TWI375736B - Single workpiece processing chamber - Google Patents

Single workpiece processing chamber Download PDF

Info

Publication number
TWI375736B
TWI375736B TW94107037A TW94107037A TWI375736B TW I375736 B TWI375736 B TW I375736B TW 94107037 A TW94107037 A TW 94107037A TW 94107037 A TW94107037 A TW 94107037A TW I375736 B TWI375736 B TW I375736B
Authority
TW
Taiwan
Prior art keywords
wafer
processing chamber
rotor
processing
edge
Prior art date
Application number
TW94107037A
Other languages
Chinese (zh)
Other versions
TW200600615A (en
Inventor
Daniel J Woodruff
Original Assignee
Sputtering System For Semiconductor Manufacture A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sputtering System For Semiconductor Manufacture A filed Critical Sputtering System For Semiconductor Manufacture A
Publication of TW200600615A publication Critical patent/TW200600615A/en
Application granted granted Critical
Publication of TWI375736B publication Critical patent/TWI375736B/en

Links

Description

1375736 (4) 九、發明說明 【發明所屬之技術領域】 本發明相關於工件的表面準備,清潔,沖洗,及乾燥,其中 工件例如爲半導體晶圓,平坦面板顯示器,剛性磁碟或光學媒 體’薄膜頭’或其他由上面可能形成有微電子電路,資料儲存元 件或層’或微機械元件的基板形成的工件。這些及其他類似的物 品在此被通稱爲「晶圓」或「工件」。明確地說,本發明相關於 用來處理半導體晶圓的工件處理容室,且更特別地相關於用來載 入及處理半導體晶圓的新穎處理容室。本發明也相關於用來處理 半導體晶圓的新方法。 【先前技術】 微電子裝置被用在廣泛的產品中。包括但是不限於記億體及 微處理器晶片的這些裝置已被使用成爲電腦,電話,音響設備, 及其他電子消費者產品的組件。多年以來,製造者已改良此種微 電子裝置。例如,製造者已發明具有較快的處理速率以及具有其 他改良的特性的新微處理器晶片,而這些均有較低的成本及較低 的終端使用者價格。這些較低價格使得此種微電子裝置可被用在 先前未曾利用此種微電子裝置或是其只曾被節約地使用的產品 中’例如器具,汽車’以及甚至是較低價格的貨品,諸如玩具及 遊戲用品。微電子裝置在此種產品中的使用的增加使得其製造者 可降低產品的成本,爲產品提供新的特徵,以及增加產品的可靠 性。這些微電子裝置的增加的速率,多用途性,及成本效益甚至 -4- (5) 1375736 已經促成全新類型的產品的產生。 這些改良的微電子裝置的開發中的主要因數爲其製造時所用 的機器及方法。微電子裝置的製造要求高精確度,極純的原料, 及極清潔的製造環境。如果有甚至是極小的灰塵,髒物,金屬, 及製造化學物品的粒子在製造過程的任何階段存留在這些裝置的 表面上’也可能導致裝置的缺陷或失敗。因此,這些裝置的製造 者曰益增加地依賴特殊化的機器’製造設施(也被稱爲「晶圓廠 (fabs )」’及製造方法。這些機器及設施的設計,建立,裝 配’及維護成本均高。結果,機器的可靠很重要,以將修理,維 護,或更換的停工時間減至最少。 現代的晶圓處理機器典型上具有多個處理單元或容室。例 如’典型的晶圓處理機器可能具有多達十四個處理容室。這些單 元或容室的每一個可被獨立地程式規劃以完成微電子裝置的多步 驟製造過程中的一特定步驟。在甚至是處理容室之一故障而必須 維修的情況中,並且如果操作者想要立即修理或更換該處理容 室,則整個晶圓處理機器必須停工一段修理或更換該容室所需的 時間。在一些情況中,在此種修理或更換之後,也必須重新校準 將晶圓插入更換的處理容室內及將晶圓從更換的處理容室移出的 自動機(robot )。此重新校準步驟進—步增加一般由單一處理容 室的修理或更換所導致的停工時間。 此停工時間可能導致生產量的大幅損失。如果只有一個處理 容室故障而不能使用,則機器操作者經常選擇繼續操作機器。即 使是在不使用處理容室之一之下的處理機器的操作導致較高的操 -5- (6) 1375736 作成本及較低的效率時也會進行此種選擇。此種選擇的原因在於 就相當短的時間週期而言,留在線上的所具有的十二個處理容室 中可能只有十一個在作業的處理容室所生產的完工產品可能比必 須暫時下線(off-line)以更換或修理單一故障的處理容室的處理 機器所能生產者多。 決定繼續操作具有一不可操作的處理容室的處理機器的操作 者最終必須修理該容室,並且使整個機器下線。典型上,整個機 器是在有第二或第三容室必須被維修時或在製造設施中有某一其 他情況提供在不進一步中斷生產之下維修機器的機會時下線。 微電子裝置的製造涉及使用各種不同種類的化學物品。這些 化學物品經常是處於液體狀態,但是有時可能是處於氣體或蒸汽 狀態。這些化學物品極純且因而昂貴。這些製程中所用的化學物 品中的一些例如氟化氫及其他強酸及氧化劑也有毒。結果,這些 化學物品的使用,保存,及棄置必須有複雜的設備且要求大規模 的預防措施,且可能因此而昂貴。因此,想要降低微電子裝置的 製造中所用的這些化學物品的量。爲防止毒性放射物的釋放,也 必須將那些化學物品及其蒸汽保持在機器內以及設置用來在不將 其釋放至周圍空氣之下正確地棄置這些蒸汽的機構。 從以上可瞭解爲確保極大的生產狀態,極爲想要有具有高度 可靠性的處理容室。一種增加可靠性的方式爲形成具有在機械上 較爲簡單的構造的處理容室。 也想要設計有助於將處理中所用的化學物品保持在處理容室 內的處理容室,以降低這些化學物品的購買及棄置成本,以及容 -6 - 1375736 ⑺ 許不會被再使用的任何份量的這些化學物品被正確地棄置。 最後’極爲想要形成將乾燥空氣較爲有效地引至用來製作微 電子裝置的晶圓上的處理容室,以及保持用來插入及移去晶圓的 末端作用器(end effector)的清潔。具有這些效用的設計會進— 步降低灰塵’髒物,金屬,及製造化學物品的微小粒子存留在晶 圓的表面上及損壞所得的微電子裝置的可能性。 【發明內容】 本發明爲用來處理半導體晶圓的系統。此系統可包含多個處 理容室。這些處理容室中的至少一個爲新穎的處理容室。本發明 也爲以該新穎的處理容室來處理半導體晶圓的方法。 可傾斜邊緣與處理容室的一起使用簡化處理容室的構造,並 且因而導致有較可靠的較不須維修的處理容室。可傾斜邊緣的使 用也容許多種不同的處理步驟在單一處理容室內進行。特別是, 可傾斜邊緣的使用容許晶圓在第一側(亦即要被處理之側)朝上 的狀態下被插入。可傾斜邊緣也容許三個處理操作在單一處理容 室中被實施。例如,多達二或二個以上的處理步驟可在處理容室 的上方隔室中被實施,而一或多個處理步驟可在處理容室的下方 隔室中被實施。可傾斜邊緣的特別是與其內建槽道一起的使用也 胃1¾ Μ &晶圓處理期間保持半導體晶圓以及插入及移出這些晶圓 的自敷J機末端作用器的清潔。此又減小損壞所得的微電子裝置的 可能性。 樞轉臂或擺動臂與可傾斜邊緣的一起使用具有額外的有益效 1375736 (B) 果。典型上,樞轉臂以掃掠運動從第二位置移動橫越旋轉晶圓的 表面至第一位置,使得從樞轉臂排放的流體衝射在晶圓的幾乎整 個表面上而接觸晶圓的整個表面。 用來處理半導體晶圓的新穎處理容室包含在處理容室內的至 少一轉子。轉子可接收及/或處理這些晶圓。 如上所述,處理容室的頂部包含可傾斜邊緣。此可傾斜邊緣 從非傾斜位置傾斜至傾斜位置。當可傾斜邊緣處於其非傾斜位置 時’可傾斜邊緣防止自動機接達轉子,並且容室關閉以進行處 理。相反地,當可傾斜邊緣處於其傾斜位置時,其容許自動機的 接達處理容室。 也如上所述’處理容室也可包含樞轉臂。樞轉臂方便處理流 體的傳送至晶圓的大致整個表面。樞轉臂可從第一位置移動至第 二位置。於第一位置,樞轉臂位在晶圓上方,用來傳送處理流體 至晶圓。於第二位置’樞轉臂位於晶圓的側邊,例如在邊緣上 方。 處理容室也可包含向上設置的遮罩,以及可傾斜邊緣內含的 排出通口,用來收集及運輸晶圓乾燥空氣。遮罩在可傾斜邊緣下 方環繞處理容室的一部份。 排出通口包含較佳地被設置在晶圓平面下方的位置點處的上 N. 方端部,特別是在晶圓處於上方隔室中時》遮罩及排出通口一起 較爲有效地提供經過晶圓上的乾燥空氣以及用來清潔晶圓的流體 的分佈及排出。以此方式,遮罩及排出通口有助於減小灰塵,髒 物,金屬,及製造化學物品的微小粒子在晶圓處理期間存留在晶 (9) 1375736 圓表面上的可能性,以及減小所得的微電子裝置受損的可能性。 可傾斜邊緣也包含位在該邊緣內的至少一槽道。當晶圓在處 理期間旋轉以從其表面去除沖洗的水時,沖洗的水朝向邊緣向外 移動且進入邊緣內的一或多個槽道內。這些槽道將流體收集及運 輸離開晶圓表面,且最終至處理容室的外部。槽道也有助於保持 末端作用器的清潔,並且以此方式減小末端作用器上的污染物損 壞處理的晶圓的機會·。 處理容室可包含所謂的升降機或升降/旋轉致動器,其可將晶 圓從處理容室的上方隔室移動至下方隔室。在將晶圓從處理容室 的上方隔室移動至下方隔室時,升降/旋轉致動器也翻轉晶圓。特 別是,升降/旋轉致動器將晶圓從上方隔室中的晶圓的第一側朝上 的位置移動至下方隔室中的晶圓的第一側朝下的位置。在此下方 隔室中,此朝下的晶圓可承受處理步驟,例如通過被浸入化學流 體內或以化學流體噴淋的處理。在使晶圓返回至處理容室的上方 隔室且至第一側朝上的位置之後,經處理的晶圓典型上被沖洗, 乾燥,且然後從處理容室被移去。 本發明的另一方面爲在處理容室內處理半導體晶圓的方法。 此方法包含數個步驟。使在處理容室的頂部處的可傾斜邊緣從非 傾斜位置傾斜至傾斜位置,以打開處理容室。然後,晶圓被插入 至位在處理容室內的轉子上。晶圓是用自動機臂及自動機末端作 用器而被插入至轉子上。在此插入時,晶圓的第一側朝上。然 後,可傾斜邊緣可返回至其非傾斜位置。 ' 其次,晶圓及轉子從處理容室的上方隔室下降至處理容室的 (10) 1375736 下方隔室。較佳地’晶圓及轉子在移動至下方隔室時同時被翻 轉。如此,當晶圚及轉子被定位在下方隔室中時,晶圓的第一側 會朝下。 在晶圓被翻轉且被設置在下方隔室內之下,晶圓承受至少— 處理步驟。然後,晶圓返回至上方隔室,並且晶圓的第—側返回 至其初始位置,亦即晶圓的第一側朝上。然後,晶圓被沖洗及乾 燥。可傾斜邊緣返回至其傾斜位置以打開處理容室。最後,自動 機臂將經處理的晶圓從處理容室移去。 上述的處理容室的可傾斜邊緣具有在機械上簡單的構造。由 於此簡單的構造,包含此可傾斜邊緣的處理容室具有高度可靠 性’並且增加微電子裝置的生產效率。 遮罩的使用有助於引導空氣流向下,以及通過處理容室的上 方部份。向下的空氣流增加化學蒸汽的被保持在容室內,自然進 一步降低化學物品的購買及棄置成本。遮罩也對將乾燥空氣引至 用來製作微電子裝置的晶圓上有正面效用。 較有效的空氣流可進一步減小灰塵,髒物,金屬,及製造化 學物品的微小粒子存留在微電子裝置的表面上的可能性,並且以 此方式降低損壞這些裝置的可能性。 【實施方式】 本發明爲半導體晶圓的處理系統,成爲此系統的一部份的新 穎處理容室,以及較佳地使用此新穎處理容室來處理半導體晶圓 的新穎方法。 -10- 1375736 (U) 圖1顯不本發明的系統10的頂部平面圖。圖1所示的系統 10包含十個處理容室,每一個在圖1中由一圓圈代表。可瞭解系 統10可包含更多個或較少數目的處理容室。處理容室可形成爲 處理微電子工件,例如200或300mm (毫米)直徑的半導體晶 圓。本發明的處理容室被設計成爲被用在傳統的現有處理系統1〇 中,例如在2003年10月22日申請的審查中的美國專利申請案 第1 0/69 1,68 8號及2003年10月21日申請的審查中的美國專利 申請案弟10/690,864號中所揭不者,二者的揭示藉著參考結合於 此。此系統10可包含不同的處理站或容室,例如但是不限於實 施無電極鍍層及電鍍者。更特別地,這些容室作用成爲用來鍍層 以及以其他方式處理微電子工件的機構。此種系統及處理容室是 由蒙大拿州Kalispell的Semitool,lnc.開發。這些系統也可被模 組化,且因而可容易地被擴張。 圖1A顯示圍封本發明的處理容室的外殻π。此外殻^的 頂部包含HEP A過濾器13。空氣經由此Η EPA過滬器13被吸入 至外殼11內。在經由此ΗΕΡΑ過濾器13進入外殻11之後,空氣 通過本發明的處理容室12,且然後經由連接於外殼11的底部的 排出導管被抽出。 圖1Β爲顯示圖1及1Α的處理系統的一部份的等角圖。如以 下會說明的’本發明包含可傾斜邊緣24及遮罩40。可傾斜邊緣 24及遮罩40被固定於處理系統的甲板19(見圖1Β)。特別 是’如在圖3中可見的,遮罩40的底座部份21被固定於甲板 19» -11 - (12) 13757361375736 (4) IX. Description of the Invention [Technical Fields of the Invention] The present invention relates to surface preparation, cleaning, rinsing, and drying of workpieces, such as semiconductor wafers, flat panel displays, rigid disks or optical media. Film heads' or other workpieces formed from substrates on which microelectronic circuits, data storage elements or layers or micromechanical components may be formed. These and other similar items are referred to herein as "wafers" or "workpieces." In particular, the present invention relates to workpiece processing chambers for processing semiconductor wafers, and more particularly to novel processing chambers for carrying and processing semiconductor wafers. The invention is also related to new methods for processing semiconductor wafers. [Prior Art] Microelectronic devices are used in a wide range of products. These devices, including but not limited to tablets and microprocessor chips, have been used as components in computers, telephones, audio equipment, and other electronic consumer products. Manufacturers have improved such microelectronic devices for many years. For example, manufacturers have invented new microprocessor chips with faster processing rates and other improved features, all of which have lower cost and lower end user price. These lower prices allow such microelectronic devices to be used in products that have not previously utilized such microelectronic devices or that have only been used economically, such as appliances, automobiles, and even lower priced items, such as Toys and games. The increased use of microelectronic devices in such products has enabled manufacturers