WO2004053018A1 - Electroluminescent devices - Google Patents

Electroluminescent devices Download PDF

Info

Publication number
WO2004053018A1
WO2004053018A1 PCT/CA2002/001878 CA0201878W WO2004053018A1 WO 2004053018 A1 WO2004053018 A1 WO 2004053018A1 CA 0201878 W CA0201878 W CA 0201878W WO 2004053018 A1 WO2004053018 A1 WO 2004053018A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
group
aryl
butyl
alkyl
Prior art date
Application number
PCT/CA2002/001878
Other languages
French (fr)
Inventor
Shuang Xie
Original Assignee
Shuang Xie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shuang Xie filed Critical Shuang Xie
Priority to AU2002347158A priority Critical patent/AU2002347158A1/en
Priority to PCT/CA2002/001878 priority patent/WO2004053018A1/en
Publication of WO2004053018A1 publication Critical patent/WO2004053018A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3

Definitions

  • This invention relates to novel electroluminescent devices with enhanced performance, and which devices are desired that are capable of providing uniform luminescence with full visible spectra, high electroluminescent efficiency, excellent . durability, and bw driving voltages.
  • Organic electroluminescent (EL) devices are generally composed of a single or multiple layers of organic materials sandwiched between transparent and metallic electrodes.
  • Organic EL devices are attractive owing to the requirement for low driving voltage and the fact that they are generally simple and relatively easy and inexpensive to fabricate. Furthermore, the light generated by organic EL devices is sufficient for use in a variety of ambient light conditions (from little or no ambient light to bright ambient light).
  • There has been an increased interest in developing energy-efficient flat-panel displays based on organic EL devices primarily because of their potential as an emissive display technology which offers unrestricted viewing angles and high luminescence output at low operating voltages. Because of these advantages, organic EL devices have a potential application in full color flat emissive displays as well as displays in smaE products, such as pagers, cellular and portable telephones, two-way radios, data banks, and other optical electronic devices.
  • organic luminescent materials should provide a satisfactory color in the visible spectrum, normally with emission maxima at about 460, 550 and 630 nanometers for blue, green and red.
  • these electron transport materials are of limited use.
  • prior art organic materials may fluoresce in the blue region, the performance characteristics of the resulting EL devices still possess many disadvantages such as poor operation stability.
  • organic materials which are suitable for the design of EL devices with satisfactory emission in the visible spectrum of from blue to the longer wavelength region.
  • organic materials which can improve EL device operational stability and durability, and can enhance the EL charge transporting characteristics, thus lowering device driving voltages.
  • Prior art organic EL devices have been constructed from a laminate of an organic luminescent material and electrodes of opposite polarity, which devices include a single crystal material, such as single crystal anthracene, as the luminescent substance as described, for example, in U.S. Pat. No. 3,530,325.
  • these devices require excitation voltages on the order of 100 volts or greater.
  • additional layers such as charge injecting and charge transporting layers.
  • Illustrative examples of EL devices have been disclosed in publications by Tang et al. in J. Appl. Phys. vol. 65, pp. 3610 to 3616 (1989) and Saito et aL in Mol. Cryst. Liq. Cryst. YoL 253, pp. 125 to 132 (1994), the disclosures of which are totally incorporated herein by reference.
  • An EL device with an organic dual layer structure comprises one layer adjacent to the anode supporting hole injection and transport, and another layer adjacent to the cathode supporting electron injection and transport.
  • the recombination of charge carriers and subsequent emission of light occurs in one of the layers near the interface between the two layers.
  • an EL device can comprise three separate layers, a hole transport layer, an emission layer, and an electron transport layer, which are laminated in sequence and are sandwiched as a whole between an anode and a cathode.
  • fluorescent dopant materials can be added to the emission zone or layer whereby the recombination of holes and electrons results in the excitation of the fluorescent dopants.
  • the light-emitting layer provides an efficient site for the recombination of the injected hole-electron pair followed by the energy transfer .to the guest material and produces the highly efficient electroluminescence.
  • the emission zone or layer commonly consists of a host material doped with a guest materiaL
  • the commonly used host materials in light-emitting layer are electron transport materials, such as 8-hydroxyquinoline aluminum complex.
  • U.S. Pat. No. 4,769,292 discbses an EL device employing a luminescent zone comprised of an organic host material capable of sustaining hole-electron recombination and a fluorescent dye material capable of emitting light in response to energy released by hole-electron recombination.
  • the host materials can be hole transporting layer, such as aryl amine (U.S. Pat. No. 5,989,737) or charge injection auxiliary material, such as stilbene derivatives (C. Hosokawa et al., Appl. Phys. Lett., 67(25) 3853, 1995).
  • the doped guest material also known as the dopant, is usually chosen from highly fluorescent dyes.
  • improved EL devices comprising an anode and a cathode, and an organic electroluminescent medium between the anode and the cathode, wherein the organic electroluminescent medium has at least one layer containing anthracene derivatives.
  • a further feature of the present invention is the provision of EL devices containing anthracene derivatives which possess excellent carrier injecting and transporting capability and superior thermal stability. They can be readily vacuum deposited as thin films for use in EL devices.
  • Another feature of the present invention is the provision of doped EL devices of whole visible range desirable hue based on the principle of guest-host energy transfer to effect the spectral shift from host to guest.
  • the present invention relates to EL devices that are comprised of an anode and a cathode, and an organic luminescent medium between the anode and the cathode;
  • the organic electroluminescent medium includes an organic material or a mixture thereof of anthracene derivatives having the structure Formula I.
  • R 1 , R 2 , R 3 and R 4 are individual hydrogen, alkyl, or alkoxyl groups containing 1 to 16 carbon atoms, alkenyl groups containing at least one carbon-carbon double bond, aryl or substituted aryl group containing 6 to 24 carbon atoms, heteroaryl or substituted heteroaryl group containing 5 to 24 carbon atoms, amino group, N-alkylamino group, N-arylamino group, N,N-dialkylamino group, N,N-diaryl group, cyano group, perfluoroalkyl group containing 1-8 carbon atoms, chlorine, bromine, and fluorine; [0014] R 5 is alkyl group or perfluoroalkyl group containing 1 to 16 carbon atoms; aryl or substituted aryl group containing 6 to 40 carbon atoms; heteroaryl or substituted heteroaryl group containing 5 to 40 carbon atoms, and cyano group, chlorine, bromine, and
  • X is methylene group, dialkyl methylene and diaryl methylene groups, heteroatom such as oxygen, sulfur, or alkyl or aryl substituted amino groups, or dialkyl or diaryl substituted sityl groups, or carbonyl groups.
  • this novel class of anthracene derivatives are extremely useful for the production of full color EL display panel because appropriate EL hues or colors, including white, have been produced by a downhill energy transfer process.
  • a green or red EL emission have been produced by doping into anthracene derivatives with a small amount of green or red luminescent sensitizing dyes called dopants.
  • One novel class of coumarin derivatives acting as dopands in an EL devices that are comprised of materials of this invention is represented by the following Formula II.
  • R is hydrogen, alkyl of from 1-24 carbon atoms, aryl, hereoaryl or carbocyclic systems;
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are individually alkyl of from 1 to 20 carbon atoms, aryl or carbocyclic systems;
  • EDG is hydrogen, alkyl group of from 1-24 carbon atoms, aryl group of from
  • R 10 , R n and R n are individually alkylof from 1 to 20 carbon atoms, aryl or carbocyclic systems; R 11 and R 1 , R 11 and R 12 , and R 12 and R 2 taken together can form ring systems, such as p ⁇ eridine, julolidine, or tetramethyljulolidine.
  • R 11 and R 1 , R 11 and R 12 , and R 12 and R 2 taken together can form ring systems, such as p ⁇ eridine, julolidine, or tetramethyljulolidine.
  • Another class of anthracene derivatives acting as dopands in an EL devices are comprised of materials of this invention represented by the following Formula in.
  • R 1 is alkyl of from 1 to 20 carbon atoms
  • R and R 2 are individually hydrogen, alkyl of from 1 to 24 carbon atoms, aryl, hereoaryl group of from 5 to 24 carbon atoms.
  • R 1 , R 2 , R 3 , R 4 and R 5 are individual hydrogen, alkyl, or alkoxyl groups containing 1 to 16 carbon atoms, aryl or substituted aryl group containing 6 to 24 carbon atoms, heteroaryl or substituted heteroaryl group containing 5 to 24 carbon atoms;
  • X is methylene group, dialkyl methylene and diaryl methylene groups, S, O or NR, where R is hydrogen, alkyl, or alkoxyl groups containing 1 to 16 carbon atoms, aryl or substituted aryl group containing 6 to 24 carbon atoms.
  • EL organic electroluminescent
  • Figure 1 illustrates a five component electroluminescent device.
  • Figure 2 iEustrates a seven component electroluminescent device.
  • Figure 3 iEustrates a six component electroluminescent device.
  • Figure 4 illustrates a EL spectra of Example 10 and 11.
  • Figure 5 illustrates a PL spectra of compounds 111-20, lb-2 and lb-4 in dichloromethane.
  • Figure.1 illustrates an EL device which comprises an organic light emitting diode comprised of a supporting substrate 2 of, for example, glass, an anode 3, a vacuum deposited hole injecting and hole transporting layer 4 comprised of an aromatic amines, an electron injecting and electron transporting layer 5, and in contact therewith a low work function metal as a cathode 6.
  • a luminescent zone or medium in which the electron-hole recombination takes place with subsequent light emission, encompasses the hole transport layer 4 and/or the electron transport layer 5.
  • a fluorescent material which is capable of emitting light subsequent to electron-hole recombination, may be added to the luminescent zone wherein the charge transport component functions as the host material.
  • the light emitting diode is comprised of a supporting substrate 2 of, for example, glass, an anode 3, an aromatic amines of the formulas illustrated herein, organic hole transporting zone 4, an organic electron transporting zone 5, and in contact therewith a cathode 6.
  • the transporting zone is comprised of one or more transport layers as opposed to the single layer transporting zone of the device structure of Figure. 1.
  • the hole transporting zone 4 of Figure. 2 is comprised of a layer 4a, which facilitates hole injection, and a mixture of isomeric aromatic amines layer 4b, which transports hole carriers.
  • the electron transporting zone 5 is comprised of a layer 5a, which facilitates electron injection, and a layer 5b, which transports electrons.
  • the light emitting diode is comprised of a supporting substrate 2 of, for example, glass, an anode 3, an aromatic amines of the formulas illustrated herein, organic hole transporting zone 4, a light emitting layer 5b formed by deposition of pure luminescent materials or co-deposition luminescent host and another luminescent material as a luminescent dopand, an organic electron transporting zone 5a, and in contact therewith a cathode 6.
  • Illustrative examples of supporting substrates include polymeric components, glass and the like, and polyesters like MYLAR.RTM., polycarbonates, polyacrylates, polymethacrylates, polysulfones, quartz, and the like.
  • substrates can be selected provided, for example, that they are essentially nonfunctional and can support the other layers.
  • the thickness of the substrates can be, for example, from about 25 to about 1,000 microns or more, and preferably, from about 50 to about 6,000 microns depending, for example, on the structural demands of the device.
  • Examples of the anode contiguous to the substrate include positive charge injecting electrodes such as indium tin oxide, tin oxide, gold, platinum, or other materials, such as electrically conductive carbon, conjugated polymers such as polyaniline, porypyrrole, and the like, with, for example, a work function equal to, or, 1 greater than about 4 electron volts, and more specifically, from about 4 to about 6 electron volts.
  • the thickness of the anode can range from about 10 to about 5,000 Angstroms with the preferred range being dictated by the optical constants of the anode material. One preferred range of thickness is from about 20 to about 1,000 Angstroms (Angstroms).
  • the commonly used hole transport materials are triaryl amines or a mixture of amines, such as:
  • A,, A 2 , and A. represent individual components of the mixture of isomeric aromatic amines; these isomeric amines contain at least 24 carbon atoms and have a general molecular formula (2):
  • Ar 1 is an aryl group or substituted aryl group containing at bast 18 carbon atoms
  • Ar 2 and Ar 3 are individual aryl groups or substituted aryl groups containing at least 6 carbon atoms;
  • Each individual component (A l5 A 2 , and A réelle ) in the mixture has the same molecular formula. The difference of the individual component is the sequences of their atoms, or the point of attachment of substituents; a, b, — and x are the ratio of each of the components A ]t A 2 , A- in the mixture, range from 0 to 100%. The sum of a, b, — x is 1.
  • NPBX NPBX
  • a, b, and c are the ratio of each of the components in the isomeric mixture, range from 0 to 100%.
  • the sum of a, b, and c is 1.
  • the electron injecting and transporting zone in the EL devices of ihe present invention can be comprised of any conventional electron injecting and transporting compound or compounds.
