TWI364338B - Laser processing apparatus and control device for laser processing - Google Patents

Laser processing apparatus and control device for laser processing Download PDF

Info

Publication number
TWI364338B
TWI364338B TW097148881A TW97148881A TWI364338B TW I364338 B TWI364338 B TW I364338B TW 097148881 A TW097148881 A TW 097148881A TW 97148881 A TW97148881 A TW 97148881A TW I364338 B TWI364338 B TW I364338B
Authority
TW
Taiwan
Prior art keywords
laser light
laser
residual vibration
electron microscope
irradiation position
Prior art date
Application number
TW097148881A
Other languages
Chinese (zh)
Other versions
TW200936285A (en
Inventor
Masashi Naruse
Toshiyuki Hokodate
Shigeo Kawano
Teiji Takahashi
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of TW200936285A publication Critical patent/TW200936285A/en
Application granted granted Critical
Publication of TWI364338B publication Critical patent/TWI364338B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
    • B23K37/0408Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work for planar work
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Laser Beam Processing (AREA)

Description

1364338 六、發明說明: 【發明所屬之技術領域】 進行爆射式 工控制裝置。 本發明係有關一種射出脈波型雷射& % (burst shot)加工的雷射加工裝置及雷射加 【先前技術】 在對印刷基板等被加工物進行開孔加 ^ 係要求儘可能進行近似真圓(正圓)的開孔加等雷射加工時 行此種開孔加工的裝置而言,係有且偌。就快速進 ''间电鏡掃描芎 (galvanoscanner)的雷射加工裴置。電鏡婦扣 改變電鏡(galvano mirror)的擺動角而改 田器係為藉由 位置者。 雷射光的照射 在藉由雷射光進行孔加工時,為了 _ ^ 狀’係在被加工物上於欲開孔之位置照射 1望的孔形 波來進行孔加工。就照射複數次脈波的孔加工^A(Sh〇t)脈 係有爆射式加工。該爆射式加工係為於每次方法而言’ 動/停止至目標位置時照射孔加工所需要的欠=婦插器移 法。在如此於1個孔位置照射複數次脈波時,係=加工方 1個孔位置位置精密度佳地照射在相同位置,須辦於 工形狀會成為橢圓等而無法形成真圓(正圓)。否則孔的加 專利文獻1記載的雷射加工裝置係以圓板狀準 (cylindrical collimator)修正自雷射振遷养射出直儀 光束的像散現象,再將該雷射光束照射於%雷射 、_ %的開 罩。接著,使穿透該圓形的開口遮罩而至的雷遮 於被加工物上以進行孔加工。 成像 32〇8石5 4 1364338 專利文獻1 :日本特開2002-273589號公報 【發明内容】 (發明所欲解決之課題) $而’在上述的習知技術中’當發生有使電鏡掃描器 移動後士的殘留振動(電鏡掃描器停止於目標位置時殘留: 振動)打,有加工孔形狀形成橢圓狀之問題。 ㈣為持續預定時間發生者,因此在待殘留 振動4失後再對被加工物進行雷射加工的情形中 加工需要較長時間而無法迅速地進行雷射加卫之田、 本發明乃有馨於上述問題而研創者,其目的在 ;=工精:度佳且迅速地加工被加,雷射加: 裝置及雷射加工控制裳置。 (解決課題的手段) 為了解決上述問題、達成上述目的 工裝置係藉由電鏡掃描器將雷射光導向被加二= 的照射位置而進行爆射:::成為:孔的前述雷射光 以同步於前述雷:=Γ 中,具備有:控制部, 、田射先的照射位置到達至目標昭射 留振動頻率而射出前述脈波型的雷射 先方式控制剛述雷射光的照射時序。 (發明的效果) 康本七月,由於係以同步於電鏡掃 二而射出脈,的雷射光之方式控制雷射二殘= 從而達到月b夠加工精密度佳且迅速地加工被加工物之 5 320865 m 1364338 效果。 【實施方式】 以下,根據圖式詳細說明本發明的雷射加工裝置及雷 射加工控制裝置的實施形態。另外,本發明並非由下述實 施形態所限定者。 ' 實施形態1 第1圖係顯示本發明實施形態i的雷射加工裝置的構 成之圖。雷射加工裝置m係為藉由對印刷基板等被加工 物照射雷射光而進行被加工物的開孔加工等之裝置,並由 後述的雷射加工控制裝置10控制。 雷射加工裝置101係具有雷射振盪器卜遮罩3、鏡子 透鏡5、電鏡掃描器6A、6B、及χγ卫作台8。雷射 m1係以預定的時序以脈波方式照射雷射光(光束田光) 2’使雷射光2入射至遮罩3。 遮罩3係為了將加工孔加工成所期望的大小、形狀, 而自入射而至的雷射光2截取所需部分的雷射光2 過遮罩3的雷射光2係照射至鏡子4。 鏡子4係反射雷射光2而將雷射光? 洗% 7t^導往光路徑。穿 透過複數個鏡子的雷射光2係經由電 分f 、头址Γ 兄哪描盗6A、6B而導 在ίθ透鏡透鏡5係使雷射光2聚光 上的被加工物7上。 〇 8 電鏡知描盗6Α、6Β係為使雷射光進杆德 , ^ 、 工硬仃掃描的伺服馬達 (servomotor·),藉由利用電鏡來擺動雷 一 ^ 田对光’而南速地脾 雷射光的照射位置定位至被加工物7的 、 礼位置。電鏡掃描 320865 6 1364338 \ 器6A、6B係例如在預定的擺動角的範圍内動作。電鏡掃描 - 器6A、6B係自雷射加工控制裝置10接受指令,以將雷射 光照射至目標加工位置的方式使雷射光的照射位置移動並 停止。電鏡掃描器6A、6B係在照射雷射光2後,重複使雷 . 射光的照射位置移動至下一個目標位置並停止之動作。電 _ 鏡掃描器6A係使對被加工物7的雷射光的照射位置朝X方 向移動。電鏡掃描器6B係使對被加工物7的雷射光的照射 位置朝Y方向移動。XY工作台8係載置被加工物7,並且 ®使被加工物7朝Π方向移動。 在本實施形態中,雷射加工控制裝置係根據電鏡掃描 器6A、6B的電鏡(後述的電鏡21)的擺動角,檢測加工位 置與電鏡21的殘留振動(殘留振動頻率)。接著,雷射加工 控制裝置係根據加工位置與殘留振動的檢測結果,控制雷 射振盪器1,在預定的時序使雷射振盪。 另外,在雷射加工裝置101中,亦可在光路徑中插入 φ 雷射振盪器1、遮罩3、鏡子4、f 0透鏡5、電鏡掃描器 6A、6B、XY工作台8以外的光學元件等。 在此,針對電鏡掃描器6A、6B的動作進行說明。首先, 針對取代電鏡掃描器6A、6B而單純改用鏡子且取代透 鏡5而改用單透鏡之情形進行說明。此時,要在被加工物 7的目標位置進行孔加工係必須重複驅動XY工作台8將被 加工物7移動/停止至預定位置再藉由雷射光12進行孔加 工之動作。因此,被加工物7的.加工的總加工時間非常長。 另一方面,在本實施形態中,並非使用鏡子與單透鏡, 7 320865 m 1364338 而是使用電鏡掃描器6A、6B與ίθ透鏡5。因此,搿、 加工物7的預定範圍内區域(例如5〇mmx5〇mm),不恭於破 Π工作台8而是只要在使2轴的電鏡掃描器6A、^, /停止後再進行藉由雷射光2所進行的孔加卫。作 且,在處於預定範圍内的區域的所有孔加工結束。迷 在開始下個區域的孔加工之際使χγ工作台8,只要 此’當使用電鏡掃描器6Α、6Β與透鏡5時 。籍 短被加工物7的總加工時間。 史把夠縮1364338 VI. Description of the invention: [Technical field to which the invention pertains] An blasting type control device is performed. The present invention relates to a laser processing apparatus and a laser beam for processing a pulse wave type laser & burst shot processing. [Prior Art] It is required to perform opening and opening operations on a workpiece such as a printed substrate as much as possible. A device that approximates a true circle (a perfect circle) and a device that performs such a hole processing during the laser processing is entangled. In the case of rapid advancement, the laser processing device of the galvanoscanner. The electronic mirror is used to change the swing angle of the galvano mirror and the field is changed by the position. Irradiation of laser light When hole processing is performed by laser light, hole processing is performed in order to illuminate a hole shape of a workpiece at a position to be opened at a position of _^. The hole machining ^A (Sh〇t) pulse which irradiates a plurality of pulse waves has a burst type processing. The blasting process is an under-expansion method required to illuminate the hole processing when moving/stopping to the target position for each method. When a plurality of pulse waves are irradiated at one hole position as described above, the position of one hole of the processing unit is precisely irradiated at the same position, and the shape to be formed becomes an ellipse or the like, and a true circle cannot be formed (a perfect circle). . Otherwise, the laser processing apparatus described in Patent Document 1 corrects the astigmatism of the beam emitted from the laser beam by the laser-like collimator, and then irradiates the laser beam to the % laser. , _ % open cover. Next, a lightning rod that is covered by the circular opening is covered on the workpiece to perform hole processing. Imaging 32 〇 8 石 5 4 1364338 Patent Document 1: Japanese Patent Laid-Open Publication No. 2002-273589 (Summary of the Invention) (And in the above-mentioned prior art 'When an electron microscope scanner occurs The residual vibration of the moving sergeant (residual: vibrating when the electron microscope scanner stops at the target position) has a problem that the shape of the processed hole is elliptical. (4) For those who continue to be scheduled for a predetermined period of time, in the case where the residual vibration is lost and the laser processing is performed on the workpiece, it takes a long time to process the laser and the field cannot be quickly performed. The researcher of the above problems, the purpose of which is; = work fine: good and rapid processing is added, laser plus: device and laser processing control. (Means for Solving the Problem) In order to solve the above problem, the above-mentioned objective device is configured to perform laser beaming by directing the laser beam to the irradiation position to be applied by the electron beam scanner:: the laser light of the hole is synchronized with In the above-mentioned lightning:=Γ, there is provided a control unit that controls the irradiation timing of the laser light immediately after the irradiation position of the first shot reaches the target oscillating vibration frequency and emits the pulse type first. (Effects of the Invention) In July, Kangben controlled the laser two-residue by means of laser light that was emitted in synchronization with the scanning of the electron microscope, thereby achieving the precision of the processing of the workpiece and the rapid processing of the workpiece. 5 320865 m 1364338 effect. [Embodiment] Hereinafter, embodiments of a laser processing apparatus and a laser processing control apparatus according to the present invention will be described in detail with reference to the drawings. Further, the present invention is not limited by the following embodiments. (Embodiment 1) Fig. 1 is a view showing the configuration of a laser processing apparatus according to Embodiment i of the present invention. The laser processing apparatus m is a device for performing drilling of a workpiece or the like by irradiating laser light onto a workpiece such as a printed circuit board, and is controlled by a laser processing control device 10 to be described later. The laser processing apparatus 101 has a laser oscillator mask 3, a mirror lens 5, an electron microscope scanner 6A, 6B, and a χ gamma guard station 8. The laser m1 irradiates the laser light (beam field light) 2' at a predetermined timing to cause the laser light 2 to enter the mask 3. In order to process the machined hole into a desired size and shape, the laser beam 2 from the incident laser light 2 intercepts the desired portion of the laser beam 2 and the laser beam 2 passing through the mask 3 is irradiated to the mirror 4. Does the mirror 4 reflect the laser light 2 and the laser light? Wash % 7t^ to the light path. The laser light 2 that has passed through a plurality of mirrors is guided by the electric component f, the head Γ 描 6 6A, 6B, and the ί θ lens lens 5 is used to condense the laser light 2 on the workpiece 7. 〇8 Electron microscopy knows how to steal 6 Α, 6 Β is to make the laser light into the rod, ^, the hard motor scan servo motor (servomotor·), by using the electron microscope to sway the lightning The irradiation position of the laser light is positioned to the position of the workpiece 7. Electron microscopy 320865 6 1364338 The devices 6A, 6B operate, for example, within a predetermined range of swing angles. The electron microscope scanners 6A and 6B receive commands from the laser processing control device 10 to move and stop the irradiation position of the laser light so that the laser light is irradiated to the target processing position. The electron microscope scanners 6A and 6B repeat the operation of moving the irradiation position of the lightning light to the next target position and stopping the irradiation of the laser light 2 . The mirror Mirror 6A moves the irradiation position of the laser light to the workpiece 7 in the X direction. The electron microscope scanner 6B moves the irradiation position of the laser beam to the workpiece 7 in the Y direction. The XY table 8 mounts the workpiece 7 and the workpiece 7 moves in the Π direction. In the present embodiment, the laser processing control device detects the residual vibration (residual vibration frequency) of the machining position and the electron microscope 21 based on the swing angle of the electron microscope (electron mirror 21 to be described later) of the electron microscope scanners 6A and 6B. Next, the laser processing control device controls the laser oscillator 1 based on the detection result of the machining position and the residual vibration to oscillate the laser at a predetermined timing. Further, in the laser processing apparatus 101, opticals other than the φ laser oscillator 1, the mask 3, the mirror 4, the f 0 lens 5, the electron microscope scanners 6A, 6B, and the XY table 8 may be inserted in the optical path. Components, etc. Here, the operation of the electron microscope scanners 6A and 6B will be described. First, a description will be given of a case where a mirror is simply used instead of the electron microscope scanners 6A and 6B, and a single lens is used instead of the lens 5. At this time, in order to perform the hole machining at the target position of the workpiece 7, it is necessary to repeatedly drive the XY table 8 to move/stop the workpiece 7 to a predetermined position and perform the hole machining by the laser light 12. Therefore, the total processing time of the processing of the workpiece 7 is very long. On the other hand, in the present embodiment, instead of using a mirror and a single lens, 7 320865 m 1364338, the electron microscope scanners 6A, 6B and the ίθ lens 5 are used. Therefore, the area within the predetermined range of the workpiece 7 (for example, 5 〇 mm x 5 〇 mm) is not respected by the smashing table 8, but is borrowed after the 2-axis electron microscope scanner 6A, ^, / is stopped. The hole made by the laser light 2 is added. And, all the hole processing in the region within the predetermined range ends. At the beginning of the hole processing in the next region, the χγ table 8 is used as long as the electron microscope scanners 6Α, 6Β and the lens 5 are used. The total processing time of the short workpiece 7. History is shrinking

