TWI414932B - 多相位電源供應裝置與其電流調整方法 - Google Patents

多相位電源供應裝置與其電流調整方法 Download PDF

Info

Publication number
TWI414932B
TWI414932B TW098139339A TW98139339A TWI414932B TW I414932 B TWI414932 B TW I414932B TW 098139339 A TW098139339 A TW 098139339A TW 98139339 A TW98139339 A TW 98139339A TW I414932 B TWI414932 B TW I414932B
Authority
TW
Taiwan
Prior art keywords
current
power
coupled
voltage
phase
Prior art date
Application number
TW098139339A
Other languages
English (en)
Other versions
TW201118547A (en
Inventor
Chih Wei Lin
Nung Te Huang
Chih Wan Hsu
Original Assignee
Asustek Comp Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asustek Comp Inc filed Critical Asustek Comp Inc
Priority to TW098139339A priority Critical patent/TWI414932B/zh
Priority to US12/913,779 priority patent/US8570010B2/en
Publication of TW201118547A publication Critical patent/TW201118547A/zh
Application granted granted Critical
Publication of TWI414932B publication Critical patent/TWI414932B/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Description

多相位電源供應裝置與其電流調整方法
本發明是有關於一種多相位電源供應裝置,且特別是有關於一種具有自動調整各相電壓溫度與自動量測效率的多相位電源供應裝置。
隨著微處理器的效能增強,其電源需求也就越大,所需的瞬間電流也越高,傳統的單相式電流供應器已經無法符合現在的系統需求。目前的微處理器、圖像及存儲系統均使用多相電源解決方案,主機板上的電源供應裝置也支援多相式的電源供應技術。常見的多相式電源供應裝置有4相與8相的電源整流模組(Voltage Regulator Module,簡稱VRM)。多相位電源供應器具有相位交錯的優點,藉由統一的時間間隔來進行相位切換,其輸出的電壓波形與電流可藉由其他相位的切換而調整至平均水平,同時在微處理器瞬間需要大電流時,多相位電源供應器也可以藉由較多的電流路徑提供較大的瞬間電流。
傳統的主機板使用說明上所標示電源整流模組的效率,通常是利用VRTOOL的製具(Intel所製作)來進行量測的結果。VRTOOL是虛擬微處理器負載的工具,透過VRTOOL這個製具可以對電源整流模組進行抽載的動作,且藉由其腳位把各個數值讀出來,包括輸入電壓、電流以及輸出電壓、電流,然後套入電源效率的公式:
其中,Vout為輸出電壓,Vin為輸入電壓,Iout為輸出電流,Iin為輸入電流。這樣就可以知道在不同負載下的效率,然後在使用說明上標示最高的效率來進行宣傳。此外,在電源整流模組的溫度量測方面,會採用紅外線影像儀來對電源整流模組進行拍攝,藉由影像上的相對溫度分布來知道目前的熱點(hot spot),但是這樣卻無法解決熱累積的問題。上述兩種作法都是人為操作所得到的電源效率與溫度數據,所測量的結果並不精準,使的輸出的電源效果不佳,也無法達到自動調整電源效率的目的。
本發明提供一種多相位電源供應裝置,設置於主機板上,其利用偵測模組來偵測各相位電壓源的溫度變化,並藉由調整各相位電壓源的電流大小來調整各相位電壓源的溫度,讓溫度達到平衡,此外,偵測模組也可用來偵測電源整流模組的電源效率,並將其數值顯示於螢幕上,讓使用者可以方便的得知電源整流模組的電源效率與各相位電壓源的溫度變化。