  • useful electron transport compounds include fused ring luminescent materials such as anthracene, pentathrecene, pyrene, perylene, and the like, as illustrated by U.S. Pat. No.3, 172,862; butadienes such as 1,4- diphenylbutadiene and tetraphenylbutadiene, and stilbenes, and the Ike, as illustrated in U.S. Pat. Nos. 4,356,429 and 5,516,577; optical brighteners such as those disclosed by U.S. Pat. No.
  • the light-emitting layer of the organic EL medium comprises a luminescent or fluorescent material wherein electroluminescence is produced as a result of electron- hole pair recombination in this region.
  • the simplest construction comprises a singb component material forming the light- emitting layer, which comprises of an anthracene derivative or a mixture of anthracene derivatives represented by the general structural Formula:
  • R 1 , R 2 , R 3 and R 4 are hydrogen, alkyl, or alkoxyl groups containing 1 to 16 carbon atoms, alkenyl groups containing at least one carbon-carbon double bond, aryl or substituted aryl group containing 6 to 24 carbon atoms, heteroaryl or substituted heteroaryl group containing 5 to 24 carbon atoms, amino group, N- alkylamino group, N-arylamino group, N,N-dialkylamino group, N,N-diaryl group, cyano group, perfluoroalkyl group containing 1-8 carbon atoms, chbrine, bromine, and fluorine;
  • R 5 is alkyl group or perfluoroalkyl group containing 1 to 16 carbon atoms; aryl or substituted aryl group containing 6 to 40 carbon atoms; heteroaryl or substituted heteroaryl group containing 5 to 40 carbon atoms, and cyano group, chlorine, bromine, and fluorine.
  • X is methylene group, dialkyl methylene and diaryl methylene groups, hetero atom such as oxygen, sulfur, or alkyl or aryl substituted amino groups, or dialkyl or diaryl substituted silyl groups;
  • anthracene derivatives in accordance with the invention include those illustrated as follows. The following Examples are provided to further define various species of the present invention. It is noted that these examples are intended to illustrate but not to limit the scope of the present invention.
  • X is a methylene group, a dialkyl methylene or diaryl methylene group
  • the structural formula is preferably the following formula la.
  • a preferred embodiment of the luminescent layer comprises multi- component materials consisting of a host material doped with one or more components of fluorescent dyes or electron trapping agents. Using this method, highly efficient EL devices can be constructed. Simultaneously, the color of the EL devices can be tuned by using fluorescent dyes of different emission wavelengths in a common host material. This dopant scheme has been described in considerable detail for EL devices using Alq as the host material by Tang et al . Applied Physics, Vol. 65, Pages 3610-3616, 1989; U.S. Pat. No 4,769,292.
  • novel anthracene derivatives of this invention have sufficiently large bandgaps for effective energy transfer with a range of commonly available fluorescent dyes as dopants.
  • blue dopants include arylamines, coumarins, stilbenes, distrylstilbenes, anthracene derivatives, tetracene, perylene, and other conjugated benzenoids.
  • Other dopants for EL emissions at longer wavelengths include rubrene, quinacrydone and other green or red emitting fluorescent dyes.
  • preferred embodiment dopands are novel coumarin derivatives represented by the folbwing Formula II.
  • R is hydrogen, alkyl of from 1-24 carbon atoms, aryl, hereoaryl or carbocyclic systems;
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are individually alkyl of from 1 to 20 carbon atoms, aryl or carbocyclic systems;
  • EDG is hydrogen, alkyl group of from 1-24 carbon atoms, aryl group of from 5-24 carbon atoms, or electron donating groups, more typically are:
  • R 11 ⁇ R 12 wherein: R 10 , R n and R 12 are individually alkyl of from 1 to 20 carbon atoms, aryl or carbocyclic systems; R 11 and R 1 , R n and R 12 , and R 12 and R 2 taken together can form ring systems, such as piperidine, julolidine, or tetramethyljuloMine;
  • anthracene derivatives of this invention are represented by the following Formula III.
  • R 1 and R 2 are individually hydrogen, alkyl, or an aryl group of from 1 to 20 carbon atoms; R is hydrogen, or alkyl of from 1 to 24 carbon atoms, or aryl, or hereoaryl group of from 5 to 24 carbon atoms. Preferred examples are demonstrated but not limited to the following:
  • Preferred materials for using in forming an ebctron transporting layer of an EL medium comprises metal chelates of 8-hydroxyquinoline disclosed in U.S. Pat. Nos. 4,539,507; 5,151,629, and 5,150,006.
  • metal chelated compounds include tris(8-hydroxyquinolinate)alumi ⁇ um (AIQ3), tris(8- hydroxyquinolinate) gallium, bis(8-hydroxyquinolinate)magnesium, bis(8- hydroxyquinolinate)zinc, tris(5-methyl-8-hydroxyquinolinate)aluminu , tris(7- propyl-8-quinolinolato)alumi ⁇ um, bis-benzo-8-quinolinatezinc, bis(10- hydroxybenzoquinolinate)beryllium, bis(2-methylquinolinolato) aluminum(III)-.mu.- oxo-bis(2-methyl-8-quinolinolato) aluminum(IIl), bis(2-methyl-8-quinolinolato) (phenolato)aluminum, bis(2-methyl-8-quinolinolato) (para-phenylphenolato) aluminum, bis(2-methyl-8-quinolmolato)(2-naph
  • metal thioxinoid compounds Another class of preferred electron injecting and transporting compounds is metal thioxinoid compounds, disclosed in U.S. Pat. No. 5,648,542.
  • metal thioxinoid compounds include bis(8-quinolinethiolato), bis(8-quinolinethiolato) cadmium, fris(8-qu olinethiolato)galhum, tris(8- quinolinethiolato)indium, bis(5-methylquinolinethiolato)zinc, tris(5- methylquinolinethiolato)gallium, tris(5-methylquinolinethiolato)indium, bis(5- methylquinolinethiolato) cadmium, bis(3-methylquinolinethiolato)cadmium, bis(5- methykjuinolinethiolato)zinc, bisenzo-8-quinolinethiolato zinc, bis-methylbenzo-8- quinolinethiolatozinc, bis,
  • R 1 , R 2 , R 3 , R 4 and R 5 are individual hydrogen, alkyl, or alkoxyl groups containing 1 to 16 carbon atoms, aryl or substituted aryl group containing 6 to 24 carbon atoms, heteroaryl or substituted heteroaryl group containing 5 to 24 carbon atoms;
  • X is methylene group, dialkyl methylene and diaryl methylene groups, S, O or NR, where R is hydrogen, alkyl, or alkoxyl groups containing 1 to 16 carbon atoms, aryl or substituted aryl group containing 6 to 24 carbon atoms.
  • the benzole derivatives used as electron transport materials in fcn ning electron transporting zone in EL devices have several advantages. They possess high electron mobility with good film forming properly. After vacuum evaporation, the benzole derivatives appear as an amorphous thin film with good thermal stability. [0056]
  • the total thickness of the organic luminescent medium which includes the hole injecting and transporting zone 4 and the electron injecting and transporting zone 5, is preferably, for example, less than about 1 micron, for example from about 0.05 to about 1 micron, to maintain a current density compatible with an efficient light emission under a relatively low voltage applied across the electrodes.
  • Suitable thickness of the hole injecting and transporting layer 4 can range from about 50 to about 2,000 Angstrom, and preferably from about 400 to 1 ,000 Angstrom.
  • the thickness of the electron injecting and transporting layer 5 can range from about 50 to about 2,000 Angstrom, and preferably from about 400 to 1,000 Angstrom.
  • the cathode 6 can be comprised of any metal, including high or low work function metals.
  • the cathode that can be derived from a combination of low work function metals, for example less than about 4 eV, and more specifically from about 2 to about 4V, and at least one second metal can provide additional advantages such as improved device performances and stability.
  • Suitable proportions of the low work function metal to the second metal may range from less than about 0.1 percent to about 99.9 percent by weight, and in embodiments can be from about 1 to about 90 weight percent.
  • Illustrative examples of low work function metals include alkaline metals, Group 2A or alkaline earth metals, and Group III metals including rare earth metals and the actinide group metals. Lithium, magnesium and calcium are particularly preferred.
  • the thickness of cathode 6 ranges from, for example, about 10 to about 5,000 Angstroms, and more specifically, from about 50 to about 250 Angstroms.
  • the Mg:Ag cathodes of U.S. Pat. No.4,885,211 constitute one preferred cathode construction.
  • Another preferred cathode construction is described in U.S. Pat. No. 5,429,884, wherein the cathodes are formed from lithium alloys with other high work function metals such as aluminum and indium. The disclosures of each of the patents are totally incorporated herein by reference.
  • Both the anode 3 and cathode 6 of the organic EL devices, of the present invention can be of any convenient form.
  • a thin, for example about 200 Angstroms, conductive anode can be coated onto a light transmissive substrate, for example, a transparent or substantially transparent glass plate or plastic film.
  • the EL device can include a light transmissive anode 3 formed from tin oxide or indium tin oxide coated on a glass plate.
  • very thin, for example less than 200 Angstroms, such as from about 50 to about 200 Angstroms light-transparent metallic anodes, can be selected, such as gold, palladium, and the like.
  • conjugated polymers such as polyaniline, polypyrrole, and the like
  • suitable forms of the anode 3 and cathode 6 are illustrated by U.S. Pat. No. 4,885,211, the disclosure of which is totally incorporated herein by reference.
  • XisO, Sor ;and Y is H, alkyl or aryl R 1 equals R 3 and R 2 equals R 4 .
  • Pd(PPh 3 ) 4 (1.0 g, 0.8 mmol) and 300 mL of 2.0 M aqueous were added to a solution of 9.10-dibromoanthracene (34.0 g, 0.1 mol) 9,9-diethylfluorenyl- 2-boronic acid ( 40.0 g, 0.232 mol) in 600 mL of toluene and 100 mL of ethanol.
  • the reaction mixture was purged with nitrogen for 10 min. After refluxing overnight, the organic suspension layer was separated while hot and was added 300 mL of 2.0 N HC1 and refluxed for one hour with vigorous stirring. The aqueous layer was separated again while hot followed by washing with water three times until pH is about 7.
  • Pd(PPh 3 ) 4 (0.20 g) and 50 mL of 2.0 M aqueous Na 2 C0 3 were added to a solution of 2,7,9,10-tetrabromoanthracene (4.94 g, 0.01 mol) and 9,9- diethylfluorenyl-2-boronic acid ( 13.2 g, 0.05 mol) in 100 mL of toluene and 20 mL of ethanol.
  • the reaction mixture was purged with nitrogen for 10 min. After refluxing overnight, the organic suspension layer was separated while hot and was added 50 mL of 2.0 N HC1 and refluxed for 24 hour with vigorous stirring. The aqueous layer was separated again while hot followed by washing with water three times until pH is about 7.
  • Pd(PPh 3 ) 4 (0.20 g) and 30 mL of 2.0 M aqueous Na_C0 3 were added to a solution of 9-phenyl-lO-bromoanthracene (6.62 g, 0.02 mol) and 9,9- diethylfluorenyl-2-boronic acid ( 5.4 g, 0.02 mol) in 50 mL of toluene and 10 mL of ethanol.
  • the reaction mixture was purged with nitrogen for 10 min. After refluxing overnight, the organic suspension layer was separated while hot and was added 50 mL of 2.0 N HC1 and refluxed for two hour with vigorous stirring. The aqueous layer was separated again while hot followed by washing with water three times until pH is about 7.
  • Examples 10 to 36 were prepared in the following manner: 1. Indium tin oxide, 500 Angstroms in thickness, (ITO) coated glass, about 1 millimeter in thickness, was cleaned with a commercial detergent, rinsed with deionized water and dried in a vacuum oven at 60 °C. for 1 hour. Immediately before use, the glass was treated with UV ozone for 0.5 hour.
  • ITO Indium tin oxide, 500 Angstroms in thickness, (ITO) coated glass, about 1 millimeter in thickness, was cleaned with a commercial detergent, rinsed with deionized water and dried in a vacuum oven at 60 °C. for 1 hour. Immediately before use, the glass was treated with UV ozone for 0.5 hour.
  • the above prepared ITO substrate was placed in a vacuum deposition chamber.
  • the deposition rate and layer thickness were controlled by an Inficon Model IC/5 controller.
  • cupper phycynin CuPc was evaporated from an electricafly heated tantalum boat to deposit an 20 nanometer (200 Angstroms) hole injecting layer on the ITO glass layer.
  • the deposition rate of the CuPc was controlled at 0.4 nanometer/second.
  • an aromatic amine NPB or a mixture of isomeric aromatic amines NPBX was evaporated from an ebctrically heated tantalu boat to deposit an 80 nanometer (800 Angstroms) hole transport layer on the ITO glass layer.
  • the deposition rate of the amine compound was controlled at 0.6 nanometer/second.
  • novel anthracene derivatives, Formula I was deposited at an evaporation rate of 0.6 nanometer/second to form an 30 nanometer light emitting layer.
  • This light emitting layer can also formed by co-deposition with luminescent materials, Formula II, or another dopand such as perylene, tetraphenyl pyrene, coumarin-6, coumarine-C545T, DMQA or DCJTB.
  • the dopant concentration was controlled in the range from 0.1 to 5 mole per cent in the host. ⁇ 5.
  • novel benazole derivatives IV or commonly used metal chelate, aluminum 8-hydroxylquinolate (Alq) was deposited at an evaporation rate of 0.6 nanometer/second to form an 30 nanometer electron injecting and electron transporting layer.
  • a 100 nanometer magnesium silver alloy was deposited at a total deposition rate of 0.5 nanometer/second onto the electron injecting and electron transporting layer by simultaneous evaporation from two independently controlled tantalum boats containing Mg and Ag, respectively.
  • the typical composition was 9: 1 in atomic ratio of Mg to Ag.
  • a 200 nanometer silver layer was overcoated on the Mg:Ag cathode for the primary purpose of protecting the reactive Mg from ambient moisture.
  • the devices as prepared above were retained in a dry box that was continuously purged with nitrogen gas.
  • the performance of the devices was assessed by measuring its current-voltage characteristics and light output under a direct current measurement.
  • the current-voltage characteristics were determined with a Keithley Model 238 High Current Source Measure Unit.
  • the ITO electrode was always connected to the positive terminal of the current source.
  • the light output from the device was monitored by a silicon photodiode.
  • the performance characteristics of the devices in a general structure of ITO/ CuPc (20 nm)/ NPB (80 nm) /EML (30 nm)/ETL (30 nm)/ 9:1 Mg-Ag (100 nm) were evaluated under a constant current density of 40 rnA/cm 2 .
  • the initial light intensity and color chromaticity of these devices are summarized in the following tables: Table 1, Table 2, Table 3 and tabb 4.

