而言,需要透光性質。在該等情況下通常採用透明玻璃或塑膠。對於透過頂電極觀察EL發射之應用而言,底部支撐體之透光特徵可為透光性、光吸收性或光反射性。用於該情況之基板包括(但不限於)玻璃、塑膠、半導體材料、矽、陶瓷及電路板材料。在該等裝置構造中必需提供透光頂電極。
陽極
當經由陽極觀察所要之電致發光光發射(EL)時,該陽極對於所關注之發射應為透明或大體上透明的。本發明中常用之透明陽極材料為氧化銦錫(ITO)、氧化銦鋅(IZO)及氧化錫,但其他金屬氧化物亦可起作用,其包括(但不限於)鋁摻雜或銦摻雜之氧化鋅、氧化鎂銦及氧化鎳鎢。除該等氧化物外,金屬氮化物(諸如氮化鎵)及金屬硒化物(諸如硒化鋅)以及金屬硫化物(諸如硫化鋅)可用作陽極。對於僅經由陰極觀察EL發射之應用而言,陽極之透光特徵並不重要,且可使用任何透明、不透明或反射性導電材料。用於該應用之實例導體包括(但不限於)金、銥、鉬、鈀及鉑。典型陽極材料(透光或不透光的)具有4.1 eV或以上之功函數。所要陽極材料通常係藉由任何適當方法來沈積,該等方法諸如蒸鍍、濺鍍、化學氣相沈積或電化學方法。可使用眾所熟知之光微影方法將陽極圖案化。視情況可在施加其他層之前將陽極拋光以降低表面粗糙度,從而將短路降至最低或提高反射率。
電洞注入層(HIL)
儘管並不總是必要的,但在陽極103與電洞輸送層107之間提供一電洞注入層105通常係適用的。電洞注入材料可用於改良後續有機層之成膜性質且有助於將電洞注入電洞輸送層中。用於電洞注入層之合適材料包括(但不限於)如US 4,720,432中所述之卟啉系化合物、如US 6,208,075中所述之電漿沈積的氟碳聚合物及一些芳族胺,例如m-MTDATA(4,4',4"-參[(3-甲基苯基)苯胺基]三苯胺)。在EP 0891121及EP 1029909中描述了據報導適用於有機EL裝置之替代性電洞注入材料。
在US 6,720,573中描述額外適用之電洞注入材料。例如,以下材料可適用於該等目的。
電洞輸送層(HTL)
有機EL裝置之電洞輸送層107含有至少一種電洞輸送化合物,諸如芳族三級胺,其中將後者理解為一種含有至少一個僅鍵結至碳原子之三價氮原子的化合物,該等碳原子中之至少一者為芳族環成員。在一種形式中,該芳族三級胺可為芳基胺,諸如單芳基胺、二芳基胺、三芳基胺或聚合芳基胺。Klupfel等人之US 3,180,730說明示範性單體三芳基胺。Brantley等人之US 3,567,450及US 3,658,520揭示經一或多個乙烯基取代及/或包含至少一個含活性氫之基團的其他合適三芳基胺。
一類更佳之芳族三級胺為如US 4,720,432及US 5,061,569中所述的彼等包括至少兩個芳族三級胺部分之芳族三級胺。該等化合物包括彼等由結構式(A)表示之化合物。
在式(A)中,Q1 及Q2 為獨立選擇之芳族三級胺部分,且G為碳-碳鍵之鍵聯基團,諸如伸芳基、環伸烷基或伸烷基。在一實施例中,Q1 或Q2 中之至少一者含有多環稠環結構,例如萘。當G為芳基時,其適宜為伸苯基、伸聯苯基或萘二基部分。
一類滿足結構式(A)且含有兩個三芳基胺部分之適用三芳基胺係由結構式(B)表示。
在式(B)中,R1 及R2 各自獨立地表示氫原子、芳基或烷基,或R1 及R2 共同表示組成環烷基之原子;且R3 及R4 各自獨立地表示芳基,其又由經二芳基取代之胺基(如結構式(C)所示)取代。
在式(C)中,R5 及R6 為獨立選擇之芳基。在一實施例中,R5 或R6 中之至少一者含有多環稠環結構,例如萘。
另一類芳族三級胺為四芳基二胺。所要四芳基二胺包括兩個經由伸芳基連接的諸如式(C)所示之二芳基胺基。適用之四芳基二胺包括彼等由式(D)所表示者。
在式(D)中,各Are為獨立選擇之伸芳基,諸如伸苯基、萘二基或蒽二基部分,且n為1至4之整數。Ar、R7 、R8 及R9 為獨立選擇之芳基。在一典型實施例中,Ar、R7 、R8 及R9 中之至少一者為多環稠環結構,例如萘。
前述結構式(A)、(B)、(C)、(D)之各種烷基、伸烷基、芳基及伸芳基部分各自可又經取代。典型取代基包括烷基、烷氧基、芳基、芳氧基、苯并基及鹵基(諸如氟基)。各種烷基及伸烷基部分通常含有1至6個碳原子。環烷基部分可含有3至10個碳原子,但通常含有五個、六個或七個環碳原子-例如環戊基、環己基及環庚基環結構。芳基及伸芳基部分通常為苯基及伸苯基部分。
電洞輸送層可由單一芳族三級胺化合物或芳族三級胺化合物之混合物形成。特定言之,可將諸如滿足式(B)之三芳基胺的三芳基胺與諸如式(D)所示之四芳基二胺組合使用。當將三芳基胺與四芳基二胺組合使用時,將四芳基二胺作為插入三芳基胺與電子注入層及電子輸送層之間的層來放置。例示性適用之芳族三級胺如下:1,1-雙(4-二對甲苯胺基苯基)環己烷(TAPC);1,1-雙(4-二對甲苯胺基苯基)-4-苯基環己烷;4,4'-雙(二苯胺基)聯四苯;雙(4-二甲胺基-2-甲基苯基)-苯基甲烷;N,N,N-三(對甲苯基)胺;4-(二對甲苯胺基)-4'-[4(二對甲苯胺基)-苯乙烯基]芪;N,N,N',N'-四對甲苯基-4,4'-二胺基聯苯;N,N,N',N'-四苯基-4,4'-二胺基聯苯;N,N,N',N'-四-1-萘基-4,4'-二胺基聯苯;N,N,N',N'-四-2-萘基-4,4'-二胺基聯苯;N-苯基咔唑;4,4'-雙[N-(1-萘基)-N-苯胺基]聯苯;4,4'-雙[N-(1-萘基)-N-(2-萘基)胺基]聯苯;4,4"-雙[N-(1-萘基)-N-苯胺基]對聯三苯;4,4'-雙[N-(2-萘基)-N-苯胺基]聯苯;4,4'-雙[N-(3-二氫苊基)-N-苯胺基]聯苯;1,5-雙[N-(1-萘基)-N-苯胺基]萘;4,4'-雙[N-(9-蒽基)-N-苯胺基]聯苯;4,4"-雙[N-(1-蒽基)-N-苯胺基]對聯三苯;4,4'-雙[N-(2-菲基)-N-苯胺基]聯苯;4,4'-雙[N-(8-茀蒽基)-N-苯胺基]聯苯;4,4'-雙[N-(2-芘基)-N-苯胺基]聯苯;4,4'-雙[N-(2-稠四苯基)-N-苯胺基]聯苯;4,4'-雙[N-(2-苝基)-N-苯胺基]聯苯;4,4'-雙[N-(1-蔻基)-N-苯胺基]聯苯;2,6-雙(二對甲苯胺基)萘;2,6-雙[二-(1-萘基)胺基]萘;2,6-雙[N-(1-萘基)-N-(2-萘基)胺基]萘;N,N,N',N'-四(2-萘基)-4,4"-二胺基對聯三苯;4,4'-雙{N-苯基-N-[4-(1-萘基)-苯基]胺基}聯苯;4,4'-雙[N-苯基-N-(2-芘基)胺基]聯苯;2,6-雙[N,N-二(2-萘基)胺基]茀;1,5-雙[N-(1-萘基)-N-苯胺基]萘;4,4',4"-參[(3-甲基苯基)苯胺基]三苯胺。