to reduce the cost of the product, provide new features to the product, and increase product reliability. The increased rate, versatility, and cost effectiveness of these microelectronic devices even -4- (5) 1375736 have led to the creation of entirely new types of products. The main factors in the development of these improved microelectronic devices are the machines and methods used in their manufacture. The manufacture of microelectronic devices requires high precision, extremely pure raw materials, and an extremely clean manufacturing environment. If there is even very little dust, dirt, metal, and particles of chemicals that are deposited on the surface of these devices at any stage of the manufacturing process, it may also cause defects or failure of the device. As a result, manufacturers of these devices have increased their reliance on specialized machine manufacturing facilities (also known as "fabs" and manufacturing methods. Design, build, assembly, and maintenance of these machines and facilities. The cost is high. As a result, machine reliability is important to minimize downtime for repair, maintenance, or replacement. Modern wafer processing machines typically have multiple processing units or chambers. For example, 'typical wafers The processing machine may have up to fourteen processing chambers. Each of these units or chambers can be independently programmed to complete a particular step in the multi-step manufacturing process of the microelectronic device. In even the processing chamber In the event of a failure that must be repaired, and if the operator wants to repair or replace the process chamber immediately, the entire wafer processing machine must be shut down for a period of time required to repair or replace the chamber. In some cases, After such repair or replacement, it is also necessary to recalibrate the automatic insertion of the wafer into the replacement processing chamber and the removal of the wafer from the replacement processing chamber. (robot) This recalibration step further increases the downtime caused by the repair or replacement of a single processing chamber. This downtime can result in a significant loss of throughput. If only one processing chamber fails and cannot be used, The machine operator often chooses to continue operating the machine. Even when the operation of the processing machine without using one of the processing chambers results in higher operation -5 (1) 1375736 cost and lower efficiency This choice is due to the fact that for a relatively short period of time, only one of the twelve processing chambers that remain on the line may have only one of the finished products produced in the processing chamber of the job. A processing machine that has to be temporarily off-line to replace or repair a single faulty processing chamber can produce more. The operator who decides to continue operating the processing machine with an inoperable processing chamber must eventually repair the capacity. Room, and the entire machine is off the assembly line. Typically, the entire machine is in the presence of a second or third chamber must be repaired or in the manufacturing facility His situation provides for offline operation without further disruption of the opportunity to repair the machine. The manufacture of microelectronic devices involves the use of a variety of different types of chemicals. These chemicals are often in a liquid state, but sometimes they may be in a gas or vapor state. These chemicals are extremely pure and therefore expensive. Some of the chemicals used in these processes, such as hydrogen fluoride and other strong acids and oxidants, are also toxic. As a result, the use, storage, and disposal of these chemicals must be complicated and demanding. Precautions of scale, and may therefore be expensive. Therefore, it is desirable to reduce the amount of these chemicals used in the manufacture of microelectronic devices. To prevent the release of toxic emissions, it is also necessary to keep those chemicals and their vapors in the machine. Internally and in a mechanism for properly disposing of these vapors without releasing them to ambient air. From the above, it is understood that in order to ensure an extremely high production state, it is highly desirable to have a highly reliable processing chamber. One way to increase reliability is to form a processing chamber having a mechanically simpler construction. It is also desirable to design processing chambers that help keep the chemicals used in the process in the processing chamber to reduce the cost of purchasing and disposing of these chemicals, as well as any of the materials that can not be reused. -6 - 1375736 (7) The servings of these chemicals are properly disposed of. Finally, it is extremely desirable to form a processing chamber that more efficiently directs dry air onto the wafer used to fabricate the microelectronic device, as well as cleaning the end effector for inserting and removing the wafer. Designs with these utilities will further reduce the likelihood of dust, dirt, metal, and tiny particles of chemicals being produced remaining on the surface of the wafer and damaging the resulting microelectronic device. SUMMARY OF THE INVENTION The present invention is a system for processing semiconductor wafers. This system can contain multiple processing chambers. At least one of the processing chambers is a novel processing chamber. The present invention is also a method of processing a semiconductor wafer with the novel processing chamber. The use of the tiltable edge with the processing chamber simplifies the construction of the processing chamber and thus results in a more reliable, less maintenance-free processing chamber. The use of tiltable edges also allows for a variety of different processing steps to be performed in a single processing chamber. In particular, the use of the tiltable edge allows the wafer to be inserted in a state where the first side (i.e., the side to be processed) faces upward. The tiltable edge also allows three processing operations to be implemented in a single processing chamber. For example, up to two or more processing steps can be performed in the upper compartment of the processing chamber, and one or more processing steps can be performed in the lower compartment of the processing chamber. The use of the tiltable edge, in particular with its built-in channel, also protects the semiconductor wafer and the cleaning of the self-applying end effectors that insert and remove the wafers during wafer processing. This in turn reduces the likelihood of damage to the resulting microelectronic device. The use of a pivoting arm or swinging arm with a tiltable edge has the added benefit of 1375736(B). Typically, the pivoting arm moves from the second position across the surface of the rotating wafer to a first position in a sweeping motion such that fluid discharged from the pivoting arm is directed across substantially the entire surface of the wafer to contact the wafer. The entire surface. The novel processing chamber for processing semiconductor wafers contains at least one rotor within the processing chamber. The rotor can receive and/or process the wafers. As mentioned above, the top of the processing chamber contains a tiltable edge. This tiltable edge is tilted from a non-tilted position to a tilted position. When the tiltable edge is in its non-tilted position, the tiltable edge prevents the robot from accessing the rotor and the chamber is closed for