Abstract

This invention relates to compositions and electroluminescent (EL) devices that have enhanced performance as a result of a novel class of anthracene derivatives used as host materials for a full range of color dopands. When using coumarin derivatives as color dopands in the anthracene derivatives in an EL device, the device performs a desirable light emitting efficiency and durability. The performance of the EL device can be further improved by using benazole derivatives as the electron transporting layer. The organic EL device of the present invention is useful in preparing display devices.

Description

ELECTROLUMINESCENT DEVICES
FIELD OF THE INVENTION
[0001] This invention relates to novel electroluminescent devices with enhanced performance, and which devices are desired that are capable of providing uniform luminescence with full visible spectra, high electroluminescent efficiency, excellent . durability, and bw driving voltages.
BACKGROUND OF THE INVENTION
[0002] Organic electroluminescent (EL) devices are generally composed of a single or multiple layers of organic materials sandwiched between transparent and metallic electrodes. Organic EL devices are attractive owing to the requirement for low driving voltage and the fact that they are generally simple and relatively easy and inexpensive to fabricate. Furthermore, the light generated by organic EL devices is sufficient for use in a variety of ambient light conditions (from little or no ambient light to bright ambient light). There has been an increased interest in developing energy-efficient flat-panel displays based on organic EL devices primarily because of their potential as an emissive display technology which offers unrestricted viewing angles and high luminescence output at low operating voltages. Because of these advantages, organic EL devices have a potential application in full color flat emissive displays as well as displays in smaE products, such as pagers, cellular and portable telephones, two-way radios, data banks, and other optical electronic devices.
[0003] While recent progress in organic EL research has elevated the potential of organic EL devices for widespread applications, the performance levels of current available devices may still be below expectations. Further, for visual display applications, organic luminescent materials should provide a satisfactory color in the visible spectrum, normally with emission maxima at about 460, 550 and 630 nanometers for blue, green and red. The commonly used metal complexes of 8- hydroxyquinoline, such as tois(8-hydroxyquinolinate)a miπum, generally fluoresce in green or the longer wavelength region. However, for blue-emitting EL devices these electron transport materials are of limited use. Although prior art organic materials may fluoresce in the blue region, the performance characteristics of the resulting EL devices still possess many disadvantages such as poor operation stability. Thus, there continues to be a need for organic materials, which are suitable for the design of EL devices with satisfactory emission in the visible spectrum of from blue to the longer wavelength region. There is also a need for organic materials, which can improve EL device operational stability and durability, and can enhance the EL charge transporting characteristics, thus lowering device driving voltages.
PRIOR ART
[0004] Prior art organic EL devices have been constructed from a laminate of an organic luminescent material and electrodes of opposite polarity, which devices include a single crystal material, such as single crystal anthracene, as the luminescent substance as described, for example, in U.S. Pat. No. 3,530,325. However, these devices require excitation voltages on the order of 100 volts or greater. Subsequent modifications of the device structure through incorporation of additional layers, such as charge injecting and charge transporting layers, have led to performance improvement. Illustrative examples of EL devices have been disclosed in publications by Tang et al. in J. Appl. Phys. vol. 65, pp. 3610 to 3616 (1989) and Saito et aL in Mol. Cryst. Liq. Cryst. YoL 253, pp. 125 to 132 (1994), the disclosures of which are totally incorporated herein by reference.
[0005] An EL device with an organic dual layer structure comprises one layer adjacent to the anode supporting hole injection and transport, and another layer adjacent to the cathode supporting electron injection and transport. The recombination of charge carriers and subsequent emission of light occurs in one of the layers near the interface between the two layers. In another configuration, an EL device can comprise three separate layers, a hole transport layer, an emission layer, and an electron transport layer, which are laminated in sequence and are sandwiched as a whole between an anode and a cathode. Optionally, fluorescent dopant materials can be added to the emission zone or layer whereby the recombination of holes and electrons results in the excitation of the fluorescent dopants. In the three layer organic EL device, the light-emitting layer provides an efficient site for the recombination of the injected hole-electron pair followed by the energy transfer .to the guest material and produces the highly efficient electroluminescence.
[0006] The emission zone or layer commonly consists of a host material doped with a guest materiaL The commonly used host materials in light-emitting layer are electron transport materials, such as 8-hydroxyquinoline aluminum complex. U.S. Pat. No. 4,769,292 discbses an EL device employing a luminescent zone comprised of an organic host material capable of sustaining hole-electron recombination and a fluorescent dye material capable of emitting light in response to energy released by hole-electron recombination. The host materials can be hole transporting layer, such as aryl amine (U.S. Pat. No. 5,989,737) or charge injection auxiliary material, such as stilbene derivatives (C. Hosokawa et al., Appl. Phys. Lett., 67(25) 3853, 1995). The doped guest material, also known as the dopant, is usually chosen from highly fluorescent dyes.
References - U.S. Patent Documents
U.S. Pat. No. 5,989,737
U.S. Pat. No.3,172,862 U.S. Pat. Nos. 4,356,429 and 5,516,577
U.S. Pat. No. 4,539,507
U.S. Pat. Nos. 5,151,629, and 5,150,006
U.S. Pat. No. 5,648,542
U.S. Pat. No.4,885,211 U.S. Pat. No. 5,429,884
SUMMARY OF THE INVENTION
[0007] It is a feature of the present invention to provide improved organic EL devices with many advantages described herein. [0008] It is another feature of the present invention to provide EL devices capable of providing satisfactory emission in the full range of visible spectrum from blue to longer wavelength regions, high eleclxoluminescent efficiency, excellent durability, and low driving voltages, and high brightness.
[0009] Yet in another feature of the present invention there are provided improved EL devices comprising an anode and a cathode, and an organic electroluminescent medium between the anode and the cathode, wherein the organic electroluminescent medium has at least one layer containing anthracene derivatives.
[0010] A further feature of the present invention is the provision of EL devices containing anthracene derivatives which possess excellent carrier injecting and transporting capability and superior thermal stability. They can be readily vacuum deposited as thin films for use in EL devices.
[0011] Another feature of the present invention is the provision of doped EL devices of whole visible range desirable hue based on the principle of guest-host energy transfer to effect the spectral shift from host to guest.
[0012] In embodiments, the present invention relates to EL devices that are comprised of an anode and a cathode, and an organic luminescent medium between the anode and the cathode; the organic electroluminescent medium includes an organic material or a mixture thereof of anthracene derivatives having the structure Formula I.
Figure imgf000005_0001
[0013] Wherein: R1, R2, R3 and R4 are individual hydrogen, alkyl, or alkoxyl groups containing 1 to 16 carbon atoms, alkenyl groups containing at least one carbon-carbon double bond, aryl or substituted aryl group containing 6 to 24 carbon atoms, heteroaryl or substituted heteroaryl group containing 5 to 24 carbon atoms, amino group, N-alkylamino group, N-arylamino group, N,N-dialkylamino group, N,N-diaryl group, cyano group, perfluoroalkyl group containing 1-8 carbon atoms, chlorine, bromine, and fluorine; [0014] R5 is alkyl group or perfluoroalkyl group containing 1 to 16 carbon atoms; aryl or substituted aryl group containing 6 to 40 carbon atoms; heteroaryl or substituted heteroaryl group containing 5 to 40 carbon atoms, and cyano group, chlorine, bromine, and fluorine. [0015] X is methylene group, dialkyl methylene and diaryl methylene groups, heteroatom such as oxygen, sulfur, or alkyl or aryl substituted amino groups, or dialkyl or diaryl substituted sityl groups, or carbonyl groups.
[0016] In accordance with the present invention, it has also been found that this novel class of anthracene derivatives are extremely useful for the production of full color EL display panel because appropriate EL hues or colors, including white, have been produced by a downhill energy transfer process. For example, a green or red EL emission have been produced by doping into anthracene derivatives with a small amount of green or red luminescent sensitizing dyes called dopants. [0017] One novel class of coumarin derivatives acting as dopands in an EL devices that are comprised of materials of this invention is represented by the following Formula II.
Figure imgf000006_0001
[0018] Wherein R is hydrogen, alkyl of from 1-24 carbon atoms, aryl, hereoaryl or carbocyclic systems;
[0019] R1, R2, R3, R4, R5, R6, R7, R8 and R9 are individually alkyl of from 1 to 20 carbon atoms, aryl or carbocyclic systems;
[0020] EDG is hydrogen, alkyl group of from 1-24 carbon atoms, aryl group of from
5-24 carbon atoms, or electron donating groups, more typically are:
— OR1 D
R 11
N: \R12
[0021] Wherein:R10, Rn and Rn are individually alkylof from 1 to 20 carbon atoms, aryl or carbocyclic systems; R11 and R1, R11 and R12, and R12 and R2 taken together can form ring systems, such as pφeridine, julolidine, or tetramethyljulolidine. [0022] Another class of anthracene derivatives acting as dopands in an EL devices are comprised of materials of this invention represented by the following Formula in.
Figure imgf000007_0001
Wherein: [0023] R1 is alkyl of from 1 to 20 carbon atoms; R and R2 are individually hydrogen, alkyl of from 1 to 24 carbon atoms, aryl, hereoaryl group of from 5 to 24 carbon atoms.
[0024] In accordance with the present invention, it has also been found that a novel class of benzole derivatives represented by the following Formula IV are typically useful as electron transport materials to form electron transporting layer, and at the same time function as hole block layer.
Figure imgf000008_0001
Wherein: [0025] R1, R2, R3, R4 and R5 are individual hydrogen, alkyl, or alkoxyl groups containing 1 to 16 carbon atoms, aryl or substituted aryl group containing 6 to 24 carbon atoms, heteroaryl or substituted heteroaryl group containing 5 to 24 carbon atoms;
[0026] X is methylene group, dialkyl methylene and diaryl methylene groups, S, O or NR, where R is hydrogen, alkyl, or alkoxyl groups containing 1 to 16 carbon atoms, aryl or substituted aryl group containing 6 to 24 carbon atoms. [0027] It is an advantage of the present invention, that the organic electroluminescent (EL) element, which belongs to anthracene, coumarine and benazole derivatives, or their combinations, provides thermally stable, glassy, and highly fluorescent materials in condensed thin films. As a result, organic EL devices employing certain of these derivatives in the light-emitting layer can produce full range of emission spectra and long operational stability. DRAWINGS
[0028] In drawings, which illustrate specific embodiments of the invention, but which, should not be construed as restricting the spirit or scope of the invention in anyway:
[0029] Figure 1 illustrates a five component electroluminescent device. [0030] Figure 2 iEustrates a seven component electroluminescent device. [0031] Figure 3 iEustrates a six component electroluminescent device. [0032] Figure 4 illustrates a EL spectra of Example 10 and 11. [0033] Figure 5 illustrates a PL spectra of compounds 111-20, lb-2 and lb-4 in dichloromethane.
DESCRIPTION OF EMBODIMENTS
[0034] Embodiments of the present invention will be described in more details with reference to the schematic diagram as provided in Figure. 1 and Figure. 2. More specifically, Figure.1 illustrates an EL device which comprises an organic light emitting diode comprised of a supporting substrate 2 of, for example, glass, an anode 3, a vacuum deposited hole injecting and hole transporting layer 4 comprised of an aromatic amines, an electron injecting and electron transporting layer 5, and in contact therewith a low work function metal as a cathode 6. In the EL device a luminescent zone or medium, in which the electron-hole recombination takes place with subsequent light emission, encompasses the hole transport layer 4 and/or the electron transport layer 5. Optionally, a fluorescent material, which is capable of emitting light subsequent to electron-hole recombination, may be added to the luminescent zone wherein the charge transport component functions as the host material.
[0035] In another embodiment as illustrated in Figure. 2, the light emitting diode is comprised of a supporting substrate 2 of, for example, glass, an anode 3, an aromatic amines of the formulas illustrated herein, organic hole transporting zone 4, an organic electron transporting zone 5, and in contact therewith a cathode 6. In this device structure, the transporting zone is comprised of one or more transport layers as opposed to the single layer transporting zone of the device structure of Figure. 1. Specifically, the hole transporting zone 4 of Figure. 2 is comprised of a layer 4a, which facilitates hole injection, and a mixture of isomeric aromatic amines layer 4b, which transports hole carriers. The electron transporting zone 5 is comprised of a layer 5a, which facilitates electron injection, and a layer 5b, which transports electrons.
[0036] In another embodiment as illustrated in Figure 3, the light emitting diode is comprised of a supporting substrate 2 of, for example, glass, an anode 3, an aromatic amines of the formulas illustrated herein, organic hole transporting zone 4, a light emitting layer 5b formed by deposition of pure luminescent materials or co-deposition luminescent host and another luminescent material as a luminescent dopand, an organic electron transporting zone 5a, and in contact therewith a cathode 6. [0037] Illustrative examples of supporting substrates include polymeric components, glass and the like, and polyesters like MYLAR.RTM., polycarbonates, polyacrylates, polymethacrylates, polysulfones, quartz, and the like. Other substrates can be selected provided, for example, that they are essentially nonfunctional and can support the other layers. The thickness of the substrates can be, for example, from about 25 to about 1,000 microns or more, and preferably, from about 50 to about 6,000 microns depending, for example, on the structural demands of the device. [0038] Examples of the anode contiguous to the substrate include positive charge injecting electrodes such as indium tin oxide, tin oxide, gold, platinum, or other materials, such as electrically conductive carbon, conjugated polymers such as polyaniline, porypyrrole, and the like, with, for example, a work function equal to, or,1 greater than about 4 electron volts, and more specifically, from about 4 to about 6 electron volts. The thickness of the anode can range from about 10 to about 5,000 Angstroms with the preferred range being dictated by the optical constants of the anode material. One preferred range of thickness is from about 20 to about 1,000 Angstroms (Angstroms). [0039] The commonly used hole transport materials are triaryl amines or a mixture of amines, such as:
Figure imgf000011_0001
NPB
Figure imgf000011_0002
NNTPB
Figure imgf000011_0003
Figure imgf000012_0001
NPTPA
[0040] Other preferred materials for use in forming the hole injecting and transporting zone of the EL devices are comprised of a mixture of isomeric aromatic amines represented by the following Formula (1)
[(AΛ + CAλ ÷ + (A„)X] (1) wherein:
A,, A2, and A. represent individual components of the mixture of isomeric aromatic amines; these isomeric amines contain at least 24 carbon atoms and have a general molecular formula (2):
Ar'
1— N
\
Ar β
(2)
Wherein:
Ar1 is an aryl group or substituted aryl group containing at bast 18 carbon atoms; Ar2 and Ar3 are individual aryl groups or substituted aryl groups containing at least 6 carbon atoms; Each individual component (Al5 A2, and A„ ) in the mixture has the same molecular formula. The difference of the individual component is the sequences of their atoms, or the point of attachment of substituents; a, b, — and x are the ratio of each of the components A]t A2, A- in the mixture, range from 0 to 100%. The sum of a, b, — x is 1.
[0041] The following examples represent a mixture of this isomeric aromatic amine used in EL devices comprising NPPX and NPBX.
Figure imgf000013_0001
NPPX
Figure imgf000013_0002
NPBX Wherein: a, b, and c are the ratio of each of the components in the isomeric mixture, range from 0 to 100%. The sum of a, b, and c is 1. [0042] These isomeric mixture aryl amines have advantages in improving thin film morphology properties, as a result, pinholes in the EL devices can be significantly reduced.
[0043] The electron injecting and transporting zone in the EL devices of ihe present invention can be comprised of any conventional electron injecting and transporting compound or compounds. Examples of useful electron transport compounds include fused ring luminescent materials such as anthracene, pentathrecene, pyrene, perylene, and the like, as illustrated by U.S. Pat. No.3, 172,862; butadienes such as 1,4- diphenylbutadiene and tetraphenylbutadiene, and stilbenes, and the Ike, as illustrated in U.S. Pat. Nos. 4,356,429 and 5,516,577; optical brighteners such as those disclosed by U.S. Pat. No. 4,539,507, the disclosures of which are totally incorporated herein by reference. [0044] The light-emitting layer of the organic EL medium comprises a luminescent or fluorescent material wherein electroluminescence is produced as a result of electron- hole pair recombination in this region. In the practice of the present invention, the simplest construction comprises a singb component material forming the light- emitting layer, which comprises of an anthracene derivative or a mixture of anthracene derivatives represented by the general structural Formula:
Figure imgf000014_0001
wherein:
R1, R2, R3 and R4 are hydrogen, alkyl, or alkoxyl groups containing 1 to 16 carbon atoms, alkenyl groups containing at least one carbon-carbon double bond, aryl or substituted aryl group containing 6 to 24 carbon atoms, heteroaryl or substituted heteroaryl group containing 5 to 24 carbon atoms, amino group, N- alkylamino group, N-arylamino group, N,N-dialkylamino group, N,N-diaryl group, cyano group, perfluoroalkyl group containing 1-8 carbon atoms, chbrine, bromine, and fluorine;
R5 is alkyl group or perfluoroalkyl group containing 1 to 16 carbon atoms; aryl or substituted aryl group containing 6 to 40 carbon atoms; heteroaryl or substituted heteroaryl group containing 5 to 40 carbon atoms, and cyano group, chlorine, bromine, and fluorine.
X is methylene group, dialkyl methylene and diaryl methylene groups, hetero atom such as oxygen, sulfur, or alkyl or aryl substituted amino groups, or dialkyl or diaryl substituted silyl groups;
[0045] Representative examples of anthracene derivatives in accordance with the invention include those illustrated as follows. The following Examples are provided to further define various species of the present invention. It is noted that these examples are intended to illustrate but not to limit the scope of the present invention. When X is a methylene group, a dialkyl methylene or diaryl methylene group, the structural formula is preferably the following formula la.
Figure imgf000015_0001
Compounds R1 R2, R3 R4 R5 R6 R7
Ia-1 H H H -Ph -Me -Me
Ia-2 H H H -Ph -Et -Et
Ia-3 H H t-Bu -Ph -Me -Me
Ia-4 H H t-Bu -Ph -Et -Et
Ia-5 H H H 2-naphthyl -Me -Me Ia-6 H H H 2-naphthyl -Et -Et
Ia-7 H H t-Bu 2-naphthyl -Me -Me
Ia-8 H H t-Bu 2-naphthyl -Et -Et
Ia-9 H H H CF3 -Me -Me Ia-10 H H H CF3 -Et -Et
Ia-11 H H t-Bu CF3 -Me -Me
Ia-12 H H t-Bu CF3 -Et -Et
Ia-13 H H H CN -Me -Me
Ia-14 H H H CN -Et -Et Ia-15 H H t-Bu CN -Me -Me
Ia-16 H H t-Bu CN -Et -Et
Ia-17 NPh2 H H CF3 -Me -Me
Ia-18 NPh2 H H CF3 -Et -Et
Ia-19 NPh2 H t-Bu CF3 -Me -Me Ia-20 NPh2 H t-Bu CF3 -Et -Et
Ia-21 NPh2 H H CN -Me -Me
Ia-22 NPh2 H H CN -Et -Et
Ia-23 NPh2 H t-Bu CN -Me -Me
Ia-24 NPh2 H t-Bu CN -Et -Et Ia-25 NPh2 H H -Ph -Me -Me
Ia-26 NPh2 H H -Ph -Ef -Et
Ia-27 NPh2 H t-Bu -Ph -Me -Me
Ia-28 NPh2 H t-Bu -Ph -Et -Et
Ia-29 NPh2 H H 2-naphthyl -Me -Me Ia-30 NPh2 H H 2-naphthyl -Et -Et
Ia-31 NPh2 H t-Bu 2-naphthyl -Me -Me
Ia-32 NPh2 H t-Bu 2-naphthyl -Et -Et
Ia-33 H H H -Ph -Bu -Bu
Ia-34 H H t-Bu -Ph -Bu -Bu Ia-35 H H H 2-naphthyl -Bu -Bu
Ia-36 H H t-Bu 2-naphthyl -Bu -Bu
Ia-37 H H H CF3 -Bu -Bu Ia-38 H H t-Bu CF3 -Bu -Bu
Ia-39 H H H CN -Bu -Bu
Ia-40 H H t-Bu CN -Bu -Bu