另一類適用之電洞輸送材料包括如EP 1,009,041中所述之多環芳族化合物。可使用具有兩個以上胺基團之三級芳族胺,其包括寡聚材料。另外,可使用聚合電洞輸送材料,諸如聚(N-乙烯基咔唑)(PVK)、聚噻吩、聚吡咯、聚苯胺,及共聚物,諸如聚(3,4-伸乙基二氧基噻吩)/聚(4-苯乙烯磺酸酯),亦稱為PEDOT/PSS。
發光層(LEL)
先前已描述了適用之發光層。可存在多於一個LEL。如美國專利第4,769,292號及第5,935,721號中更充分描述,有機EL元件之額外發光層(LEL)可包括發光螢光或磷光材料,其中由於電子-電洞對在此區域中再結合而產生電致發光。該發光層中之主體材料可為如下文所界定之電子輸送材料、如上文所界定之電洞輸送材料或支持電洞-電子再結合之另一材料或材料之組合。該發射材料通常係選自高度螢光性染料及磷光性化合物,例如WO 98/55561、WO 00/18851、WO 00/57676及WO 00/70655中所述之過渡金屬錯合物。發射材料通常係以按主體材料重量計0.01%至10%之量而併入。
主體材料及發射材料可為非聚合小分子或聚合材料,諸如聚茀及芳基聚乙烯(例如聚(對伸苯基伸乙烯基),PPV)。在聚合物之情況下,可將小分子發射材料以分子形式分散於聚合主體中,或可藉由將微量組份共聚合至主體聚合物內來添加發射材料。
選擇發射材料之一重要關係為帶隙勢能之比較,該帶隙勢能係定義為分子之最高佔據分子軌道與最低未佔據分子軌道之間的能量差。對於自主體材料至發射材料之有效能量轉移而言,一必要條件為摻雜劑之能帶隙小於主體材料之能帶隙。對於磷光發射體而言,主體之主體三重能階為足夠高以實現自主體材料至發射材料之能量轉移亦為重要的。
已知適用之主體材料及發射材料包括(但不限於)彼等在US 4,768,292、US 5,141,671、US 5,150,006、US 5,151,629、US 5,405,709、US 5,484,922、US 5,593,788、US 5,645,948、US 5,683,823、US 5,755,999、US 5,928,802、US 5,935,720、US 5,935,721及US 6,020,078中所描述者。
8-羥基喹啉及類似衍生物之金屬錯合物(式E)構成一類適用之主體化合物,其能夠支持電致發光且尤其適用於波長在500 nm以上之光發射,例如綠光、黃光、橙光及紅光。
在式(E)中,M表示金屬;n為1至4之整數;且Z在每次出現時獨立地表示組成具有至少兩個稠合芳族環之核的原子。
自前述內容顯而易見,該金屬可為單價、二價、三價或四價金屬。舉例而言,該金屬可為鹼金屬,諸如鋰、鈉或鉀;鹼土金屬,諸如鎂或鈣;土金屬,諸如鋁或鎵;或過渡金屬,諸如鋅或鋯。一般而言,可採用已知為適用螯合金屬之任何單價、二價、三價或四價金屬。
Z組成含有至少兩個稠合芳族環(其中至少一者為唑環或吖嗪環)之雜環核。包括脂族環及芳族環的額外環在必要時可與該兩個所需環稠合在一起。為避免在不改良功能之情況下增加分子堆積,環原子之數目通常保持在18個或以下。
例示性適用之螯合類咢辛化合物如下:CO-1:參咢辛鋁[別名,參(8-喹啉根基)鋁(III);Alq];CO-2:雙咢辛鎂[別名,雙(8-喹啉根基)鎂(II)];CO-3:雙[苯并{f}-8-喹啉根基]鋅(II);CO-4:雙(2-甲基-8-喹啉根基)鋁(III)-μ-側氧基-雙(2-甲基-8-喹啉根基)鋁(III);CO-5:參咢辛銦[別名,參(8-喹啉根基)銦];CO-6:參(5-甲基咢辛)鋁[別名,參(5-甲基-8-喹啉根基)鋁(III)];CO-7:咢辛鋰[別名,(8-喹啉根基)鋰(I)];CO-8:咢辛鎵[別名,參(8-喹啉根基)鎵(III)];CO-9:咢辛鋯[別名,四(8-喹啉根基)鋯(IV)]。
如先前所述,蒽衍生物(式F)構成一類適用之主體材料,其能夠支持電致發光且尤其適用於波長在400 nm以上之光發射,例如藍光、綠光、黃光、橙光或紅光。如US 6,465,115及WO 2004/018587中所揭示之不對稱蒽衍生物亦為適用主體。
在式(F)中,R1 及R2 表示獨立選擇之芳基,諸如萘基、苯基、聯苯基、聯三苯基、蒽基。R3 及R4 表示各環上之一或多個取代基,其中各取代基係個別地選自下列群組:群組1:氫或具有1至24個碳原子之烷基;群組2:具有5至20個碳原子之芳基或經取代芳基;群組3:組成蒽基、芘基或苝基之稠合芳族環所必需之4至24個碳原子;群組4:具有組成呋喃基、噻吩基、吡啶基、喹啉基或其他雜環系統之稠合雜芳族環所必需之5至24個碳原子的雜芳基或經取代雜芳基;群組5:具有1至24個碳原子之烷氧基胺基、烷基胺基或芳基胺基;及群組6:氟基或氰基。
一類適用之蒽為9,10-二-(2-萘基)蒽之衍生物(式G)。
在式(G)中,R1 、R2 、R3 、R4 、R5 及R6 表示各環上之一或多個取代基,其中各取代基係個別地選自下列群組:群組1:氫或具有1至24個碳原子之烷基;群組2:具有5至20個碳原子之芳基或經取代芳基;群組3:組成蒽基、芘基或苝基之稠合芳族環所必需之4至24個碳原子;群組4:具有組成呋喃基、噻吩基、吡啶基、喹啉基或其他雜環系統之稠合雜芳族環所必需之5至24個碳原子的雜芳基或經取代雜芳基;群組5:具有1至24個碳原子之烷氧基胺基、烷基胺基或芳基胺基;及群組6:氟基或氰基。
先前已描述了適用蒽材料之例示性實例。
吲哚衍生物(式H)構成另一類適用之主體材料,其能夠支持電致發光且尤其適用於波長在400 nm以上之光發射,例如藍光、綠光、黃光、橙光或紅光。
