TWI364626B - Resin composition comprising catalyst precursor for electroless plating to form electromagnetic wave shielding layer, methods for forming metal patterns using the resin composition and metal patterns formed by the methods - Google Patents

Resin composition comprising catalyst precursor for electroless plating to form electromagnetic wave shielding layer, methods for forming metal patterns using the resin composition and metal patterns formed by the methods Download PDF

Info

Publication number
TWI364626B
TWI364626B TW096113065A TW96113065A TWI364626B TW I364626 B TWI364626 B TW I364626B TW 096113065 A TW096113065 A TW 096113065A TW 96113065 A TW96113065 A TW 96113065A TW I364626 B TWI364626 B TW I364626B
Authority
TW
Taiwan
Prior art keywords
silver
complex
resin composition
acid
film layer
Prior art date
Application number
TW096113065A
Other languages
Chinese (zh)
Other versions
TW200801799A (en
Inventor
Min Kyoun Kim
Min Jin Ko
Bum Gyu Choi
Sang Chul Lee
Jeong Im Roh
Original Assignee
Lg Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lg Chemical Ltd filed Critical Lg Chemical Ltd
Publication of TW200801799A publication Critical patent/TW200801799A/en
Application granted granted Critical
Publication of TWI364626B publication Critical patent/TWI364626B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/02Acids; Metal salts or ammonium salts thereof, e.g. maleic acid or itaconic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/0285Silver salts, e.g. a latent silver salt image
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • G03F7/2024Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure of the already developed image
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • H05K3/182Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
    • H05K3/185Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method by making a catalytic pattern by photo-imaging

Description

九、發明說明: 【發明所屬之技術領域】 本發明係關於-種包含可經由無電電鑛形成電磁屏蔽 層之催化劑前驅體之樹脂組成物、使用該㈣組成物形成 金屬圖案之方法、以及以該方法形成之金屬圖案。更具體 地况明,本發明為關於一種包含作為催化劑前驅體之銀有 機後合物之樹脂組成物、使用該樹脂組成物形成 細緻金屬 圖案之方法、以及以該方法形成之金屬圖案。本發明之金 屬圖案適用於製作-種可作為屏蔽各種顯示器前端所產生 電磁波所用的薄膜,上述之各種顯示器包括陰極射線管 (CRT)、電漿顯示面板(PDP)、液晶顯示器(lcd)及電激發光 顯示器顯示器(EL·)、以及撓性印製板之線路。 【先前技術】 隨著曰前各型態顯示器的發展及應用,已被發現由顯 示器所產生出之電磁干擾(EMI)噪聲所造成的嚴重問題,如 危害人類健康以及裝置故障。為了解決這些問題,因而發 展出一種置於顯示器前端表面之屏蔽薄膜使顯示器所產生 出之電磁波造成扭轉,接著以接地方式將電磁波釋放。 許^習知方法’例如藉由將金屬或金屬氧化物沉殿於 透明基底上形成導電薄膜層,可用於屏蔽顯示器,如CRT 以及PDP前端所產生之電磁噪聲。然而由於導電薄膜必須盡 可能地薄化以達到透光度,根據示範方法其導電薄臈表面 阻抗值將會過大,而無法達到電磁波屏蔽之效用。 1364626 除了這些方法以外,另有使用導電膠經印刷技術形成 圖案的方法被報導出來,如網版印刷或膠印,而成型之膠 模再經由無電電鑛形成電磁屏蔽薄膜。然而,印刷電路精 破性之進步有限,並且尚存在導電材料浸渗成不規則部^ •5 的問題。 更進一步地,另有一些經由光顯影形成金屬膜層,接 著再經電m電電鑛形成電磁屏蔽_的方法被報導出IX. Description of the Invention: [Technical Field] The present invention relates to a resin composition comprising a catalyst precursor capable of forming an electromagnetic shielding layer via electroless ore, a method of forming a metal pattern using the (four) composition, and The metal pattern formed by the method. More specifically, the present invention relates to a resin composition comprising a silver organic compound as a catalyst precursor, a method of forming a fine metal pattern using the resin composition, and a metal pattern formed by the method. The metal pattern of the present invention is suitable for use as a film for shielding electromagnetic waves generated by various display front ends, and the above various displays include a cathode ray tube (CRT), a plasma display panel (PDP), a liquid crystal display (LCD), and electricity. Excitation light display (EL), and flexible printed circuit board wiring. [Prior Art] With the development and application of various types of displays in the past, serious problems caused by electromagnetic interference (EMI) noise generated by the display, such as human health and device failure, have been found. In order to solve these problems, a shielding film placed on the front surface of the display is developed to cause the electromagnetic waves generated by the display to be twisted, and then the electromagnetic waves are released in a grounded manner. The conventional method of forming a conductive thin film layer by, for example, depositing a metal or metal oxide on a transparent substrate can be used to shield electromagnetic noise generated by displays such as CRTs and front ends of PDPs. However, since the conductive film must be thinned as much as possible to achieve transmittance, according to the exemplary method, the surface resistance value of the conductive thin plate will be too large to achieve the effect of electromagnetic wave shielding. 1364626 In addition to these methods, a method of forming a pattern by using a conductive paste by a printing technique is reported, such as screen printing or offset printing, and the molded mold is further formed into an electromagnetic shielding film via electroless ore. However, the progress of the precision of the printed circuit is limited, and there is a problem that the conductive material is impregnated into irregularities. Further, some methods for forming a metal film layer by light development, and then forming an electromagnetic shield by electric electricity and electricity are reported.

10 15 來。然而,該些方法的缺點在於光顯影製造過程需要形成 多層膜,而使得總製造過程變得相當複雜。於是,尚有— ㈣金屬催化劑與光敏感性樹脂混合,將混合物作顯影, 接著經由無電電鑛或電錄形成電磁波屏蔽薄膜的方法被報 導出來。然而這些方法要使用到昂貴的麵(p d)材作為催化 劑’且及至目前為止尚未有方法可用來避免形成細緻圖案 及無電電鍍過程中所產生的問題。雖然無電電鍍是用以改 進沉積特徵,,然而並無特定方法可用以解決強驗水 圖案剝落的問題。 【發明内容】 本發明係用以解決先前習知技術等相關問題,且本 明之-態樣係提供一種包括不需使用昂貴催化鈀材來 ,催化劑前驅體之樹脂組成物,並具有熱力學穩韻以抵 七還原電勢產生之氧化現象而使其容易操作,且於濕式製 例如顯影以及無電電财使催化劑無顯著流失並提 供較尚黏著性及沉澱特徵。 20 1364626 本發明之另一態樣係提供一種使用該樹脂組成物形成 金屬圖案之方法。 本發明之又一態樣係提供以該方法形成之金屬圖案。 本發明之更又一態樣係提供包含該金屬圖案之電磁屏 5 敝材料。 根據本發明之第一態樣,本發明係提供一種屏蔽電磁 波之树脂組成物’該樹脂組成物包括(a) 一有機高分子樹 脂、(b) —含一乙烯化不飽和鍵之多官能度單體、(c) 一光 起始劑、(d) —銀有機複合物前驅體、以及一有機溶劑。 〇 根據本發明之第二態樣,本發明係提供一種形成金屬 圖案之方法,該方法包括(a)將樹脂組成物塗佈於基底、(b) 將塗佈完之組成物置於光源下曝光並顯影使形成催化劑圖 案膜層、(c)將該圖案膜層還原、以及(d)將還原膜層進行無 電電鍍。 ^ 1510 15 coming. However, a disadvantage of these methods is that the photodevelopment manufacturing process requires the formation of a multilayer film, which makes the overall manufacturing process quite complicated. Thus, there has been a method in which (iv) a metal catalyst is mixed with a photosensitive resin, and the mixture is developed, and then an electromagnetic wave shielding film is formed via electroless ore or electro-recording. However, these methods use expensive face (p d ) materials as catalysts' and there have been no methods to avoid the problems caused by the formation of fine patterns and electroless plating processes. Although electroless plating is used to improve deposition characteristics, there is no specific method available to address the problem of strong water pattern peeling. SUMMARY OF THE INVENTION The present invention is to solve the related problems of the prior art and the like, and the present invention provides a resin composition including a catalyst precursor without using an expensive catalytic palladium material, and has thermodynamic stability. It is easy to handle by the oxidation phenomenon caused by the reduction potential, and the wet process such as development and no electricity and electricity makes the catalyst not significantly lost and provides more adhesive and precipitation characteristics. 20 1364626 Another aspect of the invention provides a method of forming a metal pattern using the resin composition. Yet another aspect of the invention provides a metal pattern formed by the method. A still further aspect of the present invention provides an electromagnetic screen material comprising the metal pattern. According to a first aspect of the present invention, there is provided a resin composition for shielding electromagnetic waves, wherein the resin composition comprises (a) an organic polymer resin, (b) a polyfunctional group containing an ethylenically unsaturated bond. a monomer, (c) a photoinitiator, (d) a silver organic complex precursor, and an organic solvent. According to a second aspect of the present invention, there is provided a method of forming a metal pattern, the method comprising (a) applying a resin composition to a substrate, and (b) exposing the coated composition to a light source. And developing to form a catalyst pattern film layer, (c) reducing the pattern film layer, and (d) subjecting the reduced film layer to electroless plating. ^ 15

安根據本發明之第三態樣,本發明係提供一種形成金屬 圖案之方法’該方法包括⑷使用樹脂組成物於基底上形成 催化劑圖案膜層、(b)將該圖案膜層還原、以及⑷將還原膜 層進行無電電鑛。 、 根據本發明之第四態樣,本發明係提供一種形成金屬 ”之方法,該方法包括(a)將樹脂組成物塗佈於基底、 ^塗佈完之組成物置於光源下曝光並顯影使形成催化 :臈層、⑷將該圖案膜層還原、以及⑷將還原膜層進= 電電。 20 安根據本發明之第五態樣,本發明係提供一種形成金屬 '、方法該方法包括(a)使用樹脂組成物於基底上形成 催匕劑圖案膜層、(b)將該圖案膜層還原、以及(C)將還原膜 層進行無電電鍍。 、 一根據本發明之第六態樣,本發明係提供包含由上述任 一方法製備出的金屬圖案之電磁波屏蔽材料。 【實施方式】 本發明實施例之實施方案將於此作一詳述。 本案之發明人已研究發展出以一簡單方法製作具有20 7或更細線寬之精緻金屬圖案。因此,將包含銀有機複合 物則驅體之樹脂組成物應用於製作催化劑圖案時,因使用 金屬粒子造成樹脂組成物穩定度匱乏的問題被解決,濕製 f (如顯影或鍍臈)之間催化劑銀的損失減少,且催化劑之黏 著性、化學組抗性及圖案膜層沉澱速率皆得以改善,所以 可藉由無電電鍍製得均勻、精緻之金屬圖案。 t本發明之實施方案係提供一包含有機高分子樹脂之樹 ,、成物 包含一乙稀化不飽和鍵之多官能度單體、一 光起始劑、—作為催化劑前驅體之銀有機複合物前驅體、 以及一有機溶劑。 上述之有機尚分子樹脂係作為穩定銀催化劑以及控制 催化劑之顯影率所用。一般而言,大量催化劑的使用可達 成快速無電電鍍但無法㈣其穩定性及顯影率。 1364626 以無電電鍍催化劑的穩定度以及顯影率作為考量,含 羧基單體及與含羧基單體共聚合之單體所組成之共聚物可 被當作有機高分子樹脂來使用。有機高分子樹脂中,含羧 基之單體以及與含羧基單體共聚合之單體的比例分布於3 : 5 7至9 : 1之間,但並無限制。如果含羧基單體的含量小於上 述定義的低限,有機高分子樹脂與催化劑之間的協調性將 會變差,並且有機高分子樹脂於鹼性顯影液中的溶解度將 降低而造成顯影不足的現象。同樣地,如果含羧基單體的 含量大過於上述定義的上限,溶解度將會過高而造成精緻 10 圖案膜層不容易形成。 含羧基單體係為不飽和羧酸。該不飽和羧酸可選自群 組包括:丙稀酸(acrylic acid)、甲基丙浠酸(methacrylic acid)、巴豆酸(crotonic acid)、衣康酸(itaconic acid)、馬來 酸(maleic acid)、富馬酸(fumaric acid)、單曱基馬來酸 15 (monomethylmaleic acid)、異戊二烯硫酸(isoprenesulfonic acid)、苯乙稀硫酸(styrenesulfonic)、5-降冰片稀-2-叛酸 (5-norbornene-2-carboxylic acid)、以及其混合。 與含羧基單體共聚合之單體其相關實施例係具有不飽 和雙鍵之化合物,但不受限於此。以單體與金屬催化劑之 2〇 間的協調性作為考量,不具芳香官能基之化合物為較佳。 具體而言,與含羧基單體共聚合之單體可選自群組包括: 甲基丙稀酸甲醋(methyl methacrylate)、曱基丙烯酸乙酉旨 (ethyl 2-methylacrylate)、2-曱基丙烯酸異 丁西旨(isobutyl 10 1364626 2-methylacrylate) 、 2-曱基丙烯酸己酯i 2-methylacrylate)、以及其混合》 為了增進催化劑形成之膜層與基底之間的黏著性 熱固性’具有環氧基之乙烯化不飽和化合物包含於該有機 高分子樹脂中為較佳。具有環氧基與㈣之㈣化不飽和 化合物包含於該有機高分子樹脂中為更佳。 為形成-良好的催化劑精緻圖案膜層,該有機高According to a third aspect of the present invention, the present invention provides a method of forming a metal pattern, which comprises (4) forming a catalyst pattern film layer on a substrate using a resin composition, (b) reducing the pattern film layer, and (4) The reduced film layer is subjected to electroless ore. According to a fourth aspect of the present invention, there is provided a method of forming a metal comprising: (a) applying a resin composition to a substrate, and coating the coated composition under exposure to a light source and developing the composition. Forming a catalysis: a ruthenium layer, (4) reducing the patterned film layer, and (4) layering the reduced film into an electric current. 20 amp According to a fifth aspect of the present invention, the present invention provides a method of forming a metal, the method comprising (a Forming a ruthenium pattern film layer on the substrate using the resin composition, (b) reducing the pattern film layer, and (C) electroless plating the reduced film layer. According to a sixth aspect of the present invention, The invention provides an electromagnetic wave shielding material comprising a metal pattern prepared by any of the above methods. [Embodiment] Embodiments of the embodiments of the present invention will be described in detail herein. The inventors of the present invention have studied and developed a simple method. A fine metal pattern having a line width of 20 7 or less is produced. Therefore, when a resin composition containing a silver organic composite is applied to a catalyst pattern, a tree is caused by the use of metal particles. The problem of lack of stability of the composition is solved, and the loss of catalyst silver between the wet f (such as development or rhodium plating) is reduced, and the adhesion of the catalyst, the chemical resistance, and the precipitation rate of the patterned film layer are all improved. A uniform and delicate metal pattern is obtained by electroless plating. t Embodiments of the present invention provide a tree comprising an organic polymer resin, a polyfunctional monomer having an ethylenically unsaturated bond, and a light. An initiator, a silver organic composite precursor as a catalyst precursor, and an organic solvent. The organic molecular resin described above is used as a stable silver catalyst and a catalyst for controlling the development rate. In general, the use of a large amount of catalyst can be used. Achieving rapid electroless plating but not (4) stability and development rate. 1364626 Considering the stability and development rate of electroless plating catalyst, a copolymer composed of a carboxyl group-containing monomer and a monomer copolymerized with a carboxyl group-containing monomer can be Used as an organic polymer resin, a monomer containing a carboxyl group and a copolymerized with a carboxyl group-containing monomer in an organic polymer resin The ratio is distributed between 3: 5 7 and 9: 1, but there is no limitation. If the content of the carboxyl group-containing monomer is less than the lower limit defined above, the coordination between the organic polymer resin and the catalyst will be deteriorated. Moreover, the solubility of the organic polymer resin in the alkaline developing solution is lowered to cause insufficient development. Similarly, if the content of the carboxyl group-containing monomer is larger than the upper limit defined above, the solubility will be too high to cause an exquisite 10-pattern film. The layer is not easy to form. The carboxyl-containing mono system is an unsaturated carboxylic acid. The unsaturated carboxylic acid may be selected from the group consisting of: acrylic acid, methacrylic acid, crotonic acid (crotonic) Acid), itaconic acid, maleic acid, fumaric acid, monomethylmaleic acid, isoprenesulfonic acid, benzene Styrenesulfonic acid, 5-norbornene-2-carboxylic acid, and mixtures thereof. The related examples of the monomer copolymerized with the carboxyl group-containing monomer are compounds having an unsaturated double bond, but are not limited thereto. In view of the coordination between the monomer and the metal catalyst, a compound having no aromatic functional group is preferred. Specifically, the monomer copolymerized with the carboxyl group-containing monomer may be selected from the group consisting of: methyl methacrylate, ethyl 2-methylacrylate, 2-mercaptoacrylic acid Isobutyl 10 1364626 2-methylacrylate, 2- 2-methylacrylate, and mixtures thereof. Adhesive thermosetting between the film layer and the substrate to improve the formation of the catalyst. The ethylenically unsaturated compound is preferably contained in the organic polymer resin. It is more preferable that the compound having an epoxy group and (iv) an unsaturated compound is contained in the organic polymer resin. To form a good catalyst fine patterned film layer, the organic high

10 樹脂具有平均分子量於2,_至3〇,〇〇〇之間為較佳,且於 3,000至15,_之間為更佳。若使用的有機高分子樹脂发平 均分子量小於2,_ ’則會造成顯影中黏著性的下降而使得 催化劑精緻圖案臈層形成有困難。同樣地,若使 高分子樹脂其平均分子量大細,_,則會造成顯影液^ 機高分子樹脂溶解度的降低,而可能造成無顯影的現 生。 15 4形成一更佳催化劑精緻圖案膜層,有機高分子樹脂 之酸值可為90至700 mgK〇H/g之間,而以獅至別 • 叫随么之間為較佳。當有機高分子樹脂之酸值低於90 mgKOH/g時’其與催化劑之間的協調性將減低,且該有機 高分子樹脂於驗性顯影液中的溶解度將降低,而造成顯影 20 *足的現象。同樣地,若有機高分子樹脂之酸值高於· mgK〇H/g’該有機高分子樹脂之溶解度會過高,而造成催 化劑精緻圖案膜層不容易形成。 ^包3乙烯化不飽和鍵之多官能度單體係用以增進樹 月曰.·且成物之光固化性、增進樹脂組成物之顯影率、以及增 1364626 進無電電鍍形成催化劑圖案膜層之黏著性以及化學阻抗 性。由於多官能度單體具有一乙烯化不飽和鍵,可能已提The resin has an average molecular weight of from 2, _ to 3 Torr, preferably between 〇〇〇, and more preferably from 3,000 to 15, _. If the organic polymer resin used has an average molecular weight of less than 2, _ ', the adhesion in the development is lowered to make it difficult to form a fine layer of the catalyst. Similarly, if the average molecular weight of the polymer resin is made fine, _, the solubility of the developer liquid polymer resin is lowered, and the development of no development may be caused. 15 4 Form a better catalyst fine pattern film layer, the organic polymer resin acid value can be between 90 and 700 mgK 〇 H / g, and it is better to use lion to the other. When the acid value of the organic polymer resin is less than 90 mgKOH/g, the coordination between the catalyst and the catalyst will be reduced, and the solubility of the organic polymer resin in the test developer will be lowered, resulting in development of 20*. The phenomenon. Similarly, if the acid value of the organic polymer resin is higher than · mgK〇H/g', the solubility of the organic polymer resin is too high, and the catalyst pattern layer is not easily formed. ^The polyfunctional single system of the ethylenically unsaturated bond of the package 3 is used to enhance the photocurability of the product, to improve the development rate of the resin composition, and to increase the electroless plating to form a catalyst pattern film layer. Adhesion and chemical resistance. Since the polyfunctional monomer has an ethylenically unsaturated bond, it may have been mentioned

10 1510 15

20 及,例如:經由多元醇與α 不飽和羧酸酯化得到之化合 物,如乙二醇雙丙烯酸醋(ethylene glycol diacrylate)、乙二 醇二甲基丙烯酸醋(ethylene glycol dimethacrylate)、含 2至 14乙烯基之聚乙二醇雙丙稀酸醋(polyethylene glycol diacrylate having 2 to 14 ethylene groups)、含 2至 14乙稀基 之聚乙二醇二曱基丙烯酸酷(polyethylene glycol dimethacrylate having 2 to 14 ethylene groups)、三經甲基丙 烧三丙稀酸酯(trimethylolpropane triacrylate)、三經甲基丙 烧三曱基丙烯酸酷(trimethylolpropane trimethacrylate)、季 戊四醇三丙烯酸g旨(pentaerythritol triacrylate)、季戍四醇三 甲基丙稀酸酯(pentaerythritol trimethacrylate)、季戍四醇四 丙稀酸酉旨(pentaerythritol tetraacrylate)、季戊四醇四甲基丙 稀酸醋(pentaerythritol tetramethacrylate)、含 2至 14 丙烯基 之丙二醇二丙稀酸醋(propylene glycol diacrylate having 2 to 14 propylene groups)、含2至14丙烯基之丙二醇二甲基丙 稀酸醋(propylene glycol dimethacrylate having 2 to 14 propylene groups)、雙季戊四醇五丙稀酸酉旨(dipentaerythritol pentaacrylate)、雙季戊四醇五曱基丙稀酸醋 (dipentaerythritol pentamethacrylate) ' 雙季戊四醇六丙稀酸 酉旨(dipentaerythritol hexaacrylate)或雙季戊四醇六曱基丙稀 酸醋(dipentaerythritol hexamethacrylate);將丙稀酸或曱基 丙婶酸加入含甘油基化合物所到之化合物,例如三經甲基 12 1364626 丙烧三縮水甘油醚丙烯酸縮合物或雙酚A二環氧甘油醚丙 烯酸縮合物;或酯類化合物,其為由多元羧酸與具有經基 以及乙烯化不飽和鍵之化合物或具有羥基以及乙烯化不飽 和鍵之多元異氰酸縮合物酯化形成之化合物,例如沒-經乙 5 基丙烯酸或沒-羥乙基曱基丙烯酸之鄰苯二曱酸酯、或^_ 羥乙基丙烯睃或石-羥乙基甲基丙烯酸與甲苯二異氰酸之 縮合物。該些多元官能度單體可單獨使用或與其之間兩種 或兩種以上混合使用。 以催化劑精緻圖案膜層之形狀,以及無電電鍍形成圖 10 案膜層之化學組抗性及黏著性作為考量,多官能度單體中 具有一乙烯化不飽和鍵之官能基的數目為三或更多為較 佳。 具有一乙烯化不飽和鍵之多官能度單體,其以1〇〇重量 份有機高分子樹脂為基準,共計具有2〇至15〇重量份。當多 15官能度單體數量少於20重量份時,固化將不充足而不易形 成細緻圖案,如溶解及剝落之缺陷可能於無電電鍍時發 生。同樣地’當多官能度單體數量多於15〇重量份時,協調 性將減低且内部的固化會不均勻,而不易形成催化劑細緻 圖案。 20 在此無對光起始劑之種類作特別限制。舉例來說,光 •起始劑可選自群組包括:苯乙酮、二苯甲酮、米其勒之苯 曱醯苯曱酸酯、α-戊烷基酯、硫雜蒽酮、三嗪、以及其混 合。 13 ΐ S > 1364626 合適之笨乙酮相關實施例包含2-苯曱基-2-(二甲基 氨)-1-[4-(4-嗎啉基)苯基]_ι_ 丁酮(IRGACURE 369)、α,α-二 曱氧基 _α-苯基苯乙_ (IRGACURE 651)、IRGACURE 1300(IRGACURE 369 (30 wt%) + IRGACURE 651(70 -5 wt%))、^苯甲醯基環己醇、2,2,-二甲氧基-2-苯基-苯乙酮 (DMPA)、2,2-二乙氧基苯乙酮(DEAP)、以及4-甲基腓基-α,α-一曱基嗎琳基苯乙酮’但不受限於此。合適之二苯甲酮實 施例包含1-曱基-1,2-丙二酮-2-0-苯甲醯醛肟(ΡΡ〇)、乙酮、 ,以及1-[9-乙基-6-(2-甲基苯曱醯基)_9Η-咔唑-3-基]-1-(0-乙 10醯肟)(CGI242),但不受限於此。合適之硫雜蒽酮實施例包 含2-氣硫-蒼耳烷以及2_異丙基硫代蒼耳烷,但不受限於 此。二嗪之相關實施例為3_{4[2,4_二(三氣甲基三嗪-6_ 基]笨基硫代}丙酸(TP A),但不受此限。 光起始劑使用量,以1〇〇重量份有機高分子樹脂為基 15準,係1至25重量份,而以5至20重量份為較佳。當加入少 於1重里份之光起始劑時,催化圖案膜層將不會形成。同樣 也田加入超過25重量份之光起始劑時,圖案之精確性將 變差。 如必要時,本發明之樹脂組成物可更包含一光敏感 〇劑該光敏感劑加入之量,以1〇〇重量份有機高分子樹脂及 光起:劑之思合為基準,係、為1G重量份或更少,而以01至 重里伤為較佳。當加入超過丨0重量份之光敏感劑時,圖 案之精確性將變差。 14 1364626 該光敏感劑係選自群組包括正丁胺(n_butylamine)、三 乙胺(tdethylamine)' 三正丁 基磷⑻·LbuWphospHne)、以 及其混合,但不受限於此。 將銀有機複合物前驅體加入樹脂組成物中作為催化劑 • - 5前驅體,並作為無電電鍍之催化劑以形成一電磁屏蔽層。 . 該銀有機複合物前驅體用於調節穩定性、濕製程(如顯影以 及無電電鍍)中催化劑的流失、黏著性、無電電鍍之鍍膜特 性、以及成本支出方面為最佳。當銀粒子被當作催化粒子 ^ 戶斤使用時,其無法於組成物中被同質分散而傾向於聚集, 10如此則必須添加一穩定劑,例如介面活性劑,於組成物中。 尤其當銀粒子使用過多時,催化劑之顯影率會降低而不易 . 形成催化劑細緻圖案膜層,且形成之圖案膜層其黏著性可 - 能會惡化。另一方面,當無機銀鹽當作催化劑來使用時, 其可能會溶解於水溶液中造成無電電鍍時催化劑的流失, 15且催化劑圖案膜層之黏著性可能會惡化,而造成無電電鑛 之鍍膜特性下降。 • 已發現使用銀有機複合物前驅體相較於使用無機銀鹽 可造成更佳的穩定性、黏著性以及沉積特徵。且氣化銀有 機複合物前驅體為更‘較佳。氟化銀有機複合物前驅體相較 20於銀有機複合物前驅體與有機高分子樹脂及有機溶劑更具 共存性,包含氟化銀有機複合物前驅體之樹脂組成物係為 穩定,其催化劑圖案膜層為佳,且催化劑對水的溶解度低‘, 使得濕製成過程中不會造成明顯的損失。此外’於作為無 電電鍍溶液之基礎水溶液中,該氟化銀有機複合物前驅體 15 更進一步地激發催化劑銀對基底的吸附作用,如此而可形 成均勻的沉積薄膜。「銀有機複合物前驅體」一詞係指經 特殊處理後作為催化劑之材料,例如還原劑。 本發明之銀有機複合物前驅體之較佳實施例為醋酸銀 複合物、磺酸銀複合物、召-羰基銀酮⑴複合物、以及石_ 幾基銀醋(I)複合物,但不受限於此。該些銀有機複合物前 驅體可單獨使用或混合兩種或多種一起使用。 醋酸銀複合物以及續酸銀複合物之相關實施例包括醋 酸銀、乳酸銀、肉苴蔻酸銀、檸檬酸銀、苯甲酸銀、苯乙 酸銀、環已基丁酸銀、對曱苯確酸銀、草酸銀、丙二酸銀、 琥轴酸銀、以及己二酸銀,但不受限於此。氟化銀有機複 合物,例如氟磺酸銀(I)、三氟乙酸銀⑴、三氟甲基磺酸銀 ⑴、五氟丙酸銀(I)、或七氟丁酸銀(I),可能運用於此。 相關/3 -羰基銀酮(I)複合物以及/3 -羰基銀酯⑴複合物 之實施例包括,但不受限於此,乙醯丙酮酸銀(I)、3-氣-2,4-戊二酮銀(I)、3,5-庚二酮銀(I)、2-乙醯環己醯銀⑴、3-乙基 -2,4-戊二酮銀(I)、苯曱醯丙酮銀(I)、二苯曱醯曱烷銀(I)、 2,2,6,6-四曱基庚二烯銀(1)、乙基乙醯乙酸銀(1)、甲基乙醯 乙酸銀(I)、異丙基乙醯乙酸銀(I)以及叔-芳基丁乙醯乙酸銀 ⑴複合物。相關合適之氟化銀有機複合物包括1,5-環辛二稀 -六氟乙醯丙醯銀(I)、1,1,1-三氟-2,4-戊二酮銀(I)、5,5-二曱 基-1,1,1-三氟-2,4-己二酮銀(I)、1-(4-曱氧基苯基)-4,4,4-三 氟丁二酮銀(I)、5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-十 七氟癸-2,4-二酮銀(I)、1,1,1,2,2,3,3-七氟-7,7-二曱基-4,6- 1364626 辛二酮銀(I)、1,1,1,3,5,5,5-七氟戊 _2,4-二酮銀(I)、 1,1,1,5,5,5-六氟戊-2,4-二酮銀(I)、5,5,6,6,7,7,8,8,8-九氟辛 -2,4-二_銀(1)、5H,5H-全氟壬烷 _4,6-二 _ 銀⑴、6H,6H-全 氟-十一院-5,7-一 _銀⑴、8H,8H-全氟十五烧_7,8_二嗣銀 5 ⑴、6H,6H_全氟十一烷-5,7-二酮銀(I)、i_苯基_2Η,2Η-全氟 己_1,3_一闕银(1)、卜苯基-2Η,2Η-全氟十一烧_丨,3_二酮銀 (I)、5,6,6,6-四氟_5-(七氟丙氧基)己 _2,4_二酮銀(j)、115,5_ 四氟戊-2,4-二酮銀(I)、5,5,6,6,7,7,8,8,9,9,9-十一烷氟-壬烷 > _2,4_一酮銀⑺、乙基_3_氣-4,4,4-三氟乙醯乙酸銀(I)、乙基 10 _4,4_一氟乙醯乙酸銀⑴、乙基-4,4,4-三氟乙醯乙酸銀⑴、 異丙基-4,4,4-二氟乙醯乙酸銀⑴、甲基_4,4,5,5,5_五氟_3_ 氧代戊醯銀(I)、乙基_4,4,5,5,5-五氟-3-氧代_戊醯銀(1)以及 1,1,1,5,5,6,6,6-八氟-2,4-己二酮銀(I)複合物。該些氟化銀有 機複合物可單獨使用或取其混合使用。 15 銀有機複合物前驅體,以100重量份樹脂組成物之總有 機固體為基準,可取2至80重量份做使用,且以5至6〇重量 份為較佳❶若本發明之樹脂組成物銀有機複合物前驅體之 含量少於2重量份時,則因催化劑含量不足而增加無電電鍍 金屬膜形成所需的時間,且因而不易形成同質薄膜。同樣 20地,若本發明之樹脂組成物銀有機複合物前驅體之含量多 於80重量份時’催化劑之顯影率將會變差,而較不易形成 均勻、細緻並具有2〇以m或更小線寬的催化劑圖案,且其黏 著性將惡化而造成金屬膜層細緻圖案形成的困難。 17 "S > 1364626 合適之有機溶劑相關實施例包括:醇類,例如曱醇、 乙醇正-丙醇、異丙醇、乙稀乙二醇及丙稀乙二醇·,酮類, 例如丙_、曱基乙基_ '環己_及正-曱基-2-°比1»各燒酿芳 香煙類,例如曱笨、二甲苯及四曱基苯;乙二醇醚類,例 5如溶纖劑、曱基溶纖劑、乙基溶纖劑、3-甲氧基乙酸丙酯、 單甲基醚丙二醇、乙基醚丙二醇、二丙二酵單曱基醚以及 —丙二醇乙基醚;以及醋酸鹽類,例如乙酸乙酯、乙酸丁 酯、溶纖劑乙酸酯、溶纖劑乙基乙酸酯、溶纖劑丁基乙酸 酯、單曱基醚丙二醇乙酸酯以及乙基醚丙二醇乙酸酯,但 10不受限於此。該些溶劑可單獨使用或取其兩種以上混合使 用。 如果必須’本發明之樹脂組成物可更包括至少一添加 劑選自由習知技術十經常使用到之潤濕劑以及增黏劑。 本發明之樹脂組成物可包括重量百分比1 〇至5 〇%之固 15含1。當該固含量高於重量百分比50%時,其樹脂k成物具 高黏性而因此均勻塗層於基底上。同樣地,當固含量低於 重1百分比10%時,因形成的薄膜厚度很小而導致薄膜之機 械強度變弱。 ' 本發明之又一實施方式係提供一種形成金屬圖案之方 法該方法包括將樹脂組成物塗佈於基底、將塗佈完之組 成物於光源下曝光並將曝光完之組成物進行顯影、將圖案 膜層還原、並且將還原後之膜層進行無電電鍍。 本發明中之另一實施方案係提供一種形成金屬圖案之 方法,該方法包括將樹脂組成物印刷於基底上使形成催化 18 1364626 劑圖案膜層、將圖案膜層還原、並且將還原後之膜層進行 無電電鍵。 製作電磁波屏蔽透明材料時使用透明基底為較佳。透 明基底相關之特別實施例包括玻璃基底、以及由聚碳酸 5酯、壓克力樹脂、PET、三醋酸纖維素(TAC)、聚氯乙烯樹 月曰、聚醯胺樹脂以及聚醯亞胺樹脂製備之塑勝板及薄膜。 其他基底中之各種不同因子(如凸塊厚度、等)只要其於習知 技術中已被驗證完成即無特別限制使用。 將本發明之催化劑形成組成物塗佈於基底的步驟並無 10特別限制,而與使用溶液之特性及使用量有相關。任何已 知之塗佈製作流程可以應用於該組成物之塗佈,相關之實 施例包括滾筒式塗佈、凹版塗佈、濕式塗佈、棒式塗佈、 噴灑式塗佈以及旋轉式塗佈。 曝光以及顯影步驟可以使用任何習知之步驟做進行。 15例如,該曝光步驟可以使用一具有曝光圖案之光罩以接觸 或非接觸的方式進行。在曝光步驟中可以取任何光源做使 用,相關之貴施例包括幽素燈、高壓汞燈、以及金鹵燈。 顯衫步驟可使用喷灑或濕浸法進行。曝光以及顯影過程係 用以形成催化劑圖案膜層。如此形成之圖案膜層具有3〇"m 2〇或更細之線寬,而以或更細之線寬為較佳。使用該樹 月曰組成物’例如本發明之催化劑形成組成物,可形成具有 l〇V m或更細的線寬之細緻圖案。曝光後,無圖案面積與圖 案膜層之總表面積之比例(即開口率)以6〇%或更高為較適 合,且70。/。或更高為較佳。 19 1364626 另外,金屬圖案之形成係經由將本發明之樹脂組成物 藉由印刷至基底形成催化劑圖案膜層、將該圖案膜層還 原、並且將還原膜層進行無電電鍍。其印刷係選自群組包 括:膠印、喷墨印刷、轉印、以及網版印刷之技術。 5 本發明之催化劑圖案膜層其形成係藉由曝光及顯影、 或藉由印刷而得,該銀有機複合物前驅體可允許被還原而 達到無電電鍍特性的增進。 銀有機複合物前驅體之還原方法並無特別限制。銀有 機複合物前驅體可使用,例如,還原劑或加熱及/4UV照射 ίο 來做還原。任何已知之還原劑皆可以作使用,其相關實施 例包括硼氫化鈉(NaBHU)以及抗壞血酸(asc〇rbic acid)之水 溶液。 該圖案膜層可根據銀有機複合物的種類而自發地被無 電電鍍溶液還原。然而,使用無電電鍍溶液來進行銀有機 15 複合物之還原係為不足,故需要額外的銀離子還原步驟。 還原劑之水溶液係較佳具有〇,〇1%至丨〇M之濃度,且 係經由喷灑或濕浸步驟將銀有機複合物作還原。既然藉由 UV照射或加熱還原銀有機複合物皆不為濕式製程,催化劑 的損失則可因而避免。當還原劑水溶液之濃度小於〇 〇1M 20時,該還原劑之還原力會不足,而銀有機複合物前驅體將 無法70全還原。同樣地’當還原劑水溶液之濃度大於1 0M 時,還原程度將不易受控制而具有損傷圖案層的危險。 如果需要,該塗佈完之組成物可進行預熱固化或後熱 固化而達到將本發明金屬圖案固化之目的。既然預熱固化 20 1364626 以及後熱固化可經由任何習知技術選擇性地作使用,其並 不會對本發明有所限制。 如上述說明,本發明之樹脂組成物係用作形成催化劑 圖案膜層,並接著將該圖案膜層經由無電電锻形成金屬圖 ·· 5 t °該無電電錄步驟可由習知之任何—般技術達成。在本 . ㈣中可以使用銅或銀鍍。銅鍍之成本以及電磁波屏蔽效 能係較佳。 純電電鐵可使用任何—般習知之電鍵溶液作進行, 例如,包含金屬鹽(例如硫酸銅)、還原劑(例如福馬林)、配 1〇位劑(例如EDTA)、以及少量之一或多個添加劑之電鑛溶液。 ^催化劑圖案膜層與包含該金屬膜層之最終電磁波屏蔽 薄膜之金屬膜層的總厚度,其可能受各種不同的因子而控 • 帝卜例如金屬鹽或金屬離子於電鍍溶液中的濃度、電鍍的 溫度以及沉積時間。催化劑之圖案膜層及 15度可能因圖案厚度的變化而有所不同。最理想之催化= 案膜層及/或金屬膜層的厚度可由習知技術適當地決定出 • 來。催化劑之圖案膜層及金屬膜層的總厚度係為0.3心或 更多,較佳係0.5心或更多,更較佳係或更多,而最 較佳係Mm至8_,但不受限於此。當催化劑圖案膜層以 20及金屬膜層的總厚度小於0.3心時,該膜層之機械強度以 及電導度會不足,因此電磁波屏蔽薄膜的屏蔽特性可能會 惡化。同樣地’當催化劑圖案膜層及金屬膜層的總厚度大 於8”時,後續步驟將無法順利的進行。較佳之金屬膜戶 21 厚度係0.1 // m( 1 OOnm)以上,使其具有電導度以及電磁波屏 蔽的效能。 結論,經由使用本發明之樹脂組成物來製作催化劑高 黏著圖案膜層,其濕式步驟(如顯影或無電電鍍)中催化劑的 損失可有效的被預防,且鍍膜速率被增進使得無電電鍍後 均勻、細緻金屬圖案得以形成。包含金屬圖案之電磁波屏 蔽材料可被合適地使用於各種顯示器中,包括CRT、PDP、 LCD以及EL顯示器、以及撓性印製板的線路,作為表面屏 蔽電磁波薄膜的形成。 在以下文子中將以實施例詳細描述本發明。然而該實 施例僅為說明用並不會對發明權力之範圍有所限制。 實施例 實施例1 A.有機高分子樹脂(1)以及掺雜物(2)之製備’並使用該 有機高分子樹脂製備樹脂組成物 (1)於一 25〇mL燒瓶中,取i5.〇g之曱基丙烯酸甲酯 (MMA)以及I5.0g之曱基丙烯酸(Maa)溶於75.4g之二丙二 醇單曱基醚(DPM),並接著加入〇.9g之3-巯基丙酸 (3-MPA)。將混合物於5〇〇 rpm條件下攪拌。於氮氣環境下 將該溶液加熱至6〇〇C後,再攪拌1小時。將溶於DPM(lO.Og) 之2,2’-偶氮二異丁腈(AIBN,〇 9g)加入以上於6〇°c之溶 液°得到之混合物使其於6〇(JC下反應3小時,而得到一有機 @分子樹脂溶液《該有機高分子樹脂具有之酸價為348 77 mgKOH/g以及平均分子重量為7,933 » 1364626 (2)將5.81g之聚合物樹脂溶液、2.68g之雙季戊四醇六 丙烯酸酯(DPHA)(50wt%於PGMEA)溶液、以及作為光起始 劑的0.185g之3-{4-[2,4-二(三氣甲基)-s-三嗪-6-基]苯基硫 -5 代}丙酸(TPA)混合一起,並接著與作為溶劑之6.23g單曱基 醚丙二醇乙酸酯(PGMEA)混合而得到一掺雜物,並用以作 為後續製作樹脂組成物之步驟所用。 B.銀有機複合物之製備 10 將lg之醋酸銀(AgOAc)與10g作為有機溶劑之二曱基 乙醯胺(DMAc)於室溫下混合。將混合物於500 rpm條件下攪 拌。並於混合物中加入2.58之1,1,1-三氟-2,4-戊二酮。該醋 酸銀與1,1,1-三氟-2,4-戊二酮複合成出黃色溶液,表示其為 充足溶解於二曱基乙醯胺(DMAc)中。將溶液經由0.20// m 15 之注射器過濾器過濾得到一固體。該固體為作催化劑前驅 體所使用。經由複合成出之催化劑前驅體之反應化學式如20 and, for example, a compound obtained by esterifying a polyhydric alcohol with an α-unsaturated carboxylic acid, such as ethylene glycol diacrylate, ethylene glycol dimethacrylate, containing 2 to Polyethylene glycol diacrylate having 2 to 14 ethylene groups, polyethylene glycol dimethacrylate having 2 to 14 Ethylene groups), trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythritol triacrylate, pentaerythritol Pentaerythritol trimethacrylate, pentaerythritol tetraacrylate, pentaerythritol tetramethacrylate, propylene glycol dipropylene with 2 to 14 propylene groups Propylene glycol diacrylate having 2 to 14 propylene groups, Propylene glycol dimethacrylate having 2 to 14 propylene groups, dipentaerythritol pentaacrylate, dipentaerythritol pentadecyl acrylate vinegar Dipentaerythritol pentamethacrylate) 'dipentaerythritol hexaacrylate or dipentaerythritol hexamethacrylate; adding acrylic acid or mercaptopropionate to a compound containing a glyceryl compound , for example, trimethylmethyl 12 1364626 propylene triglycidyl ether acrylate condensate or bisphenol A diglycidyl ether acrylate condensate; or an ester compound which is composed of a polycarboxylic acid and having a trans group and an ethylenic unsaturation a compound of a bond or a compound formed by esterification of a polyisocyanate condensate having a hydroxyl group and an ethylenically unsaturated bond, for example, bis-hydroxyethyl acrylate or phthalate without hydroxyethyl methacrylate Or ^_ hydroxyethyl propylene oxime or condensate of stone-hydroxyethyl methacrylic acid and toluene diisocyanate. These polyfunctional monomers may be used singly or in combination of two or more kinds thereof. Considering the shape of the catalyst pattern of the catalyst and the chemical resistance and adhesion of the electroless plating to form the film layer of FIG. 10, the number of functional groups having an ethylenically unsaturated bond in the polyfunctional monomer is three or More is better. A polyfunctional monomer having an ethylenically unsaturated bond, which has a total of 2 to 15 parts by weight based on 1 part by weight of the organic polymer resin. When the amount of the polyfunctional monomer is less than 20 parts by weight, the curing will be insufficient to form a fine pattern, and defects such as dissolution and peeling may occur upon electroless plating. Similarly, when the amount of the polyfunctional monomer is more than 15 parts by weight, the coordination will be lowered and the internal solidification will be uneven, and the catalyst fine pattern will not easily form. 20 There is no particular limitation on the type of photoinitiator. For example, the photoinitiator can be selected from the group consisting of: acetophenone, benzophenone, benzophenone benzoate, alpha-pentyl ester, thioxanthone, three Pyrazine, and mixtures thereof. 13 ΐ S > 1364626 Suitable acetophenone related examples include 2-phenylmercapto-2-(dimethylamino)-1-[4-(4-morpholinyl)phenyl]_ι-butanone (IRGACURE) 369), α,α-dimethoxy-α-phenyl phenylethyl _ (IRGACURE 651), IRGACURE 1300 (IRGACURE 369 (30 wt%) + IRGACURE 651 (70 -5 wt%)), benzophenone Cyclohexanol, 2,2,-dimethoxy-2-phenyl-acetophenone (DMPA), 2,2-diethoxyacetophenone (DEAP), and 4-methylindolyl- α,α--indolyl-based acetophenone' is not limited thereto. Suitable benzophenone examples include 1-mercapto-1,2-propanedione-2-0-benzimidaldehyde oxime (oxime), ethyl ketone, and 1-[9-ethyl-6 -(2-Methylphenylhydrazino)_9Η-oxazol-3-yl]-1-(0-ethyl 10醯肟) (CGI242), but is not limited thereto. Suitable thioxanthone examples include 2-sulfur-xanthane and 2-isopropylthioxanthane, but are not limited thereto. A related example of a diazine is 3_{4[2,4_bis(trimethylmethyltriazin-6-yl)pyridylthio}propionic acid (TP A), but is not limited thereto. The amount is 1 to 25 parts by weight based on 1 part by weight of the organic polymer resin, and preferably 5 to 20 parts by weight. When less than 1 part by weight of the photoinitiator is added, the catalyst is used. The pattern film layer will not be formed. Also, when more than 25 parts by weight of the photoinitiator is added, the accuracy of the pattern will be deteriorated. If necessary, the resin composition of the present invention may further comprise a photo-sensitive tanning agent. The amount of the photosensitizer to be added is 1 part by weight or less based on 1 part by weight of the organic polymer resin and the light-based agent, and 01 to heavy damage is preferred. When more than 重量0 parts by weight of the light sensitive agent, the accuracy of the pattern will be deteriorated. 14 1364626 The light sensitive agent is selected from the group consisting of n-butylamine, tdethylamine, tri-n-butylphosphine (8)·LbuWphospHne), and mixtures thereof, but are not limited thereto. A silver organic composite precursor is added to the resin composition as a catalyst - 5 precursor and used as a catalyst for electroless plating to form an electromagnetic shielding layer. The silver organic composite precursor is optimized for adjusting stability, wet catalyst (such as development and electroless plating), catalyst loss, adhesion, coating characteristics of electroless plating, and cost. When silver particles are used as catalytic particles, they are not homogeneously dispersed in the composition and tend to aggregate. 10 Thus, a stabilizer such as an surfactant may be added to the composition. In particular, when the use of the silver particles is excessive, the development rate of the catalyst is lowered and it is not easy. The catalyst fine pattern film layer is formed, and the adhesion of the formed pattern film layer can be deteriorated. On the other hand, when an inorganic silver salt is used as a catalyst, it may be dissolved in an aqueous solution to cause loss of catalyst during electroless plating, and the adhesion of the catalyst pattern film layer may be deteriorated, resulting in electroless plating. The characteristics are declining • It has been found that the use of silver organic composite precursors results in better stability, adhesion and deposition characteristics than the use of inorganic silver salts. Moreover, the precursor of the gasified silver organic compound is more 'better. The silver fluoride organic composite precursor has more coexistence than the silver organic composite precursor than the organic polymer resin and the organic solvent, and the resin composition containing the silver fluoride organic composite precursor is stable, and the catalyst thereof The patterned film layer is preferred and the solubility of the catalyst to water is low, so that no significant loss is caused during the wet manufacturing process. Further, in the base aqueous solution as the electroless plating solution, the silver fluoride organic composite precursor 15 further excites the adsorption of the catalyst silver on the substrate, so that a uniform deposited film can be formed. The term "silver organic composite precursor" means a material which is specially treated as a catalyst, such as a reducing agent. Preferred examples of the silver-organic composite precursor of the present invention are a silver acetate complex, a silver sulfonate complex, a fluorenyl-carbonyl ketone (1) complex, and a stone-based silver vinegar (I) complex, but not Limited by this. These silver organic composite precursors may be used singly or in combination of two or more kinds. Related examples of the silver acetate complex and the silver acetate complex include silver acetate, silver lactate, silver citrate, silver citrate, silver benzoate, silver phenylacetate, silver cycline butyrate Silver acid, silver oxalate, silver malonate, silver amber, and silver adipic acid, but are not limited thereto. Silver fluoride organic complex, such as silver (I) fluorosulfonate, silver (1) trifluoroacetate, silver (1) trifluoromethanesulfonate, silver (I) pentafluoropropionate, or silver (I) heptafluorobutyrate, May use this. Examples of the related /3-carbonyl ketone (I) complex and the /3-carbonyl carbonyl ester (1) complex include, but are not limited to, silver acetyl acetonate (I), 3- gas-2, 4 -Pentanedione silver (I), 3,5-heptanedion silver (I), 2-acetamidine hexanide silver (1), 3-ethyl-2,4-pentanedione silver (I), benzoquinone Silver acetonide (I), diphenyl decane silver (I), 2,2,6,6-tetradecylheptadiene silver (1), ethyl acetoacetate silver (1), methyl ethyl Silver (I) acetate, silver (I) isopropylacetate, and silver (1) complex of tert-aryl butyl acetonitrile. Related suitable silver fluoride organic complexes include 1,5-cyclooctadieno-hexafluoroacetamidine silver (I), 1,1,1-trifluoro-2,4-pentanedione silver (I) , 5,5-dimercapto-1,1,1-trifluoro-2,4-hexanedione silver (I), 1-(4-decyloxyphenyl)-4,4,4-trifluoro Silver (I), 5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluoroindole-2,4 -diketone silver (I), 1,1,1,2,2,3,3-heptafluoro-7,7-dimercapto-4,6- 1364626 octane ketone silver (I), 1,1, 1,3,5,5,5-heptafluoropenta-2,4-dione silver (I), 1,1,1,5,5,5-hexafluoropenta-2,4-dione silver (I ),5,5,6,6,7,7,8,8,8-nonafluorooctane-2,4-di-silver (1), 5H,5H-perfluorodecane_4,6-di_ Silver (1), 6H, 6H-Perfluoro-Eleventh Institute-5,7-I-Silver (1), 8H, 8H-Perfluoropentadium _7,8_Di-Silver 5 (1), 6H, 6H_Perfluoro-Ten Monoalkane-5,7-dione silver (I), i_phenyl_2Η, 2Η-perfluorohexyl-1,3_anthracene silver (1), phenyl-2-anthracene, 2Η-perfluoro eleven丨 丨, 3_dione silver (I), 5,6,6,6-tetrafluoro_5-(heptafluoropropoxy)hex-2,4-dione silver (j), 115,5_ four Fluorine-2,4-dione silver (I), 5,5,6,6,7,7,8,8,9,9,9-undecyl fluoride-decane> _2,4_1 ketone (7), ethyl_3_gas-4,4,4-trifluoroacetic acid silver (I), ethyl 10 _4,4_monofluoroacetic acid silver (1), ethyl-4,4,4-three Silver fluoroacetate (1), isopropyl-4,4,4-difluoroacetic acid silver (1), methyl-4,4,5,5,5-pentafluoro_3_oxopentanyl silver (I) , ethyl_4,4,5,5,5-pentafluoro-3-oxo-pentanyl silver (1) and 1,1,1,5,5,6,6,6-octafluoro-2, 4-Hexadione silver (I) complex. These silver fluoride organic compounds may be used singly or in combination. 15 Silver organic composite precursor, based on 100 parts by weight of the total organic solid of the resin composition, may be used in an amount of 2 to 80 parts by weight, and preferably 5 to 6 parts by weight, based on the resin composition of the present invention. When the content of the silver organic composite precursor is less than 2 parts by weight, the time required for the formation of the electroless plated metal film is increased due to insufficient catalyst content, and thus it is difficult to form a homogenous film. Similarly, if the content of the silver organic composite precursor of the resin composition of the present invention is more than 80 parts by weight, the developing rate of the catalyst will be deteriorated, and it is less likely to be uniform, fine and have 2 Å or more. A small line width of the catalyst pattern, and its adhesion will deteriorate to cause difficulty in forming a fine pattern of the metal film layer. 17 "S > 1364626 Suitable organic solvents related examples include: alcohols such as decyl alcohol, ethanol n-propanol, isopropanol, ethylene glycol and propylene glycol, ketones, for example C-, thiol ethyl _ 'cyclohexyl _ and n- fluorenyl-2- ° ratio 1» each aromatic tobacco, such as scorpion, xylene and tetradecyl benzene; glycol ethers, for example 5 such as cellosolve, cerium-based cellosolve, ethyl cellosolve, 3-methoxyacetic acid propyl ester, monomethyl ether propylene glycol, ethyl ether propylene glycol, dipropylene glycol monodecyl ether and - propylene glycol And ethers such as ethyl acetate, butyl acetate, cellosolve acetate, cellosolve ethyl acetate, cellosolve butyl acetate, monodecyl ether propylene glycol acetate And ethyl ether propylene glycol acetate, but 10 is not limited thereto. These solvents may be used singly or in combination of two or more kinds thereof. If necessary, the resin composition of the present invention may further comprise at least one additive selected from the group consisting of wetting agents and tackifiers which are frequently used by the prior art. The resin composition of the present invention may comprise a solid 15 inclusive of 1% by weight to 5% by weight. When the solid content is more than 50% by weight, the resin k is highly viscous and thus uniformly coated on the substrate. Similarly, when the solid content is less than 10% by weight, the mechanical strength of the film is weakened due to the small thickness of the formed film. A further embodiment of the present invention provides a method of forming a metal pattern, the method comprising: applying a resin composition to a substrate, exposing the coated composition to a light source, and developing the exposed composition, The patterned film layer is reduced, and the reduced film layer is subjected to electroless plating. Another embodiment of the present invention provides a method of forming a metal pattern, the method comprising printing a resin composition on a substrate to form a catalytic 18 1364626 pattern film layer, reducing the pattern film layer, and reducing the film The layer is energized without a bond. It is preferred to use a transparent substrate when manufacturing an electromagnetic wave shielding transparent material. Specific examples of transparent substrates include glass substrates, and from polycarbonate, acrylic, PET, cellulose triacetate (TAC), polyvinyl chloride, polyamide resin, and polyimide resin. Preparation of plastic tablets and films. Various factors (e.g., bump thickness, etc.) in other substrates are not particularly limited as long as they have been verified in the prior art. The step of applying the catalyst-forming composition of the present invention to a substrate is not particularly limited, and is related to the characteristics and usage amount of the use solution. Any known coating process can be applied to the coating of the composition, and related embodiments include tumble coating, gravure coating, wet coating, bar coating, spray coating, and spin coating. . The exposure and development steps can be carried out using any of the well-known steps. 15 For example, the exposure step can be performed in a contact or non-contact manner using a photomask having an exposure pattern. Any source can be used in the exposure step, and related embodiments include a glomerane lamp, a high pressure mercury lamp, and a metal halide lamp. The scouring step can be carried out using a spray or wet immersion method. The exposure and development processes are used to form a catalyst pattern film layer. The patterned film layer thus formed has a line width of 3 Å " m 2 〇 or finer, and a finer line width is preferred. Using the tree ruthenium composition, e.g., the catalyst of the present invention to form a composition, a fine pattern having a line width of 1 〇V m or less can be formed. After exposure, the ratio of the unpatterned area to the total surface area of the patterned film layer (i.e., the aperture ratio) is preferably 6% or more, and 70. /. Or higher is preferred. Further, the formation of the metal pattern is carried out by forming the catalyst pattern film layer by printing the resin composition of the present invention onto the substrate, and reducing the pattern film layer, and subjecting the reduced film layer to electroless plating. The printing is selected from the group consisting of: offset printing, inkjet printing, transfer, and screen printing. 5 The catalyst pattern film layer of the present invention is formed by exposure and development, or by printing, and the silver organic composite precursor can be reduced to achieve an electroless plating property. The method for reducing the silver organic composite precursor is not particularly limited. Silver organic compound precursors can be used, for example, with reducing agents or heat and /4UV irradiation ίο for reduction. Any known reducing agent can be used, and related embodiments include sodium borohydride (NaBHU) and an aqueous solution of ascorbic acid (asc〇rbic acid). The patterned film layer can be spontaneously reduced by the electroless plating solution depending on the kind of the silver organic composite. However, the use of an electroless plating solution for the reduction of the silver organic 15 complex is insufficient, so an additional silver ion reduction step is required. The aqueous solution of the reducing agent preferably has a concentration of cerium, 〇1% to 丨〇M, and the silver organic composite is reduced by a spraying or wet immersion step. Since the reduction of the silver organic composite by UV irradiation or heating is not a wet process, the loss of the catalyst can be avoided. When the concentration of the reducing agent aqueous solution is less than 〇 M 1 M 20 , the reducing power of the reducing agent will be insufficient, and the silver organic composite precursor will not be fully reduced by 70. Similarly, when the concentration of the reducing agent aqueous solution is more than 10 M, the degree of reduction will be uncontrolled and there is a risk of damaging the patterned layer. If desired, the coated composition can be preheated or post heat cured to achieve the purpose of curing the metal pattern of the present invention. Since preheat curing 20 1364626 and post heat curing can be selectively used by any conventional technique, it is not intended to limit the invention. As described above, the resin composition of the present invention is used to form a catalyst pattern film layer, and then the pattern film layer is formed by electroless forging to form a metal pattern. The electroless magnetic recording step can be any conventional technique. Achieved. Copper or silver plating can be used in (4). The cost of copper plating and electromagnetic wave shielding are preferred. Pure electric iron can be carried out using any conventionally known key solution, for example, containing a metal salt (such as copper sulfate), a reducing agent (such as fumarin), a 1-cylinder (such as EDTA), and a small amount or more An additive ore solution. ^ The total thickness of the metal film layer of the catalyst pattern film layer and the final electromagnetic wave shielding film containing the metal film layer, which may be controlled by various factors, such as the concentration of metal salt or metal ion in the plating solution, plating Temperature and deposition time. The patterned film layer of the catalyst and 15 degrees may vary depending on the thickness of the pattern. The most desirable catalysis = the thickness of the film layer and/or the metal film layer can be appropriately determined by conventional techniques. The total thickness of the patterned film layer and the metal film layer of the catalyst is 0.3 or more, preferably 0.5 or more, more preferably or more, and most preferably Mm to 8_, but not limited. herein. When the total thickness of the catalyst pattern film layer 20 and the metal film layer is less than 0.3, the mechanical strength and electrical conductivity of the film layer may be insufficient, and thus the shielding property of the electromagnetic wave shielding film may be deteriorated. Similarly, when the total thickness of the catalyst pattern film layer and the metal film layer is greater than 8", the subsequent steps will not proceed smoothly. Preferably, the thickness of the metal film 21 is 0.1 // m (100 nm) or more, so that it has conductance. Degree and the effectiveness of electromagnetic wave shielding. Conclusion, by using the resin composition of the present invention to form a catalyst high adhesion pattern film layer, the loss of catalyst in a wet step (such as development or electroless plating) can be effectively prevented, and the coating rate It has been promoted to form a uniform, fine metal pattern after electroless plating. The electromagnetic wave shielding material containing the metal pattern can be suitably used in various displays including CRT, PDP, LCD and EL displays, and flexible printed circuit boards. The present invention will be described in detail below with reference to the embodiments. However, the embodiments are merely illustrative and are not intended to limit the scope of the invention. Embodiments Embodiment 1 A. Organic High Preparation of molecular resin (1) and dopant (2) and preparation of resin composition (1) using the organic polymer resin In a 25 〇mL flask, i5.〇g of methyl methacrylate (MMA) and 15.0 g of methacrylic acid (Maa) were dissolved in 75.4 g of dipropylene glycol monodecyl ether (DPM), followed by addition of hydrazine. .9 g of 3-mercaptopropionic acid (3-MPA). The mixture was stirred at 5 rpm. The solution was heated to 6 ° C under nitrogen and stirred for an additional 1 hour. lO.Og) 2,2'-azobisisobutyronitrile (AIBN, 〇9g) was added to the above solution obtained at 6 ° C to obtain a mixture at 6 Torr (JC for 3 hours to obtain a Organic @Molecular Resin Solution "The organic polymer resin has an acid value of 348 77 mg KOH / g and an average molecular weight of 7,933 » 1364626 (2) 5.81 g of a polymer resin solution, 2.68 g of dipentaerythritol hexaacrylate ( DPHA) (50 wt% in PGMEA) solution, and 0.185 g of 3-{4-[2,4-bis(trismethyl)-s-triazin-6-yl]phenylsulfide as a photoinitiator -5 generation} propionic acid (TPA) was mixed together, and then mixed with 6.23 g of monodecyl ether propylene glycol acetate (PGMEA) as a solvent to obtain a dopant, which was used as a step of subsequently preparing a resin composition. B. Preparation of silver organic composite 10 lg silver acetate (AgOAc) was mixed with 10 g of dimethyl acetamide (DMAc) as an organic solvent at room temperature, and the mixture was stirred at 500 rpm. 2.58 of 1,1,1-trifluoro-2,4-pentanedione was added to the mixture. The silver acetate was combined with 1,1,1-trifluoro-2,4-pentanedione to form a yellow solution. It is sufficiently soluble in dimercaptoacetamide (DMAc). The solution was filtered through a 0.20 / / m 15 syringe filter to give a solid. This solid is used as a catalyst precursor. The reaction chemical formula of the catalyst precursor formed by the composite

下式1所示:The following formula 1 shows:

+ c2h4o2 AgOAc TFA(2.5eq) AgTFA+ c2h4o2 AgOAc TFA (2.5eq) AgTFA

20 C.樹脂組成物之製備 23 1364626 將銀有機複合物與掺雜物以2 : 1重量比混合。將其混 合物以500 rpm條件攪拌製得一樹脂組成物。該樹脂組成物 之固含量之量測結果為重量百分比16.5%。 5 D.細緻金屬圖案之形成. (1) 塗佈:將該樹脂組成物以厚度700/zm旋轉式塗佈於 一玻璃基底上。該塗佈係以1,500 rpm旋轉10秒並接著以 3,000 rpm旋轉 20秒。 (2) 預熱固化:將塗佈後之組成物於100 °C溫度下預熱 10 固化90秒。 (3) 曝光:將該固化後之組成物以能量180 mJ/cm2以及 波長330nm至500nm的紫外光,經由光罩(20 # m網格圖案) 作接觸式曝光。 (4) 顯影:將基礎水溶液(pH 13, ECD-100, ENF)喷灑於 15 曝光後之組成物72秒,接著以去離子水(DI)作清洗,並吹以 氮氣。 (5) 還原:將顯影後之組成物於0.1M抗壞血酸之水溶液 中浸泡120秒,接著以去離子水(DI)作清洗,用以將銀催化 劑還原。 2〇 (6)後熱固化:後熱固化係於100°C進行300秒。 (7)銅無電電鍍:無電電鍍於一 Covertron鍍銅槽 (ATOTECH)中以 60°C進行。 實施例2 24 1364626 除了紫外光照射能量改為3.9J/cm1且波長為330nm至 500nm使銀有機化合物還原以外,如同實施例1之相同方法 製備金屬圖案。該金屬圖案之光學顯微鏡圖(倍率250x)如圖 3所示。 5 實施例3 A.有機高分子樹脂(1)以及掺雜物(2)之製備,並使用 該有機高分子樹脂製備樹脂組成物 (1) 於一 250 mL燒瓶中,取9.Og之曱基丙烯酸甲酯 10 (MMA)以及21.0g之曱基丙烯酸(MAA)溶於75.4g之二丙二 醇單甲基醚(DPM),並接著加入0.9g之3-酼基丙酸 (3-MPA)。將混合物於500 rpm條件下攪拌。於氮氣環境下 將該溶液加熱至60°C後,再以500 rpm之條件攪拌1小時。 將溶於DPM (lO.Og)之2,2’-偶氮二異丁腈(AIBN, 0.9g)加入 15 上述於60°C之溶液。得到之混合物使其於60°C下反應3小時 而得到有機高分子樹脂溶液。該有機高分子樹脂之酸價係 為452.32 11^10)11^,且其平均分子重量係為6,423。 25 25 1 將5.81g之聚合物樹脂溶液、2.68g之雙季戊四醇六 2〇 丙烯酸酯(DPHA) (50 wt%於PGMEA)溶液、作為光起始劑之 0.185g之3-{4-[2,4-二(三氣甲基)-s-三嗪-6-基]苯基硫代}丙 酸(TPA)混合一起,並接著與作為溶劑之6.23g單曱基醚丙 二醇乙酸酯(PGMEA)混合而得到一掺雜物,並用以作為後 續製作樹脂組成物之步驟所用。 1364626 B. 樹脂組成物之製備 如實施例1所製備之銀有機複合物,將其與實施例3中 A(2)所製備之掺雜物以2 : 1之重量比混合。將該混合物以 500 rpm之條件攪拌製得樹脂組成物。該樹脂組成物之固含 •5 量之量測結果為重量百分比16.5%。 C. 細緻金屬圖案之製備 除了使用之樹脂組成物為依照實施例3之B所製備出 丨來,同實施例2之相同方法將金屬圖案製作於一基底上。該 10 金屬圖案之光學顯微鏡圖(倍率250 X)如圖4所示。 實施例4 A.有機高分子樹脂(1)以及掺雜物(2)之製備,並使用該 有機高分子樹脂製備樹脂組成物 15 (1)於一 250mL燒瓶中,取3.0g之曱基丙烯酸甲酯(MMA) 以及27.0g之曱基丙烯酸(MAA)溶於75.4g之二丙二醇單甲 基醚(DPM),並接著加入0.9g之3-巯基丙酸(3-MPA)。將混 合物於500 rpm條件下攪拌。於氮氣環境下將該溶液加熱至 60°C後,再以500 rpm之條件攪拌1小時。將溶於DPM(lO.Og) 2〇 之AIBN(0.9g)加入以上於60°C之溶液。得到之混合物使其 於60 ° C下反應3小時而得到一有機高分子樹脂溶液。該有機 高分子樹脂具有之酸價為576.69 mgKOH/g以及平均分子重 量為4,032。 26 1364626 (2)將5.81 g之聚合物樹脂溶液、2 68g之雙季戊四醇六 丙烯酸酯(DPHA) (50 wt%於PGMEA)溶液、〇 185§作為光起 始劑之3-{4-[2,4_二(三氣甲基)_3_三嗪_6基]苯基硫代}丙酸 (TPA)混合-起’並接著與6 23g作為溶劑之pGMEA混合而 5得到一掺雜物,並用以作為後續製作樹脂組成物之步驟所 用。 B. 樹脂組成物之製備 依照實施例1所製備之銀有機複合物將其與實施例4中 10 A(2)所製備之掺雜物以2 : 1之重量比混合。將該混合物以 500 rpm之條件攪拌製得樹脂組成物^該樹脂組成物之固含 量之量測結果為重量百分比丨6 5〇/〇。 C. 細緻金屬圖案之製備 15 除了使用之樹脂組成物為依照實施例4之B所製備出來 以外’同實施例2之相同方法將金屬圖案製作於一基底上。 其金屬圖案之光學顯微鏡圖(倍率250 X)如圖5所示。 實施例5 20 除了其之銀乙醯丙酿I酸需與11.533g二曱基乙醯胺 (DMAc)於室溫中混合得到銀有機複合物,並經由〇 以瓜 之注射器過濾器過濾得到固體,將該固體為作催化劑前驅 體所使用以外,如同實施例i之相同方法製備金屬圖案。其 金屬圖案之光學顯微鏡圖(倍率250 X)如圖6所示。 27 25 1364626 比較實施例1 A.有機高分子樹脂(1)以及掺雜物(2)之製備,並使用 該有機高分子樹脂製備樹脂組成物 (1) 於一250mL燒瓶中,取9.0g之甲基丙烯酸甲酯(MMA) 5 以及21.0g之甲基丙烯酸(MAA)溶於75.4g之DPM中,並接著 加入0.9g之3-巯基丙酸(3-MPA)。將混合物於500 rpm條件下 攪拌。於氮氣環境下將該溶液加熱至60° C後,再以500 rpm 之條件攪拌1小時。將溶於DPM(lO.Og)之AIBN(0.9g)加入以 上於60 ° C之溶液。得到混合物於60 ° C下反應3小時而得到有 10 機高分子樹脂溶液。該有機高分子樹脂之酸價係為452.32 mgKOH/g且平均分子重量係為5,423。將該有機高分子樹脂 溶液加熱至80°C,並於氧氣環境下攪拌30分鐘,再加熱至 90°C。將溶於溶劑(3g)之二曱氨基吡啶(DMAP,0.15g)加入 於90°C之上述該溶液中。將其溶液加熱至ll〇°C後,加入 15 7.44g曱基丙烯酸縮水甘油酯(GMA)並攪拌6小時。將反應 溶液冷卻至室溫得到高分子樹脂溶液。該高分子樹脂之酸 價係為123.74 mgKOH/g以及平均分子重量係為11,635。 (2) 將5.81g之高分子樹脂溶液、2.68g之雙季戊四醇六 20 丙稀酸酿(DPHA)(50 wt%於PGMEA)溶液、作為光起始劑之 0.185g之3-{4-[2,4-二(三氣曱基)_s-三嗪-6-基]苯基硫代}丙 酸(TPA)混合一起,並接著與作為溶劑之6.23g之PGMEA混 合得到一掺雜物,並用其作為後續製作樹脂組成物之步驟 所用® 28 25 1364626 Β·催化劑前驅體之製備 將lg之硝酸銀(AgN〇3)與lg之二甲基曱醯胺(DMF)混 合並於室溫下以500rpm作擾拌,將溶液經由〇 20 μ m之注射 器過遽器過濾得到固體。並將該固體為作催化劑前驅體所 -5 使用。 C. 樹脂組成物之製備 依照比較實施例1中A(2)所製備之掺雜物將其與比較 丨 實施例4中B所製備之催化劑前驅體以1 : 1之重量比混合並 10 將該混合物以500 rpm之條件攪拌製得一樹脂組成物。該樹 脂組成物之固含置之量測結果為重量百分比16.5 %。 D. 細緻金屬圖案之形成 除了需使用該比較實施例1中C所製備出之樹脂組成物 15 以外’如同實施例1之方法製備細緻金屬圖案。其金屬圖案 之光學顯微鏡圖(倍率250 X)如圖7所示。 1 比較實施例2 除了不使用催化劑前驅體以外,其餘同實施例2之方法 20 製作細緻金屬圖案。其金屬圖案之光學顯微鏡圖(倍率5〇 X) 如圖8所示。 比較實拖例3 將lg之醋酸紀(II)(Pd〇Ac2)與lg之二曱基曱醯胺 25 (DMF)於室溫下混合並攪拌。除了其中該混合物係用來作銅 29 i S > 1364626 無電電鐘之僅化劑以外,同實祐你丨ζ Λ Γ』貫%例4中之方法製備樹脂組成 物。 該催化劑與有機溶劑之共存性不佳。此外,當混合催 化劑與有機高分子於有機溶劑中,會因相分離產生而形成 .5沉澱。因此,無法用以形成催化劑圖案。 比較實施例4 將lg之錯酸鈀(II)(Pd〇AC2m 2 5g之聚乙烯。比咯烷_ (pvp ’ Mw 10,_)於吨之二甲基乙醯胺(dmac)中混合並 10於室溫下授拌製備催化劑相。該催化劑相與如同實施例4中 使用之有機高分子以重量比2: i之比例混合並攪拌製得樹 脂組成物。 該樹脂組成物以同實施例2相同之方法使用於製備催 化劑圖案,但無法形成均句塗佈薄膜。接著,樹脂組成物 15 並無被顯影出來。於是無法形成催化劑圖案。 如同實施例1至5,該銀有機複合物與個別之有機高分 子以及有機溶劑之共存性很高。如此,其圖案係非常細緻 且均勻,且催化劑依據此圖案均勻地分布。如圖2至6所示, .4景> 及鍍膜期間無發現任何剝落,且細緻金屬圖案係於短 20 時間内形成。 ' 由UV照射形成之金屬圖案較化學還原方法所製得之 金屬圖案為校佳。 比較實施例1中’使用無機銀鹽會造成顯影及鑛膜期間 圖案膜層部分剝落的現象,且由於催化劑的流失而造成锻 25 膜層形成較慢’以及金屬鍍膜層的品質下降。除此之外, 1364626 催化劑之圖案膜層在經過-段長時間之無電電鍍後會剝落 下來。 由於金屬圖案對基底的吸附性非常低,當不使用催化 劑時(比較實施例2)鍍膜溶液將不會鍍上透明基底。 * 5 比較實施例3所使用之催化劑與有機溶劑之共存性不 -佳,並且當混合催化劑與有機高分子於有劑溶劑中,會因 相分離產生而形成沉澱。所以,無法用來形成催化劑之均 勻圖案。 丨雖然加入PVP可以增進比較實施例4中之共存性,缺而 10製得之催化劑圖案膜層並不均勻,且樹脂組成物顯影=完 全。因此無法形成催化劑圖案。 如上述之結果所示,本發明係提供一種包含銀有機複 合物之樹脂組成物以及一種使用該樹脂組成物製備金屬圖 案之方法。使用該樹脂組成物製備之催化劑圖案膜層具有 15高黏著性,濕式製程,如顯影或無電電鍍中催化劑的損失 可有效的被預防,且鍍膜速率的加快使得無電電鍍後可形 成均勻、細緻之金屬圖形。本發明亦提供使用上述方法以 該樹脂組成物製得之金屬圖案。包含金屬圖案之電磁波屏 蔽材料可被合適地使用於各種顯示器中,包括CRT、、 20 LCD以及EL顯示器 '以及撓性印製板的線路,作為表面屏 蔽電磁波薄膜的形成。 本發明已由上述之實施案例作一描述,已熟習技術之 士可在不違背本發明專利權之原領域範圍及其精神之形況 下進行進行各種不同修飾以及變化。 31 1364626 【圖式簡單說明】 該上述及其他態勢,本發明之特徵及其他優點由以下 更詳細解說並伴隨以下圖示將得到更清楚的理解,該圖中: 5 圖1係用以說明本發明中經由曝光步驟製作細緻銅薄膜層 方法之流程圖。 圖2係本發明之實施例丨之金屬圖案之光學顯微鏡圖(放大 倍率為250X)。 圖3係本發明之實施例2之金屬圖案之光學顯微鏡圖(放大 10 倍率為250X)。 圖4係本發明之實施例3之金屬圖案之光學顯微鏡圖(放大 倍率為250X)。 圖5係本發明之實施例4之金屬圖案之光學顯微鏡圖(放大 倍率為250X)。 15 圖6係本發明之實施例5之金屬圖案之光學顯微鏡圖(放大 倍率為250X)。 圖7係本發明之比較實施例1之金屬圖案之光學顯微鏡圖 (放大倍率為250X)。 圖8係本發明之比較實施例2之金屬圖案之光學顯微鏡圖 20 (放大倍率為250X)。 【主要元件符號說明】 益 3220 C. Preparation of Resin Composition 23 1364626 The silver organic composite was mixed with the dopant in a weight ratio of 2:1. A mixture of the mixture was stirred at 500 rpm to prepare a resin composition. The solid content of the resin composition was measured by a weight percentage of 16.5%. 5 D. Formation of a fine metal pattern. (1) Coating: The resin composition was spin-coated on a glass substrate at a thickness of 700/zm. The coating was spun at 1,500 rpm for 10 seconds and then rotated at 3,000 rpm for 20 seconds. (2) Preheating curing: The coated composition was preheated at 100 ° C for 10 seconds for 90 seconds. (3) Exposure: The cured composition was subjected to contact exposure through a photomask (20 #m grid pattern) with ultraviolet light having an energy of 180 mJ/cm2 and a wavelength of 330 nm to 500 nm. (4) Development: A base aqueous solution (pH 13, ECD-100, ENF) was sprayed on the exposed composition for 72 seconds, followed by washing with deionized water (DI) and blowing with nitrogen. (5) Reduction: The developed composition was immersed in an aqueous solution of 0.1 M ascorbic acid for 120 seconds, followed by washing with deionized water (DI) to reduce the silver catalyst. 2〇 (6) Post-curing: Post-heat curing was carried out at 100 ° C for 300 seconds. (7) Copper electroless plating: electroless plating was carried out at 60 ° C in a Covertron copper plating bath (ATOTECH). Example 2 24 1364626 A metal pattern was prepared in the same manner as in Example 1 except that the ultraviolet light irradiation energy was changed to 3.9 J/cm1 and the wavelength was 330 nm to 500 nm to reduce the silver organic compound. The optical micrograph of the metal pattern (magnification 250x) is shown in Fig. 3. 5 Example 3 A. Preparation of organic polymer resin (1) and dopant (2), and using the organic polymer resin to prepare a resin composition (1) in a 250 mL flask, taking 9. Og Methyl acrylate 10 (MMA) and 21.0 g of methacrylic acid (MAA) were dissolved in 75.4 g of dipropylene glycol monomethyl ether (DPM), followed by the addition of 0.9 g of 3-mercaptopropionic acid (3-MPA). . The mixture was stirred at 500 rpm. The solution was heated to 60 ° C under a nitrogen atmosphere, and then stirred at 500 rpm for 1 hour. 2,2'-azobisisobutyronitrile (AIBN, 0.9 g) dissolved in DPM (10.Og) was added to 15 of the above solution at 60 °C. The obtained mixture was allowed to react at 60 ° C for 3 hours to obtain an organic polymer resin solution. The organic polymer resin had an acid value of 452.32 11^10) 11^ and an average molecular weight of 6,423. 25 25 1 5.81 g of polymer resin solution, 2.68 g of dipentaerythritol hexahydroquinone acrylate (DPHA) (50 wt% in PGMEA) solution, 0.185 g of 3-{4-[2 as photoinitiator , 4-di(tris-methyl)-s-triazin-6-yl]phenylthio}propionic acid (TPA) were mixed together, and then with 6.23 g of monodecyl ether propylene glycol acetate as a solvent ( PGMEA) is mixed to obtain a dopant and used as a step for subsequent preparation of the resin composition. 1364626 B. Preparation of Resin Composition The silver organic composite prepared as in Example 1 was mixed with the dopant prepared in A(2) of Example 3 in a weight ratio of 2:1. The mixture was stirred at 500 rpm to obtain a resin composition. The solid content of the resin composition was measured in a percentage of 16.5% by weight. C. Preparation of fine metal pattern A metal pattern was formed on a substrate in the same manner as in Example 2 except that the resin composition used was a crucible prepared in accordance with Example 3 B. An optical microscope image (magnification 250 X) of the 10 metal pattern is shown in Fig. 4. Example 4 A. Preparation of Organic Polymer Resin (1) and Dopant (2), and Preparation of Resin Composition 15 Using the Organic Polymer Resin (1) In a 250 mL flask, 3.0 g of mercaptoacrylic acid was taken. The methyl ester (MMA) and 27.0 g of methacrylic acid (MAA) were dissolved in 75.4 g of dipropylene glycol monomethyl ether (DPM), followed by the addition of 0.9 g of 3-mercaptopropionic acid (3-MPA). The mixture was stirred at 500 rpm. The solution was heated to 60 ° C under a nitrogen atmosphere, and then stirred at 500 rpm for 1 hour. AIBN (0.9 g) dissolved in DPM (10.Og) 2 Torr was added to the above solution at 60 °C. The resulting mixture was allowed to react at 60 ° C for 3 hours to obtain an organic polymer resin solution. The organic polymer resin had an acid value of 576.69 mgKOH/g and an average molecular weight of 4,032. 26 1364626 (2) 3.81 g of polymer resin solution, 2 68 g of dipentaerythritol hexaacrylate (DPHA) (50 wt% in PGMEA) solution, 〇185§ as photoinitiator 3-{4-[2 4_bis(tris-methyl)_3_triazine-6-phenyl]phenylthio}propionic acid (TPA) is mixed-started and then mixed with 6 23 g of pGMEA as a solvent to obtain a dopant. And used as a step of subsequent preparation of the resin composition. B. Preparation of Resin Composition The silver organic composite prepared in accordance with Example 1 was mixed with the dopant prepared in 10 A (2) of Example 4 in a weight ratio of 2:1. The mixture was stirred at 500 rpm to obtain a resin composition. The solid content of the resin composition was measured by weight 丨 6 5 〇 / 〇. C. Preparation of fine metal pattern 15 A metal pattern was formed on a substrate in the same manner as in Example 2 except that the resin composition used was prepared in accordance with B of Example 4. The optical micrograph of the metal pattern (magnification 250 X) is shown in Fig. 5. Example 5 20 In addition to the silver acetophenone I acid, it was mixed with 11.533 g of dimercaptoacetamide (DMAc) at room temperature to obtain a silver organic complex, which was filtered through a syringe filter of a melon. A metal pattern was prepared in the same manner as in Example i except that the solid was used as a catalyst precursor. The optical micrograph of the metal pattern (magnification 250 X) is shown in Fig. 6. 27 25 1364626 Comparative Example 1 A. Preparation of organic polymer resin (1) and dopant (2), and using the organic polymer resin to prepare a resin composition (1) in a 250 mL flask, 9.0 g Methyl methacrylate (MMA) 5 and 21.0 g of methacrylic acid (MAA) were dissolved in 75.4 g of DPM, followed by the addition of 0.9 g of 3-mercaptopropionic acid (3-MPA). The mixture was stirred at 500 rpm. The solution was heated to 60 ° C under a nitrogen atmosphere, and then stirred at 500 rpm for 1 hour. AIBN (0.9 g) dissolved in DPM (10.Og) was added to the solution at 60 ° C or higher. The mixture was reacted at 60 ° C for 3 hours to obtain a 10 polymer resin solution. The organic polymer resin had an acid value of 452.32 mgKOH/g and an average molecular weight of 5,423. The organic polymer resin solution was heated to 80 ° C, stirred under an oxygen atmosphere for 30 minutes, and further heated to 90 ° C. Di-aminopyridine (DMAP, 0.15 g) dissolved in a solvent (3 g) was added to the above solution at 90 °C. After heating the solution to ll 〇 ° C, 15 7.44 g of glycidyl methacrylate (GMA) was added and stirred for 6 hours. The reaction solution was cooled to room temperature to obtain a polymer resin solution. The polymer resin had an acid value of 123.74 mgKOH/g and an average molecular weight of 11,635. (2) A solution of 5.81 g of a polymer resin, 2.68 g of dipentaerythritol hexa 20 acrylate (DPHA) (50 wt% in PGMEA), and 0.185 g of a photoinitiator as 3-{4-[ 2,4-bis(triseodecyl)_s-triazin-6-yl]phenylthio}propionic acid (TPA) was mixed together and then mixed with 6.23 g of PGMEA as a solvent to obtain a dopant. And use it as a step for the subsequent preparation of the resin composition. 28 28 1364626 催化剂·Preparation of the catalyst precursor lg silver nitrate (AgN〇3) is mixed with lg dimethyl decylamine (DMF) and allowed to stand at room temperature. The mixture was scrambled at 500 rpm, and the solution was filtered through a syringe of 〇 20 μm to obtain a solid. This solid was used as a catalyst precursor -5. C. Preparation of Resin Composition According to the dopant prepared in A(2) of Comparative Example 1, it was mixed with the catalyst precursor prepared in Comparative Example 4, B, in a weight ratio of 1:1 and 10 The mixture was stirred at 500 rpm to obtain a resin composition. The solid content of the resin composition was measured and found to be 16.5% by weight. D. Formation of fine metal pattern A fine metal pattern was prepared as in Example 1 except that the resin composition 15 prepared in Comparative Example 1 was used. An optical microscope image (magnification 250 X) of the metal pattern is shown in Fig. 7. 1 Comparative Example 2 A fine metal pattern was produced in the same manner as in Example 2 except that the catalyst precursor was not used. An optical micrograph of the metal pattern (magnification 5 〇 X) is shown in Fig. 8. Comparative Example 3 lg of acetic acid (II) (Pd〇Ac2) and lg of decylguanamine 25 (DMF) were mixed and stirred at room temperature. The resin composition was prepared by the method of Example 4 except that the mixture was used as a copper-only reagent. The coexistence of the catalyst with an organic solvent is not good. Further, when the mixed catalyst and the organic polymer are in an organic solvent, a phase separation occurs to form a .5 precipitate. Therefore, it cannot be used to form a catalyst pattern. Comparative Example 4 Palladium (II) lg (Pd〇AC2m 2 5g polyethylene), pyrrolidine _ (pvp ' Mw 10, _) was mixed in ton of dimethyl acetamide (dmac) and The catalyst phase was prepared by mixing at room temperature, and the catalyst phase was mixed with the organic polymer used in Example 4 in a ratio of 2: i by weight and stirred to obtain a resin composition. 2 The same method was used to prepare a catalyst pattern, but a uniform coating film could not be formed. Then, the resin composition 15 was not developed. Thus, a catalyst pattern could not be formed. Like Examples 1 to 5, the silver organic composite and The coexistence of individual organic polymers and organic solvents is very high. Thus, the pattern is very fine and uniform, and the catalyst is uniformly distributed according to the pattern. As shown in Figures 2 to 6, .4 scenes & during coating Any peeling was observed, and the fine metal pattern was formed in a short period of time. 'The metal pattern formed by UV irradiation is better than the metal pattern obtained by the chemical reduction method. In Comparative Example 1, 'the use of inorganic silver salt causes development During the filming process, the film layer partially peels off, and the formation of the forged 25 film layer is slow due to the loss of the catalyst, and the quality of the metal coating layer is degraded. In addition, the patterned film layer of the 1364626 catalyst passes through the length of the segment. After the electroless plating of time, it will peel off. Since the metal pattern has very low adsorption to the substrate, when the catalyst is not used (Comparative Example 2), the plating solution will not be plated with a transparent substrate. * 5 Comparative Example 3 is used. The coexistence of the catalyst and the organic solvent is not good, and when the mixed catalyst and the organic polymer are in a solvent, a precipitate is formed due to phase separation. Therefore, it cannot be used to form a uniform pattern of the catalyst. The coexistence in Comparative Example 4 was improved, and the catalyst pattern film layer prepared in the absence of 10 was not uniform, and the resin composition developed = completely. Therefore, the catalyst pattern could not be formed. As shown by the above results, the present invention provides a a resin composition comprising a silver organic composite and a method of preparing a metal pattern using the resin composition. The catalyst pattern film layer prepared by the lipid composition has 15 high adhesion, and the loss of the catalyst in the wet process such as development or electroless plating can be effectively prevented, and the coating rate is accelerated to form a uniform and fine metal after electroless plating. The present invention also provides a metal pattern obtained by using the above method using the resin composition. The electromagnetic wave shielding material containing the metal pattern can be suitably used in various displays including CRT, 20 LCD, and EL display 'and flexibility The circuit of the printed circuit board is formed as a surface shielding electromagnetic wave film. The present invention has been described by the above-mentioned embodiments, and those skilled in the art can use the scope of the original field without the patent right of the present invention and its spirit. Carry out a variety of different modifications and changes. 31 1364626 [Brief Description of the Drawings] The above and other aspects, the features and other advantages of the present invention will be more fully understood from the following description, which will be more clearly understood. A flow chart of a method of making a fine copper film layer through an exposure step in the invention. Fig. 2 is an optical micrograph of a metal pattern of the embodiment of the present invention (magnification: 250X). Fig. 3 is an optical micrograph of a metal pattern of Example 2 of the present invention (magnification 10 times 250X). Fig. 4 is an optical micrograph of a metal pattern of Example 3 of the present invention (magnification: 250X). Fig. 5 is an optical micrograph of a metal pattern of Example 4 of the present invention (magnification: 250X). Fig. 6 is an optical micrograph of a metal pattern of Example 5 of the present invention (magnification: 250X). Fig. 7 is an optical micrograph of a metal pattern of Comparative Example 1 of the present invention (magnification: 250X). Fig. 8 is an optical micrograph 20 (magnification: 250X) of the metal pattern of Comparative Example 2 of the present invention. [Main component symbol description] Benefit 32

Claims (1)

1364626 r第^94113065號,丨00年7月修正頁 年> ^修(叉)正本 十、申請專利範圍: ——L----------------J 1. 一種屏蔽電磁之樹脂组成物,該樹脂組成物包括: 一有機南分子樹脂: 一具有一乙稀化不飽和鍵之多官能度單體; 5 一光起始劑; 至少一氟化銀有機複合物前驅體,係選自由氟醋酸銀 複合物、氟磺酸銀複合物、氟羰基酮銀⑴複合物、氟冷 -羰基酯銀(I)複合物、以及其混合物所組成之群組;以及 一有機溶劑。 10 2·如申請範圍第1項所述之樹脂組成物,其中該有機 高分子樹脂係為含羧基單體及可與含羧基單體共聚合之單 體之共聚物。 3.如申請範圍第2項所述之樹脂組成物,其中包含缓 基之單體係選自群組包括丙稀酸(acrylic acid)、甲基丙稀 15 酸(methacrylic acid)、巴豆酸(crotonic acid)、衣康酸 (itaconic acid)、馬來酸(maleic acid)、富馬酸(fumaric acid)、單甲基馬來酸(monomethylmaleic acid)、異;^ 二稀硫酸(isoprenesulfonic acid)、苯乙稀硫酸 (styrenesulfonic acid) ' 5-降冰片烯-2-敌酸 20 (5-norbornene-2-carboxylic acid)' 以及其混合。 4·如申請範圍第1項所述之樹脂組成物,其中該有機 高分子樹脂之平均分子量係為2,000至30,000之間。 5.如申請範圍第1項所述之樹脂組成物,其中該有機 高分子樹脂之酸價係為90至700 mgKOH/g之間。 33 1364626 51364626 r No. ^94113065, 丨 年 7 修正 revised page year > ^ repair (fork) original ten, the scope of application for patent: ——L----------------J 1 An electromagnetic shielding resin composition comprising: an organic south molecular resin: a polyfunctional monomer having an ethylenically unsaturated bond; 5 a photoinitiator; at least one silver fluoride organic The composite precursor is selected from the group consisting of a silver fluoroacetate complex, a silver fluorosulfonate complex, a fluorocarbonyl ketone silver (1) complex, a fluoro cold-carbonyl ester silver (I) complex, and a mixture thereof; And an organic solvent. The resin composition according to claim 1, wherein the organic polymer resin is a copolymer of a carboxyl group-containing monomer and a monomer copolymerizable with the carboxyl group-containing monomer. 3. The resin composition according to item 2 of the application, wherein the single system comprising a slow group is selected from the group consisting of acrylic acid, methacrylic acid, and crotonic acid ( Crotonic acid), itaconic acid, maleic acid, fumaric acid, monomethylmaleic acid, iso; isoprenesulfonic acid, Styrenesulfonic acid '5-norbornene-2-carboxylic acid' and mixtures thereof. 4. The resin composition according to item 1, wherein the organic polymer resin has an average molecular weight of from 2,000 to 30,000. 5. The resin composition according to item 1, wherein the organic polymer resin has an acid value of from 90 to 700 mgKOH/g. 33 1364626 5 10 1510 15 20 6.如申請範圍第1項所述之樹脂組成物,其中該包含 一乙烯化不飽和鍵之多官能度單體係至少一單體選自群組 包括:由多元醇與a,yS-不飽和羧酸經酯化得到之化合物, 包括乙二醇雙丙稀酸酿(ethylene glyco'l diacrylate)、 乙二醇二曱基丙稀酸S旨(ethylene glycol dimethacrylate)、含2至14個乙烯基之聚乙二醇雙丙烯酸 酯(polyethylene glycol diacrylate having 2 to 14 ethylene groups)、含2至14個乙烯基之聚乙二醇雙曱基丙 稀酸酯(polyethylene glycol dimethacrylate having 2 to 14 ethylene groups)、三羥曱基丙烷三丙烯·酸酯 (trimethylolpropane triacrylate)、三經甲基丙烧三甲 基丙稀酸酯(trimethylolpropane trimethacrylate)、季 戊四醇三丙稀酸g旨(pentaerythritol triacrylate)、季戊 四醇三甲基丙稀酸酯 (pentaerythritol trimethacrylate)、 季戊四醇四 丙稀酸醋 (pentaerythritol tetraacryl ate)、季戊四醇四甲基丙稀 酸醋(pentaerythritol tetramethacrylate) ' 含2至 14個 丙稀基之丙二醇二丙浠酸醋(propylene glycol diacrylate having 2 to 1 4 propylene groups)、含2至 14個丙稀基之丙二醇二甲基丙稀酸醋(propylene glycol dimethacrylate having 2 to 14 propylene groups)、 雙季戊四醇五丙稀酸酯(dipentaerythritol pentaacrylate)、雙季戊四醇五曱基丙稀酸酯 (dipentaerythritol pentamethacrylate)、雙季戊四醇六 34 1364626 丙烯酸酯(dipentaerythritol hexaacrylate)以及雙季戊 四醇六甲基丙稀酸醋(dipentaerythritol hexamethacrylate);將丙烯酸或曱基丙烯酸加入含甘油 基化合物所得到之化合物,包括三羥甲基丙烷三缩水甘油 5 醚丙烯酸加合物以及雙酚A二環氧甘油醚丙烯酸加合物; 酯類化合物’其係由多元羧酸與具有羥基以及乙烯化不飽 和鍵之化合物或具有羥基以及乙烯化不飽和鍵之多元異氛 酸縮合物經酯化形成之化合物,包括羥乙基丙烯酸或沒 -羥乙基曱基丙烯酸之鄰苯二曱酸酯、或羥乙基丙缔酸或 10 沒-羥乙基甲基丙烯酸與甲苯二異氰酸之縮合物。 7,如申請範圍第6項所述之樹脂組成物,其中該多官 能度單體包含二個或更多含有一乙婦化不飽和鍵之官能 基。 8.如申請範圍第1項所述之樹脂組成物,其中包含一 15 乙烯化不飽和鍵之多官能度單體,以100重量份有機高分子 樹脂為基準’共計具有20至150重量份。 • 9.如申請範圍第1項所述之樹脂組成物,其中該光起 始劑係選自群組包括:苯乙酮(acetophenones)、二苯曱 酮(benzophenones)、来其勒之苯甲醯笨甲酸酯 20 (Michler’s benzoylbenzoate) 、 α _ 戊貌基酯 (α-amyloxime ester)、硫雜蒽鲷(thioxanthones)、三。秦 (triazines)、以及其混合。 35 1364626 ίο.如申請範圍第1項所述之樹脂組成物,其中該光起 始劑之使用1 ’以100重量份有機高分子樹脂為基準,係1 至25重量份。 11.如申相範圍第1項所述之樹脂組成物,其中該敦化 銀有機複合物係選自群組包括:氟磺酸銀(1)、三氟乙酸銀 (I)、二故甲基項酸銀(I)、五氟丙酸銀(I)、七氟丁酸銀(I)、 1,5-環辛二烯-六氟乙醯丙醯銀⑴複合物、lu_三敦_24· 10 戊一鋼銀⑴複合物、5,5-二曱基-1,1,1-三氟_2,4-己二嗣銀⑴ 複合物、1-(4-甲氧基苯基)·4,4,4-三氟丁二酮銀(I)複合物、 5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-十七故癸-2,4-二_ 銀(I)複合物、1,1,1,2,2,3,3-七氟-7,7-二甲基-4,6-辛二酮銀(I) 複合物、l,l,l,3,5,5,5-七氟戊-2,4-二酮銀⑴複合物、 15 ΙΙ,1,5。。-六氟戊-2,4-二酮銀(I)複合物、5,5,6,6,7,7,8,8,8- 九氟辛-2,4-二酿1銀(I)複合物、5Η,5Η-全氟壬烧-4,6-二酮銀 (I)複合物、6Η,6Η-全氟-十一烷-5,7-二酮銀(I)複合物、 8Η,8Η·全氟十五烷·7,8_二酮銀⑴複合物、6Η,6Η-全氟十一 烷-5,7-二酮銀(I)複合物、1-苯基·2Η,2Η-全氟己-1,3-二酮銀 20 ⑴複合物、1-苯基-2Η,2Η-全氟十一烷-1,3-二酮銀(I)複合 物、5,6,6,6-四氟-5-(七氟丙氧基)己-2,4-二酮銀(I)複合物、 1,1,5,5-四氟戍-2,4-二酮銀(I)複合物、5,5,6,6,7,7,8,8,9,9,9-十 一烷氟-壬烷-2,4-二酮銀(I)複合物 、乙基1-3-氣-4,4,4-三氟 乙醯乙酸銀(I)複合物、乙基-4,4-二氟乙醯乙酸銀(I)複合 25 物、乙基-4,4,4-三氟乙醯乙酸銀(I)複合物、異丙基-4,4,4- 36 1364626 二氣乙酿乙酸銀⑴複合物、罗基·4,4,5,5,5-五氟-3·氧代戊醯 銀⑴複合物、乙基-4,4,5,5,5-五氟-3-氧代-戊醯銀⑴複合 、^1,5,5,6,6,6-八氟-2,4-己二酮銀(I)複合物、以及其混 合。 5 12·如申請範圍第1項所述之樹脂組成物,其中該氟化 銀有機複合物前驅體係,以100重量份該樹脂組成物之總有 機固體為基準,加入2至80重量份之量。 如申請範圍第1項所述之樹脂組成物,其中該有機 溶劑係選自群組包括:醇類,包括甲醇、乙醇、正丙醇、 10 異丙醇、乙烯乙二醇以及丙烯乙二醇;酮類,包括丙酮、 甲基乙基酮、環己酮以及正-曱基-2-吡咯烷酮;芳香烴類, 包括甲笨、二甲苯以及四甲基苯;乙二醇醚類,包括溶纖 劑、甲基溶纖劑 '乙基溶纖劑、3-曱氧基乙酸丙酯、單甲 基喊丙二醇、乙基醚丙二醇、二丙二醇單曱基醚以及二丙 15 二醇乙基醚;醋酸鹽類,包括乙酸乙酯、乙酸丁酯、溶纖 劑乙酸酯、溶纖劑乙基乙酸酯、溶纖劑丁基乙酸酯、單甲 基醚丙二醇乙酸酯以及乙基醚丙二醇乙酸酯;以及其混 合0 14. 如申請範圍第1項所述之樹脂組成物,以1〇〇重量份 20 之有機高分子樹脂與光敏感劑之混合為基準,更包括1〇重 量份或更少之光敏感劑。 15. 如申請範圍第14項所述之樹脂組成物,其中該光敏 感劑係選自群組包括正丁胺、三乙胺、三正丁基峨 '以及 其混合。 37 1364626 16. —種形成金屬圖案之方法,該方法包括 如申請範圍第1項所述將該樹脂組成物塗佈於基底上, 將塗佈後之組成物進行曝光,並將曝光後之組成物進 行顯影使得到催化劑圖案膜層, 將該圖案膜層作還原,並且 將還原後之膜層進行無電電鍍。 17. —種形成金屬圖案之方法,該方法包括The resin composition of claim 1, wherein the polyfunctional single system comprising an ethylenically unsaturated bond is at least one monomer selected from the group consisting of: a polyol and a, yS- A compound obtained by esterification of an unsaturated carboxylic acid, including ethylene glyco'l diacrylate, ethylene glycol dimethacrylate, containing 2 to 14 Polyethylene glycol diacrylate having 2 to 14 ethylene groups, polyethylene glycol dimethacrylate having 2 to 14 ethylene Groups), trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythritol triacrylate, pentaerythritol Pentaerythritol trimethacrylate, pentaerythritol tetraacrylate, pentaerythritol tetramethyl acrylate vinegar Taerythritol tetramethacrylate) ' propylene glycol diacrylate having 2 to 1 4 propylene groups, 2 to 14 propylene propylene glycol dimethyl acrylate ( Propylene glycol dimethacrylate having 2 to 14 propylene groups), dipentaerythritol pentaacrylate, dipentaerythritol pentamethacrylate, dipentaerythritol hexaacrylate, and bis-pentaerythritol pentamethacrylate Dipentaerythritol hexamethacrylate; a compound obtained by adding acrylic acid or mercaptoacrylic acid to a glyceryl-containing compound, including trimethylolpropane triglycidyl 5 ether acrylic acid adduct and bisphenol A bicyclic ring An oxyglyceride ether acrylic acid adduct; an ester compound which is formed by esterification of a polyvalent carboxylic acid with a compound having a hydroxyl group and an ethylenically unsaturated bond or a polyisocyanate condensate having a hydroxyl group and an ethylenically unsaturated bond. Compounds, including hydroxyethyl acrylate No - hydroxyethyl Yue of methacrylic acid esters of phthalic Yue, association or propionic acid or 10-hydroxyethyl not - hydroxyethyl methacrylate and a condensate of tolylene diisocyanate. 7. The resin composition of claim 6, wherein the multi-functional monomer comprises two or more functional groups containing an ethylenically unsaturated bond. 8. The resin composition according to claim 1, wherein the polyfunctional monomer comprising a 15 ethylenically unsaturated bond has a total of from 20 to 150 parts by weight based on 100 parts by weight of the organic polymer resin. 9. The resin composition of claim 1, wherein the photoinitiator is selected from the group consisting of: acetophenones, benzophenones, and benzophenones. Michler's benzoylbenzoate, α-amyloxime ester, thioxanthones, III. Qin (triazines), and its mixture. The resin composition according to claim 1, wherein the photo-starting agent is used in an amount of from 1 to 25 parts by weight based on 100 parts by weight of the organic polymer resin. 11. The resin composition according to claim 1, wherein the Dunhua silver organic composite is selected from the group consisting of silver fluorosulfonate (1), silver trifluoroacetate (I), and di-methyl Silver (I), silver (I) pentafluoropropionate, silver (I) heptafluorobutyrate, 1,5-cyclooctadiene-hexafluoroacetamidine silver (1) complex, lu_三敦_ 24· 10 pentad steel silver (1) complex, 5,5-dimercapto-1,1,1-trifluoro 2,4-hexadienyl silver (1) complex, 1-(4-methoxyphenyl) · 4,4,4-trifluorobutanedione silver (I) complex, 5,5,6,6,7,7,8,8,9,9,10,10,11,11,12, 12,12-17 癸-2,4-di_silver (I) complex, 1,1,1,2,2,3,3-heptafluoro-7,7-dimethyl-4,6 - octodione silver (I) complex, l, l, l, 3, 5, 5,5-heptafluoropenta-2,4-dione silver (1) complex, 15 ΙΙ, 1,5. . - hexafluoropenta-2,4-dione silver (I) complex, 5,5,6,6,7,7,8,8,8-nonafluorooctane-2,4-di-brown 1 silver (I Complex, 5Η, 5Η-perfluoroantimony-4,6-dione silver (I) complex, 6Η, 6Η-perfluoro-undecane-5,7-dione silver (I) complex, 8Η,8Η·perfluoropentadecane·7,8-dione silver (1) complex, 6Η, 6Η-perfluoroundecane-5,7-dione silver (I) complex, 1-phenyl·2Η , 2Η-perfluorohexa-1,3-dione silver 20 (1) complex, 1-phenyl-2Η, 2Η-perfluoroundecane-1,3-dione silver (I) complex, 5,6 6,6-tetrafluoro-5-(heptafluoropropoxy)hexan-2,4-dione silver (I) complex, 1,1,5,5-tetrafluoroanthracene-2,4-dione Silver (I) complex, 5,5,6,6,7,7,8,8,9,9,9-undecylfluoro-nonane-2,4-dione silver (I) complex, Ethyl 1-3-gas-4,4,4-trifluoroacetic acid silver (I) complex, ethyl-4,4-difluoroacetic acid silver (I) complex 25, ethyl-4 , 4,4-trifluoroacetamidineacetic acid silver (I) complex, isopropyl-4,4,4- 36 1364626 di-n-ethyl acetate silver (1) complex, rotenyl 4,4,5,5, 5-pentafluoro-3 oxopentidine silver (1) complex, ethyl-4,4,5,5,5-pentafluoro-3-oxo-pentanyl silver (1) complex, ^1 , 5,5,6,6,6-octafluoro-2,4-hexanedione silver (I) complex, and a mixture thereof. The resin composition according to claim 1, wherein the silver fluoride organic composite precursor system is added in an amount of 2 to 80 parts by weight based on 100 parts by weight of the total organic solid of the resin composition. . The resin composition according to claim 1, wherein the organic solvent is selected from the group consisting of: alcohols, including methanol, ethanol, n-propanol, 10 isopropyl alcohol, ethylene glycol, and propylene glycol. Ketones, including acetone, methyl ethyl ketone, cyclohexanone, and n-decyl-2-pyrrolidone; aromatic hydrocarbons, including methyl, xylene, and tetramethylbenzene; glycol ethers, including Fiber, methyl cellosolve 'ethyl cellosolve, 3-methoxypropoxyacetate, monomethyl propylene glycol, ethyl ether propylene glycol, dipropylene glycol monodecyl ether and dipropylene 15 diol ethyl ether Acetate, including ethyl acetate, butyl acetate, cellosolve acetate, cellosolve ethyl acetate, cellosolve butyl acetate, monomethyl ether propylene glycol acetate, and ethyl Ether propylene glycol acetate; and a mixture thereof. The resin composition according to the first aspect of the invention, which is based on a mixture of 1 part by weight of the organic polymer resin and the photosensitive agent, further includes 1 〇. Parts by weight or less of light sensitive agents. 15. The resin composition of claim 14, wherein the photosensitive agent is selected from the group consisting of n-butylamine, triethylamine, tri-n-butyl fluorene, and mixtures thereof. 37 1364626 16. A method of forming a metal pattern, the method comprising applying the resin composition to a substrate as described in the scope of claim 1, coating the coated composition, and forming the composition after exposure The material is developed to the catalyst pattern film layer, the pattern film layer is reduced, and the reduced film layer is subjected to electroless plating. 17. A method of forming a metal pattern, the method comprising 如申請範圍第1項所述使用樹脂組成物於基底上形成 催化劑圖案膜層,將該圖案膜層作還原,並且 將還原後之膜層進行無電電鍍。 18. 如申請範圍第17項所述之方法,其中該催化劑圖案 膜層之形成可經由膠印、喷墨印刷、轉印、或網版印刷。 19. 如申請範圍第16或17項所述之方法,其中該基底係 選自群組包括玻璃基底、以及由聚碳酸酯、壓克力樹脂、The catalyst pattern film layer was formed on the substrate using the resin composition as described in the first item of the application, the pattern film layer was reduced, and the reduced film layer was subjected to electroless plating. 18. The method of claim 17, wherein the formation of the catalyst pattern film layer is via offset printing, ink jet printing, transfer, or screen printing. 19. The method of claim 16 or 17, wherein the substrate is selected from the group consisting of a glass substrate, and from polycarbonate, acrylic resin, 及聚醯亞胺樹脂製備之塑膠板及薄膜。 20.如申請範圍第16或17項所述之方法,其中該還原步 驟係使用氫硼化鈉或抗壞血酸作為還原劑。 ’其中該還原步 ’其中該無電電 21.如申請範圍第16或17項所述之方法 驟係經由UV照射及/或加熱進行。 22.如申請範圍第16或17項所述之方法 鍍係以銅或銀鍍膜進行。 38 1364626 23. 如申請範圍第22項所述之方法,其中該銅鍍膜係使 用一種鍍膜溶液,該鍍膜溶液中包含作為金屬離子鹽之硫 酸銅、作為還原劑之福馬林以及作為穩定劑之EDTA。 24. —種金屬圖案之形成方法,係包括如申請範圍第1 5 項所述,將該樹脂組成物塗佈於基底上,將塗佈後之組成 物曝光,並將曝光後之組成物顯影使得到催化劑圖案膜 層,將該圖案膜層還原,並且將還原後之膜層進行無電電 鍍。 25. —種金屬圖案之形成方法’係包括如申請範圍第1 10 項所述’於基底上使用樹脂組成物形成催化劑圖案膜層, 將該圖案膜層還原,並且將還原後之膜層進行無電電鍍。 26. —種電磁屏蔽材料,係包括如申請範圍第以或乃項 所述之金屬圖案。 39 1364626And plastic sheets and films prepared from polyimide resin. 20. The method of claim 16 or 17, wherein the reducing step uses sodium borohydride or ascorbic acid as a reducing agent. Wherein the reduction step' wherein the electroless electricity is 21. The method of claim 16 or 17 is carried out by UV irradiation and/or heating. 22. The method of claim 16 or 17, wherein the plating is performed by copper or silver plating. The method of claim 22, wherein the copper plating film uses a coating solution containing copper sulfate as a metal ion salt, fumarin as a reducing agent, and EDTA as a stabilizer. . 24. A method of forming a metal pattern, comprising applying the resin composition to a substrate, exposing the coated composition, and developing the exposed composition, as described in claim 15 The catalyst pattern film layer was obtained, the pattern film layer was reduced, and the reduced film layer was subjected to electroless plating. 25. A method of forming a metal pattern comprising: forming a catalyst pattern film layer on a substrate using a resin composition as described in claim 1 10, reducing the pattern film layer, and performing the reduced film layer Electroless plating. 26. An electromagnetic shielding material comprising a metal pattern as described in the scope of the application or the item. 39 1364626 \/ / / / / / / /\ 基板 Ο ο ///??/ 預熱固化 ο 圖佈 紫外線曝光 高分子樹脂 鈒前驅物 SSSS光罩 β钹前顒物\/ / / / / / / /\ Substrate Ο ο ///??/ Preheat curing ο Fig. UV exposure Polymer resin 鈒 Precursor SSSS reticle β 钹 前颙 髮羅義 化學還原 \/ 顯影 0 還原 顯影劑 银 或 腦觀 ㈣· ~ ~~ y夕 / //\ γΛ Μ ^ τ^λ c) 後熱固化 IX 銅無電電鍍 [Z 紫外線還原 \/ / / / / / / ΛHairy chemical reduction \ / development 0 reduction of developer silver or brain view (four) · ~ ~ ~ y eve / // \ γ Λ Μ ^ τ ^ λ c) after heat curing IX copper electroless plating [Z UV reduction \ / / / / / / / Λ 13646261364626 13646261364626 13646261364626 13646261364626
TW096113065A 2006-04-13 2007-04-13 Resin composition comprising catalyst precursor for electroless plating to form electromagnetic wave shielding layer, methods for forming metal patterns using the resin composition and metal patterns formed by the methods TWI364626B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20060033757 2006-04-13
KR1020070035607A KR100823718B1 (en) 2006-04-13 2007-04-11 Resin Composition Containing Catalystic Precursor for Electroless Plating in Preparing Electro-Magentic Shielding Layer, Forming Method of Metallic Patten Using the Same and Metallic Pattern Formed Thereby

Publications (2)

Publication Number Publication Date
TW200801799A TW200801799A (en) 2008-01-01
TWI364626B true TWI364626B (en) 2012-05-21

Family

ID=38816954

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096113065A TWI364626B (en) 2006-04-13 2007-04-13 Resin composition comprising catalyst precursor for electroless plating to form electromagnetic wave shielding layer, methods for forming metal patterns using the resin composition and metal patterns formed by the methods

Country Status (4)

Country Link
JP (1) JP5234290B2 (en)
KR (1) KR100823718B1 (en)
CN (1) CN101421311B (en)
TW (1) TWI364626B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101009733B1 (en) * 2007-05-15 2011-01-20 주식회사 엘지화학 Resin Composition Containing Catalyst Precursor for Electroless Plating in Preparing Electro-Magnetic Shielding Layer, Forming Method of Metallic Patten Using the Same and Metallic Pattern Formed Thereby
KR100964962B1 (en) * 2007-07-03 2010-06-21 주식회사 엘지화학 Catalyst Precursor Resin Composition for Gravure Printing of Catalyst Pattern, Forming Method for Metal Patten and Metal Patten Prepared Thereby
KR100958289B1 (en) * 2007-07-09 2010-05-19 주식회사 엘지화학 Resin composition containing catalyst precursor for electro-magnetic sheilding, forming method of metallic pattern using the same and metallic pattern prepared thereby
KR20110071805A (en) * 2009-12-21 2011-06-29 삼성전기주식회사 Organic metal complexs for forming metal thin layer, ink comprising the same and method for forming metal thin layer using the same
US9176377B2 (en) 2010-06-01 2015-11-03 Inpria Corporation Patterned inorganic layers, radiation based patterning compositions and corresponding methods
KR101114256B1 (en) * 2010-07-14 2012-03-05 한국과학기술원 Method of fabricating pattern
CN106519740B (en) * 2012-10-26 2019-01-11 比亚迪股份有限公司 White coating composition, the method for insulating substrate surface selective metallization and composite article
US9310684B2 (en) * 2013-08-22 2016-04-12 Inpria Corporation Organometallic solution based high resolution patterning compositions
TW201543977A (en) * 2014-05-07 2015-11-16 Daxin Materials Corp Method of forming silver-containing conductive pattern
CN110352134B (en) * 2017-03-07 2021-07-20 东丽株式会社 Method for producing printed matter and printing machine
CN117362353A (en) * 2018-09-20 2024-01-09 北京夏禾科技有限公司 Organic luminescent material containing novel auxiliary ligand
EP3648161A1 (en) 2018-11-05 2020-05-06 Heraeus Deutschland GmbH & Co KG Method of manufacturing an electromagnetic interference shielding layer
CN109881497B (en) * 2019-02-25 2021-12-03 普宁市鸿骏纺织有限公司 Waterproof fabric and preparation method thereof
CN110010337B (en) * 2019-05-07 2021-08-31 深圳市金泰德五金电子有限公司 Efficient flat enameled wire enamel removing method
CN111234099B (en) * 2020-03-12 2021-09-03 扬州大学 High-performance radiation-proof lead-containing organic glass and preparation method thereof
KR102642598B1 (en) * 2022-03-30 2024-03-04 재단법인대구경북과학기술원 Simultaneous patterning of a transparent electrode and a photothermal layer, and a transparent electrode structure manufactured through the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823691B2 (en) * 1989-02-24 1996-03-06 日本合成化学工業株式会社 Photosensitive resin composition
JPH04103771A (en) 1990-08-23 1992-04-06 Sankei Giken Kogyo Kk Method for electroless-plating material having electrophilic polarity
JPH10163673A (en) * 1996-10-01 1998-06-19 Nisshinbo Ind Inc Electromagnetic wave shielding panel and its manufacture
DE69807424T2 (en) * 1997-12-08 2003-04-03 Fuji Photo Film Co Ltd Thermographic recording materials
JP3861462B2 (en) * 1998-05-28 2006-12-20 三菱化学株式会社 Photopolymerizable composition for color filter
KR100878236B1 (en) * 2002-06-12 2009-01-13 삼성전자주식회사 A method of forming a metal pattern and a method of fabricating TFT array panel by using the same
CN1238420C (en) * 2002-10-22 2006-01-25 中国科学院化学研究所 Process for producing phenolic resin nano composite material and its prepared product
JP4641719B2 (en) * 2002-12-27 2011-03-02 富士フイルム株式会社 Method for manufacturing translucent electromagnetic wave shielding film and translucent electromagnetic wave shielding film
KR100529371B1 (en) * 2003-07-29 2005-11-21 주식회사 엘지화학 Catalyst precursor resin composition and preparation method of light-penetrating electro-magnetic interference shielding material using the same

Also Published As

Publication number Publication date
JP2009533521A (en) 2009-09-17
CN101421311B (en) 2012-05-30
TW200801799A (en) 2008-01-01
KR100823718B1 (en) 2008-04-21
JP5234290B2 (en) 2013-07-10
KR20070101785A (en) 2007-10-17
CN101421311A (en) 2009-04-29

Similar Documents

Publication Publication Date Title
TWI364626B (en) Resin composition comprising catalyst precursor for electroless plating to form electromagnetic wave shielding layer, methods for forming metal patterns using the resin composition and metal patterns formed by the methods
US7682774B2 (en) Resin composition comprising catalyst precursor for electroless plating to form electromagnetic wave shielding layer, methods for forming metal patterns using the resin composition and metal patterns formed by the methods
KR101009733B1 (en) Resin Composition Containing Catalyst Precursor for Electroless Plating in Preparing Electro-Magnetic Shielding Layer, Forming Method of Metallic Patten Using the Same and Metallic Pattern Formed Thereby
TWI336813B (en)
WO2009154194A1 (en) Photosensitive resin composition, photosensitive element wherein same is used, method for forming a resist-pattern, and method for producing a printed wiring board
JP4240282B2 (en) Photosensitive resin composition, photosensitive element using the same, resist pattern manufacturing method, and printed wiring board manufacturing method
US4980266A (en) Photosensitive resin composition
JP2677916B2 (en) Photosensitive resin composition and photosensitive element using the same
JPH04153276A (en) Negative photosensitive electrodeposition coating resin composition, electrodeposition coating bath using it, and manufacture of resist pattern
KR101123006B1 (en) Resin Composition for Absorbing Catalysts in Preparing Electro-Magnetic Shielding Layer, Method for Forming Metallic Patten Using the Same and Metallic Pattern Formed Thereby
KR100958289B1 (en) Resin composition containing catalyst precursor for electro-magnetic sheilding, forming method of metallic pattern using the same and metallic pattern prepared thereby
JPH07140650A (en) Photosensitive resin composition and photosensitive film using the same
JP3111641B2 (en) Photosensitive resin composition and photosensitive film using the same
KR20070102080A (en) Catalyst precursor containing resin composition for electro-magnetic shielding and method for preparing metallic pattern using the same
JPH0616978A (en) Negative-type photosensitive electrodeposition coating resin composition, electrodeposition coating bath using the same and production of resist pattern
JPH03100185A (en) Manufacture of resist pattern
JPH04154998A (en) Formation of photoresist film and production of printed circuit board using the same
JPH04153275A (en) Composition for manufacturing resist pattern, electrodeposition coating bath using it, and manufacture of resist pattern
JPH05281722A (en) Negative photosensitive electrodepositin coating resin composition, electrodeposition coating bath using the same and production of resist pattern
JPH05281739A (en) Negative photosensitive electrodeposition coating resin composition, electrodeposition coating bath using that, and manufacture of resist pattern
JPH04154977A (en) Formation of colored resist pattern
JPH05281735A (en) Negative photosensitive electrodepositing coating resin composition, electrodeposition coating bath using that, and manufacture of resist pattern
JPH03221956A (en) Photosensitive resin composition and laminate using same
JPH05281737A (en) Negative photosensitive electrodeposition coating resin composition, electrodeposition coating bath using that and manufacture of resist pattern
JPH05281738A (en) Negative photosensitive electrodeposition coating resin composition, electrodeposition coating bath using that, and manufacture of resist pattern