Ia-41 NPh2 H H CF3 -Bu -Bu Ia-42 NPh2 H t-Bu CF3 -Bu -Bu
Ia-43 NPh2 H H CN -Bu -Bu
Ia-44 NPh2 H t-Bu CN -Bu -Bu
Ia-45 NPh2 H H -Ph -Bu -Bu
Ia-46 NPh2 H t-Bu -Ph -Bu -Bu Ia-47 NPh2 H H 2-naphthyl -Bu -Bu
Ia-48 NPh2 H t-Bu 2-naphthyl -Bu -Bu
when R5 is
Figure imgf000017_0001
, more favorable molecular structure of
formula I becomes more typically formula lb.
Figure imgf000017_0002
Compounds R1 R2, R3 R4 R6 R7
Ib-1 H H H -Me -Me Ib-2 H H H -Et -Et
Ib-3 H H t-Bu -Me -Me
Ib-4 H H t-Bu -Et -Et Ib-5 NPh, H H -Me -Me
Ib-6 NPh2 H H -Et -Et
Ib-7 NPh2 H t-Bu -Me -Me
Ib-8 NPh2 H t-Bu -Et -Et Ib-9 Ph H H -Me -Me
Ib-10 Ph H H -Et -Et
Ib-11 Ph H t-Bu -Me -Me
Ib-12 Ph H t-Bu -Et -Et
Ib-13 H H H -Bu -Bu Ib-14 H H t-Bu -Bu -Bu
Ib-15 NPh2 H H -Bu -Bu
Ib-16 NPh2 H t-Bu -Bu -Bu
Ib-17 Ph H H -Bu -Bu
Ib-18 Ph H t-Bu -Bu -Bu
Ib-19 ^8 H H -Me -Me
Figure imgf000018_0001
when X is or alkyl or aryl substituted amino groups, R5 is
Figure imgf000019_0001
, more favorable molecular structure of formula I becomes
more typically formula Ic.
Figure imgf000019_0002
Compounds R1 R2 , R3 R4 Ra
Ic-1 H H H -Et
Ic-2 H H H -Ph
Ic-3 H H H 1-naphthyl
Ic-4 H H H 2-naphthyl
Ic-5 H H t-Bu -Et
Ic-6 / H H t-Bu -Ph
Ic-7 H H t-Bu 1-naphthyl
Ic-8 H H t-Bu 2-naphthyl
Ic-9 H NPh2 H -Et
Ic-10 H NPh2 H -Ph
Ib-11 H NPh2 H 1-naphthyl
Ic-12 H NPh2 H 2-naphthyl
Ic-13 H NPh2 t-Bu -Et
Ic-14 H NPh2 t-Bu -Ph
Ic-15 H NPh2 t-Bu 1-naphthyl
Ic-16 H NPh2 t-Bu 2-naphthyl
Figure imgf000020_0001
Ic-19 H H 1-naphthyl
Ic-20
Figure imgf000020_0002
H H 2-naphthyl
Figure imgf000020_0003
Ic-23 H t-Bu 1-naphthyl
Ic-24
Figure imgf000020_0004
H t-Bu 2-naphthyl
Figure imgf000020_0005
Ic-26 H H -Ph
Ic-27 H H 1-naphth
Ic-28 H
Figure imgf000020_0006
H 2-naphthyl
Figure imgf000020_0007
Figure imgf000021_0001
Ic-31 H -n J t-Bu 1-naphthyl
Ic-32 H - -N-0 t-Bu 2-naphthyl
[0046] A preferred embodiment of the luminescent layer comprises multi- component materials consisting of a host material doped with one or more components of fluorescent dyes or electron trapping agents. Using this method, highly efficient EL devices can be constructed. Simultaneously, the color of the EL devices can be tuned by using fluorescent dyes of different emission wavelengths in a common host material. This dopant scheme has been described in considerable detail for EL devices using Alq as the host material by Tang et al . Applied Physics, Vol. 65, Pages 3610-3616, 1989; U.S. Pat. No 4,769,292.
[0047] The novel anthracene derivatives of this invention have sufficiently large bandgaps for effective energy transfer with a range of commonly available fluorescent dyes as dopants. Examples of such blue dopants include arylamines, coumarins, stilbenes, distrylstilbenes, anthracene derivatives, tetracene, perylene, and other conjugated benzenoids. Other dopants for EL emissions at longer wavelengths include rubrene, quinacrydone and other green or red emitting fluorescent dyes. [0048] In the present invention, preferred embodiment dopands are novel coumarin derivatives represented by the folbwing Formula II.
Figure imgf000021_0002
Wherein:
R is hydrogen, alkyl of from 1-24 carbon atoms, aryl, hereoaryl or carbocyclic systems;
R1, R2, R3, R4, R5, R6, R7, R8 and R9 are individually alkyl of from 1 to 20 carbon atoms, aryl or carbocyclic systems;
EDG is hydrogen, alkyl group of from 1-24 carbon atoms, aryl group of from 5-24 carbon atoms, or electron donating groups, more typically are:
—OR1 0
R11 \R12 Wherein: R10, Rn and R12 are individually alkyl of from 1 to 20 carbon atoms, aryl or carbocyclic systems; R11 and R1, Rn and R12, and R12 and R2 taken together can form ring systems, such as piperidine, julolidine, or tetramethyljuloMine;
[0049] The following is a list of guest molecules, functioning as fluorescent sensitizing dyes, which are contemplated for use in the practice of the invention. Representative examples of coumarin derivatives in accordance with the invention include those illustrated as follows. The following examples are provided to further define various species of the present invention. It is noted that these examples are intended to illustrate but not limit the scope of the present invention
Figure imgf000022_0001
Comps. No. R R R'' ~~:R R66 RR77 R R88 R9 »ιo Ha-1 -Me H H H H -Me πa-2 -Me H H H H -Et
Ha-3 -Me H H H H -isopropyl πa-4 -Me H H H H -butyl
Ha-5 -Me H H H H -t-butyl πa-6 -Me H H H H Ph
IIa-7 -Et H H H H -Me πa-8 -Et H H H H -Et πa-9 -Et H . H H H -isopropyl
Ea-10 -Et H H H H -butyl πa-11 -Et H H H H -t-butyl πa-12 -Et H H H H Ph πa-13 Ph H H H H -Me πa-14 Ph H H H H -Et
Ha-15 Ph H H H H -isopropyl πa-16 Ph H H H H -butyl
Ha-17 Ph H H H H -t-butyl
Ha-18 Ph H H H H Ph πa-19 1-Naphthyl H H H H -Me πa-20 1-Naphthyl H H H H -Et
Ha-21 1-Naphthyl H H H H -isopropyl πa-22 1-Naphthyl H H H H -butyl
Ha-23 1-Naphthyl H H H H -t-butyl
Ha-24 1-Naphthyl H H H H Ph
Ha-25 p-biphenylyl H H H H -Me
Ha-26 p-biphenylyl H H H H -Et
Ha-27 p-biphenylyl H H H H -isopropyl
Ea-28 p-biphenylyl H H H H -butyl πa-29 p-biphenylyl H H H H -t-butyl
Ha-30 p-biphenylyl H H H H . Ph πa-31 -Me H -t-butyl H H -Me πa-32 -Me H , -t-butyl H H -Et πa-33 -Me H -t-butyl H H -isopropyl πa-34 -Me H -t-butyl H H -butyl πa-35 -Me H -t-butyl H H -t-butyl πa-36 -Me H -t-butyl H H Ph πa-37 -Et H H H -t-butyl -Me
Ha-38 -Et H H H . -t-butyl -Et πa-39 -Et H H H -t-butyl -isopropyl
Ha-40 -Et H H H -t-butyl -butyl πa-41 -Et H H H -t-butyl -t-butyl
Ha-42 -Et H H H -t-butyl Ph πa-43 Ph H -t-butyl H -t-butyl -Me
Ha-44 Ph H -t-butyl H -t-butyl -Et
IIa-45 Ph H -t-butyl H -t-butyl -isopropyl πa-46 Ph H -t-butyl H -t-butyl -butyl
Ha-47 Ph H -t-butyl H -t-butyl -t-butyl πa-48 Ph H -t-butyl H -t-butyl Ph
Figure imgf000024_0001
Comps. No. R R1 ~R6 R7 R8 R9 R" R12
πb-1 m-tolyl H H H H ■Me -Me
IIb-2 m-tolyl H H H H ■Et -Et
IIb-3 m-tolyl H H H H •Butyl : -Butyl πb-4 m-tolyl H H H H •Me Ph πb-5 m-tolyl H H H H Ph Ph
Hb-6 m-tolyl H H H H p-tolyl p-tolyl πb-7 -Et H H H H •Me -Me
IIb-8 -Et H H H H •Et -Et πb-9 -Et H H H H •Butyl L -Butyl
Figure imgf000025_0001
πb-12 -Et H H H H p-tolyl p-tolyl πb-13 Ph H H H H -Me -Me πb-14 Ph H H H H -Et -Et
Hb-15 Ph H H H H -Butyl -Butyl πb-16 Ph H H H H -Me Ph πab-17 Ph H H H H Ph Ph πb-18 Ph H H H H p-tolyl p-tolyl πb-19 1-Naphthyl H H H H -Me -Me πb-20 1-Naphthyl H H H H -Et -Et πb-21 1-Naphthyl H H H H -Butyl -Butyl πb-22 1-Naphthyl H H H H -Me Ph πb-23 1-Naphthyl H H H H Ph Ph πb-24 1-Naphthyl H H H H p-tolyl p-tolyl πb-25 p-biphenylyl H H H H -Me -Me πb-26 p-biphenylyl H H H H -Et -Et πb-27 p-biphenylyl H H H H -Butyl -Butyl
Hb-29 p-biphenylyl H H H H Ph Ph πb-30 p-biphenylyl H H H H p-tolyl p-tolyl πb-31 -Butyl H t-butyl H H -Me -Me
IIb-32 -Butyl H t-butyl H H -Et -Et πb-33 -Butyl H t-butyl H H -Butyl -Butyl πb-34 -Butyl H t-butyl H H -Me Ph πb-35 -Butyl H t-butyl H H Ph Ph πb-36 -Butyl H t-butyl H H p-tolyl p-tolyl πb-37 p-tolyl H H H t-butyl -Me -Me
Db-38 p-tolyl H H H t-butyl -Et -Et πb-39 p-tolyl H H H t-butyl -Butyl -Butyl
Hb-40 p-tolyl H H H t-butyl -Me Ph πb-41 p-tolyl H H H t-butyl Ph Ph πb-42 p-tolyl H H H t-butyl p-tolyl p-tolyl LTb-43 Ph H t-butyl H t-butyl -Me -Me
Hb-44 Ph H t-butyl H t-butyl -Et -Et
Hb-45 Ph H t-butyl H t-butyl -Butyl -Butyl
HIb-46 Ph H t-butyl H t-butyl -Me Ph πb-47 Ph H t-butyl H t-butyl Ph Ph
Hb-48 Ph H t-butyl H t-butyl p-tolyl p-tolyl
Figure imgf000026_0001
Comps. No. R R ~R6 R7 R8 R9 πc-1 m-tolyl H H H H 1 Hc-2 m-tolyl H t-butyl H H 1
Hc-3 m-tolyl H H t-butyl H 1
Hc-4 m-tolyl H H H H 2
Hc-5 m-tolyl H t-butyl H H 2
Hc-6 m-tolyl H H t-butyl H 2 πc-7 -Et H H H H 1
Hc-8 -Et H t-butyl H H 1
Hc-9 -Et H H t-butyl H 1
Hc-10 -Et H H H H 2 πc-11 -Et H t-butyl H H 2 πc-12 -Et H H t-butyl H 2
Hc-13 Ph H H H H 1 πic-14 Ph H t-butyl H H I
Hc-15 Ph H H t-butyl H 1
Hc-16 Ph H H H H 2 Hc-17 Ph H t-butyl H H 2 πc-18 Ph H H t-butyl H 2 πc-19 1-Naphthyl H H H H 1 πc-20 1-Naphthyl H t-butyl H H 1 πc-2i 1-Naphthyl H H t-butyl H 1
Hc-22 1-Naphthyl H H H H 2
Hc-23 1-Naphthyl H t-butyl H H 2 πc-24 1-Naphthyl H H t-butyl H 2 πc-25 p-biphenylyl H H H H 1 πc-26 p-biphenylyl H t-butyl H H 1
Hc-27 p-biphenylyl H H t-butyl H 1 πc-28 p-biphenylyl H H H H 2
Hc-29 p-biphenylyl H t-butyl H ' H 2 πc-30 p-biphenylyl H H t-butyl H 2 πc-3i -Butyl H H H H 1 πc-32 -Butyl H -t-butyl H H 1 πc-33 -Butyl H H -t-butyl H 1
Hc-34 -Butyl H H H H 2 πc-35 -Butyl H -t-butyl H H 2
Hc-36 -Butyl H H -t-butyl H 2 πc-37 p-tolyl H H H H 1
Hc-38 p-tolyl H -t-butyl H H 1
Hc-39 p-tolyl H H -t-butyl H 1 πc-40 p-tolyl H H H H 2 πc-4i p-tolyl H -t-butyl H H 2 πc-42 p-tolyl H H -t-butyl H 2
Figure imgf000028_0001
Coiqps. No. R R3~ R6 R7 R8 R9 R 1133 ~ ΏR16
πd-i m-tolyl H H H H H πd-2 m-tolyl H t-butyl H H H πd-3 m-tolyl H H t-butyl H H πd-4 m-tolyl H H H H Me
Hd-5 m-tolyl H t-butyl H H Me
Hd-6 m-tolyl H H t-butyl H Me πd-7 -Et H H H H H πd-8 -Et H t-butyl H H H πd-9 -Et H H t-butyl H H
Figure imgf000028_0002
πd-ιι -Et H t-butyl H H Me πd-12 -Et H H t-butyl H Me πd-13 Ph H H H H H πd-14 Ph H t-butyl H H H πd-15 Ph H H t-butyl H H
IId-16 Ph H H H H Me πd-17 Ph H t-butyl H H Me πd-18 Ph H H t-butyl H Me πd-19 1-Naphthyl H H H H H πd-20 1-Naphthyl H t-butyl H H H πd-21 1-Naphthyl H H t-butyl H H πd-22 1-Naphthyl H H H H Me πd-23 1-Naphthyl H t-butyl H H Me πd-24 1-Naphthyl H H t-butyl H Me Hd-25 p-biphenylyl H H H H H
Ed-26 p-biphenylyl H t-butyl H H H πd-27 ' p-biphenylyl H H t-butyl H H
Hd-28 p-biphenylyl H H H H Me
Hd-29 p-biphenylyl H t-butyl H H Me
Hd-30 p-biphenylyl H H t-butyl H Me
Hd-31 -Butyl H H H H H
Hd-32 -Butyl H -t-butyl H H H
IId-33 -Butyl H H -t-butyl H H πd-34 -Butyl H H H H Me πd-35 -Butyl H -t-butyl H H Me πd-36 -Butyl H H -t-butyl H Me
Hd-37 p-tolyl H H H H . H
Hd-38 p-tolyl H -t-butyl H H H
Hd-39 p-tolyl H H -t-butyl H H πd-40 p-tolyl H H H H Me πd-41 p-tolyl H -t-butyl H H Me πd-42 p-tolyl H H -t-butyl H Me
Figure imgf000030_0001
Comps. No. R R' - R6 R7 R8 R9 R 1,00 _~τR» ll
He-1 m-tolyl H H H H H πe-2 m-tolyl H t-butyl H H H πe-3 m-tolyl H H t-butyl H H πe-4 m-tolyl H H H H Me πe-5 m-tolyl H t-butyl H H Me πe-6 m-tolyl H H t-butyl H Me πe-7 -Et H H H H H πe-8 -Et H t-butyl H H H πe-9 -Et H H t-butyl H H
He-Id -Et H H H H Me
He-11 -Et H t-butyl H H Me πe-12 -Et H H t-butyl H Me
He-13 Ph H H H H NPh2 πe-14 Ph H t-butyl H H NPh2 πe-15 Ph H H t-butyl H NPh2 πe-16 Ph H H H H H
He-17 Ph H t-butyl H H H
He-18 Ph H H t-butyl H H
He-19 1-Naphthyl H H H H H
He-20 1-Naphthyl H t-butyl H H H
He-21 1-Naphthyl H H t-butyl H H πe-22 1-Naphthyl H H H H Me
He-23 1-Naphthyl H t-butyl H H Me πe-24 1-Naphthyl H H t-butyl H Me
He-25 p-biphenylyl H H H H H πe-26 p-biphenylyl H t-butyl H H H
He-27 p-biphenylyl H H t-butyl H H
Iϊe-28 p-biphenylyl H H H H Me
He-29 p-biphenylyl H t-butyl H H Me πe-30 p-biphenylyl H H . t-butyl H Me πe-31 -Butyl H H H H H
He-32 -Butyl H -t-butyl H H H
He-33 -Butyl H H -t-butyl H H
Lϊe-34 -Butyl H H H H Me πe-35 -Butyl H -t-butyl H H Me πe-36 -Butyl H H -t-butyl H Me