承上述,本發明提出一種多相位電源供應裝置,包括電源整流模組、偵測模組、運算單元與電源處理單元。電源整流模組耦接於一電壓源與一微處理器,電源整流模組經由多數個電流路徑提供多數個相位的電壓源至該微處理器。
偵測模組耦接於電源整流模組,用以偵測各相位電壓源所對應之各該電流路徑的溫度。運算單元耦接於偵測模組,根據各該電流路徑的溫度計算一平均溫度,並比較各該電流路徑的溫度與該平均溫度以輸出一比較結果。電源處理單元耦接於運算單元與電源整流模組,根據比較結果調整各該電流路徑的電流值。
在調整各該電流路徑的電流值時,當電流路徑中之一電流路徑的溫度高於平均溫度時,電源處理單元降低該電流路徑所導通的電流;當電流路徑的溫度低於平均溫度時,電源處理單元會提高該電流路徑所導通的電流。
從另一個角度來看,本發明提出一種多相位電源供應裝置的電流調整方法,多相位電源供應裝置經由多數個電流路徑輸出多數個相位的電壓源,電流調整方法包括下列步驟:首先,偵測對應於所有相位的電壓源的電流路徑的溫度;然後,根據各該電流路徑的溫度計算一平均溫度。然後,分別比較各該電流路徑的溫度與平均溫度,藉以判斷各該電流路徑的溫度是否高於平均溫度。接下來,降低溫度高於平均溫度的電流路徑所導通的電流,以及提高溫度低於平均溫度的電流路徑所導通的電流。藉由調整各該電流路徑所導通的電流以達到熱平衡的效果。
基於上述,本發明所提供之多相位電源供應裝置具有自動化偵測電源效率與溫度的功能,同時利用各相位電壓源的溫度偵測結果來調整各相位電壓源的電流以達到溫度平衡的效果。此外,使用者更可以經由螢幕即時得知電源 整流模組目前的電源效率與各相位電壓源的溫度變化。
為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
請參照圖1,圖1為根據本發明一實施例之多相位電源供應裝置之方塊圖。多相位電源供應裝置包括電源整流模組110、偵測模組120、運算單元130以及電源處理單元140。偵測模組120耦接於電源整流模組(Voltage Regulator Module,簡稱VRM)110與運算單元130,運算單元130耦接於電源處理單元140。電源整流模組110耦接於電壓源160與微處理器150。值得注意的是,多相位電源供應裝置與微處理器150係設置於主機板100之上,電源整流模組110接收電壓源160所輸出的輸入電壓Vin,然後將其轉換為多數相位(以N個相位表示)的電壓源並輸出至微處理器150,N為正整數,例如4、8、16或36。
以八相電壓源為例,電源整流模組110會經由八個電流路徑(八組切換電路)輸出八個相位的電壓源,電壓源會分為八個相位,分別藉由八個電流路徑來供電給微處理器150。由於電流可經由八個電流路徑傳送到微處理器150,因此八相位電壓源可提供較高的電流量,且個別相位的電流量會比傳統的單相位電源供應器低,藉此可降低電壓源所產生的熱量的溫度。此外,當微處理器150啟動時,會瞬間拉高所需的電流量,此時可利用八個電流路徑同時供 應電流,可以產生較高的電流輸出能力並推動較高的負載。
偵測模組120用以偵測電源整流模組110所輸出之各相位電壓源的電流路徑溫度T1~T8(以八相位電壓源為例),偵測模組120可利用熱敏電阻設置於每一個相位之電流路徑上,以該等熱感應元件來偵測每一相位的電流路徑溫度T1~T8,其中電流路徑溫度T1~T8即表示每一相位的電壓源的溫度。熱敏電阻可設置在每一相位的電感旁邊(即各相位的電流路徑旁邊)或其金屬導線旁或電流經過的元件旁邊,以感測每一相位的溫度。然後,偵測模組120會將所偵測到的電流路徑溫度T1~T8傳送至運算單元130,運算單元130會計算電流路徑溫度T1~T8的平均溫度並比較各相位的溫度與平均溫度,然後將比較結果傳送到電源處理單元140。電源處理單元140會根據比較結果調整各相位的電流量,將溫度大於平均溫度的相位的電流量降低;將溫度低於平均溫度的相位的電流量升高,藉此讓整體的溫度平衡。雖然上述調整會造成各相位的電流不平衡,但是這樣會使整體的溫度平衡,不會讓人有電流不平衡的錯覺。
再者,偵測模組120也具有偵測電源整流模組110的電源效率的功效,偵測模組120會偵測電源整流模組110的輸入電壓Vin、輸入電流Iin、輸出電壓Vout與輸出電流Iout。然後,利用電源效率的公式來計算電源整流模組110的電源效率,電源效率的公式如下:
偵測模組120會利用上述公式計算出一電源效率值,並將其輸出至運算單元130,運算單元130可將電源效率值與各相位的溫度偵測值輸出至螢幕,藉由螢幕顯示目前所偵測到的數值,讓使用者可以方便的得知目前的電源效率與各相位的溫度。同時,使用者也可以經由所顯示的數值得知電源整流模組在不同負載的情況下的電源效率為何。
在電源效率的偵測方面,本實施例之偵測模組120可由溫度偵測模組(Power Thermal Module,簡稱PTM)的晶片與其週邊電路來實現以偵測電源整流模組110的輸入電壓Vin、輸入電流Iin、輸出電壓Vout與輸出電流Iout。偵測模組120偵測輸入電壓Vin與輸出電壓Vout的方式例如是利用分壓電路的方式來進行偵測,而輸入電流Iin與輸出電流Iout則例如是利用電流量測電路的方式來進行量測。
接下來請參照圖2,圖2為根據本發明一實施例之偵測模組120之電路圖,偵測模組120包括溫度偵測單元210、第一電壓量測電路220、第一電流量測電路230、第二電壓量測電路240、第二電流量測電路250。第一電壓量測電路220、第一電流量測電路230、第二電壓量測電路240與第二電流量測電路250耦接於溫度偵測單元210,其中第一電壓量測電路220與第二電壓量測電路240係為分壓電路,由電阻構成,可提供輸入電壓Vin的分壓V1與輸出電壓Vout的分壓V2至溫度偵測單元210。第一電流 量測電路230與第二電流量測電路250為電流量測電路(Direct Current Resistance sensing circuit,簡稱DCR),由電阻、電感與電容等元件構成。溫度偵測單元210可經由電流量測電路中的電容分壓VC1、VC2計算輸入電流Iin與輸出電流Iout。
接下來,進一步說明第一電壓量測電路220、第一電流量測電路230、第二電壓量測電路240、第二電流量測電路250的電路,請參照圖3A、圖3B、圖3C與圖3D,圖3A為根據本實施例之第一電壓量測電路220之電路圖,圖3B為根據本實施例之第二電壓量測電路240之電路圖。第一電壓量測電路220由電阻R1、R2串聯耦接於輸入電壓Vin與接地端GND構成,電阻R1、R2的共用節點會輸出分壓V1至溫度偵測單元210,第二電壓量測電路220由電阻R3、R4串聯耦接於輸出電壓Vout與接地端GND構成,電阻R3、R4的共用節點會輸出分壓V2至溫度偵測單元210。藉此,溫度偵測單元210根據分壓V1、V2推知電源整流模組110的輸入電壓Vin與輸出電壓Vout。
圖3C為根據本實施例之第一電流量測電路230之電路圖,第一電流量測電路230包括電阻Rin、電感Lin與電容C1,電阻Rin與電容C1串聯耦接於電壓源160與電源整流模組110的輸入端,電感Lin的兩端分別耦接於電壓源160與電源整流模組110的輸入端。其中電阻DCR表示電感Lin在直流時的等效電阻。電容電壓VC1表示電容C1兩端的電壓差。在電感Lin與電阻DCR的比值等於 Rin*C1的情況下,電容電壓VC1會與流經電感Lin的電流Iin大小相關,其公式如下:VC1=Iin×DCR1
溫度偵測單元210可經由電容電壓VC1變化推知流經電感Lin的電流Iin,所以溫度偵測單元210內部的增益放大器212會連接至電容C1的兩端來感測電容電壓VC1。因此只要將第一電流量測電路230串聯於電源整流模組110的輸入路徑上便可推知電源整流模組110的輸入電流Iin。由於電感DCR量測技術為電流量測常用的技術,因此其推導過程在此不加贅述。電源整流模組110的輸出電流Iout同樣可利用電感DCR量測技術來進行量測。
同樣的,電源整流模組110的輸出電流Iout也可以使用電感DCR量測技術量測。由於電源整流模組110具有八相位的輸出,因此串聯於電源整流模組110的輸出端的電阻與電感需依照各別電流路徑設置,而電容則是共用。請參照圖3D,圖3D為根據本發明一實施例之第二電流量測電路250之電路圖。第二電流量測電路250包括8個電阻Rout、8個電感Lout、電容C2與電阻RCSN。電阻Rout與電感Lout分別設置在每一相的電壓源PH1~PH8的輸出電流路徑上,電阻Rout與電感Lout的另一端則耦接於電容C2的兩端。電阻RCSN耦接於溫度偵測單元210與電容C2的一端。電容C2與電感Lout的共用接點耦接於微處理器150的電源輸入端。電壓源PH1~PH8經由電感Lout傳送輸出電壓Vout至微處理器150的電源輸入端以提供微處 理器150所需的工作電源。其中,電阻DCR2則是用來表示個別電感Lout在直流時的等效電阻。
電容C2兩端的電容電壓VC2會與所有相位的電感Lout所導通電流相關,因此經由電容電壓VC2便可推算出輸出電流Iout。溫度偵測單元210內部的增益放大器214會連接至電容C2的兩端來感測電容電壓VC2。第二電流量測電路250的電流量測原理與圖3C相同,不同之處主要在於輸出電流Iout是由多相位的電壓源所組成,因此需要在每一相位的電流路徑上串聯電阻Rout與電感Lout來進行偵測。對於多相位的電流偵測,其原理與上述圖3C相同,經由本發明之揭露後,本技術領域具有通常知識者應可輕易推知其應用方式,在此不加贅述。此外,值得注意的是,偵測電壓與電流的週邊電路並不限制於本實施例所述之分壓電路與電感DCR電路,只要可以偵測電壓與電流的相關技術皆可。