processing. Conversely, when the tiltable edge is in its tilted position, it allows access to the processing chamber by the robot. Also as described above, the processing chamber may also include a pivoting arm. The pivoting arm facilitates handling of the transfer of fluid to substantially the entire surface of the wafer. The pivot arm is movable from the first position to the second position. In the first position, the pivot arm is above the wafer for transferring process fluid to the wafer. In the second position the pivot arm is located on the side of the wafer, for example above the edge. The processing chamber may also include an upwardly disposed mask and a discharge port included in the tiltable edge for collecting and transporting the wafer dry air. The mask surrounds a portion of the processing chamber below the tiltable edge. The discharge port includes an upper N. square end portion preferably disposed at a position below the plane of the wafer, particularly when the wafer is in the upper compartment, the mask and the discharge port are provided together more effectively The distribution and discharge of dry air through the wafer and the fluid used to clean the wafer. In this way, the mask and discharge ports help reduce the possibility of dust, dirt, metal, and tiny particles of manufacturing chemicals remaining on the circular surface of the crystal (9) 1375736 during wafer processing, and The possibility of damage to small resulting microelectronic devices. The tiltable edge also includes at least one channel located within the edge. As the wafer rotates during processing to remove flushed water from its surface, the rinsed water moves outward toward the edge and into one or more channels within the edge. These channels collect and transport fluid away from the wafer surface and ultimately to the exterior of the processing chamber. The channel also helps to keep the end effector clean and in this way reduces the chance of contaminants on the end effector damaging the processed wafer. The processing chamber may comprise a so-called elevator or lift/rotary actuator that moves the wafer from the upper compartment of the processing chamber to the lower compartment. The lift/rotation actuator also flips the wafer as it moves from the upper compartment of the processing chamber to the lower compartment. In particular, the lift/rotate actuator moves the wafer from a first side up position of the wafer in the upper compartment to a first side down position of the wafer in the lower compartment. In this lower compartment, this downward facing wafer can withstand processing steps, such as by being immersed in a chemical fluid or sprayed with a chemical fluid. After returning the wafer to the upper compartment of the process chamber and to the first side up position, the treated wafer is typically rinsed, dried, and then removed from the process chamber. Another aspect of the invention is a method of processing a semiconductor wafer in a processing chamber. This method consists of several steps. The tiltable edge at the top of the processing chamber is tilted from a non-tilted position to an inclined position to open the processing chamber. The wafer is then inserted into the rotor in the processing chamber. The wafer is inserted into the rotor using an automaton arm and an automaton end effector. When inserted here, the first side of the wafer faces upward. The tiltable edge can then be returned to its non-tilted position. Second, the wafer and rotor descend from the upper compartment of the process chamber to the lower compartment of the (10) 1375736 chamber of the process chamber. Preferably, the wafer and rotor are simultaneously turned while moving to the lower compartment. Thus, when the wafer and rotor are positioned in the lower compartment, the first side of the wafer will face downward. The wafer is subjected to at least a processing step while the wafer is flipped and placed below the lower compartment. The wafer is then returned to the upper compartment and the first side of the wafer is returned to its original position, i.e., the first side of the wafer is facing up. The wafer is then rinsed and dried. The tiltable edge returns to its tilted position to open the process chamber. Finally, the robotic arm removes the processed wafer from the processing chamber. The tiltable edge of the processing chamber described above has a mechanically simple construction. With this simple construction, the processing chamber containing this tiltable edge has a high degree of reliability' and increases the production efficiency of the microelectronic device. The use of a mask helps direct air flow down and through the upper part of the chamber. The downward flow of air increases the amount of chemical vapor held within the chamber, which naturally reduces the cost of chemical purchase and disposal. The mask also has a positive effect on directing dry air to the wafer used to fabricate the microelectronic device. The more efficient air flow further reduces the likelihood of dust, dirt, metal, and tiny particles of the manufactured chemical article remaining on the surface of the microelectronic device, and in this way reduces the likelihood of damage to these devices. [Embodiment] The present invention is a processing system for semiconductor wafers, a novel processing chamber that is part of the system, and a novel method of processing semiconductor wafers using the novel processing chamber. -10- 1375736 (U) Figure 1 shows a top plan view of system 10 of the present invention. The system 10 shown in Figure 1 contains ten processing chambers, each of which is represented by a circle in Figure 1. It can be appreciated that system 10 can include a greater or lesser number of processing chambers. The processing chamber can be formed to process a microelectronic workpiece, such as a 200 or 300 mm (mm) diameter semiconductor wafer. The processing chamber of the present invention is designed to be used in conventional prior art processing systems, such as U.S. Patent Application Serial No. 10/69 1,68 8 and 2003, filed on Oct. 22, 2003. The disclosure of the U.S. Patent Application Serial No. 10/690,864, the entire disclosure of which is incorporated herein by reference. This system 10 can include different processing stations or chambers such as, but not limited to, an electrodeless plating and electroplating. More specifically, these chambers act as a mechanism for plating and otherwise processing microelectronic workpieces. This system and processing chamber was developed by Semitool, lnc. of Kalispell, Montana. These systems can also be modularized and thus can be easily expanded. Figure 1A shows the outer casing π enclosing the processing chamber of the present invention. Further, the top of the casing ^ contains the HEP A filter 13. Air is drawn into the outer casing 11 via the EPA EPA. After entering the outer casing 11 via the helium filter 13, air passes through the processing chamber 12 of the present invention and is then withdrawn through a discharge conduit connected to the bottom of the outer casing 11. Figure 1 is an isometric view showing a portion of the processing system of Figures 1 and 1B. As will be explained below, the present invention includes a tiltable edge 24 and a mask 40. The tiltable edge 24 and the shroud 40 are secured to the deck 19 of the processing system (see Figure 1). In particular, as can be seen in Figure 3, the base portion 21 of the mask 40 is secured to the deck 19» -11 - (12) 1375736

