TWI399861B - Structure of solar cell absorbent layer and manufacturing method thereof - Google Patents

Structure of solar cell absorbent layer and manufacturing method thereof Download PDF

Info

Publication number
TWI399861B
TWI399861B TW096146577A TW96146577A TWI399861B TW I399861 B TWI399861 B TW I399861B TW 096146577 A TW096146577 A TW 096146577A TW 96146577 A TW96146577 A TW 96146577A TW I399861 B TWI399861 B TW I399861B
Authority
TW
Taiwan
Prior art keywords
copper
gallium
alloy target
indium
solar cell
Prior art date
Application number
TW096146577A
Other languages
English (en)
Other versions
TW200926431A (en
Original Assignee
Chung Shan Inst Of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung Shan Inst Of Science filed Critical Chung Shan Inst Of Science
Priority to TW096146577A priority Critical patent/TWI399861B/zh
Publication of TW200926431A publication Critical patent/TW200926431A/zh
Application granted granted Critical
Publication of TWI399861B publication Critical patent/TWI399861B/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Description

太陽能電池吸收層之結構及其製造方法
本發明係有關於一種吸收層之結構及其製造方法,尤指一種用於太陽能電池之吸收層之結構及其製造方法。
近年來環保意識抬頭,再生能源極度受到重視,如汽電共生、水力發電、風力發電與太陽能發電等,其中部分受到地理環境的限制,而太陽能發電卻具有不受地理環境影響與取之不竭的優點,因此太陽能電池(solar cell)最具有發展潛力,太陽能發電是使用p-n接面(p-n junction)半導體的裝置,利用光伏打效應(photovoltaic effect),將光能吸收後直接轉換成電能。但是目前太陽能電池轉換效率受限而且造價昂貴,使得太陽電池的應用範圍受到限制;有鑑於此,當務之急就是開發轉換效率高、製程簡單與低成本的太陽能電池,而目前太陽能電池的主要材料有單晶矽、多晶矽、非晶矽太陽能電池等、三五族包括砷化鎵(GaAs)、磷化銦(InP)、磷化鎵(InGaP)太陽能電池,而二六族包括碲化鎘(CdTe)、硒化銅銦鎵(CuInGaSe2)太陽能電池等。
目前在太陽能電池的市場上仍以晶矽材料電池為主流,其結晶矽太陽能電池佔市場約85%,而非晶矽太陽能電池市佔率約9%,但由於矽晶在許多方面的需求增加,使得原料成本增加,但是為達到太陽能電池大面積與普及化的理想,兼具低成本、大量生產、簡單製程等特性,因此發展薄膜太陽能電池(thin film solar cell)是一項不可避免的趨勢。
在薄膜太陽能電池材料中,以高能量轉換效率、低成本與簡單製程為主要考量,目前已有a-Si、CdTe、CdSe、CuInSe2、CuInGaSe2、ZnP2與Zn3P2等,其能量轉換效率與材料的能隙、光吸收係數、載子的傳輸特性及材料組成等性質有關。其中屬Ⅱ-Ⅵ族化合物的CdTe所製成的太陽電池具有15%能量轉換效率;在I-Ⅲ-Ⅵ2族化合物半導體的CuInGaSe2為直接能隙(direct bandgap)之材料,且其能隙值能涵蓋大部分之太陽光譜,僅需2-3 μm的厚度就具有相當高的光吸收特性,不但節省成本且易於攜帶及應用,而且具有良好的抗輻射性和熱穩定性等優點,並可藉由調變本身的組成來得到不同形式之p-n junction,在長時間使用下依然能維持良好的元件特性,所以相當適合用來作為高效率太陽能電池之主吸收層(main absorber layer)材料,具有很高的電能轉換效率,目前其最高能量轉換效率可達到19.2%。
目前製作Cu(In,Ga)Se2 複晶薄膜的方法有蒸鍍法(co-evaporation)、硒化法(selenization)、分子束磊晶(molecular beam epitaxy)、噴霧熱解法(spray pyrolysis)、共濺鍍法(co-sputtering)等方法。實驗室大多採用蒸鍍法或者是分子束磊晶,但是這兩種製程方式各有缺點,例如使用蒸鍍法方式,其最大的缺點為大面積的能量轉換效率太低,這是因為蒸鍍法利用三種材料進行共同蒸鍍沉積,並配合真空退火方式製作銅銦鎵吸收層,但是蒸鍍方式造成膜層厚度與成份之均勻度不足,因此在製作大面積太陽能電池時,因為膜層均勻性的問題使得能量轉換效率偏低。另一方面,使用分子束磊晶方式,可得到高品質高轉換效率之太陽能薄膜電池,但是使用分子束磊晶製程方式,其設備費用昂貴及沈積速率過低,所以此方式不適用於大量生產。
本發明之目的之一,在於提供一種太陽能電池吸收層之結構及其製造方法,控制該銅銦合金靶材及該銅鎵合金靶材之相態及成分比例,進而控制沈積該銅銦合金薄膜及該銅鎵合金薄膜之相態及成分比例,以完成銅銦鎵硒吸收層。
本發明之目的之一,在於提供一種太陽能電池吸收層之結構及其製造方法,達到低成本、製程穩定、簡便、高品質與高沉積速率。
為達到上述之目的,本發明係為一種太陽能電池吸收層之結構及其製造方法,該吸收層為一多層膜結構,該多層膜結構包含至少一銅銦合金薄膜及至少一銅鎵合金薄膜,該銅銦合金薄膜與該銅鎵合金薄膜交錯堆疊,經退火處理及硒化處理,得到銅銦鎵硒吸收層。該吸收層之製造方法係先取一基板,接著交錯濺鍍一銅銦合金靶材及一銅鎵合金靶材於該基板上,並反覆依序沈積一銅銦合金薄膜及一銅鎵合金薄膜,形成該多層膜結構,再退火該多層膜結構,形成一銅銦鎵吸收層,最後硒化該銅銦鎵吸收層,得到一銅銦鎵硒吸收層。
茲為使 貴審查委員對本發明之結構特徵及所達成之功效有更進一步之瞭解與認識,謹佐以較佳之實施例及配合詳細之說明,說明如後:請參閱第一A及一B圖,係為本發明之一較佳實施例之結構示意圖及本發明之一較佳實施例之流程示意圖。如圖所示,本實施例係提供一種太陽能電池吸收層之結構及其製造方法,該吸收層1係銅銦鎵硒,可應用於太陽能電池,該吸收層1係由一多層膜結構經退火處理及硒化處理而得到一銅銦鎵硒吸收層,該多層膜結構係包含至少一銅銦合金薄膜121及至少一銅鎵合金薄膜123,而該銅銦合金薄膜121與該銅鎵合金薄膜123交錯堆疊,該銅銦合金薄膜121之最大厚度為116nm,該銅鎵合金薄膜123之最大厚度為125nm,該吸收層1之製造方法係先執行步驟S10,取一基板10,接著執行步驟S12,交錯濺鍍一銅銦合金靶材及一銅鎵合金靶材,反覆依序沈積該銅銦合金薄膜121及該銅鎵合金薄膜123,而形成該銅銦合金薄膜121與該銅鎵合金薄膜123交錯排列之多層膜結構,其中交錯濺鍍該銅銦合金靶材及該銅鎵合金靶材利用一真空濺鍍系統進行直流濺鍍該銅銦合金靶材及該銅鎵合金靶材,該銅銦合金靶材之銅含量與銦含量的比值為介於1/1.5與1/1.8之間,該銅鎵合金靶材之銅含量與鎵含量之比值為介於3與4之間,於進行濺鍍時,濺鍍壓力係5.0×10-3 托爾,濺鍍該銅銦合金靶材之濺鍍功率為30瓦,濺鍍該銅鎵合金靶材之濺鍍功率為100瓦,沈積該銅銦合金薄膜121之沈積速率30nm/min,沈積該銅鎵合金薄膜123之沈積速率32nm/min。然後執行步驟S14,退火該多層膜結構,形成一銅銦鎵吸收層,最後執行步驟S16,硒化該銅銦鎵吸收層,形成一銅銦鎵硒吸收層。
本實施例所提供之銅銦鎵硒吸收層之製造過程中著重於該銅銦合金靶材與該銅鎵合金靶材之相態與成分比例,該銅銦合金靶材與該銅鎵合金靶材係利用真空電弧熔煉而得到,熔煉前必須考慮金屬之特性、熔點與蒸汽壓。
銅、鎵與銦的熔點分別為攝氏1083.4度、攝氏29.78度與攝氏156.6度,彼此間溫差甚大,而且銦、鎵與銅三種金屬元素彼此間熱膨脹係數的差異,在製作銅銦合金靶材及銅鎵合金靶材的過程中都會影響到合金的性質。由於各金屬在不同的氣氛壓力下其蒸汽壓不同,為避免金屬因其蒸氣壓差異過大煉造成逸散,使靶材比例產生變化,因此熔煉時必須考慮各金屬的蒸汽壓之差異,將提高高蒸汽壓之銦、鎵元素含量,避免成分含量差異過大。熔煉後之該銅銦合金靶材及該銅鎵合金靶材進行滾壓加工與熱處理,其中該銅鎵合金靶材不具加工性,取下適當大小將其表面研磨拋光使氧化物去除,並利用電子探針微分析儀(EPMA)與感應耦合電漿原子發射光譜(ICP-MS)進行定量定性分析,以確認該銅銦合金靶材及該銅鎵合金靶材之成份比例。
請一併參閱第二圖,係本發明之一較佳實施例之銅銦合金靶材及銅鎵合金靶材之成份比例圖。如圖所示,以銅含量與銦含量之比例為40wt%:60wt%進行真空電弧熔煉為該銅銦合金靶材,經感應耦合電漿原子發射光譜分析後,得到該銅銦合金靶材之銅含量與銦含量之比例為35.5 wt%:60.6wt%,該銅銦合金靶材中發現銦含量為60.6wt%,接近未經熔煉的銦含量,而銅含量未達未經熔煉之銅含量,因為在該銅銦合金靶材上發現銅金屬未完全熔解於該銅銦合金靶材中,以致分析時造成該銅銦合金靶材之銅含量與銦含量之比例有所誤差。
以銅含量與鎵含量之比例為75wt%:25wt%進行真空電弧熔煉為該銅鎵合金靶材,經感應耦合電漿原子發射光譜分析後,得到該銅銦合金靶材之銅含量與銦含量之比例為74.6 wt%:24.3wt%,該銅銦合金靶材中銅含量與銦含量之總和與未經熔煉的的銅含量與銦含量相差1.1wt%,因分析過程中部分雜質或氧化物無法溶解於溶液中,以至於有1.1wt%的誤差量。
請參閱第三A及三B圖,係本發明之一較佳實施例之銅銦合金靶材之低倍率金相組織圖及本發明之一較佳實施例之銅鎵合金靶材之高倍率金相組織圖。如圖所示,以銅含量與鎵含量之比例為75wt%:25wt%進行真空電弧熔煉為該銅鎵合金靶材,該銅鎵合金靶材基地晶粒為無方向近似等軸的結晶組織,且結晶組織為長條形結構,該銅鎵合金靶材孔隙及缺陷少,析出相少且分散均勻晶粒小,有利於薄膜沉積,提升濺鍍速率及薄膜均勻性且減少Arcing的現象產生,有助於使薄膜品質穩定且製程再現性高。析出物14經由電子探針微分析儀分析鑑定,在晶粒、晶界、析出部份並沒有明顯的合金成份差異。
請參閱第三C、三D、三E及三F圖,係本發明之一較佳實施例之銅銦合金靶材之低倍率金相組織圖、本發明之一較佳實施例之銅鎵合金靶材之高倍率金相組織圖、本發明之一較佳實施例之電子探針微分析儀分析圖及本發明之一較佳實施例之另一電子探針微分析儀分析圖。如圖所示,以銅含量與銦含量之比例為40wt%:60wt%進行真空電弧熔煉為該銅銦合金靶材,該銅銦合金靶材於真空電弧熔煉過程中有加熱加壓成型,所以可以從其金相組織圖中看出有一定的方向性,且晶界於高倍率金相組織圖中並不明顯。於低倍率金相組織圖中,析出物經由電子探針微分析儀分析(如第三E圖)鑑定,在晶粒、晶界、析出部份並沒有明顯合金成份差異。於高倍率金相組織圖中,析出物14經由電子探針微分析儀分析(如第三F圖)鑑定,合金成份上有著些許的差異性,而從高倍率金相組織圖中對照可以觀察出有著類似雜質或缺陷在表面上,使得成份有相對的差異,而這可能會使得靶材因雜質或缺陷而不利於薄膜沉積,使得濺鍍速率降低,薄膜均勻性不佳使薄膜品質處於不穩定的狀態。
請參閱第四圖,係本發明之一較佳實施例之X光繞射圖。如圖所示,將上述該銅鎵合金靶材及該銅銦合金靶材利用X光繞射進行相鑑定,產生一第一曲線161及一第二曲線163,於第一曲線161中,顯示該銅鎵合金靶材在46°左右出現訊號很強的特性峰,該銅鎵合金靶材為Cu3Ga相,其主要繞射峰出現在40~90度之間;而第二曲線163可知,該銅銦合金靶材結構在42°左右出現訊號很強的特性峰,該銅銦合金靶材為CuIn相,其主要繞射峰出現在30~50度之間。
於該第一曲線161及第二曲線163中,均會發現其他較小特性峰,推估應該是該銅鎵合金靶材及該銅銦合金靶材中一些純相態,因此需要在進一步進行分析判斷,以避免因為其他相態的存在,造成膜層擴散的阻礙。
請參閱第五圖,本發明之一較佳實施例之另一X光繞射圖。如圖所示,將上述銅銦合金靶材及該銅鎵合金靶材靶材經直流濺鍍後所形成之該銅銦合金薄膜及該銅鎵合金薄膜進行低掠角X光繞射分析,圖中包含一第三曲線181及一第四曲線183,從該第三曲線181及該第四曲線183可以發現該銅銦合金薄膜及銅鎵合金薄膜結晶性良好且訊號強度高。
該第三曲線181為該銅鎵合金薄膜之X光繞射圖,其銅鎵合金薄膜與靶材皆為Cu3Ga相,而第四曲線183為銅銦合金薄膜的X光繞射圖,進行結構比對可以發現該薄膜之相態與靶材相態雷同,均為CuIn相態,但是於第四曲線中,均會發現其他較小特性峰,因此需要在進一步進行分析,判斷是否因為其他相態的存在,造成膜層擴散的阻礙。
請參閱第六A及六B圖,係本發明之一較佳實施例之銅鎵合金薄膜橫截面顯微組織圖及本發明之一較佳實施例之銅銦合金薄膜橫截面顯微組織圖。如圖所示,由上述可知,本實施例進行濺鍍之條件為濺鍍壓力設於5.0×10-3 托爾,濺鍍該銅銦合金靶材之濺鍍功率為30瓦,濺鍍該銅鎵合金靶材之濺鍍功率為100瓦,然後以濺鍍時間控制沈積該銅銦合金薄膜及該銅鎵合金薄膜。從第六A圖中可知,該銅鎵合金薄膜之橫截面膜層結構緻密,該銅鎵合金薄膜之最大厚度為125.6nm,而沈積該銅鎵合金薄膜之沈積速率為32nm/min。
從第六B圖中可知,該銅銦合金薄膜之橫截面膜層結構上緻密性不如該銅鎵合金薄膜的橫截面膜層結構,該銅銦合金薄膜之最大厚度為116nm,而沈積該銅銦合金薄膜之沈積速率為30nm/min。
上述實施例使用以銅含量與銦含量之比例為40wt%:60wt%進行真空電弧熔煉為該銅銦合金靶材及以銅含量與鎵含量之比例為75wt%:25wt%進行真空電弧熔煉為該銅鎵合金靶材進行濺鍍製程,沈積該銅銦合金薄膜及該銅鎵合金薄膜,並對該銅銦合金靶材、該銅鎵合金靶材、該銅銦合金薄膜及該銅鎵合金薄膜進行分析,得到下列結果:1.該銅鎵合金靶材結晶性良好,析出相少,可以得到緻密性高的結構,亦可減少Arcing現象發生。
2.該銅銦合金靶材在金相組織觀察中可以發現有雜質或缺陷產生,這將會使得該銅銦合金薄膜沉積的均勻性變差,濺鍍速率降低,使該銅銦合金薄膜品質處於不穩定的狀態。
3.從該銅鎵合金薄膜與該銅銦合金薄膜之X光繞射圖可以發現其相態峰值相近,後續將進行真空擴散退火,進一部份分析相互擴散形成單一銅銦鎵相的可能性。
由上述可知,本發明之太陽能電池吸收層之結構及其製造方法係控制該銅銦合金靶材及該銅鎵合金靶材之相態及成分比例,進而控制沈積該銅銦合金薄膜及該銅鎵合金薄膜之相態及成分比例,以完成銅銦鎵硒吸收層。本發明提供一種達到低成本、製程穩定、簡便、高品質與高沉積速率之製造吸收層製程方式,使製作太陽能薄膜電池的所需能量遠小於電池總生產能量,且簡便的製程易於監控使穩定性提高,改善先前技術之吸收層厚度與成份之均勻度不足造成能量轉換效率偏低及設備費用昂貴及沉積速率過低造成無法大量生產之問題。
綜上所述,本發明係實為一具有新穎性、進步性及可供產業利用者,應符合我國專利法所規定之專利申請要件無疑,爰依法提出發明專利申請,祈 鈞局早日賜准專利,至感為禱。
惟以上所述者,僅為本發明之一較佳實施例而已,並非用來限定本發明實施之範圍,舉凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本發明之申請專利範圍內。
1...吸收層
10...基板
121...銅銦合金薄膜
123...銅鎵合金薄膜
13‧‧‧析出物
14‧‧‧析出物
161‧‧‧第一曲線
163‧‧‧第二曲線
181‧‧‧第三曲線
183‧‧‧第四曲線
第1A圖:本發明之一較佳實施例之結構示意圖;第1B圖:本發明之一較佳實施例之流程示意圖;第2圖:本發明之一較佳實施例之銅銦合金靶材及銅鎵合金靶材之成份比例圖;第3A圖:本發明之一較佳實施例之銅銦合金靶材之低倍率金相組織圖;第3B圖:本發明之一較佳實施例之銅鎵合金靶材之高倍率金相組織圖;第3C圖:本發明之一較佳實施例之銅銦合金靶材之低倍率金相組織圖;第3D圖:本發明之一較佳實施例之銅鎵合金靶材之高倍率金相組織圖;第3E圖:本發明之一較佳實施例之電子探針微分析儀分析圖;第3F圖:本發明之一較佳實施例之另一電子探針微分析儀分析圖;第4圖:本發明之一較佳實施例之X光繞射圖第5圖:本發明之一較佳實施例之另一X光繞射圖;第6A圖:本發明之一較佳實施例之銅鎵合金薄膜橫截面顯微組織圖;及第6B圖:本發明之一較佳實施例之銅銦合金薄膜橫截面顯微組織圖。
1...吸收層
10...基板
121...銅銦合金薄膜
123...銅鎵合金薄膜

Claims (12)

  1. 一種太陽能電池吸收層之製造方法,係包含:取一基板;交錯濺鍍一銅銦合金靶材及一銅鎵合金靶材於該基板上,沈積至少一銅銦合金薄膜及至少一銅鎵合金薄膜,形成一多層膜結構;退火該多層膜結構,形成一銅銦鎵吸收層;硒化該銅銦鎵吸收層,形成一銅銦鎵硒吸收層。
  2. 如申請專利範圍第1項所述之太陽能電池吸收層之製造方法,其中交錯濺鍍該銅銦合金靶材及該銅鎵合金靶材之步驟係利用一真空濺鍍系統進行直流濺鍍該銅銦合金靶材及該銅鎵合金靶材。
  3. 如申請專利範圍第1項所述之太陽能電池吸收層之製造方法,其中該銅銦合金靶材之銅含量與銦含量的比值為介於1/1.5與1/1.8之間。
  4. 如申請專利範圍第1項所述之太陽能電池吸收層之製造方法,其中該銅鎵合金靶材之銅含量與鎵含量之比值為介於3與4之間。
  5. 如申請專利範圍第1項所述之太陽能電池吸收層之製造方法,其中該銅銦合金靶材及該銅鎵合金靶材係利用真空電弧熔解方式配製。
  6. 如申請專利範圍第1項所述之太陽能電池吸收層之製造方法,其中交錯濺鍍該銅銦合金靶材及該銅鎵合金靶材之步驟之濺鍍壓力係5.0×10-3 托爾。
  7. 如申請專利範圍第6項所述之太陽能電池吸收層之製造方法,其中濺鍍該銅銦合金靶材之濺鍍功率為30瓦。
  8. 如申請專利範圍第6項所述之太陽能電池吸收層之製造方法,其中濺鍍該銅鎵合金靶材之濺鍍功率為100瓦。
  9. 如申請專利範圍第1項所述之太陽能電池吸收層之製造方法,其中沈積該銅銦合金薄膜之沈積速率30nm/min。
  10. 如申請專利範圍第1項所述之太陽能電池吸收層之製造方法,其中該銅銦合金薄膜之最大厚度為116nm。
  11. 如申請專利範圍第1項所述之太陽能電池吸收層之製造方法,其中沈積該銅鎵合金薄膜之沈積速率32nm/min。
  12. 如申請專利範圍第1項所述之太陽能電池吸收層之製造方法,其中該銅鎵合金薄膜之最大厚度為125nm。
TW096146577A 2007-12-06 2007-12-06 Structure of solar cell absorbent layer and manufacturing method thereof TWI399861B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096146577A TWI399861B (zh) 2007-12-06 2007-12-06 Structure of solar cell absorbent layer and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096146577A TWI399861B (zh) 2007-12-06 2007-12-06 Structure of solar cell absorbent layer and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW200926431A TW200926431A (en) 2009-06-16
TWI399861B true TWI399861B (zh) 2013-06-21

Family

ID=44729692

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096146577A TWI399861B (zh) 2007-12-06 2007-12-06 Structure of solar cell absorbent layer and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI399861B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI396295B (zh) * 2009-12-18 2013-05-11 Jenn Feng New Energy Co Ltd Preparation method of non - vacuum wet copper indium gallium selenium solar cells

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0978882A2 (en) * 1998-07-02 2000-02-09 International Solar Electric Technology, Inc. An oxide-based method of making compound semiconductor films and making related electronic devices
EP1705717A1 (en) * 2004-01-13 2006-09-27 Matsusita Electric Industrial Co., Ltd. Fuel cell and method for producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0978882A2 (en) * 1998-07-02 2000-02-09 International Solar Electric Technology, Inc. An oxide-based method of making compound semiconductor films and making related electronic devices
EP1705717A1 (en) * 2004-01-13 2006-09-27 Matsusita Electric Industrial Co., Ltd. Fuel cell and method for producing same

Also Published As

Publication number Publication date
TW200926431A (en) 2009-06-16

Similar Documents

Publication Publication Date Title
Compaan et al. High efficiency, magnetron sputtered CdS/CdTe solar cells
US6137048A (en) Process for fabricating polycrystalline semiconductor thin-film solar cells, and cells produced thereby
US8969720B2 (en) Photoelectronically active, chalcogen-based thin film structures incorporating tie layers
Gall et al. Polycrystalline silicon thin-film solar cells on glass
CA2718272A1 (en) Improved junctions in substrate solar cells
CN104813482B (zh) 用于cigs光伏器件的钼基材
KR101628312B1 (ko) CZTSSe계 박막 태양전지의 제조방법 및 이에 의해 제조된 CZTSSe계 박막 태양전지
EP2383363B1 (en) Cadmium sulfide layers for use in cadmium telluride based thin film photovoltaic devices and method of their manufacture
WO2012118771A2 (en) Improved thin-film photovoltaic devices and methods of manufacture
CN113745359A (zh) 一种碲化镉梯度吸收层的制备方法及太阳电池
KR101482786B1 (ko) 산화인듐을 이용한 cigs 광흡수층 제조방법
TWI399861B (zh) Structure of solar cell absorbent layer and manufacturing method thereof
JPH0555615A (ja) 薄膜太陽電池の製造方法
KR20120133342A (ko) 균일한 Ga 분포를 갖는 CIGS 박막 제조방법
CN114203842A (zh) 宽禁带铜镓硒光吸收层及其制备方法、太阳能电池
KR101388458B1 (ko) 급속 열처리 공정을 사용한 cigs 박막의 제조방법
KR101131008B1 (ko) Se 또는 S계 박막태양전지 및 그 제조방법
KR101521450B1 (ko) CuSe2를 타겟으로 하는 비셀렌화 스퍼터링 공정을 이용한 CIGS 박막 제조방법
KR102212042B1 (ko) 원자층 증착법으로 형성된 버퍼층을 포함하는 태양전지 및 이의 제조방법
US20160087126A1 (en) Photoelectric conversion device, solar cell and method for manufacturing photoelectric conversion device
KR102025091B1 (ko) CZT(S,Se)계 박막, 시드가 형성된 전구체층을 이용하는 CZT(S,Se)계 박막 형성방법 및 CZT(S,Se)계 박막 태양전지와 그 제조방법
Kim et al. CIGS thin film solar cell prepared by reactive co-sputtering
Meeth et al. Pulsed laser deposition of thin film CdTe/CdS solar cells with CdS/ZnS superlattice windows
Karade et al. Bandgap Engineering in CZTSSe Thin Films via Controlling S/(S+ Se) Ratio
CN105932093A (zh) 一种高质量cigs薄膜太阳能电池吸收层的制备方法