此外,上述偵測模組120的主要功能在於偵測溫度與電源效率,偵測模組120可由溫度偵測單元210與週邊電路所組成,溫度偵測單元210例如是具有類比數位轉換器(A/D converter)與增益放大器的晶片。由於上述第一電壓量測電路220、第一電流量測電路230、第二電壓量測電路240與第二電流量測電路250已經具有將電流信號轉換為電壓信號的功能,因此溫度偵測單元210只要具有類比數位轉換器即可輸出電壓與電流的感測值以供運算單元130進行電源效率的運算。在溫度量測方面,同樣可藉由類比 數位轉換器將熱敏電阻所感測的信號轉換為數位信號,並提供給運算單元130進行熱平衡的運算。運算單元130會將所取得的數據傳送到電源處理單元140,電源處理單元140會依據各別相位的溫度,調整各相位的電流值以達到熱平衡的效果。其中,運算單元130可利用嵌入式控制器(embedded controller)來實現,電源處理單元140則例如是華碩主機板的EPU(Energy Processing Unit)。
從另一觀點來看,上述實施例可歸納為一種多相位電源供應裝置的電流調整方法,請參照圖4,圖4為根據本發明一實施例之多相位電源供應裝置的電流調整方法流程圖。多相位電源供應裝置經由多數個(N個_)電流路徑輸出多數個相位的電壓源,N為正整數,上述電流調整方法包括下列步驟:首先,偵測對應於所有相位的電壓源的電流路徑的溫度(步驟S410);然後,根據所有電流路徑的溫度計算一平均溫度(步驟S420),然後分別比較各該電流路徑的溫度與平均溫度以判斷各該電流路徑的溫度是否高於平均溫度(步驟S430)。當有電流路徑的溫度高於平均溫度時則降低該電流路徑所導通的電流(步驟S440),當有電流路徑的溫度低於平均溫度則提高該電流路徑所導通的電流(步驟S450)。藉由調整各該電流路徑所導通的電流以達到熱平衡的效果。
此外,上述電流調整方法更包括根據多相位電源供應裝置的輸入電壓、輸入電流、輸出電壓以及輸出電流計算一電源效率值,然後顯示各該電流路徑的溫度與電源效率 值。上述電流調整方法之其餘細節可經由上述一實施例推知,在此不加贅述。
綜上所述,本發明之多相位電源供應裝置會根據各相位的溫度來調整各相位的電流值以達到熱平衡的效果,並且可自動偵測電源整流模組的電源效率,讓使用者可以從螢幕上得知多相位電源供應裝置在不同負載下的電源效率以及各相的溫度分布。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。
100‧‧‧主機板
110‧‧‧電源整流模組
120‧‧‧偵測模組
130‧‧‧運算單元
140‧‧‧電源處理單元
150‧‧‧微處理器
160‧‧‧電壓源
210‧‧‧溫度偵測單元
212、214‧‧‧增益放大器
220‧‧‧第一電壓量測電路
230‧‧‧第一電流量測電路
240‧‧‧第二電壓量測電路
250‧‧‧第二電流量測電路
Vin‧‧‧輸入電壓
Vout‧‧‧輸出電壓
V1‧‧‧輸入電壓Vin的分壓
V2‧‧‧輸出電壓Vout的分壓
VC1、VC2‧‧‧電容分壓
Iin‧‧‧輸入電流
Iout‧‧‧輸出電流
T1~T8‧‧‧電流路徑溫度
R1、R2、R3、R4‧‧‧電阻
Rin、Rout、RCSN‧‧‧電阻
L‧‧‧電感
C1、C2‧‧‧電容
GND‧‧‧接地端
DCR‧‧‧電感Lin的直流等效電阻
DCR2‧‧‧電感Lout的直流等效電阻
Lout‧‧‧電阻Rout與電感
PH1~PH8‧‧‧每一相位的電壓源
S410~S450‧‧‧流程圖步驟
圖1為根據本發明一實施例之多相位電源供應裝置之方塊圖。
圖2為根據本發明一實施例之偵測模組120之電路圖。
圖3A為根據本發明一實施例之第一電壓量測電路220之電路圖。
圖3B為根據本發明一實施例之第二電壓量測電路240之電路圖。
圖3C為根據本發明一實施例之第一電流量測電路230之電路圖。
圖3D為根據本發明一實施例之第二電流量測電路 250之電路圖。
圖4為根據本發明一實施例之多相位電源供應裝置的電流調整方法流程圖。
100‧‧‧主機板
120‧‧‧偵測模組
130‧‧‧運算單元
140‧‧‧電源處理單元
150‧‧‧微處理器
160‧‧‧電壓源
T1~T8‧‧‧電流路徑溫度
110‧‧‧電源整流模組
Vin‧‧‧輸入電壓
Vout‧‧‧輸出電壓
Iin‧‧‧輸入電流
Iout‧‧‧輸出電流

Claims (12)

  1. 一種多相位電源供應裝置,包括:一電源整流模組,耦接於一電壓源與一微處理器,該電源整流模組經由多數個電流路徑提供多數個相位的電壓源至該微處理器;一偵測模組,耦接於該電源整流模組,用以偵測各相位的電壓源所對應之各該電流路徑的溫度;一運算單元,耦接於該偵測模組,根據各該電流路徑的溫度計算一平均溫度,並比較各該電流路徑的溫度與該平均溫度以輸出一比較結果;以及一電源處理單元,耦接於該運算單元與該電源整流模組,根據該比較結果調整各該電流路徑的電流值;其中該偵測模組更包括一第一電流量測電路,耦接於該電源整流模組的輸入端,用於偵測該電源整流模組所接收的一輸入電流,該第一電流量測電路包括:一第一電阻;一電容,該電容與該第一電阻串聯耦接於該電壓源與該電源整流模組的輸入端;以及一電感,耦接於該電壓源與該電源整流模組的輸入端。
  2. 如申請專利範圍第1項所述之多相位電源供應裝置,其中當該些電流路徑中之一第一電流路徑的溫度高於該平均溫度時,該電源處理單元降低該第一電流路徑所導通的電流;當該第一電流路徑的溫度低於該平均溫度時, 該電源處理單元提高該第一電流路徑所導通的電流。
  3. 如申請專利範圍第1項所述之多相位電源供應裝置,其中該偵測模組包括:一溫度偵測單元;以及多數個熱敏電阻,設置於該等相位上,該熱敏電阻耦接於該溫度偵測單元,用以偵測該些電流路徑的溫度。
  4. 如申請專利範圍第1項所述之多相位電源供應裝置,其中該偵測模組更包括:一溫度偵測單元;以及一第一電壓量測電路,耦接於該電源整流模組的輸入端與該溫度偵測單元,該溫度偵測單元經由該第一電壓量測電路偵測該電源整流模組所接收的一輸入電壓。
  5. 如申請專利範圍第4項所述之多相位電源供應裝置,更包括:一第二電壓量測電路,分別耦接於該些電流路徑與該溫度偵測單元,該溫度偵測單元經由該第二電壓量測電路偵測該電源整流模組的一輸出電壓;以及一第二電流量測電路,耦接於該些電流路徑與該溫度偵測單元,該溫度偵測單元經由該第二電流量測電路偵測該電源整流模組的一輸出電流。
  6. 如申請專利範圍第5項所述之多相位電源供應裝置,其中該偵測模組根據該電源整流模組所接收之該輸入電壓與該輸入電流與該電源整流模組的該輸出電壓與該輸 出電流,輸出一電源效率值至該運算單元。
  7. 如申請專利範圍第6項所述之多相位電源供應裝置,其中該運算單元係經由一顯示裝置顯示該電源效率值與對應於各該相位電壓源的溫度值。
  8. 如申請專利範圍第4項所述之多相位電源供應裝置,其中該第一電壓量測電路包括:一第一電阻;一第二電阻,該第二電阻與該第一電阻耦接於該電源整流模組的輸入端與一接地端,且該第二電阻與該第一電阻之共用端耦接於該溫度偵測單元。
  9. 如申請專利範圍第4項所述之多相位電源供應裝置,其中,該溫度偵測單元根據該電容兩端的電壓值與該第一電阻的電阻值計算該電源整流模組所接收的該輸入電流。
  10. 如申請專利範圍第5項所述之多相位電源供應裝置,其中該第二電壓量測電路包括:一第一電阻;以及一第二電阻,該第二電阻與該第一電阻耦接於該第一電壓源與一接地端,且該第二電阻與該第一電阻之共用端耦接於該溫度偵測單元。
  11. 如申請專利範圍第5項所述之多相位電源供應裝置,其中該第二電流量測電路包括:多數個第一電阻,該些第一電阻的一端分別耦接該電源整流模組所輸出的該等相位的電壓源; 一電容,該電容的一端耦接於該些第一電阻的另一端,該電容的另一端耦接於該微處理器的一電源輸入端;多數個電感,該些電感的一端分別耦接於該電源整流模組所輸出的該等相位的電壓源,該些電感的另一端耦接該微處理器的該電源輸入端;以及一第二電阻,耦接於該微處理器的該電源輸入端與該溫度偵測單元;其中,該溫度偵測單元根據該電容兩端的電壓值與該些第一電阻的電阻值計算該電源整流模組的一輸出電流。
  12. 如申請專利範圍第1項所述之多相位電源供應裝置,其係設置於一主機板上。
TW098139339A 2009-11-19 2009-11-19 多相位電源供應裝置與其電流調整方法 TWI414932B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW098139339A TWI414932B (zh) 2009-11-19 2009-11-19 多相位電源供應裝置與其電流調整方法
US12/913,779 US8570010B2 (en) 2009-11-19 2010-10-28 Multiphase power supply device and current adjusting method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098139339A TWI414932B (zh) 2009-11-19 2009-11-19 多相位電源供應裝置與其電流調整方法

Publications (2)

Publication Number Publication Date
TW201118547A TW201118547A (en) 2011-06-01
TWI414932B true TWI414932B (zh) 2013-11-11

Family

ID=44010824

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098139339A TWI414932B (zh) 2009-11-19 2009-11-19 多相位電源供應裝置與其電流調整方法

Country Status (2)

Country Link
US (1) US8570010B2 (zh)
TW (1) TWI414932B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI726254B (zh) * 2018-03-20 2021-05-01 日商斯庫林集團股份有限公司 熱處理裝置及熱處理方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201217961A (en) * 2010-10-20 2012-05-01 Hon Hai Prec Ind Co Ltd Conversion efficiency testing device and using the same
US8587272B2 (en) * 2011-05-25 2013-11-19 Linear Technology Corporation Balancing temperatures in a multi-phase DC/DC converter
US9780665B2 (en) * 2012-03-15 2017-10-03 GM Global Technology Operations LLC Methods and systems for controlling a boost converter
TWI482410B (zh) * 2012-06-28 2015-04-21 Niko Semiconductor Co Ltd 多相直流對直流電源轉換裝置
CN104143908B (zh) * 2013-05-10 2017-01-25 鸿富锦精密工业(深圳)有限公司 热平衡转换电路
CN103296867B (zh) * 2013-06-28 2015-07-15 成都芯源系统有限公司 多相开关变换器及其控制器和控制方法
US20150207400A1 (en) * 2014-01-21 2015-07-23 Texas Instruments Incorporated Control apparatus and method for thermal balancing in multiphase dc-dc converters
CN104866054A (zh) * 2014-02-26 2015-08-26 鸿富锦精密工业(深圳)有限公司 多相电源保护电路
US10305320B2 (en) 2015-03-30 2019-05-28 Vertiv S.R.L. Method of controlling an uninterruptible power supply system to optimize component life
US9509217B2 (en) * 2015-04-20 2016-11-29 Altera Corporation Asymmetric power flow controller for a power converter and method of operating the same
US9791902B2 (en) * 2015-05-19 2017-10-17 Dell Products, Lp System and method for providing multi-dimensional power supply efficiency profiles
CN105116214A (zh) * 2015-08-31 2015-12-02 重庆京东方光电科技有限公司 功率检测装置
US9891700B2 (en) * 2015-10-02 2018-02-13 Infineon Technologies Austria Ag Power management for datacenter power architectures
CN106598144B (zh) * 2015-10-19 2019-11-19 技嘉科技股份有限公司 处理功能扩充卡及其电能扩充板
TWI571732B (zh) * 2015-10-19 2017-02-21 技嘉科技股份有限公司 處理功能擴充卡及其電能擴充板
US20170222465A1 (en) * 2016-02-01 2017-08-03 Qualcomm Incorporated Dynamic thermal balancing of parallel regulators to reduce hotspots and increase performance
DE102016204974B4 (de) * 2016-03-24 2018-09-20 Dialog Semiconductor (Uk) Limited Schaltung und Verfahren zum Reduzieren einer Empfindlichkeit einer analogen Abwärts-Stromsteuerschleife zum Liefern eines Pfadwiderstands
US10224816B2 (en) * 2017-03-16 2019-03-05 Dell Products L.P. Individual phase temperature monitoring and balance control for smart power stage-based voltage regulator
US11016551B2 (en) * 2019-03-29 2021-05-25 Microsoft Technology Licensing, Llc Thermal rotation of power supply phases
US11093019B2 (en) * 2019-07-29 2021-08-17 Microsoft Technology Licensing, Llc Integrated circuit power domains segregated among power supply phases
CN113406416B (zh) * 2021-06-11 2023-03-24 国网江苏省电力有限公司电力科学研究院 一种输变电设备用微功率电流取电装置性能检测系统
US20230402925A1 (en) * 2022-06-14 2023-12-14 Monolithic Power Systems, Inc. Multi-phase voltage converter with individual phase temperature reporting
CN115133758B (zh) * 2022-08-29 2023-01-17 苏州浪潮智能科技有限公司 电源转换芯片温度控制方法、相关组件及多相电源装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW399358B (en) * 1997-06-18 2000-07-21 Chen Chiou Lin Single wire current share paralleling of current control mode DC power supplies
US20020044458A1 (en) * 2001-08-06 2002-04-18 Alan Elbanhawy Current sharing in a multi-phase power supply by phase temperature control
TW521496B (en) * 2000-01-12 2003-02-21 Advantest Corp Constant voltage supply circuit, substrate of constant voltage supply circuit, and method of applying constant voltage
US20040100231A1 (en) * 2002-11-25 2004-05-27 Gotthilf Koerner Voltage regulator circuit
US20050190517A1 (en) * 2002-09-20 2005-09-01 Siemens Ag Osterreich Switching power supply unit
US20050206359A1 (en) * 2004-03-19 2005-09-22 Daniels Paul J Detecting currents in a switching regulator
TW200934083A (en) * 2007-09-12 2009-08-01 Ricoh Co Ltd Constant current supply type of switching regulator
US20090243564A1 (en) * 2005-08-31 2009-10-01 Tetsuya Kajita Electric current monitoring device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5249863A (en) * 1992-02-14 1993-10-05 Texaco Inc. Temperature averaging data logger
JP3252064B2 (ja) * 1994-10-17 2002-01-28 富士写真フイルム株式会社 サーマルプリンタ
DE69811965T2 (de) * 1998-03-27 2003-11-27 Gapwoo Hwang Elektronisches vorschaltgerät einer hochleistungsentladungslampe
US6362578B1 (en) * 1999-12-23 2002-03-26 Stmicroelectronics, Inc. LED driver circuit and method
US6618684B1 (en) * 2000-01-26 2003-09-09 Elster Electricity, Llc System and method for digitally compensating frequency and temperature induced errors in amplitude and phase shift in current sensing of electronic energy meters
US6724643B1 (en) * 2002-12-20 2004-04-20 Eaton Corporation Control system and method employing active temperature balance for controlling rectifier bridge
US6909991B2 (en) * 2003-09-11 2005-06-21 Jen-Cheng Lin Console display for personal computers
US7412612B2 (en) * 2004-02-24 2008-08-12 Delphi Technologies, Inc. Dynamically optimized power converter
US20060061339A1 (en) * 2004-08-17 2006-03-23 International Business Machines Corporation Temperature regulator for a multiphase voltage regulator
JP4371025B2 (ja) 2004-09-28 2009-11-25 横河電機株式会社 電力変換効率測定装置
KR100685000B1 (ko) * 2005-06-16 2007-02-20 삼성전자주식회사 온도 감지장치 및 이를 포함하는 컴퓨터
US9591563B2 (en) * 2009-07-01 2017-03-07 Telefonaktiebolaget Lm Ericsson (Publ) Power efficient data transmission

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW399358B (en) * 1997-06-18 2000-07-21 Chen Chiou Lin Single wire current share paralleling of current control mode DC power supplies
TW521496B (en) * 2000-01-12 2003-02-21 Advantest Corp Constant voltage supply circuit, substrate of constant voltage supply circuit, and method of applying constant voltage
US20020044458A1 (en) * 2001-08-06 2002-04-18 Alan Elbanhawy Current sharing in a multi-phase power supply by phase temperature control
US20050190517A1 (en) * 2002-09-20 2005-09-01 Siemens Ag Osterreich Switching power supply unit
US20040100231A1 (en) * 2002-11-25 2004-05-27 Gotthilf Koerner Voltage regulator circuit
US20050206359A1 (en) * 2004-03-19 2005-09-22 Daniels Paul J Detecting currents in a switching regulator
US20090243564A1 (en) * 2005-08-31 2009-10-01 Tetsuya Kajita Electric current monitoring device
TW200934083A (en) * 2007-09-12 2009-08-01 Ricoh Co Ltd Constant current supply type of switching regulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI726254B (zh) * 2018-03-20 2021-05-01 日商斯庫林集團股份有限公司 熱處理裝置及熱處理方法

Also Published As

Publication number Publication date
TW201118547A (en) 2011-06-01
US20110115447A1 (en) 2011-05-19
US8570010B2 (en) 2013-10-29

Similar Documents

Publication Publication Date Title
TWI414932B (zh) 多相位電源供應裝置與其電流調整方法
CN102073364B (zh) 多相电源供应装置与其电流调整方法
US8804387B2 (en) Power supply apparatus and controller
JP5814979B2 (ja) 電力測定装置、判定方法、およびプログラム
TWI430551B (zh) 多通道電源供應器及其電流均分控制方法
US9599520B2 (en) Method for determining and operating temperature of an electronic component
TWI443923B (zh) 電源裝置
US8232784B2 (en) Circuits and methods for current sensing
JP2014027832A (ja) 電源装置、半導体装置、及びデータ処理システム
KR20150110702A (ko) 전력 공급 시스템, 전자 장치 및 전자 장치의 전기 분배 방법
JP5842465B2 (ja) 電源装置
JP4337469B2 (ja) Dc−dcコンバータの電流検出方法及び電流検出装置
TWI491858B (zh) 溫度偵測電路及其方法
CN101441593A (zh) 功率测量装置
CN104459305B (zh) 功率侦测电路
TWM435632U (en) Multiphase dc-dc converter and control device thereof
Hu et al. A digital multiphase converter with sensor-less current and thermal balance mechanism
TW201917975A (zh) 電流平衡電路
JP5309323B2 (ja) 電源装置の欠相検出方法及び装置
US9997995B2 (en) Three-phase parallel power converter load adjustment
Viswanathan et al. Evaluation of power losses in a boost PFC unit by temperature measurements
JP5717427B2 (ja) 抵抗測定装置
TWM385003U (en) Electrical power detector and its management device
CN104215821A (zh) 一种电源设备输入浪涌电流检测方法
CN105391315A (zh) 一种可调式电源电路