TWI381491B - Manufacturing Method of NOR - type Flash Memory with Phosphorus Arsenic Ion Planting - Google Patents

Manufacturing Method of NOR - type Flash Memory with Phosphorus Arsenic Ion Planting Download PDF

Info

Publication number
TWI381491B
TWI381491B TW98131577A TW98131577A TWI381491B TW I381491 B TWI381491 B TW I381491B TW 98131577 A TW98131577 A TW 98131577A TW 98131577 A TW98131577 A TW 98131577A TW I381491 B TWI381491 B TW I381491B
Authority
TW
Taiwan
Prior art keywords
ion implantation
implantation process
gate structure
manufacturing
semiconductor substrate
Prior art date
Application number
TW98131577A
Other languages
Chinese (zh)
Other versions
TW201112358A (en
Original Assignee
Eon Silicon Solution Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eon Silicon Solution Inc filed Critical Eon Silicon Solution Inc
Priority to TW98131577A priority Critical patent/TWI381491B/en
Publication of TW201112358A publication Critical patent/TW201112358A/en
Application granted granted Critical
Publication of TWI381491B publication Critical patent/TWI381491B/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Description

具磷砷離子佈植之NOR型快閃記憶體之製造方法Method for manufacturing NOR type flash memory with phosphorus and arsenic ion implantation

本發明係關於一種快閃記憶體之製造方法,更特別的是關於一種具磷砷離子佈植之NOR型快閃記憶體之製造方法。The invention relates to a method for manufacturing a flash memory, and more particularly to a method for manufacturing a NOR flash memory with phosphorus and arsenic ion implantation.

快閃記憶體是一種非揮發性(non-volatile)的記憶體,即在無外部電源供電時,也能夠保存資訊內容,這使得裝置本身不需要浪費電力在資料的記憶上,再加上快閃記憶體也具備重複讀寫、體積小、容量高及便於攜帶的特性,這使得快閃記憶體特別適合使用在攜帶式的裝置上。目前NOR型快閃記憶體應用的範圍,除了個人電腦上的主機板會利用NOR型快閃記憶體儲存BIOS資料外,手機、手持裝置也會使用NOR型快閃記憶體來存放系統資料,藉由其高速的讀取速度,滿足手持裝置的開機需求。Flash memory is a non-volatile memory that saves information when there is no external power supply. This saves the device itself from wasting power on the data, plus fast The flash memory also has the characteristics of repeated reading and writing, small size, high capacity and portability, which makes the flash memory particularly suitable for use on portable devices. At present, the range of NOR flash memory applications, in addition to the motherboard on the personal computer will use the NOR flash memory to store BIOS data, mobile phones, handheld devices will also use NOR flash memory to store system data, borrow Its high-speed reading speed meets the booting requirements of handheld devices.

隨著半導體製程的演進,記憶體容量不斷的增加,良率提升和製程難度都日益浮現,物理現象的限制也日益明顯。因此,各方無不致力於尋求任何能提升記憶體良率的步驟或方法。With the evolution of semiconductor processes, memory capacity continues to increase, yield improvement and process difficulty are increasingly emerging, and the limitations of physical phenomena are becoming increasingly apparent. Therefore, all parties are committed to seeking any steps or methods that can improve the memory yield.

汲極區接面是影響NOR型快閃記憶體元件缺陷產生的主要因素之一。為增進記憶體元件的性能,傳統上會進行金屬化製程,即利用自動對準矽化製程(Self-Aligned Silicidation)將一金屬矽化物層(silicide)沉積於汲極區上以降低接觸電阻,讓電流先流過阻值較低之金屬矽化物層,再進入汲極區中。該金屬矽化物層於汲極區接面中須具有一定的深度以減少接觸電阻。因此,該金屬矽化物層在形成時會造成汲極區接面的損耗,而該損耗即會增加汲極區接面的漏電流。The bungee junction is one of the main factors affecting the defect of NOR flash memory components. In order to improve the performance of the memory device, a metallization process is conventionally performed, that is, a metal silicide layer is deposited on the drain region by using a self-aligned silicidation process to reduce the contact resistance. The current flows first through the metal halide layer with a lower resistance and then into the drain region. The metal telluride layer must have a certain depth in the gate region of the drain to reduce contact resistance. Therefore, the metal telluride layer may cause loss of the drain region when formed, and the loss increases the leakage current of the drain region.

由於源/汲極區的離子佈植直接關聯於記憶體元件的電性,因此,為使元件的設計更趨最佳化,必須要能掌握最佳的離子佈植能量與劑量,以降低元件缺陷與提升記憶體元件的生產良率。Since ion implantation in the source/drain region is directly related to the electrical properties of the memory device, in order to optimize the design of the device, it is necessary to be able to grasp the optimal ion implantation energy and dose to reduce the component. Defects and improved production yield of memory components.

本發明的主要目的在於提供一種NOR型快閃記憶體之製造方法,利用特定的離子佈植能量與劑量的搭配,以降低金屬化製程所衍生的缺陷並提升記憶體元件的生產良率。The main object of the present invention is to provide a method for manufacturing a NOR-type flash memory, which utilizes a specific ion implantation energy and a dose to reduce defects caused by the metallization process and improve the production yield of the memory device.

為達上述目的,本發明係提供一種具磷砷離子佈植之NOR型快閃記憶體之製造方法,其包含:形成一閘極結構於一半導體基底上;進行一深摻雜源極離子佈植製程,於該閘極結構一側的該半導體基底中形成深摻雜的一第一源極區;進行一淺摻雜汲極離子佈植製程,於該閘極結構另一側的該半導體基底中形成淺摻雜的一第一汲極區,該第一汲極區與該第一源極區係分別位於該閘極結構兩側的該半導體基底中;於該閘極結構兩側的該半導體基底上分別形成一絕緣層間隔物;及進行一深摻雜汲極離子佈植製程,於該閘極結構一側的該半導體基底中形成深摻雜的一第二汲極區,其中該第一汲極區係與該第二汲極區重疊,該深摻雜汲極離子佈植製程包含兩次佈植製程,一第一次深摻雜汲極離子佈植製程,其使用的離子為砷,及一第二次深摻雜汲極離子佈植製程,其使用的離子為磷。In order to achieve the above object, the present invention provides a method for fabricating a NOR-type flash memory with phosphorous arsenic ion implantation, comprising: forming a gate structure on a semiconductor substrate; performing a deep doped source ion cloth Forming a deep doped first source region in the semiconductor substrate on one side of the gate structure; performing a shallow doped drain ion implantation process on the other side of the gate structure Forming a shallow doped first drain region in the substrate, the first drain region and the first source region are respectively located in the semiconductor substrate on both sides of the gate structure; on both sides of the gate structure Forming an insulating layer spacer on the semiconductor substrate; and performing a deep doped drain ion implantation process to form a deep doped second drain region in the semiconductor substrate on one side of the gate structure, wherein The first drain region overlaps the second drain region, and the deep doped drain ion implantation process comprises two implantation processes, a first deep doped bungee ion implantation process, and the use thereof Ion is arsenic, and a second deep doped bungee ion implantation process Their use is phosphorus ions.

於本發明的一實施例中,該第一次深摻雜汲極離子佈植製程之劑量約為2×1015~4×1015(atom/cm2),能量約為40~50(Kev)。In an embodiment of the invention, the first deep doped dopant ion implantation process has a dose of about 2×10 15 to 4×10 15 (atom/cm 2 ) and an energy of about 40 to 50 (Kev).

於本發明的一實施例中,該第二次深摻雜汲極離子佈植製程之劑量約為2×1014~2×1015(atom/cm2),能量約為20~30(Kev)。In an embodiment of the invention, the second deep doped drain ion implantation process has a dose of about 2×10 14 2×10 15 (atom/cm 2 ) and an energy of about 20-30 (Kev).

於本發明的一實施例中,該絕緣層間隔物選自氧化矽(SiOx)、氮化矽(SiNx)、氮氧化矽(SiONx)或氧化矽與氮化矽的結合其中之一者。In an embodiment of the invention, the insulating layer spacer is selected from the group consisting of yttrium oxide (SiOx), tantalum nitride (SiNx), yttrium oxynitride (SiONx), or a combination of lanthanum oxide and tantalum nitride.

於本發明的一實施例中,更包含一金屬化製程,其包含下列步驟:於該閘極結構及該第一汲極區之表面形成一自動對準矽化物層;沉積一介電層,並定義該介電層以於該第一汲極區上方之該自動對準矽化物層上形成一自動對準接觸開口;及於該自動對準接觸開口內填滿導電材料以形成一金屬連線。In an embodiment of the invention, a metallization process is further included, which includes the steps of: forming an auto-aligned germanide layer on the gate structure and the surface of the first drain region; depositing a dielectric layer, And defining the dielectric layer to form an automatic alignment contact opening on the self-aligned germanide layer above the first drain region; and filling the self-aligned contact opening with a conductive material to form a metal connection line.

於本發明的另一實施例中,該第二次深摻雜汲極離子佈植製程係執行於該第一次深摻雜汲極離子佈植製程之前。In another embodiment of the invention, the second deep doped drain ion implantation process is performed prior to the first deep doped drain ion implantation process.

藉此,本發明之具磷砷離子佈植之NOR型快閃記憶體之製造方法可改變汲極佈植之特性表現,進而能降低金屬化製程對記憶體元件所產生的缺陷進而提升生產良率。Therefore, the method for manufacturing the NOR-type flash memory with the phosphorus-arsenic ion implant of the present invention can change the characteristic performance of the bungee implant, thereby reducing the defects caused by the metallization process on the memory component and improving the production. rate.

為充分瞭解本發明之目的、特徵及功效,茲藉由下述具體之實施例,並配合所附之圖式,對本發明做一詳細說明,說明於後。在這些不同的圖式與實施例中,相同的元件將使用相同的符號。In order to fully understand the objects, features and advantages of the present invention, the present invention will be described in detail by the accompanying drawings. In the various figures and embodiments, the same elements will be given the same symbols.

本發明之NOR型快閃記憶體之製造方法主要係將磷與砷二離子一同佈植入記憶體元件之一汲極區中,經由特定佈植能量與劑量的控制來降低記憶體元件缺陷與提升良率。本發明之實施例係為一種N通道的NOR型半導體記憶結構,具有N型的源極/汲極離子佈植區。第一圖至第六圖係顯示在不同製程步驟時,本發明實施例的NOR型快閃記憶體剖面圖。The manufacturing method of the NOR type flash memory of the invention mainly comprises implanting phosphorus and arsenic ions into one of the drain regions of the memory component, and reducing memory device defects through specific implant energy and dose control. Improve yield. An embodiment of the invention is an N-channel NOR-type semiconductor memory structure having an N-type source/drain ion implantation region. The first to sixth figures show cross-sectional views of the NOR type flash memory of the embodiment of the present invention at different process steps.

首先請參閱第一圖,於一半導體基底100上形成一閘極結構102,該閘極結構102包含:穿隧氧化層102a(tunnel oxide layer)、浮動閘102b(floating gate)、介電層102c及控制閘102d(control gate)。該半導體基底100之材料可為矽(Si)、矽鍺(SiGe)、絕緣層上覆矽(Silicon On Insulator,SOI)、絕緣層上覆矽鍺(Silicon Germanium On Insulator,SGOI)、絕緣層上覆鍺(Germanium On Insulator,GOI)。於本實施例中,該半導體基底100的材料係為矽,且於其中摻雜硼使該半導體基底100成為一P型半導體基底。First, referring to the first figure, a gate structure 102 is formed on a semiconductor substrate 100. The gate structure 102 includes a tunnel oxide layer 102a, a floating gate 102b, and a dielectric layer 102c. And a control gate 102d (control gate). The material of the semiconductor substrate 100 may be bismuth (Si), germanium (SiGe), silicon on insulator (SOI), silicon germanium on insulator (SGOI), and insulating layer. Germanium On Insulator (GOI). In the present embodiment, the material of the semiconductor substrate 100 is germanium, and boron is doped therein to make the semiconductor substrate 100 a P-type semiconductor substrate.

接著請參閱第二圖,於該半導體基底100上形成一光罩202,將該閘極結構102的一側覆蓋住。進行一深摻雜源極離子佈植製程204,於該閘極結構102之一側的該半導體基底100中形成深摻雜的一第一源極區206。以P型為基底的實施例中,該深摻雜源極離子佈植製程204中使用的離子為磷與砷,以降低該第一源極區的寄生電阻值。Referring to the second figure, a reticle 202 is formed on the semiconductor substrate 100 to cover one side of the gate structure 102. A deep doped source ion implantation process 204 is performed to form a deep doped first source region 206 in the semiconductor substrate 100 on one side of the gate structure 102. In the P-based embodiment, the ions used in the deep doped source ion implantation process 204 are phosphorus and arsenic to reduce the parasitic resistance of the first source region.

接著請參閱第三圖,進行一淺摻雜汲極離子佈植製程302,於該閘極結構102另一側的該半導體基底100中利用淺摻雜汲極(Lightly Doped Drain,LDD)佈植形成一第一汲極區304。其中,該第一源極區206與該第一汲極區304係分別位於該閘極結構兩側的該半導體基底100中。在本實施例中,該淺摻雜汲極離子佈植製程中使用的離子為砷,用以降低短通道效應、提升性能、增強記憶體寫入效率。Referring to the third figure, a shallow doped drain ion implantation process 302 is performed on the semiconductor substrate 100 on the other side of the gate structure 102 by using a Lightly Doped Drain (LDD) implant. A first drain region 304 is formed. The first source region 206 and the first drain region 304 are respectively located in the semiconductor substrate 100 on both sides of the gate structure. In this embodiment, the ions used in the shallow doping dopant ion implantation process are arsenic, which is used to reduce short channel effect, improve performance, and enhance memory writing efficiency.

接著請參閱第四A圖,於該閘極結構102的兩側利用沉積與蝕刻技術各形成一絕緣層間隔物402、404。該絕緣層間隔物402、404可為氧化矽(SiOx )、氮化矽(SiNx )、氮氧化矽(SiONx )或是氧化矽與氮化矽的結合(SiOx +SiNx )。第四A圖所示,該絕緣層間隔物為氧化矽(SiOx )或氮氧化矽(SiONx );第四B圖所示,該絕緣層間隔物為氮化矽(SiNx );第四C圖所示,該絕緣層間隔物為氧化矽與氮化矽的結合(SiOx +SiNx ),氧化矽於圖中為扇形絕緣層間隔物,氮化矽於圖中為L形絕緣層間隔物;其中,本實施例將以第四A圖為示例繼續記憶體元件的製造程序。前述該沉積技術可為:來源氣體包含NH3 及SiH4 的化學氣相沉積法(CVD)、快速熱退火化學氣相沉積(Rapid Thermal Chemical Vapof Deposition,RTCVD)、原子層沉積(Atomic Layer Deposition,ALD);而該蝕刻技術可為非均向性蝕刻之乾式或濕式蝕刻,以移除垂直表面上之絕緣層而形成該絕緣層間隔物402、404。Referring to FIG. 4A, an insulating layer spacers 402, 404 are formed on each side of the gate structure 102 by deposition and etching techniques. 402, 404 may be a silicon oxide (SiO x), silicon nitride (SiN x), silicon oxynitride (SiON x) or a combination of silicon oxide and silicon nitride of the insulating spacer layer (SiO x + SiN x). As shown in FIG. 4A, the insulating layer spacer is yttrium oxide (SiO x ) or yttrium oxynitride (SiON x ); as shown in FIG. 4B, the insulating layer spacer is tantalum nitride (SiN x ); As shown in Fig. 4C, the insulating layer spacer is a combination of yttrium oxide and tantalum nitride (SiO x + SiN x ), the yttrium oxide is a fan-shaped insulating layer spacer in the figure, and the tantalum nitride is L-shaped insulating in the figure. A layer spacer; wherein, in this embodiment, the manufacturing process of the memory element is continued by taking the fourth A picture as an example. The foregoing deposition technique may be: chemical vapor deposition (CVD), rapid thermal annealing Vapof Deposition (RTCVD), and atomic layer deposition (Atomic Layer Deposition) of the source gas including NH 3 and SiH 4 . ALD); and the etching technique may be a dry or wet etch of an anisotropic etch to remove the insulating layer on the vertical surface to form the insulating layer spacers 402, 404.

接著請參閱第五圖,進行一深摻雜汲極離子佈植製程502,於該閘極結構102一側的該半導體基底100中形成深摻雜的一第二汲極區504。其中,該深摻雜汲極離子佈植製程包含兩次的佈植製程,第一次深摻雜汲極離子佈植製程中使用的離子為砷,劑量約為2×1015 ~4×1015 原子/平方公分(atom/cm2 ),能量約為40~50千電子伏特(Kev)。第二次深摻雜汲極離子佈植製程中使用的離子為磷,劑量約為2×1014 ~2×1015 原子/平方公分(atom/cm2 ),能量約為20~30千電子伏特(Kev)。於本發明之另一實施例中,該第一次與第二次深摻雜汲極離子佈植製程之順序可互相調換。Next, referring to FIG. 5, a deep doped drain ion implantation process 502 is performed to form a second doped second drain region 504 in the semiconductor substrate 100 on the side of the gate structure 102. The deep doped bionic ion implantation process comprises two implantation processes, and the ions used in the first deep doped bionic ion implantation process are arsenic, and the dose is about 2×10 15 ~4×10. 15 atoms / square centimeter (atom / cm 2 ), energy is about 40 ~ 50 kiloelectron volts (Kev). The ion used in the second deep doping of the bionic ion implantation process is phosphorus, and the dose is about 2×10 14 to 2×10 15 atoms/cm 2 , and the energy is about 20 to 30 thousand electrons. Kev. In another embodiment of the invention, the order of the first and second deep doped drain ion implantation processes can be interchanged.

接著請參閱第六圖,係接續上述步驟,進行一金屬化製程,於該第二汲極區504及該閘極結構102上各形成一自動對準矽化物層506。接著,沉積一介電層508,定義該介電層508,並在該第一汲極區304上方之該自動對準矽化物層506上形成一自動對準接觸開口,再以導電材料填入該自動對準接觸開口以形成一金屬連線510。於本實施例中,該自動對準矽化物層506之材料可為鈷(cobalt,Co)、鈦(titanium,Ti)、鎳(nickel,Ni)或鉬(molybdenum,Mo)...等耐熱金屬。Referring to the sixth figure, the above steps are followed to perform a metallization process, and an auto-alignment telluride layer 506 is formed on each of the second drain region 504 and the gate structure 102. Next, a dielectric layer 508 is deposited, the dielectric layer 508 is defined, and an auto-aligned contact opening is formed on the self-aligned germanide layer 506 over the first drain region 304, and then filled with a conductive material. The self-aligning contact openings form a metal wire 510. In this embodiment, the material of the self-aligned germanide layer 506 may be heat resistant such as cobalt (Co), titanium (ti), nickel (nickel, Ni) or molybdenum (Mo). metal.

本發明在上文中已以較佳實施例揭露,然熟習本項技術者應理解的是,該實施例僅用於描繪本發明中記憶體單元的一部分結構,而不應解讀為限制本發明之範圍。應注意的是,舉凡與該實施例等效之變化與置換,均應設為涵蓋於本發明之範疇內。因此,本發明之保護範圍當以下文之申請專利範圍所界定者為準。The present invention has been disclosed in the above preferred embodiments, and it should be understood by those skilled in the art that this embodiment is only used to describe a part of the structure of the memory unit in the present invention, and should not be construed as limiting the present invention. range. It should be noted that variations and permutations equivalent to those of the embodiments are intended to be included within the scope of the present invention. Therefore, the scope of the invention is defined by the scope of the following claims.

100...半導體基底100. . . Semiconductor substrate

102...閘極結構102. . . Gate structure

102a...穿隧氧化層102a. . . Tunneling oxide layer

102b...浮動閘102b. . . Floating gate

102c...介電層102c. . . Dielectric layer

102d...控制閘102d. . . Control gate

202...光罩202. . . Mask

204...深摻雜源極離子佈植製程204. . . Deep doped source ion implantation process

206...第一源極區206. . . First source region

302...淺摻雜汲極離子佈植製程302. . . Shallow-doped bungee ion implantation process

304...第一汲極區304. . . First bungee zone

402...氧化層壁402. . . Oxide wall

404...氧化層壁404. . . Oxide wall

502...深摻雜汲極離子佈植製程502. . . Deep doped bionic ion implantation process

504...第二汲極區504. . . Second bungee zone

506...自動對準矽化物層506. . . Automatic alignment of the telluride layer

508...介電層508. . . Dielectric layer

510...金屬連線510. . . Metal connection

第一圖到第六圖係顯示在不同製程步驟時,本發明實施例的NOR型快閃記憶體之剖面圖。The first to sixth figures show cross-sectional views of the NOR type flash memory of the embodiment of the present invention at different process steps.

100...半導體基底100. . . Semiconductor substrate

102...閘極結構102. . . Gate structure

206...第一源極區206. . . First source region

304...第一汲極區304. . . First bungee zone

402...氧化層壁402. . . Oxide wall

404...氧化層壁404. . . Oxide wall

504...第二汲極區504. . . Second bungee zone

506...自動對準矽化物層506. . . Automatic alignment of the telluride layer

508...介電層508. . . Dielectric layer

510...金屬連線510. . . Metal connection

Claims (6)

一種具磷砷離子佈植之NOR型快閃記憶體之製造方法,其步驟包含:形成一閘極結構於一半導體基底上;進行一深摻雜源極離子佈植製程,於該閘極結構一側的該半導體基底中形成深摻雜的一第一源極區;進行一淺摻雜汲極離子佈植製程,於該閘極結構另一側的該半導體基底中形成淺摻雜的一第一汲極區,該第一汲極區與該第一源極區係分別位於該閘極結構兩側的該半導體基底中;於該閘極結構兩側的該半導體基底上分別形成一絕緣層間隔物;及進行一深摻雜汲極離子佈植製程,於該閘極結構一側的該半導體基底中形成深摻雜的一第二汲極區,其中該第一汲極區係與該第二汲極區重疊,該深摻雜汲極離子佈植製程包含兩次佈植製程,一第一次深摻雜汲極離子佈植製程,其使用的離子為砷,及一第二次深摻雜汲極離子佈植製程,其使用的離子為磷。 A method for manufacturing a NOR flash memory with phosphorous arsenic ion implantation, the method comprising: forming a gate structure on a semiconductor substrate; performing a deep doped source ion implantation process on the gate structure Forming a deep doped first source region in the semiconductor substrate on one side; performing a shallow doped drain ion implantation process to form a shallow doped one in the semiconductor substrate on the other side of the gate structure a first drain region, the first source region and the first source region are respectively located in the semiconductor substrate on both sides of the gate structure; and an insulating layer is formed on the semiconductor substrate on both sides of the gate structure a layer spacer; and performing a deep doped drain ion implantation process, forming a deep doped second drain region in the semiconductor substrate on one side of the gate structure, wherein the first drain region is The second drain region overlaps, and the deep doped drain ion implantation process comprises two implantation processes, a first deep doped bionic ion implantation process, the ions used are arsenic, and a second The second deep doped bionic ion implantation process uses ions of phosphorus. 如申請專利範圍第1項所述之製造方法,其中該第一次深摻雜汲極離子佈植製程之劑量為2×1015 ~4×1015 (atom/cm2 ),能量為40~50(Kev)。The manufacturing method according to claim 1, wherein the dose of the first deep doped drain ion implantation process is 2×10 15 4×10 15 (atom/cm 2 ), and the energy is 40~ 50 (Kev). 如申請專利範圍第1項所述之製造方法,其中該第二次深摻雜汲極離子佈植製程之劑量為2×1014 ~2×1015 (atom/cm2 ),能量為20~30(Kev)。The manufacturing method according to claim 1, wherein the dose of the second deep-doped bungee ion implantation process is 2×10 14 2×10 15 (atom/cm 2 ), and the energy is 20~ 30 (Kev). 如申請專利範圍第1項所述之製造方法,其中該第二次深摻雜汲極離子佈植製程係執行於該第一次深摻雜汲極離子佈植製程之前。 The manufacturing method of claim 1, wherein the second deep doped gate ion implantation process is performed before the first deep doped drain ion implantation process. 如申請專利範圍第1項所述之製造方法,其中該絕緣層間隔物選自氧化矽(SiOx )、氮化矽(SiNx )、氮氧化矽(SiONx )或氧化矽與氮化矽的結合其中之一者。The manufacturing method according to claim 1, wherein the insulating layer spacer is selected from the group consisting of cerium oxide (SiO x ), cerium nitride (SiN x ), cerium oxynitride (SiON x ) or cerium oxide and tantalum nitride. Combine one of them. 如申請專利範圍第1項所述之製造方法,其中更包含一金屬化製程,其包含下列步驟:於該閘極結構及該第一汲極區之表面形成一自動對準矽化物層;沉積一介電層,並定義該介電層以於該第一汲極區上方之該自動對準矽化物層上形成一自動對準接觸開口;及於該自動對準接觸開口內填滿導電材料以形成一金屬連線。The manufacturing method of claim 1, further comprising a metallization process comprising the steps of: forming an auto-alignment telluride layer on the gate structure and the surface of the first drain region; depositing a dielectric layer defining a dielectric layer to form an auto-aligned contact opening on the self-aligned germanide layer over the first drain region; and filling the self-aligned contact opening with a conductive material To form a metal connection.
TW98131577A 2009-09-18 2009-09-18 Manufacturing Method of NOR - type Flash Memory with Phosphorus Arsenic Ion Planting TWI381491B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98131577A TWI381491B (en) 2009-09-18 2009-09-18 Manufacturing Method of NOR - type Flash Memory with Phosphorus Arsenic Ion Planting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98131577A TWI381491B (en) 2009-09-18 2009-09-18 Manufacturing Method of NOR - type Flash Memory with Phosphorus Arsenic Ion Planting

Publications (2)

Publication Number Publication Date
TW201112358A TW201112358A (en) 2011-04-01
TWI381491B true TWI381491B (en) 2013-01-01

Family

ID=44909242

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98131577A TWI381491B (en) 2009-09-18 2009-09-18 Manufacturing Method of NOR - type Flash Memory with Phosphorus Arsenic Ion Planting

Country Status (1)

Country Link
TW (1) TWI381491B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070159880A1 (en) * 2006-01-12 2007-07-12 Boaz Eitan Secondary injection for NROM
TW201011897A (en) * 2008-09-02 2010-03-16 Eon Silicon Solution Inc NOR type Flash member structure with dual-ion implantation and manufacturing method thereofmanufacturing method thereof
TW201037791A (en) * 2009-04-03 2010-10-16 Eon Silicon Solution Inc Manufacturing method of NOR-type semiconductor memory structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070159880A1 (en) * 2006-01-12 2007-07-12 Boaz Eitan Secondary injection for NROM
TW201011897A (en) * 2008-09-02 2010-03-16 Eon Silicon Solution Inc NOR type Flash member structure with dual-ion implantation and manufacturing method thereofmanufacturing method thereof
TW201037791A (en) * 2009-04-03 2010-10-16 Eon Silicon Solution Inc Manufacturing method of NOR-type semiconductor memory structure

Also Published As

Publication number Publication date
TW201112358A (en) 2011-04-01

Similar Documents

Publication Publication Date Title
US9054075B2 (en) Strip-shaped gate tunneling field effect transistor with double-diffusion and a preparation method thereof
TWI270170B (en) Method of forming a semiconductor device in a semiconductor layer and structure thereof
CN110034067B (en) Semiconductor device and method of forming the same
CN103560153B (en) A kind of tunneling field-effect transistor and preparation method thereof
CN103811549A (en) Lateral mosfet
CN105336779B (en) LDMOS device and forming method thereof
CN104701263B (en) A kind of manufacture method of half floating-gate device
CN104701177A (en) Transistor formation method
JP2013041927A (en) Semiconductor device and manufacturing method of the same
CN102983104B (en) The manufacture method of CMOS transistor
TWI312192B (en) Semiconductor device and manufacture method thereof
TWI381491B (en) Manufacturing Method of NOR - type Flash Memory with Phosphorus Arsenic Ion Planting
CN101826525B (en) NOR type flash memory structure with double ion implantation and manufacturing method thereof
CN104347508A (en) Semiconductor structure and formation method thereof
CN104183488A (en) FinFET semiconductor device and manufacturing method thereof
US20100230738A1 (en) Nor flash memory structure with highly-doped drain region and method of manufacturing the same
US8012825B2 (en) Method of manufacturing the double-implant nor flash memory structure
TWI411101B (en) NOR-type flash memory structure with high doping drain region and its manufacturing method
CN102024763B (en) Method for manufacturing NOR flash memory with phosphorus and arsenic ion injection
CN101826487B (en) Manufacturing method of flash memory component
TWI414045B (en) Method of manufacturing flash memory element
CN101826524B (en) NOR type flash memory structure with highly doped drain region and manufacturing method thereof
CN108493240B (en) Z-type heterojunction tunneling field effect transistor with lightly doped drain structure and preparation method thereof
US8017488B2 (en) Manufacturing method of a NOR flash memory with phosphorous and arsenic ion implantations
CN108346563B (en) Semiconductor device, manufacturing method thereof and electronic device