He-37 p-tolyl H H H H H πe-38 p-tolyl H -t-butyl H H H
He-39 p-tolyl H H -t-butyl H H
He-40 p-tolyl H H H H Me
He-41 p-tolyl H -t-butyl H H Me πe-42 p-tolyl H H -t-butyl H Me
[0050] In the present invention, another class of preferred dopants or guest materials are novel class of anthracene derivatives. Such anthracene derivatives of this invention are represented by the following Formula III.
Figure imgf000032_0001
Wherein:
R1 and R2 are individually hydrogen, alkyl, or an aryl group of from 1 to 20 carbon atoms; R is hydrogen, or alkyl of from 1 to 24 carbon atoms, or aryl, or hereoaryl group of from 5 to 24 carbon atoms. Preferred examples are demonstrated but not limited to the following:
Compounds R R1 R2 πι-ι H H H πι-2 H H H
Figure imgf000032_0002
πι-4 Me H H
Figure imgf000032_0003
πι-7 Ph H H πι-8 Ph H H πι-9 Ph t-Bu H iπ-io 1-naphthyl H H πi-π 1-naphthyl H H m-i2 1-naphthyl t-Bu H m-13 2-naphthyl H H m-i4 2-naphthyl H H m-i5 2-naphthyl t-Bu H
Figure imgf000033_0001
Figure imgf000033_0002
[0051] The following fluorescent dyes are also useful as dopants in the present invention.
Figure imgf000033_0003
Perylene
Figure imgf000033_0004
Figure imgf000033_0005
Figure imgf000033_0006
Figure imgf000034_0001
Tetraphenyl pyrene
Figure imgf000034_0002
Figure imgf000034_0003
Figure imgf000034_0004
Figure imgf000035_0001
Figure imgf000035_0002
Figure imgf000035_0003
Figure imgf000035_0004
10
Figure imgf000036_0001
Coumarine-545T -26
Figure imgf000036_0002
DMQA TH-27
Figure imgf000036_0003
DCJTB HI-28
[0052] Preferred materials for using in forming an ebctron transporting layer of an EL medium comprises metal chelates of 8-hydroxyquinoline disclosed in U.S. Pat. Nos. 4,539,507; 5,151,629, and 5,150,006. Illustrative examples of the metal chelated compounds include tris(8-hydroxyquinolinate)alumiπum (AIQ3), tris(8- hydroxyquinolinate) gallium, bis(8-hydroxyquinolinate)magnesium, bis(8- hydroxyquinolinate)zinc, tris(5-methyl-8-hydroxyquinolinate)aluminu , tris(7- propyl-8-quinolinolato)alumiπum, bis-benzo-8-quinolinatezinc, bis(10- hydroxybenzoquinolinate)beryllium, bis(2-methylquinolinolato) aluminum(III)-.mu.- oxo-bis(2-methyl-8-quinolinolato) aluminum(IIl), bis(2-methyl-8-quinolinolato) (phenolato)aluminum, bis(2-methyl-8-quinolinolato) (para-phenylphenolato) aluminum, bis(2-methyl-8-quinolmolato)(2-naphmablato)aluminum, and the like. [0053] The disclosures of each of the above patents are totally incorporated herein by reference. Another class of preferred electron injecting and transporting compounds is metal thioxinoid compounds, disclosed in U.S. Pat. No. 5,648,542. Illustrative examples of metal thioxinoid compounds include bis(8-quinolinethiolato), bis(8-quinolinethiolato) cadmium, fris(8-qu olinethiolato)galhum, tris(8- quinolinethiolato)indium, bis(5-methylquinolinethiolato)zinc, tris(5- methylquinolinethiolato)gallium, tris(5-methylquinolinethiolato)indium, bis(5- methylquinolinethiolato) cadmium, bis(3-methylquinolinethiolato)cadmium, bis(5- methykjuinolinethiolato)zinc, bisenzo-8-quinolinethiolato zinc, bis-methylbenzo-8- quinolinethiolatozinc, bis,7-(3imethylbenzo-8-quinolinethiolato zinc, and the like. [0054] Particularly preferred electron transport materials for using in forming an electron transporting layer of an EL medium comprises of benazole derivatives represented by the following Formula IV:
Figure imgf000037_0001
wherein:
R1, R2, R3, R4 and R5 are individual hydrogen, alkyl, or alkoxyl groups containing 1 to 16 carbon atoms, aryl or substituted aryl group containing 6 to 24 carbon atoms, heteroaryl or substituted heteroaryl group containing 5 to 24 carbon atoms; X is methylene group, dialkyl methylene and diaryl methylene groups, S, O or NR, where R is hydrogen, alkyl, or alkoxyl groups containing 1 to 16 carbon atoms, aryl or substituted aryl group containing 6 to 24 carbon atoms.
[0055] Representative examples of this benazole derivatives TV in accordance with the invention include those illustrated as follows. The folbwing Examples are provided to further define various species of the present invention. It is noted that these examples are intended to illustrate but not to limit the scope of the present invention.
Figure imgf000038_0001
Compounds R\ R3 R2, R4 X R5
IV-1 H H O H
IV-2 H H O t-Bu
Figure imgf000038_0002
ΓV-4 H t-Bu O t-Bu
ΓV-5 t-Bu H 0 H
ΓV-6 t-Bu H 0 t-Bu
ΓV-7 t-Bu t-Bu O H
ΓV-8 t-Bu t-Bu 0 t-Bu
ΓV-9 H H s H
ΓV-IO H H s t-Bu
IV-ll H - t-Bu s H
IV-12 H t-Bu s t-Bu
IV-13 t-Bu H s H
Figure imgf000038_0003
IV-15 t-Bu t-Bu S H
IV-16 t-Bu t-Bu S t-Bu
IV-17 H H -NMe H
Figure imgf000039_0001
IV-19 H t-Bu -NMe H
Figure imgf000039_0002
IV-22 t-Bu H -NMe t-Bu
W-23 t-Bu t-Bu -NMe H IV-24 t-Bu t-Bu -NMe t-Bu
IV-25 H H -NPh H
IV-26 H H -NPh t-Bu
IV-27 H t-Bu -NPh H
Figure imgf000039_0003
IV-29 t-Bu H -NPh H
Figure imgf000039_0004
IV-31 t-Bu t-Bu -NPh H
IV-32 t-Bu t-Bu -NPh t-Bu
IV-33 H H -CMe2 H IV-34 H H -CMe2 t-Bu
IV-35 H t-Bu -CMe2 H
IV-36 H t-Bu -CMe2 ' t-Bu
IV-37 t-Bu H -CMe2 H
IV-38 t-Bu H -CMe2 t-Bu IV-39 t-Bu t-Bu -CMe2 H
IV-40 t-Bu t-Bu -CMe2 t-Bu
The benzole derivatives used as electron transport materials in fcn ning electron transporting zone in EL devices have several advantages. They possess high electron mobility with good film forming properly. After vacuum evaporation, the benzole derivatives appear as an amorphous thin film with good thermal stability. [0056] In embodiments of the present invention, the total thickness of the organic luminescent medium, which includes the hole injecting and transporting zone 4 and the electron injecting and transporting zone 5, is preferably, for example, less than about 1 micron, for example from about 0.05 to about 1 micron, to maintain a current density compatible with an efficient light emission under a relatively low voltage applied across the electrodes. Suitable thickness of the hole injecting and transporting layer 4 can range from about 50 to about 2,000 Angstrom, and preferably from about 400 to 1 ,000 Angstrom. Similarly, the thickness of the electron injecting and transporting layer 5 can range from about 50 to about 2,000 Angstrom, and preferably from about 400 to 1,000 Angstrom.
[0057] The cathode 6 can be comprised of any metal, including high or low work function metals. The cathode that can be derived from a combination of low work function metals, for example less than about 4 eV, and more specifically from about 2 to about 4V, and at least one second metal can provide additional advantages such as improved device performances and stability. Suitable proportions of the low work function metal to the second metal may range from less than about 0.1 percent to about 99.9 percent by weight, and in embodiments can be from about 1 to about 90 weight percent. Illustrative examples of low work function metals include alkaline metals, Group 2A or alkaline earth metals, and Group III metals including rare earth metals and the actinide group metals. Lithium, magnesium and calcium are particularly preferred.
[0058] The thickness of cathode 6 ranges from, for example, about 10 to about 5,000 Angstroms, and more specifically, from about 50 to about 250 Angstroms. The Mg:Ag cathodes of U.S. Pat. No.4,885,211 constitute one preferred cathode construction. Another preferred cathode construction is described in U.S. Pat. No. 5,429,884, wherein the cathodes are formed from lithium alloys with other high work function metals such as aluminum and indium. The disclosures of each of the patents are totally incorporated herein by reference.
[0059] Both the anode 3 and cathode 6 of the organic EL devices, of the present invention can be of any convenient form. A thin, for example about 200 Angstroms, conductive anode can be coated onto a light transmissive substrate, for example, a transparent or substantially transparent glass plate or plastic film. The EL device can include a light transmissive anode 3 formed from tin oxide or indium tin oxide coated on a glass plate. Also, very thin, for example less than 200 Angstroms, such as from about 50 to about 200 Angstroms light-transparent metallic anodes, can be selected, such as gold, palladium, and the like. In addition, transparent or semitransparent thin, for example 200 Angstroms, conjugated polymers, such as polyaniline, polypyrrole, and the like, can be selected as anodes. Further, suitable forms of the anode 3 and cathode 6 are illustrated by U.S. Pat. No. 4,885,211, the disclosure of which is totally incorporated herein by reference.
Examples
[0060] The following Examples are provided to further define various species of the present invention. It is noted that these Examples are intended to illustrate but not limit the scope of the present invention.
General Synthesis
Figure imgf000041_0001
Figure imgf000041_0002
lb
Figure imgf000042_0001
Ic
Scheme 1. General synthesis of anthracene derivatives I
Figure imgf000042_0002
II
Scheme 2. General synthesis of coumarin derivatives II
Figure imgf000043_0001
IV
wherein:
XisO, Sor ;and Y is H, alkyl or aryl R1 equals R3 and R2 equals R4.
Scheme 3. General synthesis of benazole derivatives IV Example 1. Synthesis of 9,9-Diethylfluorene
[0061] To a mechanically stirred mixture of fluorine (83.2 g. 0.5 mol.), powdered potassium hydroxide (140 g., 2.5 mol), potassium iodide (4.0 g., 0.024 mol) and DMSO (225 ml), cooled to 15-20 °C, bromoethane (104 ml., 151.84 g., 1.39 moL) was added over a period of 1.5 hours, and allowed to stir at room temperature overnight. The mixture was diluted with water (1200 ml), and extracted with toluene (2 X 400 ml). The toluene extract was washed with water, dried and concentrated to get 116.66 g., of a red oil. This was distilled at 1.2 mm, b.p. 125 °C. to get a colorless oi, that solidified, 104.32 g., (94 % yield).
Example 2. Synthesis of 2-Bromo-9,9-diethyIfluorene
[0062] To a solution of diethylfluorene (22.2 g., 0.1 mol) in propylene carbonate (100 ml), N-bromosuccinimide (17.8 g., O.lmol.) was added at 57 °C. in portions and the mixture was stirred for 30 minutes at 60 °C. The mixture was diluted with 1200 ml of water and extracted with 500 ml of toluene. The toluene extract was washed 3 times with 300 ml portions of water, dried and concentrated. The crude product from 3 batches of the same size totaled 117 g. oil This was distilled at 2 mm. The first fraction, b.p. 90-93 °C, 22.33 g., was found to be propylene carbonate. The second fraction, b. p. 155-165 °C, 81.0 g. (89.7% yield), was the desired compound.
Example 3. Synthesis of 9,9-diethylfluorenyl-2-boronic acid
A solution of n-BuLi (1.6 M in hexane, 100 mL, 0.16 mol) was added via an addition funnel to 2-bromo-9,9-diethylfluorene prepared by example 2 (42.0 g, 0.14 mol) in 200 mL of dry THF at -78 C. The yelbw suspension was stirred at this temperature for a half hour, a solution of B(OMe)3 (26.6 mL, 29.1 g, 0.28 mol) in 150 mL of dry THF was added dropwise, with the temperature kept below -60 °C. The resulting colorless solution was allowed to warm to room temperature 2 hour, then 300 mL of 5 M HC1 was added and the mixture stirred for a further one hour under nitrogen. Water and ether were added, and the aqueous layer was extracted several times with ether. The combined organic extracts were dried over MgS04 and evaporated under reduced pressure to yield a white solid (34.0 g, 95%), which was used in the coupling reaction without further purification.
Example 4. Synthesis of 9,10-di[2-(9,9-diethylfluorenyl)]anthracene (compound Ib-2)
Pd(PPh3)4 (1.0 g, 0.8 mmol) and 300 mL of 2.0 M aqueous were added to a solution of 9.10-dibromoanthracene (34.0 g, 0.1 mol) 9,9-diethylfluorenyl- 2-boronic acid ( 40.0 g, 0.232 mol) in 600 mL of toluene and 100 mL of ethanol. The reaction mixture was purged with nitrogen for 10 min. After refluxing overnight, the organic suspension layer was separated while hot and was added 300 mL of 2.0 N HC1 and refluxed for one hour with vigorous stirring. The aqueous layer was separated again while hot followed by washing with water three times until pH is about 7. The precipitates from the organic layer was filtered and purified by chromatography.47.5 g of pure 9,10-di[2-(9,9-diethylfluorenyl)]anthracene (compound Ib-2) was obtained. Yield 80.0%. Example 5. Synthesis of 2-tert-butyl-9,10-di[2-(9,9- diethylfluorenyl)] anthracene (compound Ib-4)
Pd(PPh3)4 (0.50 g, 0.4 mmol) and 150 mL of 2.0 M aqueous Na2C03 were added to a solution of 2-tert-butyl-9.10-dibromoanthracene (19.8 g, 0.05 mol) 9,9- diethylfluorenyl-2-boronic acid ( 20.0 g, 0.12 mol) in 300 mL of toluene and 50 mL of ethanol. The reaction mixture was purged with nitrogen for 10 min. After refluxing overnight, the organic suspension layer was separated while hot and was added 150 mL of 2.0 N HC1 and refluxed for one hour with vigorous stirring. The aqueous layer was separated again while hot followed by washing with water three times until pH is about 7. The precipitates from the organic layer was filtered and purified by chromatography. 27.4 g of pure 2-tert-butyl-9,10-di[2-(9,9- diethylfluorenyl)]anthracene (compound Ib-4) was obtained. Yield 80.0%.
Example 6. Synthesis of 2,7,9,10-tetras[2-(9,9-diethylfluorenyl)]anthracene (compound Ul-22)
Pd(PPh3)4 (0.20 g) and 50 mL of 2.0 M aqueous Na2C03 were added to a solution of 2,7,9,10-tetrabromoanthracene (4.94 g, 0.01 mol) and 9,9- diethylfluorenyl-2-boronic acid ( 13.2 g, 0.05 mol) in 100 mL of toluene and 20 mL of ethanol. The reaction mixture was purged with nitrogen for 10 min. After refluxing overnight, the organic suspension layer was separated while hot and was added 50 mL of 2.0 N HC1 and refluxed for 24 hour with vigorous stirring. The aqueous layer was separated again while hot followed by washing with water three times until pH is about 7. The organic solvents were revolved via vacuum rotary evaporator then precipitates from the organic layer was filtered and purified by chromatography. 7.4 g of pure 2, 7,9, 10-tetras[2-(9,9-diethylfluorenyl)]anthracene (compound HΪ-22) was obtained. Yield 74.0%. Example 7. Synthesis of 9-phenyl-10-[2-(9,9-diethylfluorenyl)]anthracene (compound Ia-2)
Pd(PPh3)4 (0.20 g) and 30 mL of 2.0 M aqueous Na_C03 were added to a solution of 9-phenyl-lO-bromoanthracene (6.62 g, 0.02 mol) and 9,9- diethylfluorenyl-2-boronic acid ( 5.4 g, 0.02 mol) in 50 mL of toluene and 10 mL of ethanol. The reaction mixture was purged with nitrogen for 10 min. After refluxing overnight, the organic suspension layer was separated while hot and was added 50 mL of 2.0 N HC1 and refluxed for two hour with vigorous stirring. The aqueous layer was separated again while hot followed by washing with water three times until pH is about 7. The organic solvents were removed via vacuum rotary evaporator then precipitates from the organic layer was filtered and purified by chromatography. 8.7 g of pure 9-phenyl-10-[2-(9,9-diethylfluorenyl)]anthracene (compound Ia-2) was obtained. Yield 91.0%.
Example 8. Synthesis of 2-cyanophenylbenzimidazole
In a 250 mL of round flask are combined ethyl cyanoacetate (14.2 g, 0.12 mol), N-phenyl-l,2-phenylenediamine (15.5 g, 0.084 mol) and 15 mL of bis(2methoxyethyl)ether. The reaction mixture is heated, with stirring to 150 ~160 C for three hours while water and ethanol by-products is distilled over. After cooling the reaction mixture was added 10 mL of isopropyl alcohol. The crude product is precipitated out and filtered. The 12.5 g of pure 2-cyanophenylbenzimidazole was obtained. Yield 65.0.0%.
Example 9. Synthesis of N-phenylimidazole-2,3,6,7-tetrahydro-N,N-diethyl- llH,5H,HH-(l)benzopyropyrano(6,7,8-ij)quinolizin-ll-one (Compound Hb-14)
To a 250 mL of round flask are combined 4-die1hylamino-2- hydroxybenzaldehyde (6.2 g, 3.2 mmol), 2-cyanophenylbenzimidazole (7.4 g, 3.2 mmol) and 30 mL of N,N-dimethylformamide. The reaction mixture is heated, with stirring to 50 C, then 3 ml of HC1 was added to reaction mixture. Heating is continue for an half hour at 90 °C another 6 mL of HC1 was added and red-orange mixture is heated at 90 °C for an additional 30 min. After cooling the reaction mixture was added, with cooling and stirring, to 120 mL of distilled water. The resulting precipitates are filtered and washed with distilled water. A saturated sodium carbonate is added dropwise to the suspension which prepared from above obtained precipitates in 100 mL of distilled water with stirring until the pH is about 7~8. Then the precipitates are filtered, washed with distilled water, cool alcohol.9.1 g of pure of N-phenylimidazole-2,3,6,7-tetrahydro-N,N-diethyl-llH,5H,llH- (l)benzopyropyrano(6,7,8-i j)quinolizin-ll-one (Compound Db-14) was obtained. Yield 70.0%.
Fabrication of organic EL devices:
Examples 10 to 36 were prepared in the following manner: 1. Indium tin oxide, 500 Angstroms in thickness, (ITO) coated glass, about 1 millimeter in thickness, was cleaned with a commercial detergent, rinsed with deionized water and dried in a vacuum oven at 60 °C. for 1 hour. Immediately before use, the glass was treated with UV ozone for 0.5 hour.
2. The above prepared ITO substrate was placed in a vacuum deposition chamber. The deposition rate and layer thickness were controlled by an Inficon Model IC/5 controller. Under a pressure of slightly less than about 5X10"6 Torr, cupper phycynin CuPc was evaporated from an electricafly heated tantalum boat to deposit an 20 nanometer (200 Angstroms) hole injecting layer on the ITO glass layer. The deposition rate of the CuPc was controlled at 0.4 nanometer/second. 3. Onto the hole transport layer, an aromatic amine NPB or a mixture of isomeric aromatic amines NPBX was evaporated from an ebctrically heated tantalu boat to deposit an 80 nanometer (800 Angstroms) hole transport layer on the ITO glass layer. The deposition rate of the amine compound was controlled at 0.6 nanometer/second.
4. Onto the hole transport layer, novel anthracene derivatives, Formula I, was deposited at an evaporation rate of 0.6 nanometer/second to form an 30 nanometer light emitting layer. This light emitting layer can also formed by co-deposition with luminescent materials, Formula II, or another dopand such as perylene, tetraphenyl pyrene, coumarin-6, coumarine-C545T, DMQA or DCJTB. The dopant concentration was controlled in the range from 0.1 to 5 mole per cent in the host. < 5. Onto the light emitting layer, novel benazole derivatives IV or commonly used metal chelate, aluminum 8-hydroxylquinolate (Alq) was deposited at an evaporation rate of 0.6 nanometer/second to form an 30 nanometer electron injecting and electron transporting layer.
6. A 100 nanometer magnesium silver alloy was deposited at a total deposition rate of 0.5 nanometer/second onto the electron injecting and electron transporting layer by simultaneous evaporation from two independently controlled tantalum boats containing Mg and Ag, respectively. The typical composition was 9: 1 in atomic ratio of Mg to Ag. Finally, a 200 nanometer silver layer was overcoated on the Mg:Ag cathode for the primary purpose of protecting the reactive Mg from ambient moisture.
The devices as prepared above were retained in a dry box that was continuously purged with nitrogen gas. The performance of the devices was assessed by measuring its current-voltage characteristics and light output under a direct current measurement. The current-voltage characteristics were determined with a Keithley Model 238 High Current Source Measure Unit. The ITO electrode was always connected to the positive terminal of the current source. At the same time, the light output from the device was monitored by a silicon photodiode. The performance characteristics of the devices in a general structure of ITO/ CuPc (20 nm)/ NPB (80 nm) /EML (30 nm)/ETL (30 nm)/ 9:1 Mg-Ag (100 nm) were evaluated under a constant current density of 40 rnA/cm2. The initial light intensity and color chromaticity of these devices are summarized in the following tables: Table 1, Table 2, Table 3 and tabb 4.
Table 1. ITO/ CuPc (20 nm)/NPB (80 nm) /EML (30 nm)/Alq(30 nm)/ 9:1 Mg-Ag (100 nm)
Figure imgf000050_0001
These results demonstrate that a sustained high level of blue light output can be achieved in the organic EL devices comprising an anthracene host Ib-2 and a perylene blue dopand.
Table 2. ITO/ CuPc (20 nm)/NPB (80 nm) /EML (30 nm)/IV-25 (30 nm)/ 9:1 Mg-Ag (100 nm)
Figure imgf000050_0002
These results demonstrate that more efficient blue light output can be achieved in the organic EL devices comprising an anthracene host Ib-2 and a perylene blue dopand byusing an anthracene derivative IV-25 instead of Alq (see example 15).
Table 3. ITO/ CuPc (20 nm)/NPB (80 nm) /EML (30 nm)/Alq (30 nm)/ 9:1 Mg-Ag (100 nm)
Figure imgf000051_0001
These results demonstrate that a sustained high fevel of blue-green light output can be achieved in the organic EL devices comprising an anthracene host Ib-2 and coumarins IId-16 and UI-26. However, energy transfer is not efficient by using Alq as host and coumarin Hd-16 as dopand.
Table 4.
ITO/ CuPc (20 nm)/ NPB (80 ran) /EML (30 nm)/Alq (30 nm)/ 9:1 Mg-Ag (100 nm)
Figure imgf000051_0002
These results demonstrate that a sustained high level of red light output can be achieved in organic EL devices comprising an anthracene host (Ib-2) and an DCJTB red dopand (JJI-28).
As will be apparent to those skilled in the art in the light of the foregoing disclosure, many alterations and modifications are possible in the practice of this invention without departing from the spirit or scope thereof. Accordingly, the scope of the invention is to be construed in accordance with the substance defined by the following claims.

Claims

CLAIMS:
1. An organic electroluminescent device comprising an anode, an organic medium including a hole injecting and transport layer, a light-emitting layer, an electron injecting and transport layer and a cathode, wherein: the light-emitting layer of the organic EL medium comprises as host one or more anthracene derivatives or a mixture of one or more anthracene derivatives as host and other dopants of the following general structural formula:
Figure imgf000053_0001
wherein:
R\ R2, R3 and R4 are individually hydrogen, alkyl or alkoxyl groups containing 1 to 16 carbon atoms, alkenyl groups containing at least one carbon-carbon doubb bond, aryl or substituted aryl group containing 6 to 24 carbon atoms, heteroaryl or substituted heteroaryl group containing 5 to 24 carbon atoms, amino group, N- alkylamino group, N-arylamino group, N,N-dialkylamino group, N,N-diaryl group, cyano group, perfluoroalkyl group containing 1-8 carbon atoms, chbrine, bromine, and fluorine;
R5 is alkyl group or perfluoroalkyl group containing 1 to 16 carbon atoms; aryl or substituted aryl group containing 6 to 24 carbon atoms; heteroaryl or substituted heteroaryl group containing 5 to 24 carbon atoms, and cyano group, chlorine, bromine, and fluorine, and
X is methylene group, dialkyl methylene and diaryl methylene groups, hetero atom such as oxygen, sulfur, or alkyl or aryl substituted amino groups, or dialkyl or diaryl substituted sϋyl groups; and as a dopant one or more substances selected from the group consisting of: one or more luminescent coumarin derivatives of the following general formula:
Figure imgf000054_0001
wherein:
R is hydrogen, alkyl of from 1-24 carbon atoms, aryl hereoaryl or carbocyclic systems;
R\ R2, R3, R4, R5, R6, R7, R8 and R9 are individually alkyl of from 1 to 20 carbon atoms, aryl or carbocychc systems;
EDG is hydrogen, alkyl group of from 1-24 carbon atoms, aryl group of from 5-24 carbon atoms, or electron donating groups;
-OR1 t
Figure imgf000054_0002
wherein: R10, Rn and R12 are individually alkyl of from 1 to 20 carbon atoms, aryl or carbocychc systems; R11 and R1, R11 and R12, and R12 and R2 taken together can form ring systems, such as piperidi e, julolidine, or tetramethyljulolidine; one or more luminescent anthracene derivatives of the following general formula:
Figure imgf000055_0001
wherein: R1 is alkyl of from 1 to 20 carbon atoms; R and R2 are individually hydrogen, alkyl of from 1 to 24 carbon atoms, aryl, hereoaryl group of from 5 to 24 carbon atoms; and wherein the electron injecting and transport layer of an EL medium comprises one or more benazole derivatives of the following general formula:
Figure imgf000055_0002
wherein:
R1, R2, R3, R4 and R5 are individual hydrogen, alkyl or alkoxyl groups containing 1 to 16 carbon atoms, aryl or substituted aryl group containing 6 to 24 carbon atoms, heteroaryl or substituted heteroaryl group containing 5 to 24 carbon atoms; and X is a methylene group, a dialkyl methylene and diaryl methylene groups, S, O or NR, where R is hydrogen, alkyl, or alkoxyl groups containing 1 to 16 carbon atoms, aryl or substituted aryl group containing 6 to 24 carbon atoms.
2. An organic electroluminescent device comprising an anode, an organic medium including a hole injecting and transport layer, a light-emitting layer, an electron injecting and transport layer and a cathode, wherein: the light-emitting layer of the organic EL medium comprises as host one or more anthracene derivatives or a mixture of one or more anthracene derivatives as host and other dopants of the following general formula:
Figure imgf000056_0001
wherein: R1, R2, R3 and R4 are individually hydrogen, alkyl, or alkoxyl groups containing 1 to 16 carbon atoms, alkenyl groups containing at least one carbon-carbon doubb bond, aryl or substituted aryl group containing 6 to 24 carbon atoms, heteroaryl or substituted heteroaryl group containing 5 to 24 carbon atoms, amino group, N- alkylamino group, N-arylamino group, N,N-dialkylamino group, N,N-diaryl group, cyano group, perfluoroalkyl group containing 1-8 carbon atoms, chbrine, bromine, and fluorine;
R5 is alkyl group or perfluoroalkyl group containing 1 to 16 carbon atoms; aryl or substituted aryl group containing 6 to 24 carbon atoms; heteroaryl or substituted heteroaryl group containing 5 to 24 carbon atoms, and cyano group, chlorine, bromine, and fluorine, and
X is methylene group, dialkyl methylene and diaryl methylene groups, hetero atom such as oxygen, sulfur, or alkyl or aryl substituted amino groups, or dialkyl or diaryl substituted silyl groups;
3. An organic electroluminescent device comprising an anode, an organic medium including a hole injecting and transport layer, a light-emitting layer, and an electron injecting and transport layer, and a cathode; wherein: the light-emitting layer of the organic EL medium comprises a host and as a dopant one or more luminescent coumarin derivatives of the following general formula:
Figure imgf000057_0001
wherein:
R is hydrogen, alkyl of from 1-24 carbon atoms, aryl, hereoaryl or carbocyclic systems;
R\ R2, R3, R4, R5, R6, R7, R8 and R9 are individually alkyl of from 1 to 20 carbon atoms, aryl or carbocyclic systems;
EDG is hydrogen, alkyl group of from 1-24 carbon atoms, aryl group of from 5-24 carbon atoms, or electron donating groups;
— OR1 0
R11 \R12
wherein: R10, Rn and R12 are individually alkyl of from 1 to 20 carbon atoms, aryl or carbocychc systems; R11 and R1, R11 and R12, and R12 and R2 taken together can form ring systems, such as piperidine, julolidine, or tetramethyljulolidine.
4. An organic electroluminescent device comprising an anode, an organic medium including a hole injecting and transport layer, a bght-emitting layer, and an electron injecting and transport layer, and a cathode; wherein: the Ught-emitting layer of the organic EL medium comprises a host and as a dopant one or more of luminescent anthracene derivatives of the following general formula:
Figure imgf000058_0001
wherein:
R1 is alkyl of from 1 to 20 carbon atoms; R and R2 are individually hydrogen, alkyl of from 1 to 24 carbon atoms, aryl, hereoaryl group of from 5 to 24 carbon atoms.
5. An organic electroluminescent device comprising an anode, an organic medium including a hole injecting and transport layer, a Ught-emitting layer, and an electron injecting and transport layer, and a cathode; wherein: the electron injecting and transport layer of an EL medium comprises one or more benazole derivatives of the following general formula:
Figure imgf000059_0001
wherein:
R1, R2, R3, R4 and R5 are individual hydrogen, alkyl, or alkoxyl groups containing 1 to 16 carbon atoms, aryl or substituted aryl group containing 6 to 24 carbon atoms, heteroaryl or substituted heteroaryl group containing 5 to 24 carbon atoms; and
X is a methylene group, a dialkyl methylene and diaryl methylene groups, S, O or NR, where R is hydrogen, alkyl or alkoxyl groups containing 1 to 16 carbon atoms, aryl or substituted aryl group containing 6 to 24 carbon atoms.
6. The organic electroluminescent device of claims 1 to 4 wherein said light emitting layer containing anthracene derivatives is formed by host materials doped with luminescent materials as dopants.
7. The organic electroluminescent device of claim 2 wherein said host materials comprises one or more of the following:
Figure imgf000059_0002
Figure imgf000060_0001
Figure imgf000060_0002
The organic electroluminescent device of claims 3 or 4 wherein said luminescent materials as dopants comprise one or more of the following:
Figure imgf000060_0003
Figure imgf000060_0004
Figure imgf000061_0001
Figure imgf000061_0002
Figure imgf000061_0003
10 -61
Figure imgf000062_0001
Figure imgf000062_0002
Figure imgf000062_0003
9. The organic electroluminescent device of claim 5 wherein said electron injecting and electron transporting material is comprised of
Figure imgf000063_0001
PCT/CA2002/001878 2002-12-06 2002-12-06 Electroluminescent devices WO2004053018A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2002347158A AU2002347158A1 (en) 2002-12-06 2002-12-06 Electroluminescent devices
PCT/CA2002/001878 WO2004053018A1 (en) 2002-12-06 2002-12-06 Electroluminescent devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CA2002/001878 WO2004053018A1 (en) 2002-12-06 2002-12-06 Electroluminescent devices

Publications (1)

Publication Number Publication Date
WO2004053018A1 true WO2004053018A1 (en) 2004-06-24

Family

ID=32476850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2002/001878 WO2004053018A1 (en) 2002-12-06 2002-12-06 Electroluminescent devices

Country Status (2)

Country Link
AU (1) AU2002347158A1 (en)
WO (1) WO2004053018A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006127315A2 (en) * 2005-05-25 2006-11-30 Eastman Kodak Company Oled-electron transporting layer
WO2007127069A1 (en) * 2006-04-27 2007-11-08 Eastman Kodak Company Electroluminescent device including an anthracene derivative
WO2008143229A1 (en) 2007-05-21 2008-11-27 Idemitsu Kosan Co., Ltd. Anthracene derivative and organic electroluminescent device using the same
WO2009099133A1 (en) * 2008-02-08 2009-08-13 Toyo Ink Mfg. Co., Ltd. Compound having carbazolyl group and use thereof
JP2009249378A (en) * 2008-04-02 2009-10-29 Gracel Display Inc New organic electroluminescent compound, and organic electroluminescent element using the same
US20140001459A1 (en) * 2011-04-08 2014-01-02 E I Du Pont De Nemours And Company Electronic device
US8686628B2 (en) 2005-09-02 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative
US9666826B2 (en) 2005-11-30 2017-05-30 Global Oled Technology Llc Electroluminescent device including an anthracene derivative

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1182183A1 (en) * 2000-03-29 2002-02-27 Idemitsu Kosan Co., Ltd. Anthracene derivatives and organic electroluminescent devices made by using the same
US20020052501A1 (en) * 1999-03-09 2002-05-02 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo 4-cyanocoumarin derivatives and uses thereof
EP1256990A2 (en) * 2001-05-10 2002-11-13 Eastman Kodak Company High contrast light-emitting diode devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020052501A1 (en) * 1999-03-09 2002-05-02 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo 4-cyanocoumarin derivatives and uses thereof
EP1182183A1 (en) * 2000-03-29 2002-02-27 Idemitsu Kosan Co., Ltd. Anthracene derivatives and organic electroluminescent devices made by using the same
EP1256990A2 (en) * 2001-05-10 2002-11-13 Eastman Kodak Company High contrast light-emitting diode devices

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006127315A2 (en) * 2005-05-25 2006-11-30 Eastman Kodak Company Oled-electron transporting layer
WO2006127315A3 (en) * 2005-05-25 2007-01-18 Eastman Kodak Co Oled-electron transporting layer
US8686628B2 (en) 2005-09-02 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative
US9666826B2 (en) 2005-11-30 2017-05-30 Global Oled Technology Llc Electroluminescent device including an anthracene derivative
WO2007127069A1 (en) * 2006-04-27 2007-11-08 Eastman Kodak Company Electroluminescent device including an anthracene derivative
WO2008143229A1 (en) 2007-05-21 2008-11-27 Idemitsu Kosan Co., Ltd. Anthracene derivative and organic electroluminescent device using the same
WO2009099133A1 (en) * 2008-02-08 2009-08-13 Toyo Ink Mfg. Co., Ltd. Compound having carbazolyl group and use thereof
JP2009249378A (en) * 2008-04-02 2009-10-29 Gracel Display Inc New organic electroluminescent compound, and organic electroluminescent element using the same
EP2108689A3 (en) * 2008-04-02 2010-03-17 Gracel Display Inc. Novel organic electroluminescent compounds and organic electroluminescent device using the same
US20140001459A1 (en) * 2011-04-08 2014-01-02 E I Du Pont De Nemours And Company Electronic device

Also Published As

Publication number Publication date
AU2002347158A1 (en) 2004-06-30

Similar Documents

Publication Publication Date Title
US20030215667A1 (en) Electroluminescent devices
US5942340A (en) Indolocarbazole electroluminescent devices
EP2316906B1 (en) Anthracene derivatives and organic light-emitting device including the same
US5935720A (en) Red organic electroluminescent devices
KR101267854B1 (en) π-CONJUGATED COMPOUND HAVING CARDO STRUCTURE, PROCESS FOR PREPARING SAME AND USE OF SAME
KR101245008B1 (en) Novel chrysene compound and organic light-emitting device having the compound
KR20030067773A (en) New material for transporting electron and organic electroluminescent display using the same
CN103781782A (en) Aromatic amine derivative and organic electroluminescent element using same
JP2000182775A (en) Organic electroluminescence element
KR101285457B1 (en) Fused polycyclic compound and organic light emitting device having the compound
JPH08311442A (en) Organic el element
KR20060096980A (en) Compound, charge transport material and organic electroluminescent device
CN101381276A (en) Organic electroluminescent element
JP2013067586A (en) Novel organic compound, and organic light-emitting element and display device having the same
US20080272692A1 (en) Electroluminescence device
US20100109555A1 (en) Aromatic amine compound, organic electroluminescent element including the same, and display device including organic electroluminescent element
KR20110084940A (en) Organic light-emitting device
Etori et al. Spirobifluorene derivatives for ultraviolet organic light-emitting diodes
WO2004053018A1 (en) Electroluminescent devices
Mi et al. New polycyclic aromatic hydrocarbon dopants for red organic electroluminescent devices
Mi et al. Efficient green electroluminescence of pure chromaticity from a polycyclic aromatic hydrocarbon
US9493383B2 (en) Organic compound and organic light emitting device using the same
JP2002163926A (en) Electric conduction element and its manufacturing method
JP2012020971A (en) New condensed polycyclic compound and organic light-emitting device having the same
KR100820540B1 (en) New organic compound and organic light emitting device using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WA Withdrawal of international application
WWW Wipo information: withdrawn in national office

Ref document number: 2002347158

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: JP