第2 ®係顯*第丨圖齡的電鏡掃㈣的轉 構成之圖。钱掃描器6A與電鏡掃描器6B的轉:分的 分別具有:用以反射雷射光的電鏡2卜棒狀的轴$分係 於,22的位置感測器(sens〇r)23、自電鏡婦描、安袭 的疋子接受轉矩的馬達部24、及用以將電鏡2 、6B Μ的鏡座〇„irror麵nt)25。位置感測器23係=於輪 鏡21的位置與振動的編碼器(encoder)等。第測電 21係顯示電鏡21的昔而,楚9国土 的電鏡 面。¥見21的皮面’第2圖未圖示的側的面則為鏡 被支藉由2個轴承❿、仙而以旋轉自如的方式 被支牙於未圖示的殼體。在2個軸承41a、仙η 弋 =系固定於軸2一異的1對永久磁鐵4二= 、,圈42而相對向配置。並且,可動線 =鐵《所產生_場中,而構成為藉由可二置在 軸22旋轉。可動線圈42係―繞 .裝配,詳細情形係省略。另外’第2圖所示的 320865 8 :二掃:器的轉子部分的構成僅是一例,電鏡掃描器的轉 刀亦可為其他構成(可動磁鐵等)。 之方:同圖係顯不貫施形態2的雷射加工控制裝置的構成 圖。雷射加工控制裝置1G係具有控制部u、目標 產^部12、殘留振動檢測部ί3Α、13β、及位置檢 14Α ' 14Β 〇 ”目標值產生部12係連接於控制部^,產生雷射光的 籲照射目標位置(能_用電鏡掃描s 6Α、6Β進行加工的區 域上的座標與往各加卫孔的移動順序)並傳送至控制部 U。殘留振動檢測部!3Α、13β、位置檢測部14Α、14Β係 構成為含有第2圖所示的位置感測器23。 a —^留振動檢測部13Α與位置檢測部14Α係連接於電鏡 掃描器6Α,而殘留振動檢測部13β與位置檢測部14Β係連 f於電鏡掃描H 6Β。殘留振動檢測部13Α係根據位置感測 器23檢測出的位置(擺動角),檢測電鏡掃描器6Α(電鏡21) •的殘留振動。位置檢測部14Α係根據位置感測器23檢測出 •的電鏡21的位置,檢測雷射光的照射位置。 η 殘留振動檢測部1犯係根據位置感測器23檢測出的位 置,檢測電鏡掃描器6Β(電鏡21)的殘留振動。位置檢測部 14Β係根據位置感測器23檢測出的電鏡21的位置,檢測 雷射光的照射位置。 殘留振動檢測部13Α所檢測出的電鏡21的殘留振動與 位置檢測部14Α所檢測出的雷射光照射位置係傳送至控制 部11。此外’殘留振動檢測部13Β所檢測出的電鏡21的 9 320865 1364338~^一 殘留振動與位置檢測部14B所檢測出的雷射光照射位置係 傳送至控制部11。 控制部11係根據自目標值產生部12送來的雷射光的 照射目標位置、自位置檢測部14Α、14β送來的雷射光的照 射位置、及自殘留振動檢測部13Α、13Β送來的電鏡21的 位置(相應於殘留振動而變化的電鏡21的位置),控制雷射 振盪器1。控制部11係例如當判斷雷射光的照射位置到達 至雷射光的照射目標位置時,以同步於殘留振動以脈波方 式射出雷射光之方式控制雷射振盪器1。 本實施態的控制部U係可僅拫據電鏡掃描器6A的殘 留振動,控制自雷射振盪器1射出的雷射光的照射時序, 亦可僅根據電鏡掃描器6B的殘留振動,控制自雷射振盈器 1射出的雷射光的照射時序。 ° 考土 可根據電鏡掃描器6A及電鏡掃指 的昭射時二留振動,控制自雷射振蘯器1射出的雷射光 與電鏡掃描時,例如’根據電鏡掃描器6A的殘留振動 '田11的殘留振動的平均值,控制自雷射 1射出的雷射光的昭 振邊益Fig. 2® shows the composition of the SEM scan of the third image. The rotation of the money scanner 6A and the electron microscope scanner 6B respectively has an electron microscope 2 for reflecting the laser light, a rod-shaped shaft, a position sensor (sens〇r) 23, and a self-electron microscope. The motor portion 24 that receives the torque and the mirror holder 〇 irirror surface nt 25 for aligning the electron microscopes 2 and 6B. The position sensor 23 is at the position of the wheel mirror 21 A vibrating encoder, etc. The second measuring unit 21 displays the electron mirror surface of the eclipse of the eclipse 21, and the surface of the eclipse of the ninth country. Two bearings ❿ and 仙 are rotatably attached to a housing (not shown). In two bearings 41a, η 弋 弋 = one pair of permanent magnets 4 fixed to the shaft 2 = The coil 42 is disposed opposite to each other, and the movable wire = iron "in the generated field" is configured to be rotatable on the shaft 22. The movable coil 42 is wound around the assembly, and the details are omitted. '320865 8 shown in Fig. 2: The configuration of the rotor portion of the two-scanner is only an example, and the rotary cutter of the electron microscope scanner may have other configurations (movable magnets, etc.). The configuration of the laser processing control device of the second embodiment is shown in the same figure. The laser processing control device 1G includes a control unit u, a target manufacturing unit 12, a residual vibration detecting unit ί3Α, 13β, and a position detection 14Α. The '14Β 目标' target value generating unit 12 is connected to the control unit 2, and generates a laser irradiation target position (the coordinates of the area on the area where the processing can be performed by the scanning of the electron microscopes s 6Α, 6Β and the moving order to the respective guard holes) ) and transmitted to the control unit U. Residual vibration detection unit! The 3Α and 13β and position detecting units 14A and 14Β are configured to include the position sensor 23 shown in Fig. 2 . The a-remaining vibration detecting unit 13A and the position detecting unit 14 are connected to the electron microscope scanner 6A, and the residual vibration detecting unit 13β and the position detecting unit 14 are connected to the electron microscope scanning H 6Β. The residual vibration detecting unit 13 detects the residual vibration of the electron microscope scanner 6 (electron mirror 21) based on the position (wobble angle) detected by the position sensor 23. The position detecting unit 14 detects the irradiation position of the laser light based on the position of the electron microscope 21 detected by the position sensor 23. The η residual vibration detecting unit 1 detects the residual vibration of the electron microscope scanner 6 (electron mirror 21) based on the position detected by the position sensor 23. The position detecting unit 14 detects the irradiation position of the laser light based on the position of the electron microscope 21 detected by the position sensor 23. The residual vibration of the electron microscope 21 detected by the residual vibration detecting unit 13A and the laser light irradiation position detected by the position detecting unit 14A are transmitted to the control unit 11. Further, the residual vibration of the electron microscope 21 detected by the residual vibration detecting unit 13A is transmitted to the control unit 11 by the residual vibration and the laser light irradiation position detected by the position detecting unit 14B. The control unit 11 is based on the irradiation target position of the laser light sent from the target value generating unit 12, the irradiation position of the laser light sent from the position detecting units 14A and 14β, and the electron microscope sent from the residual vibration detecting units 13A and 13Β. The position of 21 (the position of the electron microscope 21 which changes in accordance with the residual vibration) controls the laser oscillator 1. For example, when it is determined that the irradiation position of the laser light reaches the irradiation target position of the laser light, the control unit 11 controls the laser oscillator 1 so as to emit the laser light in a pulse wave manner in synchronization with the residual vibration. The control unit U of the present embodiment can control the irradiation timing of the laser light emitted from the laser oscillator 1 only based on the residual vibration of the electron microscope scanner 6A, or can control the self-ray according to the residual vibration of the electron microscope scanner 6B. The irradiation timing of the laser light emitted from the vibrating unit 1. ° The soil can be controlled according to the electron beam scanner 6A and the electron beam scanning finger, and the laser beam emitted from the laser vibrator 1 and the electron microscope are scanned, for example, 'based on the residual vibration of the electron microscope scanner 6A' The average value of the residual vibration of 11 and the control of the laser light emitted from the laser 1

的殘留振動與電鏡掃:^:此外’亦可於電鏡掃描器6A 自雷射《器二的殘留振動加上權重來控制 制電鏡掃描n 時序。另外,在以控 制時’由於靠进姑‘ 為優先進行控 雷锫始松 破加工物7的電鏡掃描器昍的 電鏡掃描器6A的& & 叼躧勤角會比 ⑽為優先進行控制。 ",因此亦可以控制電鏡掃描器 320865 10 1364338 - 另外,在此係針對藉由控制部II控制雷射㈣器!的 • ~形進仃說明,而π工作台與電鏡掃描器6a、6β係由未 圖不的其他控制部控制。該其他控制部係使用目標值產生 ί5 12所產生的照射目標位置與位置檢測部所檢 ‘測出的雷射光的照射位置,控制χγ工作台與電鏡掃描器 .6Α 、 6Β 。 此外,亦可由1個位置感測器23來構成殘留振動檢測 _。卩13Α與位置檢測部ι4Α,亦可設計為於殘留振動檢測部 13Α與位置檢測部14Α各配置1個位置感測器23之構成。 此外,亦可由1個位置感測器23來構成殘留振動檢測部 13Β與位置檢測部14β,亦可設計為於殘留振動檢測部ΐ3β 與位置檢測部14Β各配置1個位置感測器23之構成。 藉由於殘留振動檢測部13Α與位置檢測部14Α各配置 1個位置感測器23,便能夠將雷射加工控制裝置1〇作成簡 易的構成。此外,藉由於殘留振動檢測部13Β與位置檢測 •部Ηβ各配置1個位置感測器23,便能夠將雷射加工控制 •裝置1〇作成簡易的構成。 就以雷射光進行的孔加工方式之一而言’係有在被加 工物上於欲開孔的位置照射複數次脈波而進行孔加工之爆 射式加工。爆射式加工係為例如包含在固定電鏡掃描器 6Α、6Β的擺動角的狀態下於1個加工孔連續照射複數次雷 射的加工程序之加工方法。 第4圖係進行爆射式加工時的雷射光的照射順序之 圖。第4圖係顯示於各目標位置各入射4次雷射光2之情 11 320865 n,工係在每次電鏡掃福器6A,移動至目標位 =停止㈣雷射照射孔加I所需要的讀(4次)。在第4 圖中,對第1孔昭射4 " (⑴至⑷),對第2孔照射4次 =至⑻;’對第3孔照射4次(⑼至⑽。如此,在爆 射式加工中,由於電鏡掃描器6Α、6β僅繞區域内的各目標 加工位置—圈,因此電鏡掃描器6Α、6β的動作次數比循環 (cycle shot)式加工的情形還少。因此,以爆射式加工便 能夠比循環加工更效率佳且迅速地進行孔加工。 在習知的雷射加工裝置中,於爆射式加工時會有加工 孔形狀成為橢81的情形°該情形係因電鏡掃描器6A、6B的 殘留振動而產生。如第5圖所示’若令電鏡21的擺動角為 擺動角Θ,則雷射光係照射至相應於該電鏡21的擺動角^ 之位置。但若於電鏡21存在殘留振糾,電鏡21的擺動 角Θ便會偏離目標擺動角。 第6圖係顯示有殘留振動時的電鏡的擺動角與時間之 關係之圖。當每次使電鏡的擺動角變化而使照射至各加工 孔的雷射光的照射位置移動並停止時,在電鏡21的停止位 置’於電鏡21會發生殘留振動。 ,當為了使電鏡掃描器6A、6B的動作高速化而提高控制 系統的增益(gain)時,該殘留振動便會變得容易發生。因 此,在實施以爆射式加工進行的孔加工時,若電鏡Μ未完 全停止,則電鏡21的擺動角0便會偏離目標擺動角。 条'在該偏離目標擺動角的狀態下照射雷射光,則雷射 光會照射至偏離目標雷射光照射位置之位置。而若將雷射 320865 12 1364338 光照射於如此的偏離目標雷射光照射位置之位置複數次, 加工孔形狀便會形成例如橢圓狀。 、因此在本實施形態中,當以爆射式加工對I個孔照射 複數次的雷射光時,係以離目標雷射光照射位置的偏離量 成為相同值的方式進行各次的雷射光照射。具體而言,控 制部11係以同步於電鏡21的殘留振動而以脈波方式射出 雷射光之方式控制雷射振盪器1。 第7圖係顯示雷射光的射出時序之圖。在第7圖的時 f圖係顯示電鏡21的擺動角θ(控制部12傳送給雷射振盪 器1的對應於擺動角Θ之位置指令)與射出雷射光的時序 之對應關係。 本實施形態的雷射振盪器i係由控制部η採用以與殘 留振動的頻率相同值的振盪頻率照射雷射光之方式予以控 制。照射第1次的雷射光的時序係根據電鏡婦描器6Α、肋 的位置感測益23所檢測出的資訊來判斷。 立例如,當位置感測器23(位置檢測部14Α與位置檢測 部14Β)檢測出與雷射光的照射目標位置(第i加工孔)相同 的位置時’控制部11便判斷為到達了雷射光的照射目標位 f,而使雷射振盪器1照射第i次的雷射光。接著,控制 部11係根據殘留振動檢測部13A、13B所檢測出的電鏡 的殘留振動’以同步於該殘留振動的方式照射第2次的雷 射光。再接著,控制部11係根據殘留振動檢測部13A、1犯 所核測出的電鏡21的殘留振動,以同步於該殘留振動的方 式知、射第3次及第4次的雷射光。 320865 13 1364338 之後’控制電鏡21的擺動角0使雷射照射位置移動至 下一個加工位置(第2加工孔)。接著,與第1加工孔時同 樣地,當位置感測器23檢測出與雷射光的照射目標位置相 同的位置時,控制部11便判斷為到達了雷射光的照射目標 位置,而使雷射振盪器1照射第1次的雷射光。接著,與 第1加工孔時同樣地,控制部n係根據殘留振動檢測部 13A、13B所檢測出的電鏡21的殘留振動,以同步於該殘 留振動的方式照射第2次至第4次的雷射光。以下,'以同 樣的方式進行,對各加工孔(第3加工孔及之後的加工孔) 照射雷射光而進行被加工物7的孔加工。 籍此 月匕列隹離雷射光的照射目標位置的偏離量為才 同之位置於各孔照射複數次(在此為4次)雷射光,因以 進行複數次的雷射照射時,能夠進行雷射照射於相同七 置因此,即使疋在以爆射式加工對被加工物7進行孔力1 工時’仍能夠加工真圓(正圓)度高的孔,而能夠進行品賀 良好的孔加工H由於以與殘留振動頻率相同的頻 射出雷射光,因此在短時間内能夠照射複數次的雷射光。 另外’雖然、在第7圖係針對以與殘留振動 1 員率射出雷射光的情形進行說明,但亦可以殘留振動頻^ 的η分之-(η為自然數)的頻率射出雷射 、 =以殘留振城的二分之—的頻率射Μ射光時 =出時序之圖。在第8圖的時序圖係與第7圖的時序圖 同樣地顯示電鏡21的擺 應關係。 _動^與射出雷射光的時序之對 320865 1364338 射出t第8圖所不,在以殘留振動頻率的二分之一的頻率 •雷射光的情形亦與以與殘留振動頻率相同的頻率射出 偟射,的情形相同地’能夠在離雷射光的照射目標位置的 離量為相同之位置於各孔照射複數次雷射光。 以殘留钱鮮的n分之—的鮮進行的雷射光的射 f對於雷射振1器1無法以高頻振㈣情形與由於被加 型2的材料特性的原因而無法在短時間投人多數個脈波 率的^㈣形尤其有用°如此’由於係以殘留振動頻 从4、n》之的頻率射出雷射光,因此即使是在|法巧速 =雷射光的情形下,仍能夠在離雷射光的照射目;: 置的偏離量為相同之位置於各孔照射複數次雷射光。 並且’亦可交叉使用殘留振動鮮的p分之 然數)的頻率與殘留振動頻率的q分之一(q ^為自 自然數)的頻率射出雷射光。藉此 境释由^的 振動頻率的。分之-的頻率進行t射加 === 與藉由殘留振動頻率的q分之一 :, 込又 的加工速Α 革騎雷射加工之際 逹度之_加工速度來進行雷射加工 :細雷射光的照射目標位置的偏離量為相同:置二 各孔照射複數次雷射光。 彳置於 此外’亦可以使離雷射光的照射目標 為0的方式射出雷射光。第9圖係顯示離雷射=離量成 標位置的偏離量成為〇時的雷射光的射 '、照射目 在於來自位置感測器23的信號存在有序之圖。 置感測器23與電鏡21的擺動角常是以文留振動時,位 °相位或反相位 320865 15 振動此%,以控制部n監視來自位置感測器u的信號, 於位置偏離較少之時序(雷射光2的照射位置成為目°標照 !!位置之時序)照射雷射光2,藉此,便能夠進行與加工目The residual vibration and the electron microscope scan: ^: In addition, the electron microscope scanner 6A can also control the SEM scan n timing from the laser residual vibration plus the weight. In addition, the && ampere angle of the SEM scanner 6A which is controlled by the ergonomically controlled smashing of the workpiece 7 is controlled in priority . ", therefore, it is also possible to control the electron microscope scanner 320865 10 1364338 - in addition, here is the control of the laser (four) device by the control unit II! The π table and the SEM scanners 6a and 6β are controlled by other control units not shown. The other control unit controls the χγ table and the electron microscope scanner .6Α, 6Β using the target position generation ί5 12 to generate the irradiation target position and the position detection unit to detect the detected irradiation position of the laser light. Further, the residual vibration detection _ can also be constituted by one position sensor 23. The 卩13Α and the position detecting unit ι4Α may be configured such that one position sensor 23 is disposed in each of the residual vibration detecting unit 13A and the position detecting unit 14A. Further, the residual vibration detecting unit 13A and the position detecting unit 14β may be configured by one position sensor 23, or may be configured such that one position sensor 23 is disposed in each of the residual vibration detecting unit ΐ3β and the position detecting unit 14Β. . By arranging one position sensor 23 for each of the residual vibration detecting unit 13A and the position detecting unit 14, the laser processing control device 1 can be easily constructed. Further, by arranging one position sensor 23 for each of the residual vibration detecting unit 13A and the position detecting unit Ηβ, the laser processing control device 1 can be configured as a simple configuration. In one of the hole processing methods by laser light, there is a blasting process in which a plurality of pulse waves are irradiated on a workpiece at a position to be opened to perform hole processing. The blasting processing system is, for example, a machining method in which a machining program for continuously irradiating a plurality of lasers in one machining hole in a state in which the oscillating angles of the fixed electron microscope scanners 6A and 6Β are included. Fig. 4 is a view showing the order of irradiation of the laser light during the blasting process. Figure 4 shows the situation of each incident laser light 2 at each target position 11 320865 n, the system is in each electron microscope sweeper 6A, moving to the target position = stop (four) laser irradiation hole plus I need to read (4 times). In Fig. 4, for the first hole, 4 " ((1) to (4)), the second hole is irradiated 4 times = to (8); 'the third hole is irradiated 4 times ((9) to (10). Thus, in the burst In the processing, since the electron microscope scanners 6Α and 6β are only wound around the respective target processing positions in the region, the number of operations of the electron microscope scanners 6Α and 6β is less than that of the cycle shot processing. The laser processing can perform the hole machining more efficiently and quickly than the cycle machining. In the conventional laser processing device, the shape of the machined hole becomes the ellipse 81 during the burst type machining. The residual vibration of the scanners 6A, 6B is generated. As shown in Fig. 5, if the swing angle of the electron microscope 21 is the swing angle Θ, the laser light is irradiated to the position corresponding to the swing angle ^ of the electron microscope 21. There is residual vibration correction in the electron microscope 21, and the swing angle of the electron microscope 21 deviates from the target swing angle. Fig. 6 is a graph showing the relationship between the swing angle of the electron microscope and the time when there is residual vibration. The change causes the irradiation position of the laser light irradiated to each processing hole to move At the time of the stop, the residual vibration occurs in the electron beam 21 at the stop position of the electron microscope 21. When the gain of the control system is increased in order to speed up the operation of the electron microscope scanners 6A and 6B, the residual vibration becomes Therefore, when the hole machining by the blasting process is performed, if the electron mirror Μ is not completely stopped, the oscillating angle 0 of the electron microscope 21 deviates from the target swing angle. The strip 'at the state of the off-target swing angle When the laser light is irradiated, the laser light is irradiated to a position away from the target laser light irradiation position, and if the laser light 320865 12 1364338 is irradiated to such a position deviated from the target laser light irradiation position, the shape of the processed hole is formed, for example. In the present embodiment, when a plurality of laser beams are irradiated to one hole by the blasting process, the amount of deviation from the target laser light irradiation position is the same value. Specifically, the control unit 11 controls the laser oscillator 1 so as to emit laser light in a pulse wave manner in synchronization with the residual vibration of the electron microscope 21. A diagram showing the timing of the emission of the laser light. At the time f of Fig. 7, the swing angle θ of the electron microscope 21 (the position command corresponding to the swing angle 传送 transmitted from the control unit 12 to the laser oscillator 1) and the emitted laser light are displayed. The laser oscillator i of the present embodiment is controlled by the control unit η to irradiate the laser light at an oscillation frequency having the same value as the frequency of the residual vibration. The timing of the first laser light is irradiated. The position detection sensor 23 (the position detecting unit 14A and the position detecting unit 14A) detects the irradiation target with the laser light, for example, based on the information detected by the positional sensation of the positional sensation of the frog. When the position (i-th machining hole) is the same position, the control unit 11 determines that the irradiation target position f of the laser light has been reached, and causes the laser oscillator 1 to irradiate the i-th laser light. Then, the control unit 11 irradiates the second laser light in accordance with the residual vibration of the electron microscope detected by the residual vibration detecting units 13A and 13B so as to be synchronized with the residual vibration. Then, the control unit 11 detects the residual vibration of the electron microscope 21 by the residual vibration detecting units 13A and 1 and detects the third and fourth laser light in synchronization with the residual vibration. 320865 13 1364338 Thereafter, the swing angle 0 of the control electron microscope 21 moves the laser irradiation position to the next machining position (second machining hole). Then, when the position sensor 23 detects the same position as the irradiation target position of the laser light, the control unit 11 determines that the irradiation target position of the laser light has been reached, and the laser is made. The oscillator 1 illuminates the first laser light. Then, in the same manner as in the case of the first processing hole, the control unit n irradiates the second to fourth times in synchronization with the residual vibration of the electron beam 21 detected by the residual vibration detecting units 13A and 13B. laser. In the following manner, the hole processing of the workpiece 7 is performed by irradiating laser light to each of the machined holes (the third machined hole and the subsequent machined hole) in the same manner. In this month, the amount of deviation from the position of the irradiation target of the laser beam is the same as that of the position in which the laser beam is irradiated for a plurality of times (here, 4 times), and it is possible to perform the laser irradiation for a plurality of times. Since the laser beam is irradiated to the same seven positions, even if the hole is subjected to the hole force 1 for the workpiece 7 by the blasting process, the hole having a high true circle (a perfect circle) can be processed, and the product can be good. Since the hole processing H emits laser light at the same frequency as the residual vibration frequency, it is possible to irradiate a plurality of times of laser light in a short time. In addition, although the case where the laser beam is emitted at a rate of one member with residual vibration is described in the seventh drawing, the laser may be emitted at a frequency of η of the residual vibration frequency ((n is a natural number), = When the light is emitted at a frequency of two points of the residual vibration, the timing is plotted. The timing chart of Fig. 8 shows the arrangement relationship of the electron microscope 21 in the same manner as the timing chart of Fig. 7. _Moving ^ and the timing of emitting laser light 320865 1364338 Ejecting t Figure 8 is not, at a frequency of one-half of the residual vibration frequency • Laser light is also emitted at the same frequency as the residual vibration frequency偟In the case of the shot, the same amount of laser light can be irradiated to each of the holes at the same position from the irradiation target position of the laser light. It is impossible for the laser oscillator 1 to be in the high-frequency vibration (four) situation and the material characteristics of the additive type 2, and it is impossible to invest a large number of times in a short time. The ^(4) shape of the pulse wave rate is particularly useful. Therefore, since the laser light is emitted from the frequency of 4, n by the residual vibration frequency, even in the case of |fabric speed = laser light, it is still possible to Irradiation of the illuminating light;: The amount of deviation is set to the same position, and the laser light is irradiated for a plurality of times in each hole. Further, laser light can be emitted at a frequency at which the frequency of the residual vibration of the residual vibration is also crossed and the q of the residual vibration frequency (q ^ is a natural number). By this, the vibration frequency of ^ is derived. The frequency of the sub-radiation plus === and one of the q points by the residual vibration frequency:, the processing speed of the 込 骑 骑 骑 骑 骑 骑 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 : : : : : : : : : : : : : : : : : The deviation of the irradiation target position of the fine laser light is the same: the two holes are irradiated with a plurality of laser lights. It is also possible to emit laser light in such a manner that the irradiation target of the laser light is zero. Fig. 9 is a view showing the presence of a laser light from the position sensor 23 when the amount of deviation from the laser = off-targeting position becomes "shooting" of the laser beam. The swing angle of the sensor 23 and the electron microscope 21 is often vibrated by the bit phase or the opposite phase 320865 15 when the vibration is kept, so that the control unit n monitors the signal from the position sensor u, and the position deviation is relatively small. When the timing is small (the irradiation position of the laser light 2 becomes the target of the target!! position), the laser light 2 is irradiated, whereby the processing can be performed.

心位置之間之位置偏離較少且孔形狀為真圓(正圓)的 式加工。 U *具體而言’當位置感測器23檢測出與雷射光的照射目 標位置相同的位置,控制部u係待機直到殘留振動檢測部 13= 13B檢測出電鏡21的殘留振動頻率。當殘留振動檢 測部13A、13B檢測出電鏡21的殘留振動頻率(1至複數個 週期)¾制部11係根據該殘留振動及殘留振動檢測部 13八、13B所檢測出的電鏡21的擺動角0,以在離雷射光 的照射目標位置的偏離量成為G的時序射出雷射光之方式 控制:射振盪! 1。藉此,在離雷射光的照射目標位置的 偏離I成為〇的時序從雷射振盪器i射出第ι次至第4次 的雷射光。此時亦與以與殘留振動頻率相同的頻率射出雷 射光=情形相同地,能夠以自雷射光的照射目標位置起的 偏離里為相同位置的方式於各孔照射複數次雷射光。並 且,由於離雷射光的照射目標位置的偏離量為〇,因此能 夠進行位置精密度佳的孔加工。 另外,雖然在第9圖係針對以與殘留振動頻率相同的 頻率射出雷射光的情形進行說明,但亦可以殘留振動頻率 的η刀之一(n為自然數)的頻率射出雷射光,亦可以殘留 振動頻率的2倍的頻率射出雷射光。 此外,控制部11亦可在位置感測器23檢測與雷射光 16 320865 1364338 - 的照射目標位置相同的位置後,待機至電鏡21的殘留振動 - 頻率達到穩定為止的預定時間。藉此,便能夠在電鏡21的 殘留振動頻率穩定的狀態下,同步於殘留振動而使雷射光 脈波射出。 . 此外,在本實施形態中,控制部11係當判斷為到達至 雷射光的照射目標位置時使雷射振盪器1照射第1次的雷 射光,但控制部11亦可從判斷為到達至雷射光的照射目標 位置之時刻起,延遲預定時間(例如,到殘留振動穩定為止 ®的時間)再開始雷射光的照射。 如上所述,依據實施形態1,由於同步於殘留振動而 以脈波方式射出雷射光,因此能夠在離雷射光的照射目標 位置的偏離量為相同之位置於各孔照射複數次雷射光。因 此,即使是在進行爆射式加工的情形中,仍能夠於各孔的 相同位置進行雷射照射,將加工孔形狀相對於真圓(正圓) 度之變化抑制得較輕微,而能夠加工精密度佳且迅速地加 | 工被加工物7。 此外,由於係藉由殘留振動檢測部13A、13B檢測電鏡 掃描器6A、6B的殘留振動,因此能夠檢測相應於各雷射加 工的加工狀況的恰當殘留振動。此外,由於係藉由位置檢 測部14A、14B檢測雷射光的照射位置,因此能夠正確地檢 測正確的雷射光的照射位置。 實施形態2 接著,利用第10圖針對本發明實施形態2進行說明。 雖然也能夠以電鏡掃描器6A、6B的位置感測器23檢測電 17 320865 ts】 1364338 鏡。21的殘留振動的情形,但依振動模式也有無法檢測的情 /在…法由位置感測咨23檢測的振動模式的情形中,由 ;=留振動知起因於電鏡掃描器6Α、6β的轉子部分的機械 構l而I生m預先實行轉子部分的頻率特性試驗 便月b狗得知殘留振動(殘留振動頻率)。因此,在本實施形 態令係利用預先測量的殘留振動來控制雷射振蘯器卜具 體而言’控制部^係以同步於預先測量的殘留振動而脈波 地射出雷射光之方式控制雷射振盪器1。 第仞圖係顯示實施形態2的雷射加工控制裝置的構 成=方塊圖。第10 _各構成要素之中達成與第3圖所示 的實施形態1的雷射加工控制裝置1G相同功能的構成要素 係標s主相同的編號,並省略重複說明。 雷射加工控制裝置10係具有控制部Π、目標值產生 部12、位置檢測部14A、14B及記憶部15。記憶部15係為 記憶預先測量之電豸21的殘留振動的記憶體等記憶手 段。記憶部15係連接於控制部u,在雷射加工控制裝置 10進行被加工物7的雷射加工之際將所記憶的殘留振動傳 送至控制部11。 本實施形態的控制部11係根據自目標值產生部12送 來的雷射光的照射目標位置、自位置檢測部14A、ub送來 的雷射光的照射位置、及自記憶部15送來的電鏡21的殘 留振動,控制雷射振盪器1。控制部u係例如當判斷雷射 光的照射位置到達至雷射光的照射目標位置時,以同步於 殘留振動而脈波地射出雷射光之方式控制雷射振盪器i。 320865 18 1364338 實施形態2的雷A „ 態1的雷射《器係與第7圖所示的實施形 的頻率照射雷射光的方二’由控制部11採取以殘留振動 之時序俜根攄控制。照射第1次的雷射光 之%序係根據电鏡婦描器6A、 出的資訊來判斷。 直所核測 置相=二感測器23檢測出與雷射光的照射目標位 ° 枯’控制部11便判斷為到達了雷射光的昭射 目標位置,而使雷射挺湯。。““ …田耵尤的…射 萆射振盪盗1照射第1次的雷射光。接著, 控制部11係根據記情邱〗ς & 尤接者 以n牛料L隐口"15所讀'的電鏡U的殘留振動’ 叫步㈣殘留振動的方式照射帛2次的雷射光。再接 :,控制部11係_記㈣15所記憶的魏21的殘留振 以同步於該殘留振動的方式照射第3次及第4次的雷 射光。 之後’控制電鏡21的擺動角Θ使雷射照射位置移動至 下厂個加工位置。接著,與第!加工孔時同樣地,當位置 感測& 23檢測出與雷射光的照射目標位置相同的位置 時,控制部11便判斷為到達了雷射光的照射目標位置,而 使雷射振盪器1照射第1次的雷射光。接著,與第〗加工 孔時同樣地,控制部n係根據記憶部15所記憶的電鏡21 的殘‘留振動,以同步於該殘留振動的方式照射第2次至第 4次的雷射光。以下’以同樣的方式進行’對各加工孔照 射雷射光而進行被加工物7的孔加工。 藉此,能夠以離雷射光的照射目標位置的偏離量為相 同之位置於各孔照射複數次雷射光,因此在進行複數次的 19 320865 is] 1364338 f射照射時,能夠進行雷射照射於相同位置。因此,即使 疋在以爆射式加工對被加工物7進行孔加工時,仍能夠加 、 工真圓(正圓)度高的孔,而能夠進行品質良好的孔加工。 — 如上所述,依據貫施形態2,由於係根據預先記憶的 電鏡21的殘留振動來控制雷射振i,因此不需在雷射 加工中别里電鏡21的殘留振動’而容易地在離雷射光的照 射目“位置的偏離量為相同之位置於各孔照射複數次雷射 光β因此’即使疋在於電鏡21產生無法由位置感測器Μ 測!的殘留振動的情形下,仍能夠加工精密度佳且迅速地 # 加工被加工物7。 實施形態3 接著,利用第11圖針對本發明實施形態3進行說明〇 在本實施縣中係預先記憶電鏡掃描請、6Β的動作模式 (Pattern)(與雷射光的照射位置有關的動作模式),根據該 ,作模式與計時器所測量的時間(開始雷射加工後的經 時間等)來檢測雷射光的照射位置。 °The positional deviation between the position of the heart is small and the shape of the hole is a true circle (a perfect circle). Specifically, when the position sensor 23 detects the same position as the irradiation target position of the laser beam, the control unit u waits until the residual vibration detecting unit 13 = 13B detects the residual vibration frequency of the electron microscope 21. When the residual vibration detecting units 13A and 13B detect the residual vibration frequency (1 to a plurality of periods) of the electron microscope 21, the system 11 is based on the swing angle of the electron microscope 21 detected by the residual vibration and residual vibration detecting units 13 and 13B. 0, in such a manner that the amount of deviation from the irradiation target position of the laser light is emitted at a timing of G, the laser light is emitted: the oscillation is oscillated! 1. Thereby, the first to fourth laser light is emitted from the laser oscillator i at a timing at which the deviation I from the irradiation target position of the laser light becomes 〇. At this time, similarly to the case where the laser beam is emitted at the same frequency as the residual vibration frequency, the plurality of laser beams can be irradiated to the respective holes so that the deviation from the irradiation target position of the laser light is the same position. Further, since the amount of deviation from the irradiation target position of the laser light is 〇, it is possible to perform hole processing with excellent positional precision. In addition, although the case where the laser beam is emitted at the same frequency as the residual vibration frequency is described in the ninth figure, the laser light may be emitted at a frequency of one of the n-knife (n is a natural number) of the residual vibration frequency, or may be used. The laser light is emitted at a frequency twice the residual vibration frequency. Further, the control unit 11 may wait until the position sensor 23 detects the same position as the irradiation target position of the laser light 16 320865 1364338 -, and wait until the residual vibration of the electron microscope 21 - the predetermined time until the frequency is stabilized. Thereby, the laser beam can be emitted while being synchronized with the residual vibration while the residual vibration frequency of the electron microscope 21 is stable. Further, in the present embodiment, the control unit 11 causes the laser oscillator 1 to illuminate the first laser light when it is determined that the irradiation target position to the laser light is reached, but the control unit 11 may determine that the arrival is reached. At the time of the irradiation target position of the laser light, the irradiation of the laser light is resumed by a predetermined time delay (for example, the time until the residual vibration is stabilized). As described above, according to the first embodiment, since the laser light is emitted in a pulse wave manner in synchronization with the residual vibration, the plurality of laser beams can be irradiated to the respective holes at the same position from the irradiation target position of the laser light. Therefore, even in the case of performing the blasting processing, it is possible to perform laser irradiation at the same position of each hole, and to suppress the change in the shape of the machined hole with respect to the true circle (a perfect circle), and to process it. The precision is good and the workpiece is processed 7. Further, since the residual vibrations of the electron microscope scanners 6A and 6B are detected by the residual vibration detecting units 13A and 13B, it is possible to detect an appropriate residual vibration corresponding to the processing state of each laser processing. Further, since the position detecting portions 14A and 14B detect the irradiation position of the laser light, the irradiation position of the correct laser light can be accurately detected. (Embodiment 2) Next, a second embodiment of the present invention will be described with reference to Fig. 10. Although it is also possible to detect the electric 17 320865 ts 1364338 mirror by the position sensor 23 of the electron microscope scanners 6A, 6B. In the case of residual vibration of 21, but there is also an undetectable condition in the vibration mode. In the case of the vibration mode detected by the position sensing protocol 23, the rotor of the electron microscope scanner 6Α, 6β is known by the residual vibration. Part of the mechanical structure l and I m pre-implemented the frequency characteristic test of the rotor part to know the residual vibration (residual vibration frequency). Therefore, in the present embodiment, the laser oscillator is controlled by the residual vibration measured in advance. Specifically, the control unit controls the laser in such a manner that the laser beam is emitted from the pulse wave in synchronization with the residual vibration measured in advance. Oscillator 1. The figure is a block diagram showing the configuration of the laser processing control device of the second embodiment. Among the components of the laser processing control device 1G of the first embodiment shown in Fig. 3, the same components as those of the laser processing control device 1G of the first embodiment are denoted by the same reference numerals, and the description thereof will not be repeated. The laser processing control device 10 includes a control unit Π, a target value generating unit 12, position detecting units 14A and 14B, and a memory unit 15. The memory unit 15 is a memory means such as a memory that memorizes the residual vibration of the electric cymbal 21 measured in advance. The memory unit 15 is connected to the control unit u, and transmits the stored residual vibration to the control unit 11 when the laser processing control device 10 performs laser processing of the workpiece 7. The control unit 11 according to the present embodiment is based on the irradiation target position of the laser light sent from the target value generating unit 12, the irradiation position of the laser light sent from the position detecting unit 14A and the ub, and the electron microscope sent from the memory unit 15. The residual vibration of 21 controls the laser oscillator 1. For example, when it is determined that the irradiation position of the laser light reaches the irradiation target position of the laser beam, the control unit u controls the laser oscillator i so as to pulse the laser light in synchronization with the residual vibration. 320865 18 1364338 The laser "the laser system of the first embodiment" and the "radiation of the laser light of the embodiment shown in Fig. 7" are controlled by the control unit 11 at the timing of the residual vibration. The % of the laser light irradiated for the first time is judged according to the information obtained by the electron microscopy scanner 6A. The straight phase measurement phase = the second sensor 23 detects the irradiation target position with the laser light. The control unit 11 determines that the laser beam has reached the target position of the laser beam, and the laser beam is too strong. "" Tian Yuyou's ... shoots the stun shot 1 to illuminate the first laser light. Then, the control unit According to the record, Qiu 〗 〖 &; 尤 以 n n n n n n n n n n n n n n n n n 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 The control unit 11 irradiates the third and fourth laser beams in synchronization with the residual vibration of the Wei 21 stored in the (four) fifteenth. Then, the swing angle of the control electron microscope 21 causes the laser to be irradiated. The position moves to the next machining position of the next plant. Then, as in the case of the machining hole, when the position is sensed & When the position 23 is detected at the same position as the irradiation target position of the laser light, the control unit 11 determines that the irradiation target position of the laser light has been reached, and causes the laser oscillator 1 to illuminate the first laser light. In the same manner, the control unit n irradiates the second to fourth laser light in synchronization with the residual vibration in accordance with the residual vibration of the electron microscope 21 stored in the memory unit 15 in the same manner. In the same manner, the hole processing of the workpiece 7 is performed by irradiating the laser beam to each of the processing holes. Thereby, the plurality of laser beams can be irradiated to the respective holes at the same position from the irradiation target position of the laser light. Therefore, when a plurality of 19 320865 is] 1364338 f-irradiation is performed, the laser beam can be irradiated to the same position. Therefore, even if the workpiece 7 is subjected to hole processing by the blasting process, it can be added. A hole having a high degree of true circle (a perfect circle) can be processed with good quality. - As described above, according to the mode 2, since the laser vibration i is controlled based on the residual vibration of the electron microscope 21 which is memorized in advance, Therefore, it is not necessary to irradiate the residual vibration of the electron microscope 21 in the laser processing, and it is easy to irradiate the plurality of laser lights β in each hole at the position where the deviation from the irradiation target of the laser light is the same. 21 generation cannot be detected by the position sensor! In the case of residual vibration, the workpiece 7 can be processed with high precision and speed. (Embodiment 3) Next, the third embodiment of the present invention will be described with reference to Fig. 11. In the present embodiment, an operation mode (Pattern) (an operation mode related to the irradiation position of the laser light) of the electron microscope scanning and 6 预先 is stored in advance. According to this, the irradiation position of the laser light is detected by the mode and the time measured by the timer (the elapsed time after the start of the laser processing, etc.). °

第11圖係顯示實施形態3的雷射加工控制裝置 成之^塊圖。帛11 ®的各構成要素之t達成與第1〇圖 不的貫施形4 2的雷射加工控制裝置1()相同功能 素係標註相_編號,並省略重複說明。雷射加工 置10係具有控制部Π、目標值產生部12、記工 出部16、及動作模式時間表料部(動作模式1 動作模式算出部16係使用自目標值產生部12送來的 320865 (S) 20 1364338 .的照射目標位置,算㈣鏡掃描器6a、6b_ 式(雷射光照射位置的获叙措— 才、 據自目作模式算㈣16係根 ^產生。卩12送來的雷射先的昭射目俨彳#罟# + 射光的照射位置朝屬於加工對象的加工:移二置要Π =等_:所需要的時間'對各加工=】的 荨异出電鏡掃描器6Α、6β的動作模式。 表 =: 6Α、_動作模式作為動作模式時間 於射隐體等記憶手段。動作模式時間表係為表示 哪使雷射光的照射位置在哪個時序移動至 後的==的控制部11係具備有測量雷射加工開始 :F==::r ==,來_21_振動,控_二 i的昭為雷射糾照射位置到達至雷射 光之方式控射=步於殘留振動而脈 與/7圖所示的實施形 式時間表與計時器所測量的時間等,當計時= 里間達到動作模式時間表所指定的時間(雷射光的 320865 [S1 21 1364338 照射位置到達至雷射光的照射目標位置(在此為$ 1加工 孔)的日吁間)時,判斷為到達至雷射光的照射目標位置(第1 ’而使雷射振盪器1照射第1次的雷射光。接著, 控制部11係根據記憶部15所記憶的電鏡21的殘留振動, ^同步於該殘留振動的方式照射第2次的雷射光。再接 著,控制部11係根據記憶部15所記憶的電鏡21的殘留振 動’/乂同步於該殘留振動的方式照射第3次及第4次的雷 之後’控制電鏡21的擺動角0使雷射照射位置移動j 下個加工位置。接著,與第1加工孔時同樣地’當計的 =所測量㈣間達到動作模式時間表所歧的時間(則 第2加工孔的時間)時’控制部11㈣斷為到達了雷射夫 的照射目標位置(第? 4 、 1 加工孔),而使雷射振盪器1照射第 光。接著’與第1加工孔時同樣地,控制部1] 兮…憶的電鏡21的殘留振動,以同步於 該殘留振動的方式昭射篦、 以同揭… 射第2次至第4次的雷射光。以下, 物==進行’對各加工孔照射雷射光而進行被加工 同之=於置的偏離量為相 能夠進行雷射照射於相同位置。因此,即使 疋在以爆射式加工對被加 I便 工真圓(正圓)户古進仃孔加工時,仍能夠加 ,的孔,而能夠進行品質良好的孔加工。 亦可藉由個人電料外部裝置料動作模式時 320865 22 1364338 射 f表再預絲存於動作模式相讀存部17。此時,+ ^工控制裳置10亦可不具傷動作模式算出部16 〇田 在本實施形態t,雖然未從目標 制XY工^盘|σΜ2所產生的照射目標位置係傳送至控 此外在描器6Α、6β的其他控制部(未圖示)。 要,因器6Α、6β之際,時間控制亦成為必 ’亦將儲存於動作模式時間表儲存部17的動作模 =2傳=:制部。該其他控制部係使用目標值 如上所述,依據實施形態3,由於係根 與預先記憶的動作模式時間二 口此个而進仃雷射光的照射位置 :^角Θ)的檢測與電鏡21的殘留振動的檢測,而容易 地在離雷射光㈣射目標位置的偏離量為 孔照射複數次雷射光。 议罝孓谷 位詈==在本實施形態中係當_為雷射光的照射 置到達至雷射光的歸目標位置時,同步於殘 ==出,但亦可考慮雷射振11射出雷射光為 止的時間來控制雷射振盈器i。此時,控制部n係在 光的照射位制輕雷射光㈣射目標位置之預定^ 刖,對雷射振衫i發出雷射光的射出指令, 的照射位置到達至雷射光的照射目標位置之時點,同步於 320865 23 1364338 殘留振動而使雷射光脈波射出。 實施形態4 接著,利用第12圖至第15圖針對本發明的實施形態 4進行說明。在實施形態1至3所說明的雷射振盪器1係 依據自雷射加工控制裝置10傳送來的信號而振盪脈波型 的雷射光2,而實施形態4的雷射加工裝置102係使用以 一定頻率持續振盪出脈波型的雷射光2之雷射振盪器1。 第12圖係顯示本發明實施形態4的雷射加工控制裝 置的構成之圖。第12圖的各構成要素之中達成與第1圖 所示的實施形態1的雷射加工控制裝置101相同功能的構 成要素係標註相同的編號,並省略重複說明。 雷射加工裝置102係除了具有雷射振盪器1、遮罩3、 鏡子4、f 0透鏡5、電鏡掃描器6A、6B、及XY工作台8 之外,還具有使雷射光2偏向的AO元件(Acousto-optic Element ;聲光元件)31與接受雷射光2的阻尼器(damper) 32。 A0元件31係配置在雷射振盪器1與鏡子4之間的光 路上,且為使從雷射振盪器1射出的雷射光2偏向至阻尼 器32側或鏡子4側的任一方之元件。阻尼器32係當雷射 光2從A0元件31發送過來時吸收該雷射光2。 在雷射加工裝置102中,當A0元件31開啟(ON)時, 雷射光2係在A0元件31偏向,然後通過電鏡掃描器6A、 6B而照射至被加工物7。此外,當A◦元件31關閉(OFF) 時,雷射光2係直線前進於A0元件31内,然後由阻尼器 24 320865 32吸收。藉由使阻尼器32吸收雷射光2,防止雷射光2在 電鏡掃描器6A、6B的動作中等照射至被加工物了。 在此種的田射加卫I置1Q2巾,由於以— 出雷射光2 ’因此雷射本9 4ε、;& jts十 射先2的振盪頻率與電鏡掃描器6A ' 6B的^留振動頻率幾乎未同步。因此,如第.i3圖所示, 在本貫施形‘4令係藉由在電鏡21的背面黏貼貼紙(㈣) (殘留振動調整部)26來調整殘留振動頻率,而使電鏡21 的殘留振動頻率同步於雷射光2的振盧頻率。此時,貼付 21的貼紙26的種類與貼付位置係設定為相應於雷 f光2的振_率之動貞無純置。本f施形態的雷射 二控制裝置10係依據例如實施形態i所說明的第7圖盘 ^圖的時序圖使雷射振射出雷射光。因此,貼; 如笛^ 21的貼紙26的_與貼付位置係設定為相應於例 : = 時序圖所示的雷射〜頻率之 不實施形態4的電鏡掃描器的轉子部分的構成並 圖所示的構成。第14圖係顯示實施形態4的 ==的轉子部分的其他構成之圖。第14圖的各構成 轉子部八與ί 2圖所示的實施形態1的電鏡掃描器的 重複說二相同功月匕的構成要素係標註相同的編號,並省略 =14圖所示的電鏡掃插器6α、6β的轉子部分係配 留#動鏡21的殘留振動頻料振滅調整部(殘 留振動調整❹7。該振動數調整部27係配設在轴U的外 320865 IS1 25 1364338 部(側面),且形成為能夠在從電鏡21側往位置感測器23 側的預定範圍自如移動於軸22的轴上之構成。於轴22係 配設有2個軸承41a、41b與馬達部24,因此振動數調整 部27係在2個軸承41a、4.1b與馬達部24之間以外的位置 移動。具體而言,振動數調整部27係在軸承41b與位置感 測器23之間或軸承41a與透鏡座25之間移動。 振動數調整部27係形成為將概略圓柱狀的中心軸部 分挖穿之形狀(具有預定厚度的圓環狀)。振動數調整部27 之中被挖穿的部分為僅些微大於軸22的溝(内壁面),於該 溝插入棒狀的軸22。 此外,振動數調整部27係從概略圓柱狀的外側的側面 (圓柱外壁面)朝内壁面側設有1個螺孔。將振動數調整部 27固定於轴22的固定螺絲28係從振動數調整部27的圓 柱外壁面螺入該螺孔,而螺合至螺孔。固定螺絲28係為例 如内六角鎖固螺絲。 第15圖係從軸的轴方向觀看的振動數調整部的剖面 圖。如第15圖所示,在將振動數調整部27固定於軸22之 際,固定螺絲28的前端部係貫通螺孔而卡合於軸22的側 面。此外,在變更振動數調整部27於軸22上的位置之際, 係將固定螺絲28轉鬆而使固定螺絲28的前端部離開軸 22,再將振動數調整部27移動至所期望的位置。 藉此,與在電鏡21的背面黏貼貼紙26時同樣地調整 殘留振動頻率,使電鏡21的殘留振動頻率同步於雷射光2 的振盪頻率。此時,振動數調整部27的尺寸與固定位置係 26 320865 1364338 设定為相應於雷射光2的振盪頻率之尺寸與固定位置。此 時的雷射加工控制裝置1Q亦與在電鏡21的背面黏貼 26時同樣地依據第7圖與第9圖的時序圖使雷射缝器、 射出雷射光。因此’振動數調整部27的尺寸與Μ位置係 設定為相應於例如第7圖與第9 _時序圖所示的雷射光 2的振盪頻率之尺寸與固定位置。 如上所述,依據實施形態4,由於係藉由貼紙% 動數調整部27來調整電鏡21的殘留振動頻率,使電鏡 的殘留振動鮮同步於雷射光2的振盪頻率,因此即 ^用以-定鮮持續振舰波義雷射光2之雷射振靈器 的情形下,仍㈣於各孔的相同位置進行雷射 能夠加工精密度佳且迅速地加I被加工物了。、 (產業上的可利用性) 如上所述,本發明的雷射加工 置係適合於以爆射式加工進行之被力田射加工控制裝 【圖式簡單制】 進狀破加工物的雷射加工。 成之^圖係顯示本發明實施形態2的雷射加工震置的構 f 2圖麵示電鏡掃㈣的轉子部分的構成之圖⑴ 之方塊圖。 的田射加工控制裳置的構成 4圖係進行爆射式加工 町的田射先的照射順序之 第5圖係心說明電鏡的擺動角之圖。 第 圖 320865 27 第6圖係顯示有殘留振動時的電鏡的擺 關係之圖。 行”町间之 第7圖係顯示雷射光的射出時序之圖。 第8圖係顯示以殘留振動數的二分之一的頻率射 射光時的雷射光的射出時序之圖。 第9圖係顯示自雷射光的照射目標位置起的偏離量成 為0時的雷射光的射出時序之圖。 第10圖係顯示實施形態2的雷射加工控制裝置 成之方塊圖。 第11圖係顯示實施形態3的雷射加工控制裝置的構 成之方塊圖。 圖 第12圖係顯示實施形態4的雷射加工裝 置的構成之 第13圖係顯示電鏡掃描器的轉子部分的構成 (2)。 第14圖係顯示電鏡掃描㈣轉子部分的構成之圖 (3) 〇 第15圖係從軸的方向觀看的振動數調整部的剖面 【主要元件符號說明】 雷射振盈β 遮罩 f 0透鏡 被加工物 乙 雷射光 4 鏡子 6A'6B 電鏡掃描器 8 XY工作台 320865 28 1364338 10 雷射加工控制裝置 11 控制部 12 目標值產生部 13A、 13B殘留振動檢測部 14A、 14B位置檢測部 15 記憶部 16 動作模式算出部 17 動作模式時間表儲存部(動作模式記憶部) 21 電鏡 22 轴 23 位置感測器 24 馬達部 25 透鏡座 26 貼紙 27 振動數調整部(殘留振動調整部) 28 固定螺絲 31 AO元件 32 阻尼器 41a、 41b軸承 42 可動線圈 43 永久磁鐵 101 ' 102雷射加工裝置 Θ 擺動角 29 320865Fig. 11 is a block diagram showing the laser processing control device of the third embodiment. The constituent elements of 帛11® are the same as those of the laser processing control device 1() of Fig. 4, and the same functions are denoted by the same reference numerals, and the overlapping description will be omitted. The laser processing unit 10 includes a control unit Π, a target value generating unit 12, a job recording unit 16, and an operation mode schedule unit (the operation mode 1 operation mode calculation unit 16 is used from the target value generation unit 12). 320865 (S) 20 1364338. The target position of the illumination is calculated by (4) mirror scanners 6a, 6b_ (the method of obtaining the position of the laser light irradiation - only according to the mode of the self-seeking mode (4) 16 series roots ^.射射先的昭射目俨彳#罟# + The irradiation position of the illuminating light is directed to the processing belonging to the processing object: shifting the second setting Π = equal _: the required time 'for each processing =】 the different output mirror scanner 6Α, 6β operation mode Table =: 6Α, _ action mode as the operation mode time, such as the hidden object, etc. The operation mode schedule is to indicate which of the timings of the laser light irradiation position is shifted to == The control unit 11 is equipped with a measurement laser processing start: F==::r ==, _21_vibration, control _2i, the laser correction illumination position reaches the laser light control mode = step The time measured by the residual vibration and the timetable shown in the /7 diagram and the time measured by the timer Etc., when the timing = the time specified by the action mode schedule (the 320865 of the laser light [S1 21 1364338 illumination position reaches the illumination target position of the laser light (here, the $1 processing hole)) It is determined that the irradiation target position to the laser light is reached (the first '1', and the laser oscillator 1 is irradiated with the first laser light. Next, the control unit 11 is based on the residual vibration of the electron microscope 21 memorized by the memory unit 15, ^ The second laser light is irradiated in synchronization with the residual vibration. Then, the control unit 11 irradiates the third and the third in accordance with the residual vibration '/乂 of the electron microscope 21 stored in the memory unit 15 in synchronization with the residual vibration. After 4 times of thunder, 'the swing angle 0 of the control electron microscope 21 moves the laser irradiation position to the next machining position. Then, as in the case of the first machining hole, the time between the measurement (four) and the operation mode schedule is reached. In the case of the time (the time of the second machining hole), the control unit 11 (four) is broken to reach the irradiation target position of the laser beam (the fourth and first machining holes), and the laser oscillator 1 is irradiated with the first light. 'When the first hole is machined In the sample, the residual vibration of the electron microscope 21 of the control unit 1] is detected in synchronization with the residual vibration, and the second to fourth laser light is emitted in the same manner. Below, the object == It is possible to perform laser irradiation on the same position by irradiating the laser beam to each of the processing holes and performing the same amount of deviation as the phase. Therefore, even if the cymbal is processed by the blasting type, the workpiece is added. (Positive round) When the household enters the boring process, it can still add holes, and can perform good hole processing. It can also be used for the external electric material external device material operation mode 320865 22 1364338 It is stored in the operation mode phase reading unit 17. At this time, the + control control panel 10 or the non-injury operation mode calculation unit 16 〇田 In the present embodiment t, the irradiation target position which is not generated from the target XY tool |σΜ2 is transmitted to the control unit. Other control units (not shown) of the scanners 6Α and 6β. In the case of the devices 6Α and 6β, the time control is also required. The operation mode stored in the operation mode schedule storage unit 17 is also = 2 transmission =: system. The other control unit uses the target value as described above. According to the third embodiment, the detection of the irradiation position of the laser beam by the root and the pre-memorized operation mode time is: The residual vibration is detected, and the amount of deviation from the position of the target of the laser light (four) is easily irradiated with a plurality of laser lights for the hole. In the present embodiment, when the irradiation of the laser light reaches the target position of the laser light, it is synchronized with the residual ==, but the laser light 11 can also be considered to emit the laser light. The time until the laser shaker i is controlled. At this time, the control unit n sets a predetermined position of the light laser light (4) to the target position of the light, and emits an emission command of the laser light to the laser body i, and the irradiation position reaches the irradiation target position of the laser light. At the time, the residual vibration is synchronized with 320865 23 1364338 to cause the laser pulse to be emitted. (Embodiment 4) Next, a fourth embodiment of the present invention will be described with reference to Figs. 12 to 15 . The laser oscillator 1 described in the first to third embodiments oscillates the pulse-type laser light 2 in accordance with a signal transmitted from the laser processing control device 10, and the laser processing device 102 of the fourth embodiment is used. The laser oscillator 1 of the pulse type laser light 2 is continuously oscillated at a certain frequency. Fig. 12 is a view showing the configuration of a laser processing control device according to a fourth embodiment of the present invention. Among the components of the first embodiment, the same components as those of the laser processing control device 101 of the first embodiment shown in Fig. 1 are denoted by the same reference numerals, and the description thereof will not be repeated. The laser processing apparatus 102 has an AO that deflects the laser light 2 in addition to the laser oscillator 1, the mask 3, the mirror 4, the f 0 lens 5, the electron microscope scanners 6A, 6B, and the XY table 8. An element (Acousto-optic Element) 31 and a damper 32 that receives the laser light 2. The A0 element 31 is disposed on the optical path between the laser oscillator 1 and the mirror 4, and is an element for biasing the laser light 2 emitted from the laser oscillator 1 to either the damper 32 side or the mirror 4 side. The damper 32 absorbs the laser light 2 when the laser light 2 is transmitted from the A0 element 31. In the laser processing apparatus 102, when the A0 element 31 is turned "ON", the laser light 2 is deflected by the A0 element 31, and then irradiated to the workpiece 7 by the electron microscope scanners 6A, 6B. Further, when the A-inch element 31 is turned off (OFF), the laser light 2 is linearly advanced in the A0 element 31 and then absorbed by the damper 24 320865 32. By absorbing the laser light 2 by the damper 32, the laser light 2 is prevented from being irradiated to the workpiece in the operation of the electron microscope scanners 6A, 6B. In this kind of field shot, I set the 1Q2 towel, because the laser light is 2', so the laser is 9 4 ε,; & jts the first oscillating frequency and the electron microscope scanner 6A '6B The frequency is almost unsynchronized. Therefore, as shown in Fig. i3, in the present embodiment, the residual vibration frequency is adjusted by attaching a sticker ((4)) (residual vibration adjusting portion) 26 to the back surface of the electron microscope 21, and the residual of the electron microscope 21 is made. The vibration frequency is synchronized to the vibration frequency of the laser light 2. At this time, the type and the attachment position of the sticker 26 attached to the sticker 21 are set so as not to be purely corresponding to the vibration rate of the Raylight 2. The laser control device 10 of the present embodiment causes the laser to emit laser light in accordance with, for example, a timing chart of the seventh disk illustrated in the embodiment i. Therefore, the _ and the attachment position of the sticker 26 such as the whistle 21 are set to correspond to the example: = the laser portion shown in the timing chart, the frequency of the rotor portion of the SEM scanner of the fourth embodiment is not shown. The composition of the show. Fig. 14 is a view showing another configuration of the rotor portion of == in the fourth embodiment. The components of the rotor portion 8 and the electron microscope scanner of the first embodiment shown in Fig. 14 are denoted by the same reference numerals, and the electron mirror scanning shown in Fig. 14 is omitted. The rotor portion of the interposers 6α and 6β is provided with a residual vibration frequency quenching adjustment unit (residual vibration adjustment ❹7) of the moving mirror 21. The vibration number adjusting unit 27 is disposed on the outer 320865 IS1 25 1364338 portion of the shaft U ( The side surface is formed to be movable on the shaft of the shaft 22 from a predetermined range from the side of the electron mirror 21 to the position sensor 23. The shaft 22 is provided with two bearings 41a, 41b and a motor portion 24 Therefore, the vibration number adjusting unit 27 is moved at a position other than between the two bearings 41a and 4.1b and the motor unit 24. Specifically, the vibration number adjusting unit 27 is between the bearing 41b and the position sensor 23 or the bearing. 41a moves between the lens holder 25. The vibration number adjustment unit 27 is formed in a shape (an annular shape having a predetermined thickness) through which a substantially cylindrical central axis portion is dug. The vibration number adjustment unit 27 is dug through. The portion is a groove (inner wall surface) which is only slightly larger than the shaft 22, and The groove-shaped shaft 22 is inserted into the rod-shaped shaft 22. The vibration number adjusting unit 27 is provided with one screw hole from the outer side surface (column outer wall surface) of the substantially cylindrical shape toward the inner wall surface side. The vibration number adjusting unit 27 is fixed to the shaft 22 The fixing screw 28 is screwed into the screw hole from the cylindrical outer wall surface of the vibration number adjusting portion 27, and is screwed to the screw hole. The fixing screw 28 is, for example, a hexagonal locking screw. Fig. 15 is viewed from the axial direction of the shaft. In the cross-sectional view of the vibration number adjusting portion, as shown in Fig. 15, when the vibration number adjusting portion 27 is fixed to the shaft 22, the distal end portion of the fixing screw 28 is inserted through the screw hole and engaged with the side surface of the shaft 22. When the position of the vibration number adjusting unit 27 on the shaft 22 is changed, the fixing screw 28 is loosened, the front end portion of the fixing screw 28 is separated from the shaft 22, and the vibration number adjusting portion 27 is moved to a desired position. Thereby, the residual vibration frequency is adjusted in the same manner as when the sticker 26 is adhered to the back surface of the electron microscope 21, and the residual vibration frequency of the electron microscope 21 is synchronized with the oscillation frequency of the laser light 2. At this time, the size and the fixed position of the vibration number adjustment unit 27 are 26 320865 1364338 set to corresponding The size and the fixed position of the oscillation frequency of the laser light 2. At this time, the laser processing control device 1Q also causes the laser slitter according to the timing charts of FIGS. 7 and 9 in the same manner as when the back surface of the electron microscope 21 is pasted 26. The laser light is emitted. Therefore, the size and the Μ position of the vibration number adjusting portion 27 are set to correspond to the size and the fixed position of the oscillation frequency of the laser light 2 shown in, for example, the seventh and ninth timing charts. According to the fourth embodiment, since the residual vibration frequency of the electron microscope 21 is adjusted by the sticker % movement number adjusting unit 27, the residual vibration of the electron microscope is freshly synchronized with the oscillation frequency of the laser light 2, so that it is used for steady-state vibration. In the case of the laser oscillating device of the ship's laser light, the laser can still be processed at the same position of each hole and the workpiece can be processed with high precision. (Industrial Applicability) As described above, the laser processing apparatus of the present invention is suitable for a mine that is subjected to a blasting process and is controlled by a force field processing control device. Shot processing. Fig. 1 is a block diagram showing the configuration of the rotor portion of the electron mirror sweep (four) in the configuration of the laser processing according to the second embodiment of the present invention. The structure of the field-shooting processing control is set. The image is subjected to the blasting processing. The order of the irradiation of the field is first. The fifth figure shows the angle of the oscillating angle of the electron microscope. Fig. 320865 27 Fig. 6 is a diagram showing the pendulum relationship of the electron microscope when there is residual vibration. The seventh diagram of the line between the lines shows the timing of the emission of the laser light. Fig. 8 is a diagram showing the emission timing of the laser light when the light is emitted at a frequency of one-half of the residual vibration number. A diagram showing the emission timing of the laser light when the amount of deviation from the irradiation target position of the laser light is 0. Fig. 10 is a block diagram showing the laser processing control device of the second embodiment. Fig. 11 is a view showing an embodiment Fig. 12 is a block diagram showing the configuration of the laser processing apparatus according to the fourth embodiment, showing the configuration (2) of the rotor portion of the electron microscope scanner. Fig. 14 is a block diagram showing the structure of the laser processing apparatus of the fourth embodiment. Fig. 3 shows the structure of the rotor part (4). Fig. 15 shows the section of the vibration number adjustment section viewed from the direction of the axis. [Key element symbol description] Laser oscillation β mask f 0 lens workpiece B laser light 4 mirror 6A'6B electron microscope scanner 8 XY table 320865 28 1364338 10 laser processing control device 11 control unit 12 target value generating unit 13A, 13B residual vibration detecting unit 14A, 14B position detecting unit 15 memory unit 16 Operation mode calculation unit 17 Operation mode schedule storage unit (operation mode storage unit) 21 Electron mirror 22 Axis 23 Position sensor 24 Motor unit 25 Lens mount 26 Sticker 27 Vibration number adjustment unit (residual vibration adjustment unit) 28 Fixing screw 31 AO element 32 damper 41a, 41b bearing 42 movable coil 43 permanent magnet 101 '102 laser processing device 摆动 swing angle 29 320865

Claims (1)

1364338 第97148881號專利申請案 100年12月19曰修正替換頁 七、申請專利範圍: 1. 一種雷射加工裝置,係藉由電鏡掃描器將雷射光導向被 加工物上的照射位置,且射出脈波型的雷射光至成為加 工孔的前述雷射光的照射位置而進行爆射式加工者,其 中,具備有: 控制部,以同步於前述雷射光的照射位置到達至目 標照射位置後的前述電鏡掃描器的殘留振動頻率而射 出前述脈波型的雷射光之方式控制前述雷射光的照射 時序。 2. 如申請專利範圍第1項之雷射加工裝置,其中,復具備 有: 殘留振動檢測部,檢測前述雷射光的照射位置到達 至目標照射位置後的電鏡掃描器的殘留振動頻率; 前述控制部係以同步於前述殘留振動檢測部所檢 測出的殘留振動頻率而射出前述脈波型的雷射光之方 式控制前述雷射光的照射時序。 3. 如申請專利範圍第1項之雷射加工裝置,其中,復具備 有: 記憶部,預先記憶有前述雷射光的照射位置到達至 目標照射位置之際的前述電鏡掃描器的殘留振動頻率; 前述控制部係以同步於前述記憶部所記憶的殘留 振動頻率而射出前述脈波型的雷射光之方式控制前述 雷射光的照射時序。 4. 如申請專利範圍第1至3項中任一項之雷射加工裝置, 30 320865(修正版) 第97148881號專利申請案 100年12月19日修正替換頁 其中’復具備有: =測部’檢測前迷雷射光的照射位置; 斷前迚二二制Μ系根據前述位置檢測部的檢測結果,判 ^迷雷射光的照射位置是否已到達前述目標照射位 如申請專利範圍第丨至3 其中,復具備有·· 3項中任-項之雷射加工裝置’ 動作模式記憶部,預| ^ 位置有_動作^先錢有與前述雷射光的照射 動作模:t係根據前述動作模式記憶部所記憶的 目標照射Μ。 柄照射位4是否6到達前述 如申請專利範圍第1 ΜΛβ^^ . 項之雷射加工裝置,其中,前述控 值的振、與别述電鏡掃描器的殘留振動頻率相同 ==射出前述脈波型的雷射光之方式控制 則述雷射光的照射時序。 如申請專利範圍第! > *,r ^ - ,Λ 、之雷射加工裝置,其中,前述控 的^以將Μ述電鏡掃㈣留振動除以 預定的自然數所得夕 <值的振盪頻率來射出前述脈波型 :=之方式控制前述雷射光的照射時序。 第2項之雷射加卫裝置,其中,前述控 ,、、' a視如述殘留振動檢測部所檢測的殘 留.振動 心、、且根據該監視結果檢測在前述電鏡掃描器的殘 、』間内别述雷射光的照射位置成為目標照射位 320865(修正版) 31 1364338 第97148881號專利申請案 100年12月19日修正替換頁 置之時序、且於所檢測出的時序射出前述脈波型的雷射 光之方式,控制前述雷射光的照射時序。 9. 一種雷射加工裝置,係藉由電鏡掃描器決定雷射光之照 射至被加工物的照射位置,且射出脈波型的雷射光至成 為加工孔的前述雷射光的照射位置而進行爆射式加工 者,其中,具備有: 殘留振動調整部,將前述雷射光的照射位置到達目 標照射位置之際的前述電鏡掃描器的殘留振動頻率調 整成與雷射光的振盪頻率同步。 .一種雷射加工控制裝置,係對藉由電鏡掃描器將雷射光 導向被加工物上的照射位置且射出脈波型的雷射光至 成為加工孔的前述雷射光的照射位置而進行爆射式加 工的雷射加工裝置進行控制者,其中,具備有: 控制部,係以同步於前述雷射光的照射位置到達至 目標照射位置後的前述電鏡掃描器的殘留振動頻率而 射出前述脈波型的雷射光之方式發送指令給前述雷射 加工裝置,藉此控制前述雷射加工裝置所射出的雷射光 的照射時序。 32 320865(修正版)1364338 Patent Application No. 97148881 December 19, 19, Amendment and Replacement Page VII. Patent Application Range: 1. A laser processing device that directs laser light to an illumination position on a workpiece by an electron microscope scanner and emits it. The pulsation type laser beam is irradiated to the irradiation position of the laser beam to be processed, and the blasting type is provided, wherein the control unit is configured to synchronize the irradiation position of the laser light to the target irradiation position. The irradiation timing of the laser light is controlled such that the pulsed laser light is emitted from the residual vibration frequency of the electron microscope scanner. 2. The laser processing apparatus according to claim 1, wherein the residual vibration detecting unit detects a residual vibration frequency of the electron microscope scanner after the irradiation position of the laser light reaches the target irradiation position; The unit controls the irradiation timing of the laser light so as to emit the pulse-type laser light in synchronization with the residual vibration frequency detected by the residual vibration detecting unit. 3. The laser processing apparatus according to claim 1, wherein the memory unit has a memory portion that preliminarily stores a residual vibration frequency of the electron microscope scanner when the irradiation position of the laser light reaches the target irradiation position; The control unit controls the irradiation timing of the laser light so as to emit the pulse-type laser light in synchronization with the residual vibration frequency stored in the memory unit. 4. For the laser processing apparatus of any one of the patent scopes 1 to 3, 30 320865 (Revised Edition) Patent No. 97148881, the revised application page of December 19, 100, where the 'recovery is available: = test The part of the 'detecting the position of the laser beam before the detection; before the break, the second two-two system determines whether the irradiation position of the laser light has reached the target irradiation position according to the detection result of the position detecting unit. 3 In addition, there is a laser processing device of the three-item-item-operation mode memory unit, pre-| ^ position has _ action ^ first money and the laser light irradiation operation mode: t is based on the above action The target memory memorized by the pattern memory unit. Whether the illuminating position 4 of the shank reaches the aforementioned laser processing apparatus according to the first aspect of the patent application, wherein the vibration of the control value is the same as the residual vibration frequency of the other SEM scanner == the pulse wave is emitted The type of laser light control describes the timing of the illumination of the laser light. Such as the scope of patent application! < *, r ^ - , Λ , the laser processing apparatus, wherein the control is to circulate the pulse wave by dividing the SEM frequency by a predetermined natural number by dividing the SEM (4) residual vibration by a predetermined natural number Type: = mode controls the illumination timing of the aforementioned laser light. The laser-assisted device of the second aspect, wherein the control, the 'a residual voltage detected by the residual vibration detecting unit is detected, and the residual of the electron microscope scanner is detected based on the monitoring result. The irradiation position of the laser light is changed to the target irradiation position 320865 (revision). 31 1364338 Patent Application No. 97148881, and the timing of the replacement page is corrected on December 19, 100, and the pulse wave is emitted at the detected timing. The type of laser light that controls the illumination timing of the aforementioned laser light. A laser processing apparatus that determines an irradiation position of a laser beam to an object to be processed by an electron microscope scanner, and emits a pulse wave type laser light to an irradiation position of the laser light to be a processing hole to perform an explosion. The residual processor adjusts the residual vibration frequency of the electron microscope scanner when the irradiation position of the laser light reaches the target irradiation position to be synchronized with the oscillation frequency of the laser light. A laser processing control device that performs an ejector type by directing laser light to an irradiation position on a workpiece by an electron microscope scanner and emitting pulse-type laser light to an irradiation position of the laser light to be a processing hole. The controller of the processed laser processing apparatus includes: a control unit that emits the pulse wave type by synchronizing the residual vibration frequency of the electron microscope scanner after the irradiation position of the laser light reaches the target irradiation position The laser light transmits a command to the laser processing apparatus, thereby controlling the irradiation timing of the laser light emitted by the laser processing apparatus. 32 320865 (revised edition)
TW097148881A 2007-12-27 2008-12-16 Laser processing apparatus and control device for laser processing TWI364338B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007338005A JP4509174B2 (en) 2007-12-27 2007-12-27 Laser processing apparatus and laser processing control apparatus

Publications (2)

Publication Number Publication Date
TW200936285A TW200936285A (en) 2009-09-01
TWI364338B true TWI364338B (en) 2012-05-21

Family

ID=40826365

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097148881A TWI364338B (en) 2007-12-27 2008-12-16 Laser processing apparatus and control device for laser processing

Country Status (4)

Country Link
JP (1) JP4509174B2 (en)
KR (1) KR101066304B1 (en)
CN (1) CN101468424B (en)
TW (1) TWI364338B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5637526B2 (en) 2010-04-28 2014-12-10 株式会社ブイ・テクノロジー Laser processing equipment
CN102510788B (en) * 2010-06-14 2014-12-24 三菱电机株式会社 Laser processing device and laser processing method
TWI406732B (en) * 2011-06-09 2013-09-01 Univ Nat Yunlin Sci & Tech Magnetic field assisted laser plasma device
CN102806421B (en) * 2012-08-22 2014-12-03 温州泛波激光有限公司 Light spot compensation control system and laser cutting equipment thereof
KR101392986B1 (en) * 2012-08-29 2014-05-12 레이저앤피직스 주식회사 Apparatus and method for controlling scanner
KR101392982B1 (en) * 2012-08-29 2014-05-12 레이저앤피직스 주식회사 Apparatus and method for controlling scanner
KR101511483B1 (en) * 2013-01-04 2015-04-10 미쓰비시덴키 가부시키가이샤 Processing controller, laser processing apparatus and processing control method
KR20160100663A (en) 2015-02-16 2016-08-24 엄태성 Activated charcoal tile manufacturing method
JP6415357B2 (en) * 2015-03-06 2018-10-31 住友重機械工業株式会社 Laser processing equipment
JP6781209B2 (en) * 2018-08-03 2020-11-04 ファナック株式会社 Laser machining equipment control device and laser machining equipment
JP6833153B1 (en) * 2020-06-24 2021-02-24 三菱電機株式会社 Trouble detection device, control device and laser machining device
CN112630983A (en) * 2020-12-24 2021-04-09 中国工程物理研究院激光聚变研究中心 Laser system, laser-induced damage testing system and method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445756U (en) * 1987-09-10 1989-03-20
JPH11145581A (en) * 1997-11-10 1999-05-28 Hitachi Seiko Ltd Method and equipment for drilling printed board
JP3614308B2 (en) * 1998-10-09 2005-01-26 松下電器産業株式会社 Laser processing method
US6469729B1 (en) * 1999-10-15 2002-10-22 Videojet Technologies Inc. Laser marking device and method for marking arcuate surfaces
JP2002006255A (en) * 2000-06-23 2002-01-09 Hitachi Via Mechanics Ltd Scanner and laser beam machine
JP3774138B2 (en) * 2000-11-13 2006-05-10 住友重機械工業株式会社 Process planning method and apparatus, and process method and apparatus
JP2002239772A (en) * 2001-02-16 2002-08-28 Matsushita Electric Ind Co Ltd Method and device for laser beam machining
JP4126883B2 (en) * 2001-03-29 2008-07-30 三菱電機株式会社 Optical deflection apparatus and laser processing apparatus using the same
JP2005055610A (en) * 2003-08-01 2005-03-03 Hitachi Via Mechanics Ltd Scanner and laser beam machine

Also Published As

Publication number Publication date
JP4509174B2 (en) 2010-07-21
CN101468424B (en) 2012-06-06
KR20090071390A (en) 2009-07-01
CN101468424A (en) 2009-07-01
KR101066304B1 (en) 2011-09-20
TW200936285A (en) 2009-09-01
JP2009154198A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
TWI364338B (en) Laser processing apparatus and control device for laser processing
EP1837116B1 (en) Laser welding apparatus for easily adjusting the laser focusing position on a workpiece
JP4612733B2 (en) Pulse laser processing equipment
JP5654234B2 (en) XY high speed drilling system
US8933374B2 (en) Pulse laser machining apparatus and pulse laser machining method
JP5431561B2 (en) Pulse laser processing apparatus and pulse laser processing method
JP2008194729A (en) Manufacturing method, laser beam machining method and laser beam machining apparatus for small device
WO2012140797A1 (en) Laser processing device and laser processing system
TW201145800A (en) Mirror angular-positioning apparatus and processing apparatus
JP4212305B2 (en) Laser irradiation device
JP2012006040A (en) Pulse laser machining method
JP4549996B2 (en) Laser irradiation device
JP2002248591A (en) Method and device for laser beam machining
JP2003053561A (en) Laser machining device
JP2005103614A (en) Laser marking apparatus and work distance adjustment method for the same
JP6434554B2 (en) Galvano scanner
JP2004174539A (en) Laser beam machining method
JP2002346775A (en) Device and method for laser beam machining
JP2004354781A (en) Scanner driving circuit, laser beam machining device and method of adjusting scanner driving circuit
JP2009131876A (en) Laser beam machining apparatus
US20140070110A1 (en) Atom probe measuring apparatus and method
TWI634960B (en) Apparatus for processing laser
JP5769774B2 (en) Laser processing equipment
WO2019065533A1 (en) Cutting device for glass substrate, cutting method, program, and storage medium
JP2004301973A (en) Light scanner and method of adjusting light beam emitting timing