圖1及1B所示的處理系統在共同審查中的2003年12 日申請的美國專利申請案第1 0/733,807號,2004年6月3 請的美國專利申請案第1 0/859,74 8號,2004年6月3日申 美國專利申請案第10/859,749號,2004年6·月3日申請的 專利申請案第1 0/8 60,3 84號,2004年6月3日申請的美國 申請案第1 0/860,385號,2004年6月3曰申請的美國專利 案第1 0/860,592號,20 04年6月3日申請的美國專利申請 1 0/860,593號,及2004年6月3日申請的美國專利申請 1 0/86 1,240號中有更詳細的敘述,這些敘述藉著參考結合於JI 新穎的處理容室12以立體圖顯示在圖2中。如上所述 在圖2中看見的本發明的新穎處理容室12的遮罩及可傾斜 可被直接放置在圖1B的先前存在的容室15的上方,亦即在 19上。此處理容室12可爲典型上系統1〇所包含的實施許多 功能的許多不同容室中的一個。 如圖2及3中最佳所見的,本發明的新穎處理容室12 計來在單一工件例如半導體晶圓14上實施處理步驟。半導 圓14由自動機臂16及自動機末端作用器18進給至處理 12。自動機臂16及自動機末端作用器18以及其與半導體晶 處理的一起使用在此技術領域中均爲已知的。 自動機臂16及自動機末端作用器18將未完工的晶圓】 置在轉子20上以及將完工的晶圓14從轉子20移去。在此 實施例中,處理容室12包含單一轉子20。但是,也可使用 二個以上的轉子。 月11 曰申 請的 美國 專利 申請 案第 案第 t。 ,可 邊緣 甲板 不同 被設 體晶 容室 圓的 4放 較佳 二或 -12- (13) 1375736 轉子20爲轉子總成22的一部份。轉子總成22接收及載運 晶圓14’定位晶圓14以用來處理,並且可在處理或乾燥步驟期 間轉動或旋轉晶圓1 4。 爲容許晶圓14的載入及卸載,處理容室包含可傾斜邊緣 24。此可傾斜邊緣24可在非傾斜位置(圖4至7 )與傾斜位置 (圖2及3 )之間移動。當可傾斜邊緣24處於其非傾斜位置時, 如圖4至7所示,邊緣24關閉容許晶圓14被載入處理容室12 內及從處理容室12被卸載的開口。相反地,當可傾斜邊緣24處 於其傾斜位置時’如圖2及3所示,邊緣24打開處理容室丨2的 一部份。當邊緣24處於此傾斜位置時,晶圓14可被載入處理容 室12內及從處理容室12被卸載。 如圖2及3中可見的,邊緣24的傾斜容許自動機臂16及自 動機末端作用器1 8的接達轉子2〇。如此,邊緣24的傾斜容許晶 圓14被載入處理容室12內且至轉子20上以及隨後被卸載。從 轉子20升起的小鉤狀指件3 0被用來在晶圓1 4的處理期間將晶 圓14固定於轉子20。 可傾斜邊緣24繞二樞轉點或鉸鏈樞轉。這些鉸鏈26之一顯 示在圖2中。另一鉸鏈並未顯示在圖2中。此另一鉸鏈是在邊緣 24的相反側於容室在圖2中被擋住的部份處被固定於處理容室 12。如藉著比較圖2與圖7可見的,可傾斜邊緣24是藉著氣壓 升降臂機構2 8而在其傾斜位置與非傾斜位置之間移動。特別 是,此氣壓升降臂機構28爲具有樞轉U形夾安裝件的雙動氣壓 缸筒。可從此種氣壓缸筒的販賣者獲得的磁性感測器被用來指示 1375736 (Η) 缸筒的二位置,亦即升高及降低位置。缸筒的此 硬質止動件界定。 從以上可瞭解可傾斜邊緣24及其致動機構 此導致較可靠及較易於維護的操作。 處理容室12也可包含樞轉臂或擺動臂32,] 佳所見的。樞轉臂32較佳地以掃掠(sweeping) 置之間移動。樞轉臂32的移動是藉著50瓦特的 諧和齒輪減速器(harmonic gear reducer)的組 齒輪減速比爲50: 1。如同氣壓升降臂機構28, 32的行進的末端是由硬質止動件界定。原始(零 使樞轉臂32抵靠二硬質止動件之一來建立。在 的增量及絕對編碼器被用來界定樞轉臂32的相 任何其他位置》 樞轉臂32方便處理流體的傳送至晶圓14。 樞轉臂32可從第一位置移動至第二位置。樞轉f 顯示在圖7中》在此第一位置,樞轉臂位在晶圓 來將處理流體傳送至晶圓1 4。 如圖7中可見的,樞轉臂32包含二管件34 或液體可根據製造者的處理需求經由這些管件34 在一較佳實施例中,管件32方便去離子化 14。相較之下,管件34方便且專門用來傳送只 醇(isopropyl alcohol)的組合至晶圓14。傳統 用來控制這些氣體及液體的傳送至各別管件34及 二位置均由機械 的構造簡單,而 &口圖2及7中最 運動在二末端位 Yaskawa馬達與 合而實現。諧和 此樞轉或擺動臂 點)位置是藉著 Yaskawa馬達上 對於原始位置的 在此實施例中, f 3 2的第一位置 14上方,以用 及36。任何氣體 及36被配送。 水的傳送至晶圓 有氮或氮與異丙 閥(未顯示)被 36 ° -14- (15) 1375736 樞轉臂32的第二位置顯示在圖2中。於此第 臂32位於晶圓14的側邊,並且在可傾斜邊緣24 二位置’樞轉臂的端部位在滴流捕捉托盤38的上 托盤38收集從在樞轉臂32的端部處的二噴嘴尖端 的液體。滴流捕捉托盤38也收集傳統閥與噴嘴尖 必須從管件32清除的去離子化水及方便此去離子 滴流捕捉托盤38連接於用來將這些廢棄液體運輸 進行棄置的機構。此處,滴流捕捉托盤38注入槽道 樞轉臂32或擺動臂與可傾斜邊緣24的—起使 益的效果。典型上,樞轉臂以掃掠運動從第二位置 14的表面而移動至第一位置,使得從樞轉臂32排 在晶圓1 4的大致整個表面上而接觸晶圓Γ4的大致 此,樞轉臂32容許去離子化水的直接衝射在旋轉晶 整個表面上。此深信對晶圓1 4提供增進的清潔作 轉臂32也可被用來造成氮,異丙醇,及任何其他 衝射在晶圓14的整個表面上。 處理容室12也可包含向上設置的遮罩40。如 40被定位在可傾斜邊緣24下方,但是在甲板1 9 J 及3所示》遮罩40方便較高及較有效率的空氣流稽 第一側42的周邊及表面。此較高及較有效率的空 存留在晶圓14的表面上。另外’遮罩40有助於將 14的化學物品的蒸汽保持在處理容室12內。尊 HEPA過濾器13進入圖1’ 1A’及1B所示的單元 二位置,樞轉 上方。於此第 方。滴流捕捉 的任一者滴下 端之間的有時 化水的移除。 至遠方位置以 44 ° 用具有許多有 橫越旋轉晶圓 放的流體衝射 整個表面。如 I圓1 4的大致 用。當然,樞 液體或氣體的 上所述,遮罩 二方,如圖1B 丨越晶圓1 4的 氣流防止粒子 用來處理晶圓 乞燥空氣經由 。然後,乾燥 -15- (16) 1375736 空氣經過晶圓14上且至遮罩40的頂部內。空氣從遮罩40的底 部被排放,且然後繼續向下通過圖1及1B所示的徑向通風開口 17的一部份。四個徑向通風開口 17的其餘部份由在遮罩40的底 座部份21處的凸緣覆蓋。 如圖5中最佳所見的,至少一槽道44被定位在可傾斜邊緣 24內。一較佳實施例可包含三個槽道,並且此三個槽道44中的 兩個顯示在圖5中。當晶圓14在處理期間旋轉以從其表面或第 一側42去除沖洗的水及灰塵或髒物時,水及夾帶的顆粒藉著離 心力而朝向邊緣24向外移動。當水趨近邊緣24時,水進入邊緣 24內的槽道.44。這些槽道44將流體收集及運輸離開晶圓的第一 側42,並且最終至處理容室12的外部。以此方式,槽道44及可 傾斜邊緣24結合來降低此流體會到達處理容室1 2的底部的可能 性。 被收集在槽道44內的流體的大部份是經由撓性排泄軟管管 接頭46而從處理容室12被移去。此撓性排泄軟管管接頭46可 在圖3中最佳地被看見。被收集在槽道44內的流體中的一些在 晶圓14藉由轉子總成22的沖洗及旋轉乾燥期間經由此軟管管接 頭46被移去。槽道44中的流體的其餘部份在經處理的晶圓14 藉由自動機末端作用器18的移去期間被排放。特別是,當可傾 斜邊緣24從其非傾斜位置移動至其傾斜位置時,如圖3所示, 槽道44內的任何剩餘流體朝向邊緣24的最下方點移動,亦即朝 向撓性排泄軟管管接頭40。然後,從撓性排泄軟管管接頭46排 出的所有流體被排放至遠方位置以進行棄置。 -16- (17) 1375736 如以上所討論的,空氣被抽吸通過處理容室例如處理容室1 2 來乾燥晶圓14。此乾燥空氣是由於在靠近處理容室12的底部所 _ 產生的真空情況而進入處理容室12。由於這些真空情況,空氣從 在處理容室12的頂部上方的周圍環境被抽吸,越過晶圓14上, 且向下通過容室12的底部。 排出通口 48被設置於可傾斜邊緣24。明確地說,這些排出 通口 48形成在或被放置在可傾斜邊緣24內。這些排出通口 48 之一顯示在圖3, 8,及9中,而二排出通口 48顯示在圖10中。 排出通口 48的每一個包含上方端部50。 圖8顯示處於其傾斜位置的可傾斜邊緣24。但是,藉著觀看 圖8可瞭解,當可傾斜邊緣24處於其非傾斜位置且轉子總成22 及晶圓14處於處理容室12的上方隔室中時,如圖8所示,這些 排出通口 48的上方端部50位在晶圓14的水平平面的下方。 處理容室也包含一對排出導管52。排出導管52的每一個與 單一排出通口 4 8相關聯。排出導管5 2之一及與其相關聯的排出 通口 48顯示在圖8及9中。 - 當可傾斜邊緣24處於其傾斜位置時,如圖8所示,排出通 口 48與排出導管52分開。相較之下,當可傾斜邊緣24處於其 非傾斜位置時,如圖9所示,排出通口 4 8密封地接合排出導管 52。經過晶圓14上的乾燥空氣的一部份可能進入排出通口 48, 且然後進入排出導管52,以從處理容室12排放。 在處理循環期間,從樞轉臂32排放的.用來沖洗晶圓14的液 ; 體的—相當小的部份可能被轉向而朝向排出通口 48及排出導管 -17- (18) 1375736 52。此液體被空氣夾帶而形成霧化蒸汽(atomized vapor )。此 霧化蒸汽經由排出通口 48及排出導管52而離開可傾斜邊緣24。 然後,_化蒸汽被帶出處理容室12。 藉著在晶圓14正被處理時將乾燥空氣及液體二者從靠近晶 圓14的區域移去,遮罩40,排出通口 48,與排出導管52 —起 結合來更有效地引導乾燥空氣至晶圓14上。以此方式,遮罩 4〇,排出通口 48,與排出導管52結合來降低灰塵,髒物,金 屬,及製造化學物品的微小粒子在晶圓處理期間存留在晶圓1 4 的表面上的可能性。此又降低所得的微電子裝置受損的可能性。 如可見的,處理容室12可配置有所謂的升降機或升降/旋轉 致動器54。此升降/旋轉致動器54可將晶圓14從如圖4所示的 處理容室12的上方隔室移動至如圖6所示的處理容室的下方隔 室。 在將晶圓14從處理容室12的上方隔室移動至下方隔室時, 升降/旋轉致動器54同時翻轉晶圓14及固持晶圓.14在上面的轉 子20。特別是,升降/旋轉致動器54將晶圓14從如圖4所示的 在上方隔室中的晶圓14的第一側42朝上的位置移動至如圖6所 示的在處理容室12的下方隔室中的晶圓14的第一側42朝下的 位置。 在此下方隔室中,此朝下的晶圓14可承受處理步驟,例如 以液體化學物品來處理或藉著浸入液體化學物品內而被處理,或 是藉著流體噴淋處理而被處理。在升降/旋轉致動器54使晶圓14 返回至處理容室12的上方隔室且至第一側42再次朝上的位置之 -18- (19) 1375736 後’經處理的晶圓14可被沖洗’乾燥,且然後從處理容室12被 移去。 因此’很明顯本發明也爲一種附件機構(attachment ),用 來可移去地固定於半導體晶圓的處理系統1〇的甲板19。此附件 機構包含從非傾斜位置傾斜至傾斜位置的可傾斜邊緣24。如上所 述’此可傾斜邊緣24在處於其傾斜位置時容許晶圓μ被載入系 統1〇內以及從系統10被卸載。本發明也包含用來將可傾斜邊緣 24固定於甲板19的支撐件。較佳地,此支撐件爲遮罩4〇。 以下簡述本發明的使用上述組件的典型處理方法,此處理方 法包含在處理容室12內處理半導體晶圓14。此處理方法包含數 個步驟。首先,在處理容室12的頂部處的可傾斜邊緣24從如圖 4至7所示的非傾斜位置傾斜至如圖2及3所示的傾斜位置。邊 緣24的傾斜打開處理容室1 2的前部。 其次’半導體晶圓14被插入至被定位在處理容室12內的轉 子2〇上。如圖2及3中最佳所見的,晶圓14較佳地藉著自動機 臂16及自動機末端作用器is而被插入至此轉子20上。在此插 入時’晶圓14的第一側42朝上。在晶圓14的初始放置在轉子 2〇上時’圖2及3的晶圓14被定位在處理容室12的上方隔室 中。此時’可傾斜邊緣24返回至其非傾斜位置而關閉處理容室 12»此時,晶圓可承受選擇性的處理步驟。其次,晶圓14及轉 子20從處理容室12的此上方隔室下降至處理容室12的下方隔 室。圖5及6顯示晶圓.14處於容室12的下方隔室。當升降/旋轉 致動器54將轉子20移入處理容室12的下方隔室內時,升降/旋 -19- (20) 1375736 轉致動器54同時翻轉晶圓14。由於此翻轉,晶圓14的第一側 42朝下。 在晶圓14被翻轉且被設置在下方隔室內之下,晶圓可承受 另一處理步驟,例如化學處理步驟。在晶圓14被處理之後,升 降/旋轉致動器54使晶圓14返回至上方隔室,並且使晶圓14的 第一側42返回至其初始位置,亦即晶圓的第—側42朝上。然 後’晶圓14可承受另一處理步驟,包括但是不限於化學處理, 沖洗,及/或乾燥。 最後’可傾斜邊緣24返回至其傾斜位置。當處於此傾斜位 置時’如圖3中最佳所見的,已經被收集在槽道44內的任何流 體被引至撓性排泄軟管管接頭46,且然後從處理容室12被排 放。在邊緣24處於其傾斜位置之下,自動機臂16將晶圓14從 處理容室12移去》 因此’可瞭解本發明的設備及方法提供一種具有在機械上簡 單的構造的可傾斜邊緣,導致高度的可靠性以及增加的微電子裝 置的生產效率》 遮罩及排出通口的使用可增進化學蒸汽的被保持在容室12 內,並且可較有效地將乾燥空氣引至用來製作微電子裝置的晶圓 14上’降低灰塵,髒物,金屬,及製造化學物品會存留在微電子 裝置的表面上的可能性。 【圖式簡單說明】 圖1爲根據本發明的實施例的單一工件例如半導體晶圓的處 -20- (21) 1375736 理系統的頂部平面圖。 圖1A爲圖1的處理系統的—部份的立體圖。 圖1B爲顯示根據本發明的實施例的圖1及1A的處理系統的 一部份的等角圖。 圖2爲新穎處理容室的立體圖,其中可傾斜邊緣處於其傾斜 位置’以方便半導體晶圓的載入處理容室內或從處理容室被卸 載。 圖3爲圖2的處理容室的部份剖面圖。 圖4爲圖3的處理容室的視圖,但是可傾斜邊緣處於其非傾 斜位置。 圖5爲圖2的處理容室的立體圖,但是晶圓及轉子二者處於 處理容室的下方隔室中且從圖2所示的定向被翻轉,使得晶圓的 第一側朝下》 圖6爲圖5所示的處理容室的部份剖面圖。 圖7爲圖2及5的處理容室的立體圖,但是轉子及晶圓返回 至其原始位置,並且顯示樞轉臂處於其在晶圓上方的第一位置, 用來傳送處理流體至晶圓。 圖8爲圖2的處理容室的部份剖面圖,但是是沿著與獲得圖 3者不同的剖切線所取,並且顯示可傾斜邊緣處於其傾斜位置》 圖9爲圖8的處理容室的部份剖面圖,但是可傾斜邊緣處於 非傾斜位置。 圖10爲可傾斜邊緣的底側的放大立體圖。 -21 - (22) (22)1375736 【主要元件符號說明】 10 系統 11 外殼 12 處理容室 13 過濾器 14 半導體晶圓 15 先前存在的容室 1 6 自動機臂 17 徑向通風開口 18 自動機末端作用器 19 甲板 20 轉子 21 底座部份 22 轉子總成 24 可傾斜邊緣 26 鉸鏈 28 氣壓升降臂機構 30 指件 32 樞轉臂或擺動臂 34 管件 3 6 管件 38 滴流捕捉托盤 40 遮罩 -22 (23) (23)1375736 42 第一側 44 槽道 46 撓性排泄軟管管接頭 48 排出通口 5 0 上方端部 52 排出導管 54 升降機或升降/旋轉致動器 -23 -U.S. Patent Application Serial No. 10/733,807, filed on Jan. 12, 2003, which is incorporated herein by reference. No. 10/859,749, filed on June 3, 2004, and patent application No. 10/8 60, 3 84, filed on June 3, 2004, filed on June 3, 2004 U.S. Patent Application Serial No. 10/860, 592, filed on Jun. 3, 2004, and U.S. Patent Application Serial No. 10/860,593, filed on Jun. 3, 2004, and A more detailed description is provided in U.S. Patent Application Serial No. 10/86,240, filed on Jan. 3, the disclosure of which is incorporated herein by reference in its entirety by reference to the PCT PCT PCT application. The mask and tilt of the novel processing chamber 12 of the present invention as seen in Figure 2 can be placed directly above the pre-existing chamber 15 of Figure 1B, i.e., at 19. This processing chamber 12 can be one of many different chambers that are typically included in the system 1 to perform a number of functions. As best seen in Figures 2 and 3, the novel processing chamber 12 of the present invention performs processing steps on a single workpiece, such as semiconductor wafer 14. The semicircular circle 14 is fed to the process 12 by the robot arm 16 and the automaton end effector 18. The automatic arm 16 and the automaton end effector 18 and their use with semiconductor crystal processing are known in the art. The robotic arm 16 and the automaton end effector 18 place the unfinished wafer on the rotor 20 and remove the finished wafer 14 from the rotor 20. In this embodiment, the processing chamber 12 includes a single rotor 20. However, it is also possible to use more than two rotors. The US Patent Application No. t. , the edge deck can be differently set by the crystal chamber. 4 is better. 2 or -12- (13) 1375736 The rotor 20 is part of the rotor assembly 22. The rotor assembly 22 receives and carries the wafer 14' to position the wafer 14 for processing, and can rotate or rotate the wafer 14 during the processing or drying steps. To allow loading and unloading of the wafer 14, the processing chamber includes a tiltable edge 24. This tiltable edge 24 is movable between a non-tilted position (Figs. 4 to 7) and an inclined position (Figs. 2 and 3). When the tiltable edge 24 is in its non-tilted position, as shown in Figures 4 through 7, the edge 24 closes an opening that allows the wafer 14 to be loaded into and unloaded from the processing chamber 12. Conversely, when the tiltable edge 24 is in its tilted position' as shown in Figures 2 and 3, the edge 24 opens a portion of the process chamber 丨2. When the edge 24 is in this tilted position, the wafer 14 can be loaded into and unloaded from the processing chamber 12. As can be seen in Figures 2 and 3, the inclination of the edge 24 allows access to the rotor 2 of the robotic arm 16 and the autonomous end effector 18. As such, the inclination of the edge 24 allows the wafer 14 to be loaded into the process chamber 12 and onto the rotor 20 and subsequently unloaded. A small hook finger 30 rising from the rotor 20 is used to secure the wafer 14 to the rotor 20 during processing of the wafer 14. The tiltable edge 24 pivots about two pivot points or hinges. One of these hinges 26 is shown in Figure 2. Another hinge is not shown in Figure 2. This other hinge is secured to the process chamber 12 at the opposite side of the edge 24 from the portion of the chamber that is blocked in Figure 2 . As can be seen by comparing Figures 2 and 7, the tiltable edge 24 is moved between its tilted and non-tilted positions by the pneumatic lift arm mechanism 28. In particular, the pneumatic lift arm mechanism 28 is a double-acting pneumatic cylinder having a pivoting clevis mount. A magnetic sensor available from the vendor of such a pneumatic cylinder is used to indicate the two positions of the 1375736 (Η) cylinder, that is, the raised and lowered positions. This hard stop of the cylinder is defined. From the above, the tiltable edge 24 and its actuation mechanism are known which results in a more reliable and easier to maintain operation. The processing chamber 12 can also include a pivot arm or swing arm 32, as can be seen. Pivot arm 32 preferably moves between sweeping positions. The pivot arm 32 is moved by a 50 watt reduction ratio of a 50 watt harmonic gear reducer. As with the end of travel of the pneumatic lift arm mechanism 28, 32, it is defined by a rigid stop. Primitive (zero causes pivot arm 32 to be established against one of the two rigid stops. The incremental and absolute encoders are used to define any other position of the pivot arm 32.) Pivot arm 32 facilitates handling of fluid Transfer to wafer 14. Pivot arm 32 is moveable from a first position to a second position. Pivot f is shown in Figure 7 "in this first position, pivoting the arm at the wafer to transfer processing fluid to the crystal Circle 14. As can be seen in Figure 7, the pivot arm 32 comprises two tubular members 34 or liquid can be passed through the tubular members 34 according to the manufacturer's processing requirements. In a preferred embodiment, the tubular members 32 facilitate deionization 14. Below, the tube member 34 is conveniently and exclusively used to transfer a combination of isopropyl alcohol to the wafer 14. Traditionally used to control the transfer of these gases and liquids to the respective tube member 34 and both positions is mechanically simple, The most moving motion in the mouth diagrams 2 and 7 is achieved at the two end positions of the Yaskawa motor. The position of the pivoting or pivoting arm point is harmonized by the Yaskawa motor for the original position, in this embodiment, f 3 2 The first position 14 is above and used. Any gas and 36 are delivered. The transfer of water to the wafer has a nitrogen or nitrogen and isopropyl valve (not shown) being 36 ° -14- (15) 1375736 The second position of the pivot arm 32 is shown in Figure 2. The arm 32 is located on the side of the wafer 14 and is collected from the end of the pivoting arm 32 at the end of the tiltable edge 24 at the end of the pivoting arm at the end of the pivoting arm 32. Two nozzle tip liquid. The trickle capture tray 38 also collects the deionized water that the conventional valve and nozzle tip must clear from the tube 32 and facilitates the deionization trickle capture tray 38 to be coupled to the mechanism used to transport the waste liquid for disposal. Here, the trickle catching tray 38 injects the effect of the channel pivot arm 32 or the swing arm and the tiltable edge 24. Typically, the pivoting arm moves from the surface of the second position 14 to the first position in a sweeping motion such that the pivoting arm 32 is disposed on substantially the entire surface of the wafer 14 to contact the wafer cassette 4, The pivot arm 32 allows direct injection of deionized water onto the entire surface of the rotating crystal. It is believed that the improved cleaning of the wafer 14 can also be used to cause nitrogen, isopropanol, and any other impact on the entire surface of the wafer 14. The processing chamber 12 can also include a mask 40 that is disposed upward. For example, 40 is positioned below the tiltable edge 24, but the cover 40 is shown on the decks 1 9 J and 3 to facilitate the periphery and surface of the higher and more efficient air flow side 42. This higher and more efficient void remains on the surface of the wafer 14. In addition, the mask 40 helps maintain the vapor of the chemical of 14 within the processing chamber 12. The HEPA filter 13 enters the unit two position shown in Figs. 1' 1A' and 1B and pivots upward. Here is the first party. Any of the trickle traps are removed between the drip ends. At a distance of 44 °, the entire surface is sprayed with a fluid with a number of traversing wafers. Such as the general use of I circle 14. Of course, as described above, the liquid or gas is shielded from the two sides, as shown in Figure 1B. The airflow of the wafer 14 prevents the particles from being used to process the wafers through the dry air. Then, -15-(16) 1375736 air is passed over the wafer 14 and into the top of the mask 40. Air is discharged from the bottom of the shroud 40 and then continues downward through a portion of the radial venting opening 17 shown in Figures 1 and 1B. The remaining portions of the four radial ventilation openings 17 are covered by flanges at the bottom portion 21 of the mask 40. As best seen in Figure 5, at least one channel 44 is positioned within the tiltable edge 24. A preferred embodiment can include three channels, and two of the three channels 44 are shown in FIG. As the wafer 14 rotates during processing to remove flushed water and dust or dirt from its surface or first side 42, the water and entrained particles move outward toward the edge 24 by centrifugal force. As the water approaches edge 24, water enters channel 44 in edge 24. These channels 44 collect and transport fluid away from the first side 42 of the wafer and ultimately to the exterior of the processing chamber 12. In this manner, the channel 44 and the sloped edge 24 combine to reduce the likelihood that this fluid will reach the bottom of the process chamber 12. Most of the fluid collected in the channel 44 is removed from the process chamber 12 via the flexible drain hose connector 46. This flexible drain hose fitting 46 is best seen in Figure 3. Some of the fluid collected in the channel 44 is removed via the hose tube joint 46 during the flushing and spin drying of the wafer 14 by the rotor assembly 22. The remainder of the fluid in channel 44 is discharged during the removal of processed wafer 14 by automaton end effector 18. In particular, when the tiltable edge 24 is moved from its non-tilted position to its tilted position, as shown in Figure 3, any remaining fluid within the channel 44 moves toward the lowest point of the edge 24, i.e., toward the flexible drain. Pipe joint 40. Then, all of the fluid discharged from the flexible drain hose fitting 46 is discharged to a remote location for disposal. -16- (17) 1375736 As discussed above, air is drawn through a processing chamber, such as processing chamber 12, to dry wafer 14. This dry air enters the process chamber 12 due to the vacuum generated near the bottom of the process chamber 12. Due to these vacuum conditions, air is drawn from the surrounding environment above the top of the processing chamber 12, over the wafer 14, and down through the bottom of the chamber 12. The discharge port 48 is disposed on the tiltable edge 24. Specifically, these discharge ports 48 are formed or placed within the tiltable edge 24. One of these discharge ports 48 is shown in Figures 3, 8, and 9, and the two discharge ports 48 are shown in Figure 10. Each of the discharge ports 48 includes an upper end 50. Figure 8 shows the tiltable edge 24 in its tilted position. However, by looking at Figure 8, it can be seen that when the tiltable edge 24 is in its non-tilted position and the rotor assembly 22 and wafer 14 are in the upper compartment of the process chamber 12, as shown in Figure 8, these discharges are shown. The upper end 50 of the port 48 is located below the horizontal plane of the wafer 14. The processing chamber also includes a pair of exhaust conduits 52. Each of the exhaust conduits 52 is associated with a single exhaust port 4 8 . One of the discharge conduits 52 and its associated discharge port 48 are shown in Figures 8 and 9. - When the tiltable edge 24 is in its tilted position, as shown in Figure 8, the discharge port 48 is separated from the discharge conduit 52. In contrast, when the tiltable edge 24 is in its non-tilted position, as shown in Figure 9, the discharge port 4 8 sealingly engages the discharge conduit 52. A portion of the dry air passing over the wafer 14 may enter the discharge port 48 and then enter the exhaust conduit 52 for discharge from the process chamber 12. During the processing cycle, the liquid discharged from the pivot arm 32. used to rinse the wafer 14; a relatively small portion of the body may be diverted toward the discharge port 48 and the discharge conduit -17- (18) 1375736 52 . This liquid is entrained by the air to form an atomized vapor. This atomized vapor exits the tiltable edge 24 via the discharge port 48 and the discharge conduit 52. The _ steam is then taken out of the process chamber 12. By removing both dry air and liquid from the area near the wafer 14 while the wafer 14 is being processed, the mask 40, the discharge port 48, in combination with the discharge conduit 52, directs the dry air more effectively. On the wafer 14. In this manner, the mask 4, the discharge port 48, is combined with the discharge conduit 52 to reduce dust, dirt, metal, and fine particles of the manufacturing chemical that remain on the surface of the wafer 14 during wafer processing. possibility. This in turn reduces the likelihood of damage to the resulting microelectronic device. As can be seen, the processing chamber 12 can be configured with a so-called elevator or lift/rotate actuator 54. This lift/rotate actuator 54 moves the wafer 14 from the upper compartment of the process chamber 12 as shown in Figure 4 to the lower compartment of the process chamber as shown in Figure 6. As the wafer 14 is moved from the upper compartment of the processing chamber 12 to the lower compartment, the lift/rotate actuator 54 simultaneously flips the wafer 14 and holds the wafers 14 on top of the wafers 14. In particular, the lift/rotate actuator 54 moves the wafer 14 from the first side 42 of the wafer 14 in the upper compartment as shown in FIG. 4 to the processing capacity as shown in FIG. The first side 42 of the wafer 14 in the lower compartment of the chamber 12 is facing downward. In this lower compartment, the downward facing wafer 14 can be subjected to processing steps, such as treatment with liquid chemicals or by immersion in a liquid chemical, or by fluid spray treatment. The processed wafer 14 can be processed after the lift/rotate actuator 54 returns the wafer 14 to the upper compartment of the process chamber 12 and to the first side 42 again upwards -18-(19) 1375736 It is rinsed 'dried and then removed from the processing chamber 12. Thus, it is apparent that the present invention is also an attachment mechanism for removably securing to the deck 19 of the processing system 1 of the semiconductor wafer. This attachment mechanism includes a tiltable edge 24 that slopes from a non-tilted position to an inclined position. The tiltable edge 24, as described above, allows the wafer μ to be loaded into and unloaded from the system 10 while in its tilted position. The present invention also includes a support for securing the angled edge 24 to the deck 19. Preferably, the support member is a mask. A typical processing method of the present invention using the above-described components will be briefly described below, which includes processing semiconductor wafers 14 within processing chamber 12. This processing method consists of several steps. First, the tiltable edge 24 at the top of the process chamber 12 is tilted from the non-tilted position shown in Figures 4 through 7 to the tilted position shown in Figures 2 and 3. The inclination of the edge 24 opens the front of the processing chamber 12. Next, the semiconductor wafer 14 is inserted into the rotor 2 positioned in the processing chamber 12. As best seen in Figures 2 and 3, wafer 14 is preferably inserted into rotor 20 by robotic arm 16 and automaton end effecter is. At the time of insertion, the first side 42 of the wafer 14 faces upward. When the wafer 14 is initially placed on the rotor 2, the wafers 14 of Figures 2 and 3 are positioned in the upper compartment of the process chamber 12. At this point, the tiltable edge 24 returns to its non-tilted position to close the process chamber 12» At this point, the wafer can undergo an optional processing step. Second, wafer 14 and rotor 20 descend from the upper compartment of processing chamber 12 to the lower compartment of processing chamber 12. Figures 5 and 6 show wafer 14.4 in the lower compartment of chamber 12. When the lift/rotate actuator 54 moves the rotor 20 into the lower compartment of the process chamber 12, the lift/spin -19-(20) 1375736 rotary actuator 54 simultaneously flips the wafer 14. Due to this flip, the first side 42 of the wafer 14 faces downward. After the wafer 14 is flipped over and placed below the lower compartment, the wafer can be subjected to another processing step, such as a chemical processing step. After the wafer 14 is processed, the lift/rotate actuator 54 returns the wafer 14 to the upper compartment and returns the first side 42 of the wafer 14 to its initial position, ie, the first side of the wafer 42 Upward. The wafer 14 can then be subjected to another processing step including, but not limited to, chemical processing, rinsing, and/or drying. Finally, the tiltable edge 24 returns to its tilted position. When in this tilted position' as best seen in Fig. 3, any fluid that has been collected within the channel 44 is directed to the flexible drain hose fitting 46 and then discharged from the processing chamber 12. With the edge 24 in its tilted position, the robotic arm 16 removes the wafer 14 from the processing chamber 12. Thus, it will be appreciated that the apparatus and method of the present invention provides a tiltable edge having a mechanically simple configuration. Resulting in a high degree of reliability and increased production efficiency of the microelectronic device. The use of the mask and the discharge port enhances the retention of chemical vapor in the chamber 12 and allows the drying air to be efficiently used to make the micro The wafer 14 of the electronic device 'reduces the possibility of dust, dirt, metal, and manufacturing chemicals remaining on the surface of the microelectronic device. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a top plan view of a single workpiece, such as a semiconductor wafer, in the -20-(21) 1375736 system, in accordance with an embodiment of the present invention. 1A is a perspective view of a portion of the processing system of FIG. 1. Figure 1B is an isometric view showing a portion of the processing system of Figures 1 and 1A, in accordance with an embodiment of the present invention. 2 is a perspective view of a novel processing chamber with the tiltable edge in its tilted position 'to facilitate loading or unloading of the semiconductor wafer into the processing chamber. 3 is a partial cross-sectional view of the processing chamber of FIG. 2. Figure 4 is a view of the processing chamber of Figure 3, but with the tiltable edge in its non-tilted position. Figure 5 is a perspective view of the processing chamber of Figure 2, but with both the wafer and the rotor in the lower compartment of the processing chamber and flipped from the orientation shown in Figure 2 such that the first side of the wafer faces downward 6 is a partial cross-sectional view of the processing chamber shown in FIG. 5. Figure 7 is a perspective view of the process chamber of Figures 2 and 5, but with the rotor and wafer returned to their original positions and showing the pivot arm in its first position above the wafer for conveying process fluid to the wafer. Figure 8 is a partial cross-sectional view of the processing chamber of Figure 2, but taken along a different cut line from that of Figure 3, and showing the tiltable edge in its tilted position. Figure 9 is the processing chamber of Figure 8. Partial section view, but the tiltable edge is in a non-tilted position. Figure 10 is an enlarged perspective view of the bottom side of the tiltable edge. -21 - (22) (22)1375736 [Description of main component symbols] 10 System 11 Housing 12 Processing chamber 13 Filter 14 Semiconductor wafer 15 Pre-existing chamber 1 6 Automatic arm 17 Radial ventilation opening 18 Automaton End effector 19 Deck 20 Rotor 21 Base part 22 Rotor assembly 24 Tiltable edge 26 Hinge 28 Pneumatic lifting arm mechanism 30 Finger 32 Pivot arm or Swing arm 34 Pipe fitting 3 6 Pipe fitting 38 Drip catching tray 40 Mask - 22 (23) (23)1375736 42 First side 44 channel 46 Flexible drain hose fitting 48 Outlet port 5 0 Upper end 52 Outlet conduit 54 Lift or lift/rotary actuator-23 -

Claims (1)

1375736 (24) 十、申請專利範圍 1·—種用來處理半導體晶圓之處理容室,該處理容室包含: 至少一轉子,位在該處理容室內,該至少一轉子適於接收及 (或)處理晶圓I 一可傾斜邊緣,位在該處理容室的頂部處,該可傾斜邊緣從 一非傾斜位置傾斜至一傾斜位置’以在該可傾斜邊緣處於該傾斜 位置時,容許上述晶圓被載入該處理容室內及從該處理容室被卸 載: ~向上設置的遮罩’該遮罩環繞該處理容室在該可傾斜邊緣 下方的部份;以及 一個或更多個排出通孔’位於該可傾斜邊緣內,當該可傾斜 邊緣處於該傾斜位置時,該一個或更多個排出通孔與—排出導管 分開,且當該可傾斜邊緣處於該非傾斜位置時,該一個或更多個 排出通孔與一排出導管接合。 2.—種用來處理半導體晶圓之系統,該系統包含: 複數個處理容室’該等處理容室中之至少一個處理容室包 含: t —轉子,位在該處理容室內,該轉子適於支承—晶圓: —遮罩,該遮罩環繞該處理容室; 一可傾斜邊緣’位在該遮罩的上方,於該處理容室內處 理晶圓的期間,該可傾斜邊緣可從用以將晶圓載入至該處理容室 或從該處理容室卸載晶圓之一傾斜位置,傾斜至一非傾斜位置;. —升降/旋轉機構’在該可傾斜邊緣下方附著至該轉子, -24- (25) 1375736 該升降/旋轉機構適於升起與下降該轉子,且該升降/旋轉機構在 面朝上位置與面朝下位置之間亦旋轉該轉子;以及 一自動機’可在該等處理容室間移動,該自動機具有一 末端作用器’當該可傾斜邊緣處於該傾斜位置時,該末端作用器 適於移動越過該遮罩及該至少一個處理容室之該可傾斜邊緣,用 以將晶圓載入至該轉子或從該轉子卸載晶圓。 3· —種裝置,該裝置包含: 一處理容室; 一轉子’位在該處理容室內,該轉子適於支承—晶圓; 一遮罩’該遮罩環繞該處理容室: 一可傾斜邊緣,位在該遮罩的上方,於該處理容室內處理晶 圓的期間’該可傾斜邊緣可從用以將晶圓載入至該處理容室或從 該處理容室卸載晶圓之一傾斜位置,傾斜至一非傾斜位置:以及 一升降/旋轉機構,在該可傾斜邊緣下方附著至該轉子,該升 降/旋轉機構適於升起與下降該轉子,且該升降/旋轉機構在面朝 上位置與面朝下位置之間亦旋轉該轉子。 4. 如請求項3所述之裝置,該轉子可在完全位於該遮罩上 的一升高位置至該遮罩內的一下降位置之間移動。 5. 如請求項3所述之裝置,更包含一自動機,該自動機具 有一末端作用器’當該可傾斜邊緣處於該傾斜位置時,該末端作 用器適於移動越過該遮罩及該可傾斜邊緣,用以將晶圓載入至該 轉子或從該轉子卸載晶圓。 6. 如請*求項3所述之裝置,更包含位在該可傾斜邊緣中的 -25- (26) 1375736 至少兩個面朝內的槽道。 -26- (3) 1375736 七、指定代表圖: (一)、本案指定代表圖為:第(2 )圖 12 處理容室 14 半導體晶圓 18 自動機末端作用器 21 底座部份 24 可傾斜邊緣 26 鉸鏈 28 氣壓升降臂機構 30 指件 3 2 樞轉臂或擺動臂 38 滴流捕捉托盤 40 遮罩 42 第一側 八、本案若有化學式時,請揭示最能顯示發明特徵的化學 式:1375736 (24) X. Patent Application No. 1 - A processing chamber for processing a semiconductor wafer, the processing chamber comprising: at least one rotor located in the processing chamber, the at least one rotor being adapted to receive and Or processing wafer I, a tiltable edge, located at the top of the processing chamber, the tiltable edge being inclined from a non-tilted position to an inclined position 'to allow the above-mentioned tiltable edge to be in the tilted position The wafer is loaded into and unloaded from the processing chamber: ~ an upwardly disposed mask 'the portion surrounding the processing chamber below the tiltable edge; and one or more discharges a through hole 'in the tiltable edge, the one or more discharge through holes being separated from the discharge conduit when the tiltable edge is in the inclined position, and when the tiltable edge is in the non-tilted position, the one The or more discharge through holes are engaged with a discharge conduit. 2. A system for processing a semiconductor wafer, the system comprising: a plurality of processing chambers - at least one processing chamber of the processing chambers comprising: a rotor disposed in the processing chamber, the rotor Suitable for supporting a wafer: a mask surrounding the processing chamber; a tiltable edge 'located above the mask, the tiltable edge being viewable during processing of the wafer in the processing chamber An inclined position for loading or unloading a wafer into the processing chamber or tilting from the processing chamber to a non-tilted position; - a lifting/rotating mechanism attached to the rotor below the tiltable edge -24- (25) 1375736 The lifting/rotating mechanism is adapted to raise and lower the rotor, and the lifting/rotating mechanism also rotates the rotor between a face up position and a face down position; and an automaton' Moving between the processing chambers, the automaton having an end effector 'when the tiltable edge is in the tilted position, the end effector is adapted to move over the mask and the at least one processing chamber Tiltable Edge, with the wafer to the rotor loaded into or unloaded from the rotor wafer. 3. A device comprising: a processing chamber; a rotor 'located within the processing chamber, the rotor being adapted to support a wafer; a mask' surrounding the processing chamber: a tiltable An edge, located above the mask, during processing of the wafer within the processing chamber - the tiltable edge may be from one of the wafers used to load or unload the wafer into the processing chamber An inclined position, inclined to a non-tilted position: and a lifting/rotating mechanism attached to the rotor below the tiltable edge, the lifting/rotating mechanism being adapted to raise and lower the rotor, and the lifting/rotating mechanism is in the face The rotor is also rotated between an up position and a face down position. 4. The apparatus of claim 3, wherein the rotor is movable between a raised position that is entirely on the mask to a lowered position within the mask. 5. The device of claim 3, further comprising an automaton having an end effector 'when the tiltable edge is in the tilted position, the end effector is adapted to move past the mask and the A tiltable edge for loading or unloading wafers to or from the rotor. 6. The device of claim 3, further comprising -25- (26) 1375736 located in the tiltable edge of at least two inwardly facing channels. -26- (3) 1375736 VII. Designation of representative drawings: (1) The representative representative of the case is: (2) Figure 12 Processing chamber 14 Semiconductor wafer 18 Automatic machine end effector 21 Base part 24 Tilting edge 26 Hinge 28 Air lift arm mechanism 30 Finger 3 2 Pivot arm or swing arm 38 Drip catching tray 40 Mask 42 First side 8. If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention:
TW94107037A 2004-03-12 2005-03-08 Single workpiece processing chamber TWI375736B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US55264204P 2004-03-12 2004-03-12

Publications (2)

Publication Number Publication Date
TW200600615A TW200600615A (en) 2006-01-01
TWI375736B true TWI375736B (en) 2012-11-01

Family

ID=38045552

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94107037A TWI375736B (en) 2004-03-12 2005-03-08 Single workpiece processing chamber

Country Status (2)

Country Link
CN (1) CN100413023C (en)
TW (1) TWI375736B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102903606B (en) * 2011-07-29 2016-03-30 无锡华瑛微电子技术有限公司 Multi-chamber semiconductor processing unit
WO2013016941A1 (en) * 2011-07-29 2013-02-07 无锡华瑛微电子技术有限公司 Adjustable semiconductor processing device and control method thereof
CN110875210B (en) * 2018-08-29 2024-03-19 紫石能源有限公司 Processing device
CN110875209B (en) * 2018-08-29 2024-03-19 紫石能源有限公司 Processing device
CN110875211B (en) * 2018-08-29 2024-03-15 紫石能源有限公司 Processing device
WO2020042395A1 (en) * 2018-08-29 2020-03-05 深圳市永盛隆科技有限公司 Processing device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6352623B1 (en) * 1999-12-17 2002-03-05 Nutool, Inc. Vertically configured chamber used for multiple processes
CN1205652C (en) * 2001-06-01 2005-06-08 S.E.S.株式会社 Base-plate washing system
JP2003168673A (en) * 2001-12-03 2003-06-13 Rix Corp Tank for cleaning and drying wafer
JP2003251255A (en) * 2002-03-01 2003-09-09 Sumitomo Precision Prod Co Ltd Substrate treating apparatus

Also Published As

Publication number Publication date
TW200600615A (en) 2006-01-01
CN100413023C (en) 2008-08-20
CN1947220A (en) 2007-04-11

Similar Documents

Publication Publication Date Title
JP3563605B2 (en) Processing equipment
US7497633B2 (en) Substrate processing apparatus and substrate processing method
EP1735817B1 (en) Single workpiece processing chamber
JP5154007B2 (en) Substrate processing equipment
US6797076B1 (en) Spray nozzle system for a semiconductor wafer container cleaning aparatus
TWI375736B (en) Single workpiece processing chamber
JP5008280B2 (en) Substrate processing apparatus and substrate processing method
US8040488B2 (en) Substrate processing apparatus
JP4989398B2 (en) Substrate processing equipment
US20060147201A1 (en) Substrate processing apparatus and substrate processing method
US20100129526A1 (en) Substrate processing apparatus
JP6061484B2 (en) Substrate cleaning apparatus and substrate processing apparatus having the same
JP2007214365A (en) Substrate processor
US20040079403A1 (en) Single workpiece processing system
WO2002005312A2 (en) Automated semiconductor immersion processing system
EP1313573A2 (en) Semiconductor wafer container cleaning apparatus
US20080196658A1 (en) Substrate processing apparatus including a substrate reversing region
US20080029123A1 (en) Sonic and chemical wafer processor
JP2007036268A (en) Substrate processing method and substrate processor
US6866460B2 (en) Apparatus and method for loading of carriers containing semiconductor wafers and other media
JP6808519B2 (en) Substrate cleaning equipment
JP4579029B2 (en) Substrate processing equipment
JP2005109513A (en) Development method and device, and liquid processing method and device
JP2004072120A (en) Method and device for development, and method and device for treating liquid
JP2005340845A (en) Substrate treatment apparatus, substrate treatment method, and method for manufacturing substrate

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees