TWI386263B - 產生固態電解電容器之方法 - Google Patents

產生固態電解電容器之方法 Download PDF

Info

Publication number
TWI386263B
TWI386263B TW094135038A TW94135038A TWI386263B TW I386263 B TWI386263 B TW I386263B TW 094135038 A TW094135038 A TW 094135038A TW 94135038 A TW94135038 A TW 94135038A TW I386263 B TWI386263 B TW I386263B
Authority
TW
Taiwan
Prior art keywords
ppm
powder
anode
capacitor
microns
Prior art date
Application number
TW094135038A
Other languages
English (en)
Other versions
TW200626260A (en
Inventor
Helmut Haas
Ulrich Bartmann
Original Assignee
Starck H C Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Starck H C Gmbh filed Critical Starck H C Gmbh
Publication of TW200626260A publication Critical patent/TW200626260A/zh
Application granted granted Critical
Publication of TWI386263B publication Critical patent/TWI386263B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/24Obtaining niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • H01G9/0525Powder therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Conductive Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

產生固態電解電容器之方法
本發明關於一種產生以鉭為基底的固態電解電容器之方法,尤其具有大於70,000微法拉伏特/克(μFV/g)之升高比電容(specific capacitance)者。
被主要地使用的固體電解電容器具有極大活性的電容器表面且因而具有適用於行動通信電子裝置之小尺寸為具有五氧化鉭障壁層施敷於對應的導電性鉭金屬支持體上者,俾利用其安定性(“閥金屬(valve metal)”)、較高的介電常數以及絕緣的五氧化物層(具有可經由電化學方法產生之高均勻的層厚度者)。金屬支持體,同時構成電容器之一(陽極),則包含經由壓製和燒結超細分散的初級結構所製成之高孔隙海綿狀結構,或已成為海綿狀之二級結構。壓縮成型之穩定力於此處對於進一步處理以產生燒結物件而言是必要的,其中燒結物件構成電容器的真實支持結構或陽極。支持結構的表面經電解氧化(“形成”)以生成五氧化物,其中五氧化物層的厚度係透過電解氧化反應之最大電壓(“形成電壓”)決定。相對電極係藉著以硝酸鎂(經熱轉化為二氧化鎂)或以聚合物電解質液態前驅體(precursor)浸漬海綿狀結構以及進行聚合反應而製得。電極的電接點,就一方面而言係透過鉭或鈮絲網(wire)(於燒結之前放置於壓縮模具中),就另一方面而言係透過金屬電容器外殼(對於絲網而言是絕緣的)而提供。絲網燒結於陽極結構所具有之強度亦為供進一步加工形成電容器用之另一重要性質。
電容器的電容C係根據下式計算而得:C=(F.ε)/d其中F為代表電容器表面積,ε為介電常數,d為絕緣層厚度。
此等固態電解電容器的品質實質上取決於海綿狀陽極結構之形成,尤其從相當大降至超隙孔隙之開孔結構的分支化情形。於形成絕緣層之後,其中三分之一係成長於原始陽極結構中且三分之二則成長於其上,海綿狀結構就一方面而言仍含有連續導電性結構,並且就另一方面而言,提供相通的開孔結構,故於此中所形成之陰極可完全地與絕緣層的表面接觸。
近年來之發展已導致使用甚至更細分散的初級顆粒,尤其是因為現代的通信電子裝置係於較低電壓下運作。因此,可能減少的絕緣層厚度使得仍可能以較細的初級結構尺度製造連續的陽極結構,以及於電鍍之後仍可提供相通的孔隙結構。
海綿狀陽極結構於此處係經由細分散的初級和二級結構製成,通常由多階段製造粉末附聚物之方法開始,伴隨著壓製和燒結附聚物,其中藉使用具有氮及/或磷(早期亦包含硼、矽、硫、砷)之燒結保護摻雜物被過度燒結。燒結活性(為了附聚作用之目的,此處有時是過度降低的)係受到同步還原反應(“脫氧附聚反應”)而抵銷,其中同步脫氧反應導致表面原子活性增加。
因此,經濟上可行的鉭電容器製法需要許多折衷方案,以便不僅獲致具有有利的其他加工性質之中間物且具有所需的電容器性質。
本發明之目的係延長可能的折衷方案範圍,亦即提供產生電容器用之粉末,使得得以產生具有較廣性質範圍之電容器或在較不嚴格的加工限制下產生具有特定性質之電容器。
本發明之其他目的可直接地衍生自以下本發明之說明。
頃發現倘若完全地省略燒結保護摻雜物,可達成此目的。
因此,本發明係提供鉭粉末,其包含具有最小初級顆粒尺度為0.2至0.8微米、比表面積(specific surface area)為0.9至2.5平方公尺/克(m2 /g)以及以ASTM B 822測定之粒度分布對應於D10值為5至40微米、D50值為20至140微米及D90值為40至250微米之附聚的初級顆粒,其中該粉末不含有效量的燒結保護劑。
根據本發明之較佳的鉭粉末具有以下物質(已知具有燒結保護效果)之含量為P<40 ppm N<400 ppm B<10 ppm Si<20 ppm S<10 ppmAs<10 ppm。
磷含量較佳應低於10 ppm,氮含量應低於200 ppm。具有氮含量低於100 ppm之鉭粉末為特佳。
於鉭粉末中之外來物質的含量是否提供燒結保護作用係取決於其品質與其存在於粉末中之方式二者。因此,400 ppm之表面氮含量仍可有效作為燒結保護劑,而通過粉末顆粒體積之均勻摻雜通常是無效的。
根據本發明之粉末特佳的差異處在於不含摻雜元素(除了無法避免的不純物含量外,係有效於作為燒結保護劑)。
令人感到驚訝的是,根據本發明之鉭粉末可加工為具有極低殘餘電流之電容器,因為根據先前技藝之教示,燒結保護摻雜物通常亦用於降低殘餘電流。
於以壓縮密度5.0克/立方公分壓製為直徑為5.1毫米和長度為5.1毫米之圓柱形之後,根據本發明之鉭粉末展現查狄倫(Chatillon)壓縮強度大於4公斤,較佳為大於5公斤。
本發明亦提供製自具有比表面積為0.5至1平方公尺/克之鉭之固態電解電容器陽極,其實質上不含燒結保護劑。
再者,本發明提供具有根據本發明之陽極之固態電解電容器,其展現比電容為40,000至150,000 μFV/克,較佳為70,000至150,000 μFV/克。
圖1及2提供構成本發明基礎之效果的示意解釋:於圖式中,A代表具有燒結架橋D之二個燒結過的初級顆粒的斷面略圖(虛線)。當於具有磷或氮之燒結保護摻雜物存在下進行附聚作用時(圖1),燒結架橋展現相當陡的凹口(notch),而當無燒結保護摻雜物下進行附聚作用時(根據本發明)(圖2),燒結架橋凹口被”弄平”。於圖式之示意說明中,透過燒結架橋所形成且以雙頭箭號D表示之初級顆粒間之接觸面積,於圖2中者比於圖1中者約大三倍。灰色顯示之區域代表電鍍厚之五氧化物層,垂直於表面(虛線)之厚度的約三分之一係朝內向原始金屬結構成長,且約三分之二係向外成長。
製自根據本發明粉末之陽極展現極低的比殘餘電流(specific residual current)以及極佳的介電強度。此方面之理由亦可妥善地由圖1和2闡釋。當於以燒結保護摻雜物燒結陽極之例子中(圖1),於五氧化物層成長期間,一條”接縫(seam)”(兩顆粒的成長邊緣係於此處接合)形成於兩初級顆粒間之燒結架橋的凹口線處,而根據本發明之粉末則無此情形。然而,此一”成長接縫”係為不純物及堆疊缺陷(於原子範圍)之累積點,且因而為漏電流或殘餘電流或過電壓故障之基礎。