在式H中,n為3至8之整數;Z為O、NR或S;且R及R'個別地為氫;具有1至24個碳原子之烷基,例如丙基、第三丁基、庚基及類似基團;具有5至20個碳原子之芳基或經雜原子取代之芳基,例如苯基及萘基、呋喃基、噻吩基、吡啶基、喹啉基及其他雜環系統;或鹵基,諸如氯基、氟基;或組成稠合芳族環所必需之原子。L為由烷基、芳基、經取代烷基或經取代芳基組成之鍵聯單元,其將多個吲哚共扼或非共扼地連接在一起。適用吲哚之一實例為2,2',2"-(1,3,5-伸苯基)參[1-苯基-1H-苯并咪唑]。
如US 5,121,029中所述之二苯乙烯基伸芳基衍生物亦為適用之主體。咔唑衍生物為尤其適用於磷光發射體之主體。
適用之螢光發射材料包括(但不限於):蒽、并四苯、二苯幷哌喃、苝、紅螢烯、香豆素、若丹明(rhodamine)及喹吖啶酮之衍生物;二氰基亞甲基哌喃化合物;硫哌喃化合物;聚次甲基化合物;氧雜苯鎓及硫雜苯鎓化合物;茀衍生物;二茚并苝(periflanthene)衍生物;茚并苝衍生物;雙(吖嗪基)胺硼化合物;雙(吖嗪基)甲烷化合物及羥喹啉基化合物。
在下列專利案中報導了適用磷光材料之實例:WO 00/57676、WO 00/70655、WO 01/41512、WO 02/15645、US 2003/0017361、WO 01/93642、WO 01/39234、US 6,458,475、WO 02/071813、US 6,573,651、US 2002/0197511、WO 02/074015、US 6,451,455、US 2003/0072964、US 2003/0068528、US 6,413,656、US 6,515,298、US 6,451,415、US 6,097,147、US 2003/0124381、US 2003/0059646、US 2003/0054198、EP 1 239 526、EP 1 238 981、EP 1 244 155、US 2002/0100906、US 2003/0068526、US 2003/0068535、JP 2003073387、JP 2003073388、US 2003/0141809、US 2003/0040627、JP 2003059667、JP 2003073665及US 2002/0121638。
適用螢光及磷光發射材料之例示性實例包括(但不限於)下列化合物。
電子輸送層(ETL)
先前已描述了適用之電子輸送層。可存在多於一個ETL。用於形成本發明之有機EL裝置之額外電子輸送層的較佳薄膜形成材料包括金屬螯合類咢辛化合物,其包括咢辛自身(通常亦稱為8-喹啉醇或8-羥基喹啉)之螯合物。該等化合物有助於注入及輸送電子且展現出高效能位準,且易於以薄膜形式製造。所涵蓋之類咢辛化合物之實例為先前所述滿足結構式(E)之彼等化合物。
其他電子輸送材料包括如US 4,356,429中所揭示之各種丁二烯衍生物及如US 4,539,507中所述之各種雜環光學增亮劑。滿足結構式(H)之吲哚亦為適用之電子輸送材料。亦已知三嗪為適用之電子輸送材料。其他適用材料為EP 1,480,280、EP 1,478,032及EP 1,469,533中所述之矽雜環戊二烯衍生物。諸如在JP2003-115387、JP2004-311184、JP2001-267080及WO2002-043449中揭示經取代之1,10-啡啉化合物。亦已知三嗪為適用之電子輸送材料。
電子注入層(EIL)
先前亦已描述了適用之電子注入層。可存在多於一個電子注入層。當存在時,額外電子注入層包括彼等在US 5,608,287、5,776,622、5,776,623、6,137,223及6,140,763、US 6,914,269中所述者。適用之額外電子注入層通常由具有低於4.0 eV之功函數的材料組成。可採用含有低功函數鹼金屬或鹼土金屬(諸如Li、Cs、Ca、Mg)之薄膜。另外,經該等低功函數金屬摻雜之有機材料亦可有效地用作電子注入層。實例為Li摻雜或Cs摻雜之Alq。在一適當實施例中,額外電子注入層包括LiF。實務上,額外電子注入層通常為一沈積至0.1 nm至3.0 nm範圍內適當厚度之薄層。
陰極
當僅經由陽極觀察光發射時,本發明中所使用之陰極可由幾乎任何導電性材料組成。所要材料具有良好成膜性質,以確保與下伏有機層良好接觸,在低電壓時促進電子注入且具有良好穩定性。適用之陰極材料通常含有低功函數金屬(小於4.0 eV)或金屬合金。一適用之陰極材料係由Mg:Ag合金組成,其中銀之百分比在1%至20%之範圍內,如美國專利第4,885,221號中所述。另一類合適陰極材料包括雙層,其包含陰極及與有機層(例如電子輸送層(ETL))接觸之薄電子注入層(EIL),該薄電子注入層為較厚之導電金屬層覆蓋。此處,EIL較佳包括低功函數金屬或金屬鹽,且若如此,則較厚覆蓋層無需具有低功函數。如美國專利第5,677,572號中所述,一種如此之陰極係由一薄LiF層、繼之一較厚之Al層組成。其他適用之陰極材料組包括(但不限於)彼等在美國專利第5,059,861號、第5,059,862號及第6,140,763號中所揭示者。
當經由陰極觀察光發射時,陰極必須為透明或幾乎透明的。對於該等應用,金屬必須為薄的,或必須使用透明導電性氧化物或該等材料之組合。在US 4,885,211、US 5,247,190、JP 3,234,963、US 5,703,436、US 5,608,287、US 5,837,391、US 5,677,572、US 5,776,622、US 5,776,623、US 5,714,838、US 5,969,474、US 5,739,545、US 5,981,306、US 6,137,223、US 6,140,763、US 6,172,459、EP 1 076 368、US 6,278,236及US 6,284,3936中已更詳細地描述了光學透明陰極。通常藉由任何合適方法(諸如蒸鍍、濺鍍或化學氣相沈積)來沈積陰極材料。當需要時,可經由許多熟知方法來達成圖案化,該等方法包括(但不限於)透過遮罩沈積及一體式蔭罩法(如US 5,276,380及EP 0 732 868中所述)、雷射切除及選擇性化學氣相沈積。
其他適用有機層及裝置架構
在某些情況下,可視情況將層109及111壓縮為一單層以擔當支持光發射及電子輸送之功能。在此項技術中亦已知可使發射材料包括在電洞輸送層中,其可充當主體。舉例而言,藉由將發射藍光與發射黃光之材料、發射青光與發射紅光之材料或發射紅光、發射綠光與發射藍光之材料組合,可將多種材料添加至一或多個層中,以便獲得發射白光之OLED。例如在EP 1 187 235、US 20020025419、EP 1182 244、US 5,683,823、US 5,503,910、US 5,405,709及US 5,283,182中描述發射白光之裝置,且其可配備有合適之濾光器配置以產生彩色發射。
在本發明之裝置中可採用如此項技術中所教示之額外層,諸如電子阻擋層或電洞阻擋層。電洞阻擋層可於發光層與電子輸送層之間使用。電子阻擋層可於電洞輸送層與發光層之間使用。舉例而言,如在US 20020015859中,該等層常用於改良發射效率。
本發明可用於所謂堆疊裝置架構中,(例如)如US 5,703,436及US 6,337,492中所教示。
有機層之沈積
藉由任何適用於有機材料之形式的方法來適當地沈積上述有機材料。在小分子之情況下,其便利地經由昇華而沈積,但可藉由其他方法(諸如自具有視情況可選之黏合劑的溶劑)沈積以改良膜之形成。若材料為聚合物,則溶劑沈積通常較佳。可使待藉由昇華而沈積之材料自通常由鉭材料組成之昇華器"舟形皿"氣化(例如,如US 6,237,529中所述),或可先將其塗佈於一施體薄板上,且接著在基板較近處使其昇華。具有材料混合物之層可利用獨立昇華器舟形皿,或可將該等材料預先混合且自單一舟形皿或施體薄板將其塗佈。可使用蔽蔭遮罩、一體式蔭罩(US 5,294,870)、自施體薄板之空間定界熱染料轉移(US 5,688,551、US 5,851,709及US 6,066,357)及噴墨方法(US 6,066,357)來達成圖案化沈積。
在US 2004/0255857及USSN 10/945,941中描述一種用於沈積本發明材料之較佳方法,其中不同源蒸發器用於蒸發本發明之材料中之每一者。第二種較佳方法涉及閃蒸之使用,其中沿溫度控制之材料饋入途徑對材料進行計量。該較佳方法在下列共同受讓專利申請案中進行了描述:USSN 10/784,585;USSN 10/805,980;USSN 10/945,940;USSN 10/945,941;USSN 11/050,924及USSN 11/050,934。使用該第二方法,可使用不同源蒸發器蒸發各材料,或在蒸發之前使用同一源蒸發器將固體材料混合。
封裝
多數OLED裝置對於濕氣或氧(或兩者)敏感,因此通常將其與乾燥劑(諸如氧化鋁、鋁礬土、黏土、矽膠、沸石、鹼金屬氧化物、鹼土金屬氧化物、硫酸鹽或金屬鹵化物及高氯酸鹽)一起密封於惰性氣氛(諸如氮氣或氬氣)中。用於封裝及乾燥之方法包括(但不限於)彼等在美國專利第6,226,890號中所述者。另外,障壁層(諸如SiOx 、鐵氟龍)及交替無機/聚合層在此項技術中對於封裝為已知的。
光學優化
本發明之OLED裝置在必要時可採用多種眾所熟知之光學效應以增強其性能。其包括優化層厚度以獲得最大光透射率;提供介電鏡結構;用光吸收電極代替反射性電極;在顯示器上提供防炫光或防反射塗層;在顯示器上提供偏振介質;或在顯示器上提供彩色、中性密度或彩色轉換濾光片。可將濾光片、偏振器及防炫光或防反射塗層特定地提供於保護層上或將其作為保護層之一部分來提供。
本發明之實施例可提供諸如較高發光良率、較低驅動電壓及較高功率效率、較長工作壽命或製造簡易性之有利特徵。本發明中適用裝置之實施例可提供寬廣範圍之色調,其包括彼等適用於白光發射(直接或經由濾光片以提供多色顯示)者。本發明之實施例亦可提供一種區域照明裝置。
藉由以下之特定實例進一步說明本發明及其優勢。術語"百分比"("percentage"或"percent")及符號"%"表示總材料之特定第一或第二化合物在本發明之層及裝置之其他組件中所佔的體積百分比(或如以薄膜厚度監視器量測之厚度比)。若存在多於一種第二化合物,則第二化合物之總體積亦可表示為在本發明之層中佔總材料的百分比。
實例1. 電化學氧化還原電位及估算能階。
通常藉由電化學方法在實驗上估算LUMO及HOMO值。以下方法說明一種用於量測氧化還原性質之適用方式。採用CHI660型電化學分析儀(CH Instruments,Inc.,Austin,TX)來進行電化學量測。使用循環伏安法(CV)及奧斯特楊(Osteryoung)方波伏安法(SWV)來表徵所關注之化合物之氧化還原性質。將玻璃碳(GC)盤形電極(A=0.071 cm2 )用作工作電極。使用0.05 μm氧化鋁研磨漿將該GC電極拋光,繼而在Milli-Q去離子水中進行兩次超音波清洗,且在水清洗之間用丙酮沖洗。最終將該電極清潔,且在使用之前藉由電化學處理而活化。以鈤線充當對立電極,且將飽和甘汞電極(SCE)用作準參比電極,以完成標準3電極電化電池。將二茂鐵(Fc)用作內標(在1:1之乙腈/甲苯、0.1 M TBAF中相對於SCE,EFc =0.50 V)。將乙腈與甲苯之混合物(50%/50%體積比,或1:1)用作有機溶劑系統。使支持電解質(四氟硼酸四丁基銨(TBAF))在異丙醇中再結晶兩次且在真空下乾燥。所用之所有溶劑均為低含水量(水含量小於20 ppm)。用高純度氮氣將測試溶液淨化約5分鐘以移除氧,且在實驗過程期間於該溶液頂部保持有氮氣層。所有量測均在25±1℃之環境溫度下進行。藉由對可逆或準可逆電極過程之陽極峰值電位(Ep,a)及陰極峰值電位(Ep,c)取平均值,抑或基於不可逆過程之峰值電位(SWV中)來測定氧化及還原電位。根據下式計算LUMO及HOMO值:可逆或準可逆過程相對於SCE之克式量還原電位:Eo 'red =(Epa +Epc )/2 Eo 'ox =(Epa +Epc )/2相對於Fc之克式量還原電位:Eo 'red vs.Fc=(Eo 'red vs.SCE)-EFc Eo 'ox vs.Fc=(Eo 'ox vs.SCE)-EFc 其中EFc 為二茂鐵之氧化電位Eox ;LUMO及HOMO值之估算下限:LUMO=HOMOFc -(Eo 'red vs.Fc) HOMO=HOMOFc -(Eo 'ox vs.Fc)其中HOMOF c(二茂鐵之最高佔據分子軌道)=-4.8 eV。在表1中概述氧化還原電位以及估算HOMO值及LUMO值。
所關注化合物之LUMO值亦可由分子軌道計算來估算。藉由使用如Gaussian 98(Gaussian,Inc.,Pittsburgh,PA)電腦程式中所實施之B3LYP方法來進行典型計算。與B3LYP方法一起使用之基函數組(basis set)係如下定義:對所有MIDI!已定義之原子為MIDI!;對所有在6-31G 中定義而未在MIDI!中定義之原子為6-31G ;且對在MIDI!抑或6-31G 中均未定義之原子為LACV3P或LANL2DZ基函數組及偽勢,其中LACV3P為較佳方法。對於任何剩餘原子,可使用任何公開之基函數組及偽勢。MIDI!、6-31G 及LANL2DZ係如在Gaussian98電腦編碼中實施而使用,且LACV3P係如在Jaguar 4.1(Schrodinger,Inc.,Portland Oregon)電腦編碼中實施而使用。計算得到以哈特裏(Hartree)為單位之最高佔據分子軌道(HOMO)能階及最低未佔據分子軌道(LUMO)能階,其中1哈特裏單位為27.21 eV。
實例2. 裝置1-1至1-11之製造。
如下文所述建構一系列EL裝置(1-1至1-11)。
1.將一經25 nm之氧化銦錫(ITO)層塗佈、作為陽極之玻璃基板依次在市售清潔劑中進行超音波處理,在去離子水中沖洗,在甲苯蒸氣中脫脂且在氧電漿中暴露約1分鐘。
2.如US 6,208,075中所述,藉由CHF3 之電漿輔助沈積在ITO上沈積一1 nm之碳氟化合物(CFx)電洞注入層(HIL)。
3.隨後將一電洞輸送材料4,4'-雙[N-(1-萘基)-N-苯胺基]聯苯(NPB)層沈積至75 nm之厚度。
4.在HTL上將一對應於主體材料I-1且包括以層體積計為0.75%含量之發光材料D-1之發光層(LEL)沈積至20.0 nm之厚度。
5.將一由紅螢烯或I-1(參看表2a)組成之電子輸送層(ETL)真空沈積於LEL上。該ETL之厚度亦列在表2a中。
6.在ETL上將一由Bphen組成之電子注入層(EIL)沈積至表2a中所示之厚度。
7.將0.5 nm之氟化鋰層真空沈積於EIL上,繼而沈積一150 nm之鋁層,以形成一陰極層。
上述序列完成EL裝置之沈積。接著將該裝置於一乾燥手套箱中密封地封裝,以免受周圍環境之影響。
表2a.用於裝置1-1至1-11之LEL、ETL及EIL。
在20 mA/cm2 之工作電流下測試該等裝置之發光效率,且將結果以發光良率(cd/A)、效率(w/A)及功率效率(流明/瓦特)之形式於表2b中報導。裝置效率為每安培輸入電流由裝置產生之輻射通量(單位為瓦特),其中輻射通量為每單位時間內由裝置產生之光能。垂直於裝置表面量測光強度,且假定角度概況為朗伯型(Lambertian)。以伏特為單位報導驅動電壓,其針對ITO電壓降進行校正。
表2b中之結果顯示,相較於在ETL中包括幷四苯材料(紅螢烯)之比較裝置而言,在電子輸送層中包括蒽衍生物(I-1)之發明裝置(1-8至1-11)提供較低電壓及較高效率兩者。EIL厚度與LEL厚度之比率亦至關重要。相較於具有優化EIL/LEL比率之裝置1-8至1-11而言,具有低EIL/LEL比率之比較裝置1-7提供遠遠更高之電壓及更低之效率。
實例3. 裝置2-1至2-12之製造。
如下文所述,以與裝置1-1相同之方式建構一系列EL裝置(2-1至2-12)。
1.將一經25 nm之氧化銦錫(ITO)層塗佈、作為陽極之玻璃基板依次在市售清潔劑中進行超音波處理,在去離子水中沖洗,在甲苯蒸氣中脫脂且在氧電漿中暴露約1分鐘。
2.如US 6,208,075中所述,藉由CHF3 之電漿輔助沈積在ITO上沈積一1 nm之碳氟化合物(CFx)電洞注入層(HIL)。
3.隨後將一電洞輸送材料4,4'-雙[N-(1-萘基)-N-苯胺基]聯苯(NPB)層沈積至75 nm之厚度。
4.在HTL上將一對應於主體材料I-1、TBADN或Alq且包括發光材料D-1或D-2之發光層(LEL)沈積至20 nm或40 nm之厚度。關於各裝置之LEL主體、摻雜劑及厚度之描述,參看表3a。
5.將一由I-1或TBADN(參看表3a)組成之電子輸送層(ETL)真空沈積於LEL上。該ETL之厚度為25 nm。
6.在ETL上將一由Bphen組成之電子注入層(EIL)沈積至10 nm之厚度。
7.將0.5 nm之氟化鋰層真空沈積於EIL上,繼而沈積一150 nm之鋁層,以形成一陰極層。
上述序列完成EL裝置之沈積。接著將該裝置於一乾燥手套箱中密封地封裝,以免受周圍環境之影響。
以與裝置1-1相同之方式測試該等裝置,且將結果提供於表3b中。
該實例說明當在2-位、9-位及10-位上攜有芳族基之蒽化合物(諸如I-1)包括於電子輸送層中時的相關裝置效能相對於當蒽在9-位及10-位上攜有芳族基且在2-位上攜有烷基(TBADN)時的相關裝置效能。儘管所有裝置均提供良好亮度及相對低電壓,但具有包括在2-位、9-位及10-位上攜有芳族基之蒽化合物的ETL的裝置係尤其理想的。
實例4. 裝置3-1至3-6之製造。
如下文所述,以與裝置1-1類似之方式建構一系列EL裝置(3-1至3-6)。
1.將一經25 nm之氧化銦錫(ITO)層塗佈、作為陽極之玻璃基板依次在市售清潔劑中進行超音波處理,在去離子水中沖洗,在甲苯蒸氣中脫脂且在氧電漿中暴露約1分鐘。
2.如US 6,208,075中所述,藉由CHF3 之電漿輔助沈積在ITO上沈積一1 nm之碳氟化合物(CFx)電洞注入層(HIL)。
3.隨後將一電洞輸送材料4,4'-雙[N-(1-萘基)-N-苯胺基]聯苯(NPB)層沈積至75 nm之厚度。
4.在HTL上將一對應於主體材料I-1且包括1.5體積%含量發光材料D-3之發光層(LEL)沈積至20 nm之厚度。
5.將一由材料I-1組成之電子輸送層(ETL)真空沈積於LEL上。該ETL之厚度係於表4a中報導。
6.在ETL上將一由Bphen組成之電子注入層(EIL)沈積至表4a中所示之厚度。
7.將0.5 nm之氟化鋰層真空沈積於EIL上,繼而沈積一150 nm之鋁層,以形成一陰極層。
上述序列完成EL裝置之沈積。接著將該裝置於一乾燥手套箱中密封地封裝,以免受周圍環境之影響。以與裝置1-1相同之方式測試該等裝置,且將結果提供於表4b中。
如自表4b中可見,相較於不包括ETL及EIL兩者之比較裝置3-1及3-2而言,發明裝置3-5及3-6提供較高功率效率。相對於不具有適宜範圍內之EIL/LEL之厚度比的比較裝置3-3及3-4而言,具有適宜EIL/LEL之厚度比之發明裝置亦提供較低電壓及較高功率效率。
實例5. 裝置4-1至4-12之製造。
如下文所述,以與裝置1-1類似之方式建構一系列EL裝置(4-1至4-12)。
將一經25 nm之氧化銦錫(ITO)層塗佈、作為陽極之玻璃基板依次在市售清潔劑中進行超音波處理,在去離子水中沖洗,在甲苯蒸氣中脫脂且在氧電漿中暴露約1分鐘。
1.如US 6,208,075中所述,藉由CHF3 之電漿輔助沈積在ITO上沈積一1 nm之碳氟化合物(CFx)電洞注入層(HIL)。
2.隨後將一電洞輸送材料4,4'-雙[N-(1-萘基)-N-苯胺基]聯苯(NPB)層沈積至75 nm之厚度。
3.在HTL上將一對應於如表5a中所示主體材料I-1、I-23或TBADN(I-23)且包括0.75體積%含量發光材料D-1之發光層(LEL)沈積至20 nm之厚度。
4.將一由材料I-1組成之電子輸送層(ETL)真空沈積於LEL上。該ETL之厚度亦於表5a中報導。
5.在ETL上將一由Bphen組成之電子注入層(EIL)沈積至表5a中所示之厚度。
6.將0.5 nm之氟化鋰層真空沈積於EIL上,繼而沈積一150 nm之鋁層,以形成一陰極層。
上述序列完成EL裝置之沈積。接著將該裝置於一乾燥手套箱中密封地封裝,以免受周圍環境之影響。以與裝置1-1相同之方式測試該等裝置,且將結果提供於表5b中。
該實例對LEL中之不同主體材料以及EIL/LEL比率之變化進行比較。表5b之檢驗顯示所有裝置均具有低電壓及良好功率效率,然而諸如I-1(在2-位、9-位及10-位上具有芳族基之蒽化合物)之LEL主體材料係尤其理想的。
實例6. 裝置5-1至5-3之製造。
如下文所述,以與裝置1-1類似之方式建構一系列EL裝置(5-1至5-3)。
1.將一經25 nm之氧化銦錫(ITO)層塗佈、作為陽極之玻璃基板依次在市售清潔劑中進行超音波處理,在去離子水中沖洗,在甲苯蒸氣中脫脂且在氧電漿中暴露約1分鐘。
2.如US 6,208,075中所述,藉由CHF3 之電漿輔助沈積在ITO上沈積一1 nm之碳氟化合物(CFx)電洞注入層(HIL)。
3.隨後將一電洞輸送材料4,4'-雙[N-(1-萘基)-N-苯胺基]聯苯(NPB)層沈積至75 nm之厚度。
4.在HTL上將一對應於主體材料I-1且包括0.75體積%含量發光材料D-1之發光層(LEL)沈積至20 nm之厚度。
5.在LEL上將一由材料I-1組成之電子輸送層(ETL)真空沈積至25.0 nm之厚度。
6.在ETL上將一由Bphen、TPBI或Liq(參看表6a)組成之電子注入層(EIL)沈積至10 nm之厚度。
7.將0.5 nm之氟化鋰層真空沈積於EIL上,繼而沈積一150 nm之鋁層,以形成一陰極層。
上述序列完成EL裝置之沈積。接著將該裝置於一乾燥手套箱中密封地封裝,以免受周圍環境之影響。以與裝置1-1相同之方式測試該等裝置,且將結果提供於表6b中。
該實例說明對於具有同樣為0.50之EIL/LEL之厚度比的裝置,在不同材料在EIL中的用途。相較於含有替代電子注入材料之比較裝置5-2及5-3而言,在EIL中包括啡啉材料之發明裝置5-1提供顯著較低之電壓及較高效率。
實例7. 裝置6-1至6-3之製造。
如下文所述,以與裝置1-1類似之方式建構一系列EL裝置(6-1至6-3)。
1.將一經25 nm之氧化銦錫(ITO)層塗佈、作為陽極之玻璃基板依次在市售清潔劑中進行超音波處理,在去離子水中沖洗,在甲苯蒸氣中脫脂且在氧電漿中暴露約1分鐘。
2.如US 6,208,075中所述,藉由CHF3 之電漿輔助沈積在ITO上沈積一1 nm之碳氟化合物(CFx)電洞注入層(HIL)。
3.隨後將一電洞輸送材料4,4'-雙[N-(1-萘基)-N-苯胺基]聯苯(NPB)層沈積至75 nm之厚度。
4.在HTL上將一對應於主體材料I-1且包括0.75體積%含量發光材料D-1之發光層(LEL)沈積至20 nm之厚度。
5.在LEL上將一由材料I-1或Alq(參看表7a)組成之電子輸送層(ETL)真空沈積至25.0 nm之厚度。
6.在ETL上將一由Bphen、DPBiP或Alq(參看表7a)組成之電子注入層(EIL)沈積至10 nm之厚度。
7.將0.5 nm之氟化鋰層真空沈積於EIL上,繼而沈積一150 nm之鋁層,以形成一陰極層。
上述序列完成EL裝置之沈積。接著將該裝置於一乾燥手套箱中密封地封裝,以免受周圍環境之影響。以與裝置1-1相同之方式測試該等裝置,且將結果提供於表7b中。
如表7b可見,相對於具有不包括啡啉衍生物之EIL的比較裝置6-2而言,發明裝置6-1提供較低電壓及較高亮度兩者。裝置6-1尤其優於在ETL及EIL中均使用Alq之裝置6-3。
實例8. 裝置7-1至7-5之製造。
如下文所述,以與裝置1-1類似之方式建構一系列EL裝置(7-1至7-5)。
將一經25 nm之氧化銦錫(ITO)層塗佈、作為陽極之玻璃基板依次在市售清潔劑中進行超音波處理,在去離子水中沖洗,在甲苯蒸氣中脫脂且在氧電漿中暴露約1分鐘。
1.如US 6,208,075中所述,藉由CHF3 之電漿輔助沈積在ITO上沈積一1 nm之碳氟化合物(CFx)電洞注入層(HIL)。
2.隨後將一電洞輸送材料4,4'-雙[N-(1-萘基)-N-苯胺基]聯苯(NPB)層沈積至75 nm之厚度。
3.在HTL上將一對應於主體材料I-1且包括0.6體積%含量發光材料D-1之發光層(LEL)沈積至20 nm之厚度。
4.將一由材料I-1組成之電子輸送層(ETL)真空沈積於LEL上。該ETL之厚度係於表8a中報導。
5.在ETL上將一由啡啉衍生物II-2組成之電子注入層(EIL)沈積至表8a中所示之厚度。
6.將0.5 nm之氟化鋰層真空沈積於EIL上,繼而沈積一150 nm之鋁層,以形成一陰極層。
上述序列完成EL裝置之沈積。接著將該裝置於一乾燥手套箱中密封地封裝,以免受周圍環境之影響。以與裝置1-1相同之方式測試該等裝置,且將結果提供於表8b中。
如表8b中所說明,相對於僅含有蒽材料之比較裝置7-1而言,將蒽電子輸送材料I-1結合啡啉電子注入材料II-2一起使用之發明裝置7-4及7-5產生較高功率效率及較低電壓。該等發明裝置亦具有適宜範圍內之EIL與LEL之厚度比,且相較於具有該範圍外比率之比較裝置7-2及7-3而言,具有更佳性能。
在本說明書中所參考之專利及其他公開案的全部內容以引用的方式併入本文中。已特別根據本發明之某些較佳實施例詳細地描述了本發明,但應瞭解可在本發明之精神及範疇範圍內進行變動及修改。
101...基板
103...陽極
105...電洞注入層(HIL)
107...電洞輸送層(HTL)
109...發光層(LEL)
110...電子輸送層(ETL)
111...電子注入層(EIL)
112...第二電子注入層
113...陰極
150...電源
160...導體
該圖式展示表示本發明之一實施例之OLED裝置的橫截面示意圖。
101...基板
103...陽極
105...電洞注入層(HIL)
107...電洞輸送層(HTL)
109...發光層(LEL)
110...電子輸送層(ETL)
111...電子注入層(EIL)
112...第二電子注入層
113...陰極
150...電源
160...導體

Claims (15)

  1. 一種電致發光裝置,其包含一陰極、一陽極,且在其間具有一發光層(LEL),該裝置進一步含有一位在該LEL之陰極側上而包含蒽化合物之電子輸送層(ETL)及一位在該ETL與該陰極之間而包含啡啉化合物之有機電子注入層(EIL),其中該EIL及該LEL之厚度係以使得EIL與LEL之厚度比大於0.125。
  2. 如請求項1之裝置,其中該蒽化合物包含一個且僅包含一個蒽核。
  3. 如請求項1之裝置,其中該蒽化合物在2-位、9-位及10-位上攜有獨立選擇之芳族取代基。
  4. 如請求項1之裝置,其中該蒽化合物係經如下方式取代:a)在9-位上經萘基或聯苯基取代;及b)在10-位上經獨立選擇之萘基或聯苯基取代;及c)在2-位上攜有包含不超過兩個稠環之芳基。
  5. 如請求項1之裝置,其中該蒽化合物係由式(1)表示: 其中:w1 、w3 、w4 、w5 、w6 、w7 及w8 表示氫或獨立選擇之取代基;且w2 、w9 及w10 表示獨立選擇之芳族基。
  6. 如請求項5之裝置,其中取代基w1 至w10 各包含不超過兩個稠環。
  7. 如請求項5之裝置,其中取代基w2 、w6 、w9 及w10 可相同或不同且各表示獨立選擇之芳族基。
  8. 如請求項1之裝置,其中該啡啉化合物包含1,10-啡啉基團。
  9. 如請求項1之裝置,其中該啡啉化合物係由式(2)表示: 其中:各r相同或不同,且各表示取代基;且m及p獨立地為0至4,n為0至2。
  10. 如請求項9之裝置,其中至少一個r表示含有至少3個稠環之基團,且m、n及p中之至少一者為1或以上。
  11. 如請求項1之裝置,其中該啡啉化合物係由式(3)表示: 其中:各r相同或不同,且各表示取代基;m及x獨立地為0至4;n、v、q及u獨立地為0至2;且L表示二價鍵聯基團。
  12. 如請求項1之裝置,其中該EIL與該LEL之厚度比為0.25或更高。
  13. 如請求項1之裝置,其中該EIL之厚度係在10 nm至20 nm之範圍內。
  14. 如請求項1之裝置,其中在該陰極與該EIL之間且鄰近於該EIL存在另一層,且其中該另一層包含LiF。
  15. 如請求項1之裝置,其中該蒽化合物與該啡啉化合物之LUMO能量值間的差為0.2 eV或較低。
TW096114728A 2006-04-27 2007-04-26 含蒽衍生物之電致發光裝置 TWI418075B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/412,676 US9666826B2 (en) 2005-11-30 2006-04-27 Electroluminescent device including an anthracene derivative

Publications (2)

Publication Number Publication Date
TW200803006A TW200803006A (en) 2008-01-01
TWI418075B true TWI418075B (zh) 2013-12-01

Family

ID=38535470

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096114728A TWI418075B (zh) 2006-04-27 2007-04-26 含蒽衍生物之電致發光裝置

Country Status (2)

Country Link
TW (1) TWI418075B (zh)
WO (1) WO2007127069A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8759819B2 (en) 2007-11-22 2014-06-24 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US9153790B2 (en) 2009-05-22 2015-10-06 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
JP5523021B2 (ja) 2009-08-25 2014-06-18 キヤノン株式会社 複素環化合物及びこれを用いた有機発光素子
TWI563702B (en) 2011-02-28 2016-12-21 Semiconductor Energy Lab Co Ltd Light-emitting device
US10439156B2 (en) 2013-05-17 2019-10-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, lighting device, and electronic device
CN105552243A (zh) * 2016-01-29 2016-05-04 桂林电子科技大学 一种紫外有机发光器件及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6558817B1 (en) * 1998-09-09 2003-05-06 Minolta Co., Ltd. Organic electroluminescent element
US20030165715A1 (en) * 2002-01-18 2003-09-04 Seok-Hee Yoon New material for transporting electrons and organic electroluminescent display using the same
US6821649B2 (en) * 2001-08-20 2004-11-23 Tdk Corporation Organic EL device and preparation method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053018A1 (en) * 2002-12-06 2004-06-24 Shuang Xie Electroluminescent devices
WO2006004138A1 (en) * 2004-07-07 2006-01-12 Semiconductor Energy Laboratory Co., Ltd. Phenanthroline derivative and light emitting element and light emitting device using the same
US7273663B2 (en) * 2004-08-20 2007-09-25 Eastman Kodak Company White OLED having multiple white electroluminescence units

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6558817B1 (en) * 1998-09-09 2003-05-06 Minolta Co., Ltd. Organic electroluminescent element
US6821649B2 (en) * 2001-08-20 2004-11-23 Tdk Corporation Organic EL device and preparation method
US20030165715A1 (en) * 2002-01-18 2003-09-04 Seok-Hee Yoon New material for transporting electrons and organic electroluminescent display using the same

Also Published As

Publication number Publication date
TW200803006A (en) 2008-01-01
WO2007127069A1 (en) 2007-11-08

Similar Documents

Publication Publication Date Title
TWI387392B (zh) 含蒽衍生物之電致發光裝置
KR101365424B1 (ko) 유기 eil 층을 포함하는 전기발광 디바이스
US9666826B2 (en) Electroluminescent device including an anthracene derivative
TWI401304B (zh) 具增進效能之白色有機發光裝置
US20070134512A1 (en) Electroluminescent device containing an anthracene derivative
KR20090005038A (ko) 안트라센 유도체를 포함하는 전기발광 디바이스
JP2009520354A (ja) エレクトロルミネッセンスを出すホスト材料
JP2009514217A (ja) 低電圧エレクトロルミネッセンス・デバイスのための有機素子
JP2009514222A (ja) 低電圧エレクトロルミネッセンス・デバイスのための有機素子
JP2009514221A (ja) 低電圧エレクトロルミネッセンス・デバイスのための有機素子
JP2009506513A (ja) タンデム式oledデバイスのための中間接続層
JP2009514215A (ja) 低電圧エレクトロルミネッセンス・デバイスのための有機素子
KR20080025371A (ko) 저전압 전기발광 디바이스용의 유기 소자
WO2007005227A1 (en) Electroluminescent devices containing benzidine derivatives
JP2008538157A (ja) 混合された複数の電子輸送材料を含むエレクトロルミネッセンス・デバイス
JP2011508421A (ja) 低電圧エレクトロルミネッセンスデバイス用の有機素子
WO2007027533A2 (en) Electron-transporting layer for white oled device
JP2009514216A (ja) 低電圧エレクトロルミネッセンス・デバイスのための有機素子
TWI418075B (zh) 含蒽衍生物之電致發光裝置
TWI394483B (zh) 具有穩定綠光發射層的有機發光二極體裝置
JP5129165B2 (ja) ガリウム錯体を含むエレクトロルミネッセンス・デバイス