實施例
使用細分散、部分燒結的起始五氧化鉭,其具有平均初級粒度為約2.5微米(自SEM顯微照相圖測定),根據ASTM B 822(Malvern MasterSizer Sμ儀器)之粒度分布對應於D10值為5.7微米、對應於D50值為28.3微米及對應於D90值為72.1微米,以及根據ASTM D 3663之比表面積(BET)為0.54平方公尺/克。
起始五氧化鉭係以本身已知的方式,經由氟鉭酸與氨溶液之反應、分離、清洗及乾燥沉澱的氫氧化鉭、於空氣中煅燒氫氧化物以及篩分產物至小於600微米而製得,伴隨著於1,700℃氬氣下之接續的安定化煅燒作用,接著進行粉碎及篩分。
將原始五氧化鉭添加於在襯有鉭板狀物之反應器中的鉭編織絲網上,係位於含有1.1倍理想配比含量(相對於五氧化物之氧含量)的鎂之坩堝上方。火爐包含加熱構件以及位於含有鎂之坩堝之氣體進口及在五氧化鉭床上方之氣體出口。於開始加熱反應器至還原溫度之前,以氬氣沖洗反應器。於還原過程中,氬氣緩慢地流經火爐(於標準壓力下)。於應完成及冷卻反應器之後,逐漸地將空氣引入反應器中,俾使金屬粉末對燃燒產生鈍化。藉著以硫酸清洗且接著以去礦物質水清洗,除去所形成的氧化鎂,直到得到中性反應為止。
於還原反應之後,粉末具有平均初級粒度為約0.2微米(自SEM顯微照相圖測定),BET比表面積為2.3平方公尺/克以及根據ASTM B 822之粒度分布對應於D10值為16.3微米、對應於D50值為31.7微米及對應於D90值為93.2微米。
經由浸漬磷酸溶液及乾燥,使部分粉末摻雜150 ppm之磷。
接著藉添加1.5倍理想配比量之鎂碎片以及加熱2小時至表1中所示之脫氧溫度,首先使摻磷極不摻磷的鉭粉末樣品二者脫氧,並且於冷卻之後,通過300微米網目大小之篩網摩擦之。
以下的粉末特徵或參數係顯示於表1中:Dexo.-T代表進行脫氧反應之溫度。
“體積密度(bulk density)”係根據ASTM B 329,以斯柯特體積儀測定之。
“FSSS”代表根據ASTM B 330,經由Fisher Sub Sieve Sizer測定之平均粒徑。
壓縮強度係使用查狄倫(Chatillon)測力器,針對長度為5.1毫米和直徑為5.1毫米之壓縮粉末顆粒狀物,以壓縮密度5.0克/立方公分測定。
“BET”代表根據習知的Brunauer、Emmett及Teller方法測定之比表面積。
“流動性”(“Hall流體”)係為取25克粉末通過1/10”漏斗流動所需的時間(以秒計)。
”MaSterSizer D10、D50、D90”代表使用Malvern的MasterSizer Sμ儀器,一次不需超音波振盪且一次需要超音波振盪,根據ASTM B 822經由雷射繞射所測定之粒度分布的第10、第50及第90質量百分位。
尺度為直徑3毫米和長度3.96毫米之壓縮模製物(壓縮密度為5.0克/立方公分)則製自粉末,其中0.2毫米直徑的鉭粉末係於引入粉末之前、軸向地的置於模片(die)中作為接觸線。使壓縮模製物於高真空下,於表中所示之燒結溫度下燒結10分鐘,以形成陽極。
“線拉出強度”係測定如下:使陽極絲網通過定位板中之0.25毫米直徑開孔,並且使自由端夾入查狄倫測力器的顎部中。接著施力,直到從陽極結構拉出絲網為止。
將陽極體浸漬於0.1%磷酸中,並且以限制於150毫安培之電流密度,形成30伏特之形成電壓。於電流密度降低之後,維持電壓另外1小時。使用18%硫酸之陰極來測量電容器性質。以交流電壓120赫茲(Hz)進行測量。
比電容及殘餘電流係顯示於表1中。
“介電強度”係另外地測定如下:將陽極體浸漬於0.1%磷酸中,並且於固定電流強度下形成,直到突然出現降壓為止。
A...二個燒結過的初級顆粒之橫切面輪廓
D...燒結架橋
圖1提供構成本發明基礎之效果的示意解釋,其中附聚作用係於具有磷或氮之燒結保護摻雜物存在下進行。
圖2提供構成本發明基礎之效果的示意解釋,其中附聚作用係於無燒結保護摻雜物下進行。
A...二個燒結過的初級顆粒之橫切面輪廓
D...燒結架橋

Claims (7)

  1. 一種用於生產電容器之鉭粉末,其包含具有最小初級顆粒尺度為0.2至0.8微米、比表面積為0.9至2.5平方公尺/克以及根據ASTM B 822測定之粒度分布對應於D10為5至25微米、D50為20至140微米及D90為40至250微米之附聚的初級顆粒(agglomerated primary particle),具有以下物質含量為P<30 ppm N<400 ppm B<10 ppm Si<20 ppm S<10 ppm As<10 ppm。
  2. 如申請專利範圍第1項之粉末,係具有以下物質含量為P<10 ppm N<300 ppm。
  3. 如申請專利範圍第2項之粉末,係具有以下物質含量為N<100 ppm。
  4. 如申請專利範圍第1至3項中任一項之鉭粉末,其係於壓製為具有直徑為5.1毫米和長度為5.1毫米且壓縮密度為5.0克/立方公分之圓柱形之後,展現查狄倫(Chatillon)壓縮強度大於4公斤,較佳為大於5公斤。
  5. 一種鉭製的固態電解電容器陽極,其具有活化為電容器之比表面積為0.5至1平方公尺/克,係實質上不含燒結 保護劑。
  6. 如申請專利範圍第5項之固態電解電容器陽極,係具有線拉出(wire pull-out)強度大於30公斤。
  7. 一種具有如申請專利範圍第5或6項中任一項之陽極之固態電解電容器,係具有比電容為70,000至150,000 μFV/克以及比殘餘電流為小於1 nA/μFV。
TW094135038A 2004-10-08 2005-10-07 產生固態電解電容器之方法 TWI386263B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004049040A DE102004049040B4 (de) 2004-10-08 2004-10-08 Verfahren zur Herstellung von Festelektrolytkondensatoren

Publications (2)

Publication Number Publication Date
TW200626260A TW200626260A (en) 2006-08-01
TWI386263B true TWI386263B (zh) 2013-02-21

Family

ID=35645881

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094135038A TWI386263B (zh) 2004-10-08 2005-10-07 產生固態電解電容器之方法

Country Status (17)

Country Link
US (1) US7898794B2 (zh)
EP (1) EP1843868B1 (zh)
JP (2) JP5150256B2 (zh)
KR (1) KR101285491B1 (zh)
CN (1) CN101035640B (zh)
AT (1) ATE517707T1 (zh)
AU (1) AU2005291557B2 (zh)
BR (1) BRPI0516563B1 (zh)
DE (1) DE102004049040B4 (zh)
IL (2) IL182216A0 (zh)
MX (1) MX2007003962A (zh)
PT (1) PT1843868E (zh)
RU (1) RU2414990C2 (zh)
SV (1) SV2006002260A (zh)
TW (1) TWI386263B (zh)
WO (1) WO2006037497A1 (zh)
ZA (1) ZA200702885B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007130483A2 (en) * 2006-05-05 2007-11-15 Cabot Corporation Tantalum powder with smooth surface and methods of manufacturing same
DE102008026304A1 (de) * 2008-06-02 2009-12-03 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren mit niedrigem Leckstrom
US9548163B2 (en) 2012-07-19 2017-01-17 Avx Corporation Solid electrolytic capacitor with improved performance at high voltages
DE102013213723A1 (de) 2012-07-19 2014-01-23 Avx Corporation Festelektrolytkondensator mit erhöhter Feucht-zu-Trocken-Kapazität
CN103578768B (zh) 2012-07-19 2017-10-31 Avx公司 用在电解电容器固体电解质中的非离子表面活性剂
DE102013213720A1 (de) 2012-07-19 2014-01-23 Avx Corporation Temperaturstabiler Festelektrolytkondensator
GB2512480B (en) 2013-03-13 2018-05-30 Avx Corp Solid electrolytic capacitor for use in extreme conditions
DE102013206603A1 (de) * 2013-04-12 2014-10-16 H.C. Starck Gmbh Verfahren zur Herstellung von sauerstoffarmen Ventilmetallsinterkörpern mit hoher Oberfläche
CN104884195B (zh) * 2013-12-04 2017-10-27 宁夏东方钽业股份有限公司 一种超高比容钽粉末的团化方法及由该方法制备的钽粉
AT14301U1 (de) * 2014-07-09 2015-07-15 Plansee Se Verfahren zur Herstellung eines Bauteils
CN104209512B (zh) * 2014-09-05 2018-01-16 宁夏东方钽业股份有限公司 一种中压钽粉及其制备方法
US10290430B2 (en) 2014-11-24 2019-05-14 Avx Corporation Wet Electrolytic Capacitor for an Implantable Medical Device
RU2740582C1 (ru) * 2020-07-21 2021-01-15 федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Способ изготовления анодов танталового конденсатора
CN116148296B (zh) * 2023-04-19 2023-08-25 中国科学院过程工程研究所 含金属固体物料自动化xrf检测集成装置的检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5986877A (en) * 1996-04-25 1999-11-16 Cabot Corporation Tantalum metal power with controlled size distribution and products made therefrom
US6238456B1 (en) * 1997-02-19 2001-05-29 H. C. Starck Gmbh & Co. Kg Tantalum powder, method for producing same powder and sintered anodes obtained from it
TW484151B (en) * 1999-11-19 2002-04-21 Matsushita Electric Ind Co Ltd Method of and apparatus for manufacturing tantalum solid electrolytic capacitors
TW502268B (en) * 2000-01-17 2002-09-11 Sanyo Electric Co Method and apparatus for fabricating solid electrolytic capacitors
US20030230167A1 (en) * 2002-03-12 2003-12-18 Josua Loeffelholz Valve metal powders and process for producing them

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217526A (en) * 1991-05-31 1993-06-08 Cabot Corporation Fibrous tantalum and capacitors made therefrom
PT964936E (pt) * 1997-02-19 2002-03-28 Starck H C Gmbh Po de tantalo seu processo de producao e anodos sinterizados produzidos a partir deste po
US6171363B1 (en) * 1998-05-06 2001-01-09 H. C. Starck, Inc. Method for producing tantallum/niobium metal powders by the reduction of their oxides with gaseous magnesium
CN1069564C (zh) * 1998-07-07 2001-08-15 宁夏有色金属冶炼厂 钽粉末的制造方法
DE19847012A1 (de) * 1998-10-13 2000-04-20 Starck H C Gmbh Co Kg Niobpulver und Verfahren zu dessen Herstellung
JP2002060803A (ja) * 2000-08-10 2002-02-28 Showa Kyabotto Super Metal Kk 電解コンデンサ用タンタル焼結体の製造方法
US6611421B2 (en) * 2000-09-08 2003-08-26 Avx Corporation Non-polarized tantalum capacitor and capacitor array
CN1169643C (zh) * 2001-09-29 2004-10-06 宁夏东方钽业股份有限公司 高比表面积钽粉和/或铌粉的制备方法
US6791821B1 (en) * 2001-10-16 2004-09-14 Yosemite Investment, Inc. Tantalum-carbon hybrid capacitor with activated carbon
CN100528417C (zh) * 2003-06-10 2009-08-19 卡伯特公司 钽粉及其制造方法
RU2236930C1 (ru) 2003-06-24 2004-09-27 Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра РАН Способ получения легированного порошка вентильного металла
US7116548B2 (en) * 2004-04-23 2006-10-03 Kemet Electronics Corporation Fluted anode with minimal density gradients and capacitor comprising same
US6952339B1 (en) * 2004-05-13 2005-10-04 Todd Knowles Tantalum capacitor case with increased volumetric efficiency

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5986877A (en) * 1996-04-25 1999-11-16 Cabot Corporation Tantalum metal power with controlled size distribution and products made therefrom
US6238456B1 (en) * 1997-02-19 2001-05-29 H. C. Starck Gmbh & Co. Kg Tantalum powder, method for producing same powder and sintered anodes obtained from it
TW484151B (en) * 1999-11-19 2002-04-21 Matsushita Electric Ind Co Ltd Method of and apparatus for manufacturing tantalum solid electrolytic capacitors
TW502268B (en) * 2000-01-17 2002-09-11 Sanyo Electric Co Method and apparatus for fabricating solid electrolytic capacitors
US20030230167A1 (en) * 2002-03-12 2003-12-18 Josua Loeffelholz Valve metal powders and process for producing them

Also Published As

Publication number Publication date
DE102004049040B4 (de) 2008-11-27
WO2006037497A1 (de) 2006-04-13
EP1843868A1 (de) 2007-10-17
KR20070053369A (ko) 2007-05-23
US7898794B2 (en) 2011-03-01
KR101285491B1 (ko) 2013-07-12
EP1843868B1 (de) 2011-07-27
DE102004049040A1 (de) 2006-04-13
JP5193341B2 (ja) 2013-05-08
RU2007116851A (ru) 2008-11-20
AU2005291557B2 (en) 2010-07-29
SV2006002260A (es) 2006-06-26
CN101035640A (zh) 2007-09-12
US20080094779A1 (en) 2008-04-24
BRPI0516563B1 (pt) 2014-03-11
BRPI0516563A (pt) 2008-09-09
MX2007003962A (es) 2008-03-13
JP2008516432A (ja) 2008-05-15
JP5150256B2 (ja) 2013-02-20
IL203658A (en) 2012-12-31
AU2005291557A1 (en) 2006-04-13
ZA200702885B (en) 2008-08-27
CN101035640B (zh) 2011-05-25
JP2012019223A (ja) 2012-01-26
RU2414990C2 (ru) 2011-03-27
PT1843868E (pt) 2011-09-19
ATE517707T1 (de) 2011-08-15
IL182216A0 (en) 2007-09-20
TW200626260A (en) 2006-08-01

Similar Documents

Publication Publication Date Title
TWI386263B (zh) 產生固態電解電容器之方法
TWI408018B (zh) 製造閥金屬粉末之方法
KR101156870B1 (ko) 밸브 금속 분말 또는 탄탈륨 분말의 제조 방법 및 탄탈륨 분말
JP2021515846A (ja) 球状粉末含有陽極及びコンデンサ
TWI463510B (zh) 閥金屬或閥金屬氧化物黏聚物粉末及其製造方法、電容器陽極體、電容器陽極、電容器及其用途
JP2009120478A (ja) 亜酸化ニオブ粉末、亜酸化ニオブアノード、および固体電解キャパシタ
KR102317632B1 (ko) 큰 표면적을 갖는 저 산소 밸브 금속 소결체 제조 방법
KR20050011700A (ko) 아산화 니오븀의 제조 방법
US9085468B2 (en) Inorganic compounds
JP4217667B2 (ja) ニオブ亜酸化物をベースとするキャパシタアノードの製造方法、ニオブ亜酸化物を有する粉末混合物、アノード構造体を製造するための粉末、粉末混合物及び粉末凝集体、及び固体電解質キャパシタ

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees