TWI361889B - Defect inspection apparatus, pattern drawing apparatus, pattern drawing system and recording medium storing defect inspection program - Google Patents
Defect inspection apparatus, pattern drawing apparatus, pattern drawing system and recording medium storing defect inspection program Download PDFInfo
- Publication number
- TWI361889B TWI361889B TW97102547A TW97102547A TWI361889B TW I361889 B TWI361889 B TW I361889B TW 97102547 A TW97102547 A TW 97102547A TW 97102547 A TW97102547 A TW 97102547A TW I361889 B TWI361889 B TW I361889B
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- area
- defect
- length data
- difference
- Prior art date
Links
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Image Processing (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Software Systems (AREA)
- Image Analysis (AREA)
Description
1361889 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種檢查藉由將記述了須描繪之圖形的輸 入資料予以RIP處理而取得,而用於圖形描繪之運行長度 育料的缺陷之技術。如係關於檢查用於將半導體基板、液 晶顯示裝置用玻璃基板、遮光罩用玻璃基板、電漿顯示用 玻璃基板、光碟用基板等(以下,簡稱為「基板」)之電路1361889 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to a defect in which the inspection is performed by RIP processing of input data describing a pattern to be drawn, and for the run length of the graphic depiction. technology. The circuit for inspecting a semiconductor substrate, a glass substrate for a liquid crystal display device, a glass substrate for a hood, a glass substrate for a plasma display, a substrate for a disk, or the like (hereinafter, simply referred to as a "substrate")
圖案,從CAD資料直接描繪於抗蝕層上時的運行長度資料 之缺陷的技術。 【先前技術】 伴隨近年來半導體積體電路之高積體化、複雜化,必須 從dram(動態隨機存取記憶體)等之少品種大量生產之商 業模型(business model)轉換成系統LSI等多品種少量生產 的商業模型…卜,系統⑶等電路圖案逐年微細化,其 開發經費龐大。 先前,對基板描繪圖案(更具體而言,係藉由光微影術 描繪(曝光)圖案)係採用藉由雷射將藉由CAD系統製作、編 輯之電路圖案描繪於薄膜上,來製作遮光罩並使用該遮 光罩將電路圖案轉印於基板上的方式。然而,因為該:光 罩係高精密度地微細加X者,所以有價格非常高,從成本 面而言,不適於多品種少量生產的問題。 因此,引用減少系統LSI等之開發經f,不使用遮 之圖案描繪方式(亦即’不使用遮光罩,而從CAD資料直 接在抗蝕層上描繪電路圖案之方式, 八以下稱為「直接描繪 128482.doc 1361889 方式j )。 藉由直接描繪方式描繪電路圖案之裝置(以下稱為「直 接描搶裝置」)中’解釋將記述了須描繪之電路圖案的 CAD貝料予以RIP(光柵影像處理器)處理而獲得之運行長 度資料(藉由複數水平方向(或是垂直方向)之線段的起點位 置及長度而記述之資料),來執行描繪。 * #者’藉由RIP處理而取得之運行長度資料中,有時因 RIP處理中之錯誤變換等而發生缺陷(亦即與CAD資料之記 述内容的差異)。運行長度資料中產生缺陷時,無法進行 f確之描m ’在每讀行描輯,須執行依據無缺 陷之運行長度資料,驗證是否可執行正確之插繪的步驟。 使用遮光翠之圖案描繪方式的情況,在執行描繪前必須 產生遮光罩。因此’藉由檢查該遮光罩,可驗證是否可執 行正確之描繪。 但是,不使用遮光罩之直接描繪方式的情況下,由於不 • 纟生遮光罩而執订描繪’因此,無法利用遮光罩檢查運行 長度資料之缺陷。因此,先前之直接描繪方式情況下係 先行對基板執行描繪,而檢查所描繪之電路圖案。如藉由 .目視確認顯㈣之基板的電路圖案’或是藉由檢查攝^顯 . 影後之基板的電路圖案而獲得之影像(攝影影像),來檢查 缺陷(參照專利文獻1)。 藉由該結構’必㈣行執行描繪,方能檢查運行長度資 料之缺陷。亦即,即使藉由RIP處理而取得之運行長度資 料中產生缺陷,在執行描繪前仍無法檢測其缺陷,所以是 128482.doc 1361889 依據有缺陷之運行長度資料執行描繪處理,導致藉由該描 繪處理所獲得之基板形成浪費。 為了防止發生此種浪費之試料,亦提出了可在執行描緣 則檢測運订長度資料之缺陷的技術。如提出一種比較藉由 ㈣處理而從CAD資科獲得之運行長度資料(用於描綠之運 行長度資料),與❹與該RIp處理不同之運算法而從該 ⑽資料獲得之運行長度資料(驗㈣之運行長度資料), 以檢測用於描繒^之1軍P i #次 伯τ您運仃長度貧料中產生的缺陷之方法 照專利文獻2)。 夕 [專利文獻1 ]日本特開2001 ·337〇41號公報 [專利文獻2]日本特開2004-56068號公報 【發明内容】 (發明所欲解決之問題) 藉由上述結構’因為在執行描繪前,可檢測運行長产資 料之缺陷’所以具有試料不致浪費的優點。但是,該二構 除了執行取得實際用於描綠之運行長度資料用的RIP處理 之功能部之外’還需要執行以與該Rip處理不同之運曾法 規定的⑽處理之功能部。亦即,需要複數⑽處理=能 部’於檢測缺陷時’需要進行數次Rip處理。如此,缺陷 檢測之處理負擔增大,且處理時間亦長。 因此,要求以更簡易之結構,可在執行描繪前檢測運行 長度資料之缺陷的技術。 本發明係鑑於上述問題者,其目的為提供一種以簡易之 結構可在執行描繪前檢測供作圖形之描繪的運行長度資料 128482.doc 1361889 缺陷的技術。 (解決問題之技術手段) 請求項1之發明係,種缺陷檢查裝置,其係檢查供作圖 形描繪的運行長度資料m包含:輸人資料取得機 構,其係取得記述有須福綠之圖形的輸入資料;運行長度 資料取得機構,其係取得藉由將前述輸人資料予以 理:取得之前述運行長度資料;及缺陷檢職構,其係比 較前述輸人資料與前述運行長度資料,有J:異區域時,檢 測該差異區域作為前述運行長度諸之缺陷區域。 "月求項2之發明係請求項丨之缺陷檢查裝置,其中進—步 ”備修復機構,其係在前述運行長度資料中檢測出前述缺 陷=域時,修復該缺陷區域,而取得修復運行長度資料。 -月求項3之發明係請求項2之缺陷檢查裝置,其中前述缺 陷檢測機構包含資料形式變換機構,其係對前述輸入資料 與前述運行長度資料中之至少—方的資料執行特^之變換 處而將兩資料整理成相互可比較之資料形式。 μ求項4之發明係請求項3之缺陷檢查裝置,其中前述 料形j變換機構包含圖形化機構,其係對前述運行長度 料執订圖形化處理,而取得將前述運行長度資料予以圖形 化後之圖形化運行長度資料,前賴陷檢測機構進-步包 a差。區域指定機構’其係藉由進行前述圖形化運行長度 資料與w述輸人資料之"互斥或"(x〇r)邏輯運算,而取 指定有前述差異區域之差異區域資料。 請求項5之發明係請求項4之缺陷檢查裝置,其中前述缺 128482.doc ooy 進行前=:區多餘缺陷區域指定機構,其係藉由 ,ΔΧ 、'"域貝料與前述圖形化運行長度資料之”且" 2邏㈣1…咐刪巾前述 、 有運仃貝料之區域即多餘缺陷區域。 請求項6之發明係請求 陷檢測機椹推$之缺陷檢查裝置,其中前述缺 V具備欠缺缺陷區域指定機構,豆 進行前述差異區域資料坐一a 铒,、係藉由 t〜‘ 碼貪枓與別述輸入資料之"且"邏輯運算, 指定前述運行長度資料中前述輸人資料存在 行資k㈣Μ^ 生運 月求項7之發明係請求項4之缺陷檢查裝置,其中前述缺 陷檢測機構進一步包含:第一差異差分區域取得機構,其 係:由前述差異區域資料所規定之圖形區域減去由前述輸 :貝料所規定之圖形區域,而取得第一差異差分區域資 料;及彡餘缺陷區域指定機構,其係藉由抽出前述第一差 異差刀區域資料中之正值區域,而指定前述運行長度資料 中雖前述輸入資料不存在,卻產生有運行資料之區域即多 餘缺陷區域。 凊求項8之發明係請求項4之缺陷檢查裝置,其中前述缺 陷檢測機構進一步包含:第二差異差分區域取得機構,其 係從由·前述差異區域資料所規定之圖形區域減去由前述圖 形化運行長度資料所規定之圖形區域,而取得第二差異差 分區域資料;及欠缺缺陷區域指定機構,其係藉由抽出前 述第一差異差分區域資料中之正值區域,而指定前述運行 長度資料中前述輸入資料存在,卻未產生運行資料之區域 128482.doc 1361889 即欠缺缺陷區域。 請求項9之發明係請求項3之缺陷檢查裝置其令前 料形式變換機構包含圖形化機構,其係對前述運^度: 料執行圖形化處理,而取得將前述運行長度資科予以X = 化後之圖形化運行長度資料’前述缺陷檢測機構進—步包7 含:第-差分區域取得機構,其係從由前述圖形化運行: 度資料所規定之圖形區域、读土 A A ^ 找減去由别述輸入資料所規定之圖Pattern, a technique for defecting the run length data when the CAD data is directly drawn on the resist layer. [Prior Art] With the recent integration and complication of semiconductor integrated circuits, it is necessary to convert from a business model with a large number of products such as dram (Dynamic Random Access Memory) to a system LSI. The commercial model of small-scale production of varieties... Bu, system (3) and other circuit patterns are refinement year by year, and its development costs are huge. Previously, the substrate drawing pattern (more specifically, the photolithography (exposure) pattern) was formed by drawing a circuit pattern created and edited by a CAD system on a film by laser. The cover is used to transfer the circuit pattern onto the substrate using the hood. However, since the hood is finely added with high precision, the price is very high, and it is not suitable for the production of a small variety of products in terms of cost. Therefore, the development of the system LSI is reduced, and the pattern drawing method is not used (that is, the method of drawing the circuit pattern directly on the resist layer from the CAD data without using the hood) is hereinafter referred to as "direct Drawing 128482.doc 1361889 Method j). The device that draws the circuit pattern by direct drawing (hereinafter referred to as "direct drawing device") interprets the RIP (raster image) of the CAD material that describes the circuit pattern to be drawn. The processor performs processing based on the run length data obtained by processing (the data described by the start position and length of the line segment in the horizontal direction (or the vertical direction)). * #者' In the run length data obtained by RIP processing, a defect may occur due to an error conversion in RIP processing (that is, a difference from the description of the CAD data). When a defect occurs in the run length data, it is impossible to perform a description of each read line. It is necessary to perform a step of verifying whether or not the correct insert can be performed based on the run length data without the defect. In the case of using the shading pattern, a hood must be produced before the drawing is performed. Therefore, by checking the hood, it can be verified whether the correct drawing can be performed. However, when the direct drawing method of the hood is not used, the drawing is not performed because the hood is not produced. Therefore, the defect of the running length data cannot be checked by the hood. Therefore, in the case of the previous direct drawing mode, the drawing of the substrate is performed first, and the circuit pattern depicted is checked. The defect is detected by visually confirming the circuit pattern ' of the substrate of the display (4) or by observing the image (photographic image) obtained by observing the circuit pattern of the substrate after the image is formed (see Patent Document 1). The defect can be checked by running the depiction by the structure of the structure. That is, even if a defect occurs in the run length data obtained by the RIP process, the defect cannot be detected before the drawing is performed, so 128482.doc 1361889 performs the drawing process based on the defective run length data, resulting in the drawing The substrate obtained by the treatment is wasteful. In order to prevent the occurrence of such waste, a technique for detecting defects in the length of the document is also proposed. For example, a run length data obtained from the (10) data is obtained by comparing the run length data obtained from the CAD department (the run length data for depicting green) by the (4) process, and the algorithm different from the RIp process ( Examine the operating length data of (4), in order to detect the defect used in the length of the poor material of the 1st Army P i #次伯τ according to the patent document 2). [Patent Document 1] Japanese Laid-Open Patent Publication No. 2001-56068 (Patent Document 2) Japanese Laid-Open Patent Publication No. 2004-56068 (Summary of the Invention) Before, it can detect defects in running long-term data, so there is an advantage that the sample is not wasted. However, in addition to the functional unit for performing the RIP processing for actually using the run length data for green, the two components need to execute the functional portion (10) which is different from the Rip processing. That is, it is necessary to perform a plurality of Rip processes for the plural (10) processing = energy portion "at the time of detecting a defect". Thus, the processing load of the defect detection is increased, and the processing time is also long. Therefore, a technique for detecting a defect of the run length data before performing the drawing with a simpler structure is required. SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object thereof is to provide a technique for detecting a defect of an operation length data 128482.doc 1361889 for drawing a figure before performing drawing in a simple structure. (Technical means for solving the problem) The invention of claim 1 is a type of defect inspection device for checking the run length data for graphical drawing, m comprising: an input data acquisition mechanism, which obtains a graphic describing the image of the green Input data; the operation length data acquisition institution obtains the above-mentioned input data by comparing the above-mentioned input data; and the defect inspection structure, which compares the aforementioned input data with the aforementioned operation length data, and has J : In the case of a different area, the difference area is detected as the defective area of the aforementioned running length. "The invention of the monthly claim 2 is a defect inspection device of the request item, wherein the step-by-step repairing mechanism repairs the defect area and obtains the repair when the defect=domain is detected in the running length data The invention relates to the defect inspection device of claim 2, wherein the defect detection mechanism includes a data format conversion mechanism that performs at least one of the input data and the run length data. The invention is the defect inspection device of claim 3, wherein the material j transformation mechanism includes a patterning mechanism, which is the operation of the foregoing The length material is scheduled to be graphically processed, and the graphical running length data obtained by patterning the running length data is obtained, and the front detecting component is inferior to the step packet a. The regional specifying institution 'by performing the foregoing graphic The run length data and the "mutual exclusion&" (x〇r) logical operation of the input data are taken, and the difference region data specifying the difference region is taken. The invention of claim 5 is the defect inspection device of claim 4, wherein the aforementioned lack of 128482.doc ooy is performed by the front =: zone excess defect area specifying mechanism by using ΔΧ, '" domain beaker and the foregoing graphic "Running length data" and "2" (4) 1... 咐 巾 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述The invention of claim 6 is a defect inspection device that requests a trapping machine to push $, wherein the aforementioned defect V has a defect-deficient area specifying mechanism, and the bean performs the aforesaid difference area data to sit a 铒, by t~' code greed "and" logical operation of the input data, specifying the presence of the aforementioned input data in the foregoing run length data, the defect inspection device of the claim 4 of the invention item 4, wherein the defect detection is performed The mechanism further includes: a first difference difference region obtaining mechanism, wherein: the graphic area defined by the difference area data is subtracted from the graphic area specified by the output: the first differential difference area data; and The remaining defect area specifying means specifies the area of the running length data in which the input data does not exist but the area where the operating data is generated, that is, the redundant defect area, by extracting the positive value area in the first difference difference knife area data. . The invention of claim 4, wherein the defect detecting means further comprises: a second difference difference area obtaining means for subtracting the pattern from the pattern area defined by the difference area data And arranging the second differential difference region data; and the defect-deficient region specifying mechanism, which specifies the foregoing running length data by extracting the positive value region in the first difference difference region data The above-mentioned input data exists, but the area where the operation data is not generated 128482.doc 1361889 is the defect-deficient area. The invention of claim 9 is the defect inspection device of claim 3, wherein the fore-form form conversion mechanism includes a graphical mechanism for performing the graphical processing on the operation level, and obtaining the aforementioned operation length for the subject X = The graphical running length data after the 'the aforementioned defect detecting mechanism advance step 7 includes: a first-differential region obtaining mechanism, which is obtained from the graphic region defined by the aforementioned graphical operation: degree data, and the soil reading AA ^ Go to the map specified by the input data
形區域’而取得第-差分區域資料,·及多餘缺陷區域指定 機構,其係藉由抽出前述第分區域資料中之正值區 域’而指定前述運行長P咨 灯食戾貧科中刖述輪入資料不存在,卻 產生有運行資料之區域即多餘缺陷區域。 •凊求項10之發明係請求項3之缺陷檢查裝置其中前述 資料形式變換機構包含圖形化機構,其係對前述運行長度 貝料執行圖形化處理’而取得將前述運行長度資料予以圖 =後之圖形化運行長度資料,前述缺陷檢測機構進一步The shape area 'and the first-differential area data, and the excess defect area designation mechanism, which specifies the aforementioned operation length by extracting the positive value area in the first-region data. The wheeled data does not exist, but the area with operational data, that is, the excess defect area. The invention of claim 10 is the defect inspection device of claim 3, wherein the data form conversion mechanism includes a patterning mechanism that performs a patterning process on the run length of the run length to obtain a map of the run length data. Graphical run length data, the aforementioned defect detection mechanism further
包含:第二差分區域取得機構,其係從由前述輸入資料所 規定之圖形區域滷本士 &、上π ,、 由剛述圖形化運行長度資料所規定之 圖形區域而取得第二差分區域資料;及欠缺缺陷區域指 疋機構’其係藉由抽出前述第二差分區域資料中之正值區 域而才曰疋則述運行長度資料中前述輸入資料存在,卻未 產生運行資料之區域即欠缺缺陷區域。 身求項11之發明係請求項3之缺陷檢查裝置,其中前述 資:形式變換機構包含:運行長度資料影像化機構,其係 J述運#長度 > 料執行第—影像化處理,而取得將前述 128482.doc 1361889The method includes: a second difference region obtaining mechanism, wherein the second differential region is obtained from a graphic region defined by the graphic operation length data from a graphic region defined by the input data, and a graphic region defined by the graphic length data The information; and the defect-deficient area indexing mechanism' is obtained by extracting the positive value region in the second difference region data, and the region in which the input data exists in the running length data, but the region in which the operational data is not generated is lacking Defect area. The invention of claim 11 is the defect inspection device of claim 3, wherein the capital: form conversion mechanism includes: a run length data visualization mechanism, which is a J-transport #length> material to perform the first-image processing, and obtains Will the aforementioned 128482.doc 1361889
運行長度資料影像化後之影像化運行長度資料;及輸入資 料影像化機構’其係對前述輪入資料執行第二影像化處 理’而取得將前述輸人資料影像化後之影像化輸人f料; 前述缺陷檢測機構進-步包含差異區域指定機構,其係藉 由以像素單位比較前述影像化運行長度資料與前述影像化 輸入資料’而指定前述差異區域。 請求項12之發明係請求項以缺陷檢查裝置,其中前述 差異區域指定機構以像素單位比較前述影像化運行長度資 料與前述影像化輸人資料,而指定僅在前述影像化運行長 度資料巾存在像素的區域作為在前述運行長度資料中雖前 述輸入資料不存在,卻產生有運行資料之區域即多餘缺陷 區域。The imaging length data after the length data is imaged; and the input data imaging mechanism 'the second imaging process is performed on the wheeled data' to obtain the imaged input image after the input data is imaged The defect detecting mechanism further includes a difference area specifying unit that specifies the difference area by comparing the imaged run length data and the imaged input data in pixel units. The invention of claim 12 is the defect inspection device, wherein the difference area specifying unit compares the videoized running length data and the imaged input data in pixel units, and specifies that only pixels exist in the imaged running length data towel. The area is the excess defect area in the area where the above-mentioned input data does not exist in the aforementioned running length data, but the running data is generated.
請求項13之發明係請求項缺陷檢查裝置,其中前述 差異區域指定機構以像素單位比較前述影像化運行長度資 料與前述影像化輸人資料,而指定僅在前述影像化輸入資 料中存在像素的區域作為在前述運行長度資料巾前述輸入 資料存在,卻未產生運行資料之區域即欠缺缺陷區域。 «月求項14之發明係請求項3之缺陷檢查裝置,其中前述 資料形式邊換機構包含輸人資料座標值化機構,其係對前 述輸入資料執行座標值化處理,而取得將前述輸入資料中 包含之1個以上圖形之各個藉由座標值之集合而記述的座 標值化輸入資料,前 指定機構,其係藉由 運行起點及終點之位置與 述缺陷檢測機構進一步包含差異區域 比較前述運行長度資料中包含之複數 前述座標值化輸入資料中包含之 128482.doc -12- 1361889 複數座標值中的特定座標值,而分別指定前述運行長 料中前述輸入資料不存在,卻產生有運行資料之區域;多 餘缺陷區域’及前述運行長度資料中前述輸入資料存在, 卻未產生運行資料之區域即欠缺缺陷區域。 請求項15之發明係請求項5、7、l2_中任一項之缺^ 檢查裝置,其中包含多餘缺陷修復機構,其係於指定有^ 述多餘缺陷區域時,刪除產生於前述運行長度資料中之前 述多餘缺陷區域的運行資料。 請求項16之發明係請求項6、8、13或14中任—項之缺陷 檢查裝置,其中包含欠缺缺陷修復機構,其係於指定有前 述欠缺缺陷區域時,在前述 陷區域新產生運行資料。度貝抖中之前述欠缺缺 請求項1 7之發明係語# j& 糸月求項1之缺陷檢查裝置,Α中前述 輸入資料係須描繪於基板上 国术的CAD貧料,且前述運 行長度資料係供作在基板上描繪前述圖孝者。 請求項Η之發明係—種圖形料裝置,其特徵為·呈俜 依據運行長度資料對輸出媒體進行圖形之描繪,且包 =資;取Π構,其係取得記述有須描緣之圖形的輸人 =運订長度貧料取得機構’其係取得藉由將前述輸入 機構,其係比較前述輸入資料4:;度:料’·缺陷檢測 差異區域作為前述運行長度資料之缺陷 =區:: 係於前述運行長度資料中檢測出前述 $ ’修復該缺陷區域’而取得修復運行長度資 I28482.doc 料,·描繪用運行長度資料取得機構, ^係於則述運行長度 檢測出前㈣陷㈣時,取得前料復運行長度資 描㈣運行長度„,於前料行長度㈣中未檢 =述缺陷區域時,取得前述運行長度資料照樣作為描 =運w度m描㈣構’其係依據前述描繪用運 仃長度貧料,而在前述輸出媒體中描繪圖形。 :=9之發明係請求項18之圖形描繪裝置,其 緣於基板上之圖案的⑽資料,前述描緣 二構:據猎由將前述CAD資料予以RIp處理而取得之前述 運仃長度資料,而在基板上描繪前述圖案。 =㈣之發明係一種圖形描緣系統,其特徵在為1 據運行長度資料對輸出媒體進行圖形之描繪,且包 含:缺陷檢查裝置,其係檢查前述運行長度資料之缺陷. 及描繪裝置,直係你俞、+,从μ 叶之缺, 产資料 ,’L、檢查裝置取得描繪用運行長 …、、據別述描繪用運行長度資料 體中描緣圖形;前述缺陷檢查 β輸出媒 構,其係取得記述 輸人㈣取得機 撼繪之圖形的輸人資料;運行長度 貧料取得機構,其係取得莽 理而取得之前《行長❹以RIP處 一, 長度貝枓,缺陷檢測機構,其係比較 …與:述運行長度資料,有差異區域時,檢測 構其7域:乍為别述運行長度資料之缺陷區域;修復機 修復該缺陷區域,而二::中檢測出前述缺陷區域時, 長度資料取得機構,其行/長度資料;描繪用運行 則述運行長度資料中檢測出前 128482.doc 1361889 陷區域時,取得前述修復運行長度資料作為描繪用運 仃長度資料,於前述運行長度資料中未檢測出前述缺陷區 域時,取得前述運行長度資料照樣作為描繪用運行長度資 料二及描繪用運行長度資料傳送機構,其係將前述描ί用 運行長度資料傳送至前述描繪裝置。 請求項21之發明係請求項2()之圖形描㈣統,盆中前述 輪入資料係須描繪於基板上之圖㈣,描繪 裝置依據藉由將前述CAD資料予以RIp處理而取得之前述 運行長度資料,而在基板上描繪前述圖案。 請求項22之發明由電腦所執行,藉此可使前述電腦實 現:輸入資料取得功能,其係取得記述有須描緣之圖形的 輸入資料;運行長度資料取得功能,其係取得藉由將前述 輸入資料予以RIP處理而取得之運行長度資料;及缺陷檢 測功能’其係比較前述輸入資料與前述運行長度資料,有 差異區域時’檢測該差異區域作為前述運行長度資料之缺 陷區域。 (發明之效果) 藉由請求項1〜22之發明,由於藉由比較⑽處理前後之 資料’亦即比較輸入資料與運行長度資料,來檢測運行長 度資料之缺陷’因此即使不依據運行長度資料執行描繪, 仍可檢測運行長度資料中產生之缺陷。 特別是藉由請求項2之發明’於運行長度資料中檢測出 缺陷時,修復該缺陷,因此可取得無缺陷之運行長度 料。 又 128482.doc 15· 1361889 特別是藉由請求項1 7之發明, 於依據運行長度資料對基The invention of claim 13 is the request item defect inspection device, wherein the difference area specifying unit compares the imaged run length data and the imaged input data in pixel units, and specifies an area in which only pixels are present in the imaged input data. As the area in which the aforementioned input data exists in the aforementioned run length data towel, the area where the operation data is not generated is the defect-deficient area. The invention of the invention of claim 14 is the defect inspection device of claim 3, wherein the data form switching mechanism includes an input data coordinate value organization, which performs coordinate value processing on the input data to obtain the input data Each of the one or more graphics included in each of the graphs is represented by a set of coordinate values, and the pre-designated mechanism compares the foregoing operation by further including a difference region between the position of the start point and the end point of the operation and the defect detecting mechanism. The length coordinate data includes a specific coordinate value included in the plurality of coordinate values of 128482.doc -12- 1361889 included in the coordinate input data, and specifies that the input data in the foregoing operation long material does not exist, but the operation data is generated. The area of the excess defect area and the aforementioned input data in the above-mentioned running length data, but the area where the operating data is not generated, that is, the missing defect area. The invention of claim 15 is the defect inspection apparatus according to any one of claims 5, 7, and l2, which includes an unnecessary defect repairing mechanism for deleting the data of the run length generated when the redundant defect area is specified The operational data of the aforementioned excess defect area. The invention of claim 16, wherein the defect inspection device of any one of claims 6, 8, 13, or 14 includes a defect repairing mechanism that newly generates an operation data in the trapped region when the defect-deficient region is specified . In the invention of the above-mentioned lack of claim 1 in the singularity of the singularity of the invention, the invention of the invention is based on the defect inspection device of the 求月1 item, and the aforementioned input data is drawn on the substrate, and the aforementioned running length is The data is provided for depicting the aforementioned figures on the substrate. The invention of the request item is a type of graphic material device, which is characterized in that: the image is drawn on the output medium according to the running length data, and the package is a capital; the structure is obtained, and the figure is obtained by describing the graphic of the image to be drawn. The input=transfer length poor material acquisition mechanism' is obtained by comparing the aforementioned input data by the input mechanism: the degree: material '· defect detection difference area as the defect of the aforementioned operation length data = area:: In the foregoing running length data, the above-mentioned $ 'repairing the defective area' is detected, and the repair running length I28482.doc material is obtained, and the running length data obtaining mechanism is drawn, and the system is used to detect the running length before the fourth (four) trapping (four) Obtaining the length of the pre-completion run length (4) the running length „, when the length of the front row (4) is not detected = the defect area is obtained, the obtained running length data is taken as the description The drawing depicts the drawing in the aforementioned output medium. The invention of claim 9 is a graphic drawing device of claim 18, which is based on the (10) data of the pattern on the substrate, and the aforementioned description : According to the aforementioned length data obtained by RIp processing the aforementioned CAD data, the foregoing pattern is drawn on the substrate. The invention of (4) is a graphic stroke system characterized in that it is a data length data pair output. The media carries out a graphic depiction and includes: a defect inspection device that checks for defects in the aforementioned run length data. And a drawing device that directly connects you Yu, +, from the lack of μ leaves, the production data, 'L, the inspection device obtains a depiction According to the operation length..., the description of the trace length in the run length data body; the defect check β output medium, which is obtained by inputting the input data of the input (4) obtaining the pattern of the machine drawing; Acquired the organization, the department obtained the clerk before the acquisition, "the president of the ❹ ❹ R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R乍 is the defect area of the run length data; the repair machine repairs the defect area, and when the defect area is detected in the second::, the length data acquisition mechanism, its line/length When the first 128482.doc 1361889 trapped area is detected in the running length data, the repair running length data is obtained as the drawing length data, and when the defective area is not detected in the running length data, The running length data is used as the drawing running length data 2 and the drawing running length data transfer mechanism, and transmits the aforementioned running length data to the drawing device. The invention of claim 21 is a graphic of the request item 2 () In the fourth embodiment, the aforementioned wheeled data in the basin is drawn on the substrate (4), and the drawing device draws the aforementioned pattern on the substrate according to the running length data obtained by RIp processing the CAD data. The invention of 22 is executed by a computer, whereby the computer can be realized by: inputting a data acquisition function, obtaining an input data describing a graphic to be traced; and operating length data acquisition function, which is obtained by inputting the aforementioned data Run length data obtained by RIP processing; and defect detection function' Said input data and the run length data, when there is a difference area 'detects the lack of the difference area as run-length data of trap region. (Effect of the Invention) With the inventions of claims 1 to 22, since the data before and after the processing is compared (i.e., the input data and the running length data are compared, the defect of the running length data is detected], so even if the data is not based on the running length data Execution of the depiction, the defects generated in the run length data can still be detected. In particular, when the defect is detected in the run length data by the invention of claim 2, the defect is repaired, so that the run length without defects can be obtained. 128482.doc 15· 1361889, in particular, by the invention of claim 17, based on the length of operation data
執行描繪處理而產生浪費之試料的情Performing a depiction process to produce a wasteful sample
【實施方式】 [第一實施形態] <1.結構> < 1 a.圖形描繪系統之全體結構〉 就本發明之第一實施形態的圖形描繪系統1 〇 〇,參照圖1 作說明。圖1係顯示圖形描繪系統i 00之全體結構圖。 圖形描繪系統100具備:CAD裝置1、RIP裝置2、缺陷檢 查裝置3及描繪裝置4。此等各裝置1〜4經由LAN等網路N而 相互連接。 CAD裝置1係製作、編輯記述了須描繪之圖形的資料之 裝置’並輸出該資料作為向量資料之CAD資料。CAD資料 以稱為流格式(如GDSII)之具有胞階層的資料格式而表 現。各胞階層中保有關於至少1個以上圖形之資訊(如關於 圖形之位置及形狀之資訊,具體而言為圖形之頂點位置座 標等)及胞參照資訊。以下,將自CAD裝置1輸出之CAD資 料稱為「輸入CAD資料D1 128482.doc !361889 RIP裝置2從CAD裝置1取得輸入CAD資料D1,將該取得 之輸入CAD資料D1予以RIP展開,變換成運行長度資料而 輸出。更具體而言,係將向量資料之輸入CAD資料D1變換 成光柵影像資料(亦即,將在第一方向排列形成複數像素 之二值影像資料的資料(線資料),在與第一方向正交之第 二方向排列多複數而構成之資料)β再者,將該光柵影像 資料予以運行長度編碼處理,作為壓縮後之運行長度資料 而輸出。更具體而言,係將線資料作為單位,將點陣圖資 料從第二方向之最前之線至最後之線依序予以運行長度編 碼處理,變換成壓縮後之運行長度資料。所獲得之運行長 度資料如圖4所示,成為藉由複數水平方向之線段(運行 Li(i=l,2, .·))之起點位置及長度而記述輸入CAD資料川中 之圖形區域的資料。以下,將從RIp裝置2輸出之運行長度 資料稱為「運行長度資料〇2」。 缺陷檢查裝置3檢查用於描繪之運行長度資料D 2的缺 陷。亦即,分別從CAD裝置丨取得輸入CAD資料D1,從Rip 裝置2取得運行長度資料D2,依據該取得之2個資料,檢查 運行長度資料D2之缺陷。此外,缺陷檢查裝置3對描繪裝 置4傳送須用於描繪之運行長度資料(「描繪用運行長度資 料T」)。亦即,在運行長度資料〇2中檢測出缺陷情況下, 將修復了該缺陷之資料(修復運行長度資料D4)(參照圖6), 作為描繪用運行長度資料T而傳送至描繪裝置4。此外,運 行長度資料D2中未檢測出缺陷情況下,將運行長度資料 D2照樣作為描繪用運行長度資料τ而傳送至描♦裝置*。 128482.doc 1361889 就缺陷檢查裝置3之具體結構詳述於後。 描繪裝置4係在輸出媒體上描繪圖形之裝置。亦即 缺陷檢查裝置3取得騎用運行長度資料T,並依據該取得 之描繪用運行長度資料T執行圖形之描繪。更具體而言, 係將描繪用運行長度|制_ T s曰 丁減貧科丁展開成點陣圖資料,並依據該 點陣圖資料,而在輸出媒體中記錄二維影像。[Embodiment] [First Embodiment] <1. Structure><1 a. Overall Configuration of Graphic Drawing System> The graphic drawing system 1 according to the first embodiment of the present invention will be described with reference to Fig. 1 . Figure 1 is a block diagram showing the overall structure of the graphic drawing system i 00. The graphic drawing system 100 includes a CAD device 1, a RIP device 2, a defect inspection device 3, and a drawing device 4. These devices 1 to 4 are connected to each other via a network N such as a LAN. The CAD device 1 creates and edits a device that describes the data of the graphic to be drawn, and outputs the data as CAD data of the vector data. CAD data is presented in a data format called a stream format (such as GDSII) with a cell hierarchy. Each cell class maintains information about at least one graphic (such as information about the position and shape of the graphic, specifically the coordinates of the vertex position of the graphic, etc.) and cell reference information. Hereinafter, the CAD data output from the CAD device 1 is referred to as "input CAD data D1 128482.doc !361889. The RIP device 2 obtains the input CAD data D1 from the CAD device 1, and the obtained input CAD data D1 is RIP developed and converted into The length data is output and output. More specifically, the input CAD data D1 of the vector data is converted into raster image data (that is, the data (line data) of the binary image data of the plurality of pixels is arranged in the first direction, The data is formed by arranging a plurality of complex numbers in a second direction orthogonal to the first direction. Further, the raster image data is subjected to run length encoding processing and output as compressed run length data. More specifically, Taking the line data as the unit, the bitmap data is sequentially processed from the first line to the last line in the second direction, and converted into the compressed running length data. The obtained running length data is shown in Fig. 4. It is shown that the input of the CAD area of the CAD area is described by the starting point position and length of the line segment (running Li (i=l, 2, . . . )) in the horizontal direction. Below, run 2 output of the length of the device data from RIp called "run-length data 〇2." The defect inspection device 3 checks for defects in the run length data D 2 for drawing. That is, the input CAD data D1 is obtained from the CAD device, the run length data D2 is obtained from the Rip device 2, and the defect of the run length data D2 is checked based on the obtained two pieces of data. Further, the defect inspection device 3 transmits to the drawing device 4 the run length data ("drawing run length data T") to be used for drawing. In other words, when the defect is detected in the run length data 〇2, the data (the repair run length data D4) (see FIG. 6) in which the defect is repaired is transmitted to the drawing device 4 as the drawing run length data T. Further, when the defect is not detected in the operation length data D2, the operation length data D2 is transmitted to the drawing device* as the drawing operation length data τ. 128482.doc 1361889 The specific structure of the defect inspection device 3 is detailed later. The rendering device 4 is a device that draws graphics on an output medium. That is, the defect inspection device 3 acquires the riding run length data T, and performs drawing of the figure based on the acquired drawing run length data T. More specifically, the depiction is performed by using the run length | system _ T s 减 减 科 科 科 展开 展开 展开 展开 展开 , , , , , , , , 点 点 点 点 点 点 点 点 点 。 。 。 。 。 。 。 。 。
另外’該實施形態中,CAD裝置1為在基板上製作須曝 光記錄之LSI等電路圖案的描繪資料,作為輸人cad資料 DW輸出者。此外,騎裝置4為在基板上直接描繪(曝 光)以CAD裝置1製作之電路圖案的裝置。 <lb.缺陷檢查裝置之結構> <lb-l.硬體結構> 就缺陷檢查裝置3之硬體結構,參照圖2作說明。圖之係 顯示缺陷檢查裝置3之硬體結構的概略圖。 缺陷檢查裝置3成為經由匯流排線17而電性連接控制部 11、R0M12、RAM13、媒體驅動器14、操作部15及顯示部 16之結構。 控制部11由CPU構成。控制部11依據記憶於R〇M丨2之程 式(或是藉由媒體驅動器14而讀取之程式)p,控制上述硬 體各部分,而實現缺陷檢查裝置3之功能。 ROM 12係預先儲存控制缺陷檢查裝置3時需要之程式p及 資料的讀取專用之記憶裝置。 RAM 13係可讀取與寫入之記憶裝置,且暫時記憶藉由控 制部11運算處理時發生之資料等。RAM13由SRAM及快閃 128482.doc -18- 1361889 記憶體等構成。 媒體驅動器14係從記錄媒體(更具體而言,係cd-R〇m、 DVD(多樣化數位光碟)、軟碟等可移式之記錄媒體)M讀取 記憶於其中之資訊的功能部。 操作部15係藉由鍵盤及滑鼠等而構成之輸入裝置,以受 理命令及各種資料之輸入的使用者操作。操作部15接受之 使用者操作,作為訊號而輸入控制部U。 顯示部16具備監視器等,以顯示各種資料及缺陷檢查裝 置3之動作狀態等。 <lb-2.功能性結構> 就缺陷檢查裝置3之功能性結構,參照圖3、圖4作說 明。圖3係顯示缺陷檢查裝置3之功能性結構的概略圖。圖 4係模式顯示在缺陷檢查裝置3中執行之缺陷檢測處理中取 得的各種資料及其相關關係圖。 缺陷檢查裝置3具備:CAD資料取得部3丨、運行長度資 料取得部32、缺陷檢測部33、缺陷修復部34、描繪用運行 長度資料取得部35及描繪用運行長度資料傳送部36。此等 各部分之功能’係藉由讀取預先儲存於r〇m12等之程式 P,或是記錄於記錄媒體Μ之程式P,在控制部丨丨中執行而 實現。 CAD資料取得部31&CAD裝置丨經由網路ν,而取得記述 了須描繪之圖形的輸入CAD資料D1(亦即,將成為檢查對 象之運行長度資料D2予以RIP展開之前的資料)。 運行長度資料取得部32從RIP裝置2經由網路]^,而取得 128482.doc -19· 1361889 用於圖形之描繪的運行長度資料D2(亦即,將記述了須描 繪之圖形的輸入CAD資料D1予以RIP展開而取得之資料)。 缺陷檢測部33檢測運行長度資料D2之缺陷《更具體而 言,係比較輸入CAD資料D1與運行長度資料,有差異 區域時,檢測該差異區域作為運行長度資料D2之缺陷區 域。缺陷檢測部33具備:變換處理部331、差異區域指定 部332、多餘缺陷區域指定部333及欠缺缺陷區域指定部 334。Further, in the embodiment, the CAD device 1 is a drawing material for creating a circuit pattern such as an LSI to be exposed on a substrate, and is a DW exporter of the input cad data. Further, the riding device 4 is a device that directly draws (exposes) the circuit pattern produced by the CAD device 1 on the substrate. <lb. Structure of defect inspection device><lb-1. Hardware structure> The hardware structure of the defect inspection device 3 will be described with reference to Fig. 2 . The figure shows a schematic view of the hardware structure of the defect inspection device 3. The defect inspection device 3 is configured to electrically connect the control unit 11, the ROM 12, the RAM 13, the media drive 14, the operation unit 15, and the display unit 16 via the bus bar 17. The control unit 11 is constituted by a CPU. The control unit 11 controls the respective portions of the hardware in accordance with the program stored in the R 〇 M 丨 2 (or the program read by the media drive 14) p to realize the function of the defect inspection device 3. The ROM 12 is a memory device dedicated to the reading of the program p and the data required to control the defect inspection device 3 in advance. The RAM 13 is a memory device that can be read and written, and temporarily stores data and the like which are generated when the control unit 11 performs processing. The RAM 13 is composed of SRAM and flash memory 128482.doc -18-1361889 memory. The media drive 14 is a functional unit that reads information stored therein from a recording medium (more specifically, a removable recording medium such as cd-R〇m, DVD (diversified digital optical disc), floppy disk, etc.) M. The operation unit 15 is an input device constituted by a keyboard, a mouse, or the like, and is operated by a user who inputs a command and various materials. The operation unit 15 receives the user's operation and inputs it to the control unit U as a signal. The display unit 16 is provided with a monitor or the like to display various materials and the operation state of the defect inspection device 3. <lb-2. Functional Structure> The functional configuration of the defect inspection device 3 will be described with reference to Figs. 3 and 4 . FIG. 3 is a schematic view showing a functional configuration of the defect inspection device 3. Fig. 4 is a diagram showing various materials and correlation diagrams obtained in the defect detection processing executed in the defect inspection device 3. The defect inspection device 3 includes a CAD data acquisition unit 3, an operation length data acquisition unit 32, a defect detection unit 33, a defect repair unit 34, a drawing operation length data acquisition unit 35, and a drawing operation length data transmission unit 36. The functions of these parts are realized by reading a program P stored in advance in r〇m12 or the program P recorded in the recording medium, and executing it in the control unit. The CAD data acquisition unit 31 & CAD device acquires the input CAD data D1 in which the pattern to be drawn is described via the network ν (that is, the data before the RIP development of the operation length data D2 to be the inspection object). The run length data acquisition unit 32 obtains 128482.doc -19· 1361889 run length data D2 for drawing of the graphic from the RIP device 2 via the network ^ (that is, the input CAD data describing the graphic to be drawn) D1 information obtained by RIP expansion). The defect detecting unit 33 detects the defect of the running length data D2. More specifically, when the input CAD data D1 and the running length data are compared, when there is a difference area, the difference area is detected as the defective area of the running length data D2. The defect detecting unit 33 includes a conversion processing unit 331, a different area specifying unit 332, an unnecessary defect area specifying unit 333, and a missing defect area specifying unit 334.
變換處理部331對以相互不同之形式而記述之輸入cad 資料D1與運行長度資#D2的至少一方,執行特定之變換 處理,而取得整理成相互可比較之資料形式的比較CAD資 料F1與比較運行長度資料F2(參照圖4)。變換處理部Μ〗且 備:比較輸人CAD資料取得部3311與比較運行 取 得部33 12。 比較輸入CAD資料取得部3311照樣取得⑽ 31取得之輸入CAD資料m,作一抖取侍# 作為比較CAD資料Fl(參照圖 資料取得部32 ,而取得執行 作為比較運行 比較運行長度資料取得部3 3 12對運行長度 取得之運行長度資料職行「圖形化處理」 該處理而獲得之圖形化運行長度資料D22, 長度資料F2(參照圖4)。 闽彤化處理 厂/| 明 2 * . . w. 係將藉由複數運行Li(i = ! ; 之資料的運行長度資料D2變換成’ 貪科形式的處理。就圖形化處理,參照圖5作 128482.doc 1361889 說明。圖5係說明圖形化處理用之模式圖。 圖形化處理中,首先,將各個構成運行長度資料d2之複 數運行Li圖形化成長方形。亦即,將各運行Li變換成就X 方向之長度等於運行Li之線段的長度,就γ方向之長度等 於就運行Li間之Y方向的距離之長方形圖形Ri(i=1, 2,· · ·)。藉此’運行長度資料D2從藉由複數運行Li而 記述之資料,變換成藉由複數長方形圖形Ri而記述之資料 D21。 繼續,合併複數長方形圖形Ri(進行複數長方形圖形Ri 之或(OR)邏輯運算),而抽出各長方形圖形幻之合併區 域。藉此’藉由運行長度資料D2而記述之區域予以圖形 化’而取得圖形化運行長度資料D22。 再度參照圖3。差異區域指定部332比較比較cad資料F1 與比較運行長度資料F2,檢測兩資料之差異。更具體而 s,係進行比較C AD資料F1 (亦即,此處係輸入c AD資料 D1)與比較運行長度資料F2(亦即,此處係圖形化運行長度 資料D22)之"互斥或"(X〇r)邏輯運算,而取得指定兩資料 間之差異區域的差異區域資料D3(參照圖4)。兩資料間有 差異區域情況下,檢測該差異區域作為運行長度資料D2i 缺陷區域。 多餘缺陷區域指定部333進行差異區域資料〇3與比較運 行長度資料F2(亦即圖形化運行長度資料D22)之„且"(AND) 邏輯運算,而取得指定「多餘缺陷區域Ae」之多餘缺陷區 域資料D3a(參照圖4)。但是,所謂「多餘缺陷區域Ae」, 128482.doc •21 · 1361889 係在RIP處理中’在原本不須製作之區域中多餘地製作之 資料區域(亦即,在運行長度資料D2中,雖輸入CAD資料 D1不存在,但是產生有運行資料之區域)。換言之,多餘 缺區域指定部333在藉由差異區域資料D3而規定之區域 (亦即,輸入CAD資料D1與運行長度資料D2之差異區域) 中’藉由僅抽出存在於圖形化運行長度資料D22之區域, 來指定多餘缺陷區域Ae。 欠缺缺陷區域指定部334進行差異區域資料D3與比較 CAD資料F1(亦即輸入CAD資料m)之"且"(AND)邏輯運 算,取得指定「欠缺缺陷區域Af」之欠缺缺陷區域資料 D3b(參照圖4)。但是,所謂r欠缺缺陷區域Af」,係在RIp 處理中’不製作於原本須製作之區域的資料區域(亦即, 在運行長度資料D2中’雖輸入CAD資料D1存在,但是未 產生運行資料之區域)。換言之,欠缺缺陷區域指定部334 在藉由差異區域資料D3而規定之區域中,藉由僅抽出存在 於輸入CAD資料D1之區域,來指定欠缺缺陷區域Af。 缺陷修復部34於缺陷檢測部33在運行長度資料D2中檢測 出缺陷時’對該運行長度資料D2執行缺陷修復處理,而取 得修復運行長度資料D4。缺陷修復部34具備:多餘缺陷修 復部341與欠缺缺陷修復部342。 多餘缺陷修復部341檢測出多餘缺陷區域Ae時,修復該 多餘缺陷區域Ae。更具體而言,如圖6所示,係依據多餘 缺陷區域指定部333取得之多餘缺陷區域資料D3a,指定運 行長度資料D2中之多餘缺陷區域Ae(如藉由缺陷區域之頂 128482.doc -22- 1361889 點座標值來指定缺陷區域)’執行刪除存在於該區域之運 行資料的處理。藉此,修復運行長度資料D2之多餘缺陷。The conversion processing unit 331 performs a specific conversion process on at least one of the input cad data D1 and the run length asset #D2 described in a mutually different form, and obtains the comparison CAD data F1 and the comparison in the form of mutually comparable data. Run length data F2 (see Figure 4). The conversion processing unit 且 is configured to compare the input CAD data acquisition unit 3311 with the comparison operation acquisition unit 33 12 . The comparison input CAD data acquisition unit 3311 obtains the input CAD data m obtained by (10) 31, and makes a comparison of the CAD data F1 (see the map data acquisition unit 32), and acquires and executes the comparison operation length data acquisition unit 3 as the comparison operation. 3 12 pairs of run length data obtained from the run length data line "Graphic processing" The graphical run length data D22 obtained by this process, length data F2 (refer to Figure 4). Suihua treatment plant / | Ming 2 * . w. The operation of the running length data D2 of the data running Li (i = ! ; is converted into a 'corruptive form' processing. For the graphical processing, refer to Fig. 5 for description of 128482.doc 1361889. Fig. 5 is a graphic In the graphical processing, first, each of the complex running Lis constituting the running length data d2 is patterned into a rectangle, that is, the length of each running Li transform in the X direction is equal to the length of the line segment in which Li is run, The length in the γ direction is equal to the rectangular pattern Ri (i = 1, 2, · · · ) in which the distance in the Y direction between Li is operated. By this, the "running length data D2" is described by running Li in a plural number. The data is converted into the data D21 described by the plurality of rectangular patterns Ri. Continuing, the complex rectangular pattern Ri (the logical operation of the complex rectangular pattern Ri) is extracted, and the merged regions of the rectangular patterns are extracted. The graphically run length data D22 is obtained by patterning the area described by the run length data D2. Referring again to Fig. 3, the difference area specifying unit 332 compares the comparison cad data F1 with the comparison run length data F2 to detect the two data. The difference is more specific and s is compared with the comparison of the C AD data F1 (that is, the input c AD data D1 here) and the comparison of the running length data F2 (that is, here the graphical running length data D22). Mutually exclusive or "(X〇r) logic operation, and obtain the difference area data D3 (refer to Figure 4) of the difference area between the two data. When there is a difference between the two data, the difference area is detected as the running length data. The D2i defect area. The excess defect area specifying unit 333 performs the difference area data 〇3 and the comparison operation length data F2 (that is, the graphic operation length data D22). (AND) logical operation to obtain the excess defect area data D3a (refer to FIG. 4) specifying the "excess defect area Ae". However, the "excess defect area Ae", 128482.doc • 21 · 1361889 is in the RIP process. 'The data area that is created redundantly in the area that is not required to be produced (that is, in the running length data D2, although the input CAD data D1 does not exist, but the area where the operating data is generated). In other words, the redundant missing area specifying part 333 specifies the excess defect by extracting only the area existing in the graphical running length data D22 in the area defined by the difference area data D3 (that is, the difference area between the input CAD data D1 and the running length data D2). Area Ae. The defective area specifying unit 334 performs the "and" (AND) logical operation of the difference area data D3 and the comparison CAD data F1 (that is, the input CAD data m) to obtain the missing defect area data D3b specifying the "defective area Af". (Refer to Figure 4). However, the so-called r-deficient defect area Af" is not produced in the data area of the area to be originally created in the RIp processing (that is, in the running length data D2), although the input CAD data D1 exists, but no operational data is generated. Area). In other words, the defective area specifying unit 334 specifies the missing defective area Af by extracting only the area existing in the input CAD data D1 in the area defined by the different area data D3. The defect repairing unit 34 performs a defect repair process on the run length data D2 when the defect detecting unit 33 detects a defect in the run length data D2, and obtains the repair run length data D4. The defect repairing unit 34 includes an excess defect repairing unit 341 and a missing defect repairing unit 342. When the excess defect repairing portion 341 detects the excess defective region Ae, the unnecessary defective region Ae is repaired. More specifically, as shown in FIG. 6, the excess defect area Ae in the run length data D2 is specified based on the excess defect area data D3a obtained by the excess defect area specifying section 333 (eg, by the top of the defective area 128482.doc - 22- 1361889 Point coordinate value to specify the defect area) 'Execute the process of deleting the operation data existing in the area. Thereby, the excess defect of the running length data D2 is repaired.
欠缺缺陷修復部342檢測出欠缺缺陷區域Af時,修復該 欠缺缺陷區域Af〇更具體而言,如圖6所示,係依據欠缺 缺陷區域指定部334取得之欠缺缺陷區域資料D3b,指定運 行長度資料D2中之欠缺缺陷區域Af,並就該區域,再度執 行RIP處理,而產生新的運行資料。再者,在新產生之運 行資料附近存在運行資料情況下,將新產生之運行資料與 該附近之運行資料結合。藉此,取得運行長度資料之欠 缺缺陷經修復的修復運行長度資料d4。 描繪用運行長度資料取得部35取得須詩㈣之運行長 度資料的描1會用運行長度資料丁。更具體而言,於缺陷檢 測部33在檢查對象之運行長度資料D2中未檢測出缺陷情況 下,取得該運行長度資料的照樣作為描繪用運行長度資料 T,缺陷檢測部33在檢查對象之運行長度資料〇2中檢測出 缺陷情況下’則取得藉由缺陷修復㈣而取得之修復運行 長度貧料D4’作為描繪用運行長度資料丁。 得= = = — 繪裝置4依據從描二送至描,裝置4。- %仃食度貝枓傳送部36接收 用運行長度資料T來執行描繪。 Μ之㈣ <2.處理動作> <2a圖形描繪系統中之處理動作> 參照圖7作說 此處,就圖形描繪系統100執行之屬 128482.doc •23· 1361889 明。圖7係顯示從取得輸入CAD資料D1至執行圖形之插繪 為止的處理流程圖。 首先,CAD裝置1製作須曝光記錄於基板之電路圖案的 描繪資料,並作為輸入CAD資料〇1而傳送至Rip裝置2(步 驟 S1)。 繼續,從RIP裝置2取得輸入CAD資料…之尺吓裝置2,When the defective defect repairing portion 342 detects the defective defective region Af, the defective defective region Af is repaired. More specifically, as shown in FIG. 6, the missing length region data D3b obtained by the defective portion specifying portion 334 is specified, and the running length is specified. The defect area Af in the data D2, and in this area, RIP processing is performed again, and new operational data is generated. Furthermore, in the case where there is operational data in the vicinity of the newly generated operational data, the newly generated operational data is combined with the operational data in the vicinity. Thereby, the repaired operation length data d4 of the defect defect of the running length data is obtained. The drawing length data acquisition unit 35 obtains the running length data of the required length data of the poem (4). More specifically, when the defect detecting unit 33 does not detect a defect in the running length data D2 of the inspection target, the running length data is acquired as the drawing running length data T, and the defect detecting unit 33 operates in the inspection target. In the case where the defect data is detected in the length data 〇 2, the repair operation length poor material D4' obtained by the defect repair (four) is obtained as the running length data for the drawing.得 = = = — The drawing device 4 is sent to the device 4 according to the description. - % 仃 枓 枓 枓 36 36 36 36 36 36 36 。 。 。 。 。 。 。 。 (4) <2. Processing Operation><2a Processing Operation in Graphic Drawing System> Referring to Fig. 7, here, the graphic drawing system 100 executes the genus 128482.doc • 23·1361889. Fig. 7 is a flow chart showing the processing from the acquisition of the input CAD data D1 to the execution of the interpolation of the graphics. First, the CAD device 1 creates a drawing material to be exposed to the circuit pattern recorded on the substrate, and transmits it to the Rip device 2 as the input CAD data (1 (step S1). Continue, get the input of CAD data from the RIP device 2...
將該取得之輸入CAD資料D1予以RIP展開,而輸出運行長 度資料D2(步驟S2) 〇 繼續,缺陷檢查裝置3從RIP裝置2取得在步驟s2輸出之 運行長度資料D2,檢查該取得之運行長度資_的缺陷 後,取得描繪用運行長度資料丁,而傳送至描緣裝置4(步 驟S3)。就步驟S3之具體處理流程詳述於後。 繼續,從缺陷檢查裝置3取得摇繪用運行長度資料τ之描 繪裝置4’依據該取得之描㈣運行長度諸了執行描繪處 理(步驟S4)。亦即’在基板上曝光二維影像之電路圖案。The obtained input CAD data D1 is RIP developed, and the running length data D2 is output (step S2). Then, the defect inspection device 3 acquires the running length data D2 outputted from the RIP device 2 in step s2, and checks the obtained running length. After the defect of the asset is obtained, the drawing length data is obtained and transmitted to the edge device 4 (step S3). The specific processing flow of step S3 is detailed later. Continuing, the drawing device 4' which acquires the running length data τ for the drawing from the defect inspection device 3 performs the drawing processing in accordance with the acquired running length (step S4). That is, the circuit pattern of the two-dimensional image is exposed on the substrate.
以上,係在圖形描繪系統1〇〇中執行之一連串描繪處 理。其次,就缺陷檢查裝置3中執行之處理(步驟S3)作說 明0 <2b.缺陷檢查裝置3中之處理動作〉 就缺陷檢查裝置3執行之處$ (亦即,缺陷檢查處理及 修復處理),參照圖8具體作 明。圖8係顯示在缺陷; 查裝置3中執行之缺陷檢杳 —處理及缺陷修復處理的流; 圖。 首先,CAD資料取得部3丨 1從cAD裝置丨取得輸入cADj 128482.doc -24- 1361889 料D1(步驟S11)。此外,運行長度資料取得部32&Rlp裝置 2取得運行長度資料D2(步帮S12)。 繼續,缺陷檢測部33檢測在步驟S12取得之運行長度資 料D2的缺陷(步驟S13〜步驟S16)。 亦即,首先,變換處理部331取得整理成可相互比較之 資料形式的比較CAD資料F1與比較運行長度資料F2(步驟 S13)。更具體而έ,比較輸入cad資料取得部3311取得輸 入CAD資料D1(亦即在步驟S11,CAD資料取得部31所取得 之資料)照樣作為比較CAD資料F1。此外,比較運行長度 貧料取得部3312對運行長度資料〇2(亦即在步驟S12,運行 長度資料取得部32所取得之資料)執行圖形化處理,取得 執行該處理所獲得之圖形化運行長度資料D22,作為比較 運行長度資料F2。 繼續’差異區域指定部3 3 2進行比較CAD資料F1與比較 運行長度資料F2之”互斥或,,邏輯運算,而取得指定兩資料 間之差異區域的差異區域資料D3(步驟S14)。 繼續’多餘缺陷區域指定部333進行在步驟S14取得之差 異區域資料D3與在步驟S13取得之比較運行長度資料F2(亦 即圖形化運行長度資料D22)的”且"(AND)邏輯運算,而取 得指定多餘缺陷區域Ae之多餘缺陷區域資料D3a(步驟 S15) 〇 繼續’欠缺缺陷區域指定部334進行在步驟S14取得之差 異區域資料D3與在步驟s 13取得之比較C AD資料F1 (亦即, 輸入CAD資料D1)的,,且"(AND)邏輯運算,而取得指定欠缺 128482.doc -25- 1361889 缺陷區域Af之欠缺缺陷區域資料D3b(步驟S16)。 另外,步驟S15之處理與步驟S16之處理的執行順序亦可 顛倒。亦即,取得欠缺缺陷區域資料D3b之處理與取得多 餘缺陷區域資料D3a之處理,亦可先進行其中之_。 繼續’缺陷修復部34依據在步驟S 14取得之差異區域資 料D3,判斷缺陷檢測部33是否檢測出運行長度資料叫之 缺陷(亦即,是否檢測出差異區域)(步驟s丨7)。In the above, a series of drawing processes are performed in the graphic drawing system 1A. Next, the processing executed in the defect inspection device 3 (step S3) will be described as 0 < 2b. The processing operation in the defect inspection device 3 > where the defect inspection device 3 is executed (ie, the defect inspection process and the repair process) ), as specifically described with reference to FIG. Figure 8 is a flow showing the defect inspection-processing and defect repair processing performed in the inspection device 3; First, the CAD data acquisition unit 3丨1 obtains the input cADj 128482.doc -24 - 1361889 material D1 from the cAD device (step S11). Further, the run length data acquisition unit 32 & Rlp device 2 acquires the run length data D2 (step S12). Continuing, the defect detecting unit 33 detects the defect of the operation length data D2 acquired in step S12 (steps S13 to S16). In other words, first, the conversion processing unit 331 acquires the comparison CAD data F1 and the comparison operation length data F2 which are arranged in a data format which can be compared with each other (step S13). More specifically, the comparison input cad data acquisition unit 3311 acquires the input CAD data D1 (that is, the data acquired by the CAD data acquisition unit 31 in step S11) as the comparison CAD data F1. Further, the comparison run length lean acquisition unit 3312 performs a patterning process on the run length data 〇2 (that is, the data acquired by the run length data acquisition unit 32 in step S12), and obtains the graphical run length obtained by executing the process. The data D22 is used as the comparison run length data F2. Continuing with the 'differential region specifying unit 3 3 2 ' performing a mutual exclusion or logical operation of comparing the CAD data F1 with the comparison running length data F2 to obtain the difference region data D3 specifying the difference region between the two data (step S14). The 'excess defect area specifying unit 333 performs the "and" (AND) logical operation of the difference area data D3 acquired in step S14 and the comparison running length data F2 (that is, the graphical running length data D22) obtained in step S13. The excess defect area data D3a of the specified excess defect area Ae is obtained (step S15). Continuing the 'defective area specifying unit 334 performs the difference area data D3 obtained in step S14 and the comparison C AD data F1 obtained in step s 13 (ie, And inputting the CAD data D1), and " (AND) logic operation, and obtaining the defect-deficient area data D3b of the defect area Af designated 128482.doc -25 - 1361889 (step S16). Further, the order of execution of the processing of step S15 and the processing of step S16 may be reversed. That is, the processing of obtaining the defective area data D3b and the processing of obtaining the defective area data D3a may be performed first. Continuing the defect repairing unit 34 judges whether or not the defect detecting unit 33 detects the defect of the running length data (i.e., whether or not the difference area is detected) based on the difference area data D3 acquired in step S14 (step s7).
在步驟S17判斷為檢測出缺陷情況下,缺陷修復部“修 復該檢測出之缺陷,而取得修復運行長度資料D4(步驟 S18) »更具體而言,首先,多餘缺陷修復部341修復多餘 缺陷。亦即,依據在步驟S15取得之多餘缺陷區域資料 D3a,指定在運行長度資料D2中之多餘缺陷區域心,藉由 刪除存在於該區域之運行資料,而修復多餘缺陷。此外, 欠j缺陷修復部342修復欠缺缺陷。亦即’依據在步驟 取付之欠缺缺陷區域資料D3b,指定運行長度資料中之 人缺缺陷區域Af ’就該區域,藉由再度執行Rlp處理而產 生新的運行㈣,來修復欠缺缺陷。藉由執行此等處理, 而取得修復運行長度資料D4。 繼續’描㈣運行長度資料取得部35取得在步驟川取 得之修復運行長度資_,作為描繪用運行長度資料T(步 驟S19)〇 。 另外,在步驟sn判斷為未檢測出缺陷情況下,不 步_8之處s,而進人步驟S2G之處理。纟步驟S20,打 繪用運行長度資料取得部35取得在步驟S12所取得之運= 128482.doc -26 - 1361889 長度貝料D2,作為騎用運行長度資料了(步驟s2〇)。 藉由執行步驟S19或步驟S20之其中之一的處理,而取得 描繪用運行長度資料丁時,描繪用運行長度資料傳送部% 將該取得之描繪用運行長度資料丁傳送至描繪裝置4(步驟 S2D。描繪裝置4依據描繪用運行長度資料丁執行描繪(圖7 之步驟S4)。以上,係在缺陷檢查裝置3中執行之一連串處 理。 <3.效果> 藉由上述之實施形態,由於缺陷檢查裝置3係藉由比較 RIP處理前後之資料,亦即比較輸入CAD資料叫與運行長 度資料D2,而檢測運行長度資料D2之缺陷,因此,在描 繪裝置4依據運行長度資料D2執行描繪之前(亦即,即使不 執行描繪),仍可檢測在運行長度資料D2中產生之缺陷。 此外,檢測缺陷時,亦無需具備複數RIp處理功能部, 亦無需執行敫次RIP處理。因此,可以簡易之結構檢測產 生於運行長度資料D2之缺陷。 此外’由於在運行長度資料D2中檢測出缺陷時,修復該 缺陷,而產生修復運行長度資料D4,因此可取得無缺陷之 運行長度資料。 此外,在運行長度資料D2中檢測出缺陷時,修復運行長 度資料D4作為描繪用運行長度資料τ而傳送至描繪裝置 4 ’描繪裝置4依據該描繪用運行長度資料τ執行描繪。因 此’描繪裝置4並非依據有缺陷之運行長度資料d2執行圖 案的描繪,不致產生浪費之基板。 128482.doc •27· 1361889 此外,藉由上述之實施形態,在CAD資料中實施了修正 處理時,可有效確認其修正内容。亦即,藉由執行其次之 處理,可確認實施於CAD資料中的修正内容。 首先,從CAD裝置1取得「修正前之CAD資料」作為輸 入CAD資料D1,並且從RIP裝置2取得將「修正後之CAD資 料」予以RIP展開而取得之運行長度資料(亦即,從修正後 之CAD資料產生的運行長度資料),作為運行長度資料 D2。而後,比較取得之CAD資料D1與運行長度資料D2, 檢測兩資料之差異,而取得差異區域資料D3。該差異區域 資料D3中,對CAD資料進行修正之部分應作為差異區域來 檢 >則。亦即’觀察取得之差異區域貢料D3時’可有效確認 對CAD資料進行何種修正。此外,藉由確認是否正確檢測 對CAD資料進行修正之部分作為差異區域,可驗證是否在 產生之運行長度資料中正確地反映對CAD資料進行之修 正。 另外,理所當然地,從CAD裝置1取得「修正後之CAD 資料」作為輸入CAD資料D1,與從修正後之CAD資料產生 的運行長度資料比較時,可驗證是否依據修正後之CAD資 料產生有正確之運行長度資料(亦即,檢測運行長度資料 之缺陷)。 [第二實施形態] <1.結構> <la.圖形描繪系統之全體結構〉 就本發明之第二實施形態的圖形描繪系統作說明。另 128482.doc • 28 · 1361889 外’以下係就與第一實施形態不同之結構作說明,就同樣 之結構省略說明。此外,就同樣之結構,適宜使用在第一 實施形態中使用之參照符號。 第二實施形態之圖形描繪系統與第一實施形態之圖形描 繪系統100同樣,具備經由LAN等之網路]^而相互連接的 CAD裝置1 ' Rip裝置2、缺陷檢查裝置5及描繪裝置4(參照 . 圖〇。CAD裝置1、rIP裝置2及描繪裝置4之各結構與第一 ^ 實施形態相同。缺陷檢查裝置5與第一實施形態之缺陷檢 查裝置3相同。檢查用於描繪之運行長度資料D2的缺陷。 其次,就缺陷檢查裝置5之具體結構作說明。 <lb.缺陷檢查裝置之結構> 缺陷檢查裝置5藉由與第一實施形態之缺陷檢查裝置3相 同的硬體結構而實現(參照圖2)。 就缺陷檢查裝置5之功能性結構,參照圖9、圖1〇作說 明。圖9係顯不缺陷檢查裝置5之功能性結構的概略圖。圖 • 1〇係模式顯不在缺陷檢查裝置5中執行之缺陷檢測處理中 取得之各種資料及其相關關係圖。 缺陷檢查裝置5具備:CAD資料取得部51、運行長度資 - 料取得部52、缺陷檢測部53、缺陷修復部54、描繪用運行 ' 長度資料取得部55及描繪用運行長度資料傳送部56。此等 各。P刀之功旎係藉由讀取預先儲存於R〇M丨2等之程式p, 或是記錄於記錄媒體M之程式,在控制部u中執行而實現 (參照圖2)。CAD資料取得部51、運行長度資料取得部 缺修復部54、描繪用運行長度資料取得部55及描繪用運 128482.doc -29· 1361889 订長度貝料傳送部56之各功能,分別與CAD資料取得部 η、運行長度資料取得部32、缺陷修復部34、描繪用運行 長度資料取得部3 5及描搶用運行長度資料傳送部3 6相同。 缺陷檢測部53檢測運行長度資料D2之缺陷。更具體而 言,係比較輸入CAD資料D1與運行長度資料^^,有差里 區域時’檢測該差異區域作為運行長度資料的之缺陷區 域。缺陷檢測部53具備:變換處理部531與差異區域指定 部 532。 變換處理部531在以相互不同之形式記述之輸入⑽資 料m與運行長度資兩者中執行特定之變換處理,而 取得整理成可相互比較之資料形式#比較CAD資料⑴與比 較運行長度資料G2(參照圖10)。變換處理部531具備··比 較輸入CAD資料取得部训與比較運行長度資料取 5312。 比較輸入CAD資料取得部5311對〇八1)資料取得部51取得 之輸入CAD資料D1執行「CAD資料影像化處理」,而取得 執行該處理所獲得之影像化CAD資料D1〇1,作為比較 資料G1 (參照圖1 〇)。 所謂「CAD資料影像化處理」,如圖u⑷所示,係將藉 由圖形而記述之資料的輸入CAD資料D1變換成藉由影像而 記述之資料形式的處理。CAD資料影像化處理中,就輸入 CAD資料D1中包含之各個多角形圖形資料,進行塗滿該多 角形圖形(polygon)之内部的處理。藉此,產生其輪廊線藉 由圖形資料.而規定之多角形圖形的影像。亦即,圖 128482.doc -30- >0^When it is determined in step S17 that the defect is detected, the defect repairing portion "repairs the detected defect and acquires the repair running length data D4 (step S18). More specifically, first, the redundant defect repairing portion 341 repairs the excess defect. That is, according to the excess defect area data D3a obtained in step S15, the excess defect area core in the running length data D2 is specified, and the excess defect is repaired by deleting the operation data existing in the area. In addition, the under j defect repair is performed. Part 342 repairs the defect, that is, 'according to the defect-deficient area data D3b taken in the step, the person in the running length data is designated to have the defect area Af', and the area is generated by re-executing the Rlp process (4). By repairing the defect, the repair run length data D4 is obtained. The 'fourth run length data acquisition unit 35' obtains the repair run length _ obtained in the step Sichuan as the drawing run length data T (step S19) 〇 In addition, when it is determined in step sn that no defect is detected, step s8 is not taken, and step S2G is entered. In step S20, the drawing run length data acquisition unit 35 obtains the length of the material D2 obtained in step S12 as the riding run length data (step s2〇). When the drawing length data is obtained by performing the processing of one of the steps S19 or S20, the drawing running length data transmitting unit % transmits the acquired drawing running length data to the drawing device 4 (step S2D). The drawing device 4 performs drawing based on the drawing run length data (step S4 of Fig. 7). In the above, one of the series of processes is executed in the defect inspection device 3. <3. Effect> With the above embodiment, The defect inspection device 3 detects the defect of the run length data D2 by comparing the data before and after the RIP process, that is, comparing the input CAD data with the run length data D2, and therefore, before the drawing device 4 performs the drawing according to the run length data D2, (That is, even if the drawing is not performed), the defect generated in the running length data D2 can be detected. In addition, when detecting the defect, it is not necessary to have the plural RIp The processing function unit does not need to perform the RIP processing. Therefore, the defect generated in the running length data D2 can be detected by a simple structure. Further, since the defect is detected in the running length data D2, the defect is repaired, and the repair operation is generated. The length data D4 can be used to obtain the defect-free running length data. Further, when the defect is detected in the running length data D2, the repair running length data D4 is transmitted as the drawing running length data τ to the drawing device 4' This drawing is performed by the running length data τ. Therefore, the drawing device 4 does not perform the drawing of the pattern based on the defective running length data d2, and does not cause waste of the substrate. 128482.doc •27· 1361889 In addition, according to the above-described embodiment, when the correction processing is performed in the CAD data, the correction content can be effectively confirmed. That is, the correction content implemented in the CAD material can be confirmed by performing the second processing. First, the "CAD data before correction" is acquired from the CAD device 1 as the input CAD data D1, and the run length data obtained by RIP expansion of the "corrected CAD data" is obtained from the RIP device 2 (that is, after the correction) The running length data generated by the CAD data) is used as the running length data D2. Then, the obtained CAD data D1 and the running length data D2 are compared, and the difference between the two data is detected, and the difference region data D3 is obtained. In the difference area data D3, the part that corrects the CAD data should be checked as the difference area > That is, 'when observing the difference zone D3 obtained at the time', it is possible to effectively confirm what kind of correction is made to the CAD data. In addition, by confirming whether or not the correction of the CAD data is correctly detected as the difference area, it is possible to verify whether the correction of the CAD data is correctly reflected in the generated run length data. In addition, it is a matter of course that the "corrected CAD data" is obtained from the CAD device 1 as the input CAD data D1, and when compared with the run length data generated from the corrected CAD data, it can be verified whether the corrected CAD data is correctly generated. Run length data (ie, defects in detecting run length data). [Second Embodiment] <1. Structure><la. Overall Structure of Graphic Drawing System> A graphic drawing system according to a second embodiment of the present invention will be described. Further, the following description is omitted for the same configuration as the first embodiment, and the description of the same configuration is omitted. Further, with the same configuration, the reference symbols used in the first embodiment are preferably used. Similarly to the graphic drawing system 100 of the first embodiment, the graphic drawing system of the second embodiment includes a CAD device 1 'Rip device 2, a defect inspection device 5, and a drawing device 4 that are connected to each other via a network such as a LAN. The structure of the CAD device 1, the rIP device 2, and the drawing device 4 is the same as that of the first embodiment. The defect inspection device 5 is the same as the defect inspection device 3 of the first embodiment. Defects of the data D2. Next, the specific structure of the defect inspection device 5 will be described. <lb. Structure of defect inspection device> The defect inspection device 5 has the same hardware structure as the defect inspection device 3 of the first embodiment. Further, the functional configuration of the defect inspection device 5 will be described with reference to Fig. 9 and Fig. 1. Fig. 9 is a schematic view showing the functional configuration of the defect inspection device 5. The pattern is not displayed in the various types of data acquired in the defect detection process executed by the defect inspection device 5 and the related relationship diagram. The defect inspection device 5 includes a CAD data acquisition unit 51 and an operation length resource acquisition unit 52. The defect detecting unit 53, the defect repairing unit 54, the drawing operation length data obtaining unit 55, and the drawing running length data transmitting unit 56. Each of the P-knives is stored in advance in the R〇M by reading. The program p such as 丨2 or the program recorded on the recording medium M is executed by the control unit u (see Fig. 2). The CAD data acquisition unit 51, the run length data acquisition unit missing repair unit 54, and the drawing operation Each of the functions of the length data acquisition unit 55 and the drawing service 128482.doc -29· 1361889, and the length data transfer unit 56, and the CAD data acquisition unit η, the operation length data acquisition unit 32, the defect repair unit 34, and the drawing operation The length data acquisition unit 35 and the trace operation length data transfer unit 36 are the same. The defect detection unit 53 detects the defect of the run length data D2. More specifically, it compares the input CAD data D1 with the run length data ^^, In the case of the difference area, the difference area is detected as the defect area of the running length data. The defect detecting unit 53 includes the conversion processing unit 531 and the difference area specifying unit 532. The conversion processing unit 531 is in a different form The input (10) data m and the run length are both subjected to a specific conversion process, and are obtained as a data form that can be compared with each other. #Comparison CAD data (1) and comparison run length data G2 (refer to FIG. 10). Conversion processing unit 531 The comparison input CAD data acquisition section training and comparison operation length data acquisition 5312. The comparison input CAD data acquisition unit 5311 performs "CAD data visualization processing" on the input CAD data D1 acquired by the data acquisition unit 51. The visualized CAD data D1〇1 obtained by performing the processing is obtained as the comparison data G1 (refer to FIG. 1A). As shown in Fig. u (4), the "CAD data visualization processing" is a process of converting the input CAD data D1 of the material described by the graphic into a data format described by the video. In the CAD data visualization processing, the processing of the inside of the polygon pattern is performed by inputting each polygon pattern data included in the CAD data D1. Thereby, an image of the polygon pattern defined by the graphic data of the wheel line is generated. That is, Figure 128482.doc -30- >0^
成影像資料。藉由對輸入CAD資料01中包含之全部圖 /貝料執仃該處理,而取得影像化CAD 資料D101。 θ 2較運行長度:#料取得部53⑽運行長度㈣取得部52 取:之運行長度資料D2執行「運行長度影像化處理」,而 π執行Θ處理所獲得之影像化運行長度資料⑽2,作為 比較運行長度資料G2(參照圖1〇)。 斤口月運行長度影像化處理」,如圖工工⑻所示,係將藉 由複數運仃Ll(1=1,2,· · ·)而記述之資料的運行長度資 ⑽2變換成藉由影像而記述之資料形式的處理。更具體而 "’係按照運行長度資料D2具有之運行Li的座標值資訊, 塗滿對應之像素的處理。在運行長度影像化處理中,首 先’依據各個構成運行長度資料D2之複數運行Li(i = 1, 2,· · ·)規定長方形區域幻㈣,2,· . .)(D2〇1),並塗 滿對應於該各個長方形區域Ri(i = l,2, · · ·)的像素 (Dl〇2)。藉此,運行長度資料D2從藉由複數運行Li而記述 之貝料,變換成藉由像素集合而記述之資料D2〇2。亦即, 取得影像化運行長度資料D2〇2。 再度參照圖9。差異區域指定部532比較比較CAD資料fi 與比較運行長度資料F2,而檢測兩資料間之差異。更具體 而言,係以像素單位比較比較CAD資料G1(亦即,此處係 影像化CAD資料D1〇i)與比較運行長度資料G2(亦即,此處 係影像化運行長度資料D202)(更具體而言,係就兩資料比 較在同一座標位置有無像素),而取得指定兩資料間之差 異區域(亦即,僅任何一方之資料中存在像素的區域)的差 128482.doc •31 - 1361889 異區域貧料D3。 特別是差異區域指定部532抽出僅在影像化運行長度資 料D202中存在像素的區域’作為多餘缺陷區域Ae,而取 得指定多餘缺陷區域Ae之多餘缺陷區域資料D3a。此外, 抽出僅在影像化CAD資料D101中存在像素之區域,作為欠 缺缺陷區域Af,而取得指定欠缺缺陷區域Af之欠缺缺陷區 域資料D3b。 <2.處理動作> <2a.圖形描繪系統中之處理動作> 第二實施形態之圖形描繪系統執行的全體處理之流程, 與第一實施形態之圖形描繪系統1〇〇執行的處理流程(參照 圖7)相同。 <2b.缺陷檢查裝置3中之處理動作> 就缺陷檢查裝置5執行之處理(亦即,缺陷檢查處理及缺 陷修復處理)作說明。由於缺陷檢查裝置5執行之處理的流 程與第一實施形態之缺陷檢查裝置3執行的處理之流程(參 照圖8)大致相同,因此,在以下參照圖8,就與其不同之 處作說明。 首先,CAD資料取得部51|CAD裝置1取得輸入cad資 料D1,運行長度資料取得部52|RIp裝置2取得運行長度資 料D2(參照步驟SU〜S12)。 繼續,缺陷檢測部53檢測在之前的步驟(參照步驟si2) 所取得之運行長度資料〇2的缺陷(參照步驟sn〜步驟 S16)。 128482.doc •32- 1361889 亦即’首先’變換處理部53 ^ ^ 1取仔整理成相互可比較之 貧科形式的比較CAD資料G1^ 牛 /、比較運仃長度貧料G2(參照 v驟S13)。更具體而言,比較 平乂箱ί入CAD貧料取得部53 11對 輸入CAD資料D1(亦即,在之舒认此邮Α 之别的步驟(參照步驟s〗丨), cad資料取得部取得之眘祖、私〜^ 付之貝枓)執订CAD資料影像化處Image data. The imaged CAD data D101 is obtained by performing the processing on all the maps/shells contained in the input CAD data 01. θ 2 operation length: # material acquisition unit 53 (10) operation length (4) acquisition unit 52: The operation length data D2 is executed by "running length imaging processing", and π is performed by the processing operation to obtain the imaging running length data (10) 2 as a comparison. Run length data G2 (refer to Figure 1〇). According to the worker (8), the running length (10) 2 of the data described by the plurality of operations L1 (1 = 1, 2, · · ·) is converted into The processing of the data form described in the image. More specifically, "' is based on the coordinate value information of the run Li of the run length data D2, and the processing of the corresponding pixel is applied. In the running length imaging processing, first, the rectangular area illusion (4), 2, · . . . (D2〇1) is defined according to the plural running Li(i = 1, 2, · · ·) of each of the running length data D2. And the pixels (D1〇2) corresponding to the respective rectangular regions Ri(i = l, 2, · · ·) are coated. Thereby, the run length data D2 is converted into the data D2〇2 described by the pixel set from the bead described by the plural Li. That is, the imaged run length data D2〇2 is obtained. Referring again to Figure 9. The difference area specifying unit 532 compares the comparison CAD data fi with the comparison run length data F2 to detect the difference between the two data. More specifically, comparing the CAD data G1 (that is, here the visualized CAD data D1〇i) and the comparison running length data G2 (that is, here the imaging running length data D202) are compared in pixel units ( More specifically, the difference between the two data points at the same coordinate position, and the difference between the specified two data areas (that is, the area where only one of the data exists in any of the data) 128482.doc • 31 - 1361889 Heterogeneous D3. In particular, the different area specifying unit 532 extracts the area ‘where only the pixel exists in the imaged run length data D202 as the unnecessary defective area Ae, and obtains the excess defective area data D3a specifying the unnecessary defective area Ae. Further, the area where the pixel exists only in the imaged CAD data D101 is extracted, and the missing defect area area Df is obtained as the missing defect area Af. <2. Processing Operation><2a. Processing Operation in Graphic Drawing System> The flow of the entire processing executed by the graphic drawing system of the second embodiment is executed by the graphic drawing system 1 of the first embodiment. The processing flow (see Fig. 7) is the same. <2b. Processing Operation in Defect Inspection Apparatus 3> The processing executed by the defect inspection apparatus 5 (i.e., the defect inspection processing and the defect repair processing) will be described. Since the flow of the process performed by the defect inspection device 5 is substantially the same as the flow of the process performed by the defect inspection device 3 of the first embodiment (refer to Fig. 8), a description will be given below with reference to Fig. 8 . First, the CAD data acquisition unit 51|CAD device 1 acquires the input cad data D1, and the operation length data acquisition unit 52|RIp device 2 acquires the operation length data D2 (refer to steps SU to S12). Continuing, the defect detecting unit 53 detects the defect of the run length data 〇2 obtained in the previous step (refer to step si2) (refer to steps sn to S16). 128482.doc •32- 1361889 That is, the 'first' transformation processing unit 53 ^ ^ 1 is sorted into mutually comparable poorly-formed comparative CAD data G1^ cattle /, comparative transport length poor material G2 (refer to v S13). More specifically, the cad data acquisition unit 53 11 inputs the CAD data D1 (that is, the step of recognizing the post (refer to step s) ,), the cad data acquisition unit Obtained the ancestors, private ~ ^ Fu Zhibei) to order CAD data visualization
理,而取得執行該處理所獲得之影像化CAD資料麵,作 為比較CAD資料G1。此外,比較運行長度資料取得部如 對運行長度資料D2(亦即在之前的步驟(參照步驟si2)運行 長度資料取得部5 2取得之資料)執行運行長度影像化處 理,而取得執行該處理所獲得之影像化運行長度資料 D202 ’作為比較運行長度資料g2。 繼續’差異區域指定部532比較比較CAD資料G1與比較 運行長度資料G2,而取得指定兩資料間之差異區域的差異 區域資料D3(參照步驟S14)。 再者’差異區域指定部532取得在差異區域中,抽出了 藉由多餘像素而構成之區域(多餘缺陷區域Ae)的多餘缺陷 區域資料D3a(參照步驟S15)。 再者’取得在差異區域中,抽出了藉由欠缺像素而構成 之區域(欠缺缺陷區域Af)的欠缺缺陷區域資料D3b(參照步 驟S16)。 繼續,缺陷修復部54依據在之前的步驟(參照步驟S14) 所取得之差異區域資料D3,判斷缺陷檢測部53是否檢測出 運行長度資枓D2之缺陷(亦即,是否檢測出差異區域)(參 照步驟S17)。 128482.doc -33- 此處,判斷為檢測出 檢測出之缺陷 出:陷情況下,缺陷修復部34修復該 S18),描繪用#修復運行長度資料D4(參照步驟 行長度資料C取得部55取得該取得之修復運 叫而後,指d用運行長度資料1·(參照步驟 運仃長度貧料傳送部56將該取得之描 、又貝料丁傳送至描繪裝置4(參照步驟S21)。 另外’判斷為並未檢測出缺陷情況下,描繪用運行長度 貧料取得料取得在之“步驟(參照㈣si2)所取^ 行長度貝料D2,作為描緣用運行長度資料T(參照步驟 S20) H騎用運行長度資料傳送部灣該取得之描 繪用運行長度資料T傳送m裝置4(參照步驟S21)。 [第三實施形態] < 1 ·結構> < 1 a.圖形描繪系統之全體結構> 就本發明之第二實施形態的圖形描繪系統作說明。另 外,以下係就與第一實施形態不同之結構作說明,就同樣 之結構省略說明。此外,就同樣之結構,適宜使用在第一 實施形態中使用之參照符號。 第三實施形態之圖形描繪系統與第一實施形態之圖形描 繪系統1 00同樣’具備經由LAN等之網路N而相互連接的 CAD裝置1、RIP裝置2、缺陷檢查裝置6及描繪裝置4(參照 圖1)。CAD裝置1、rip裝置2及描繪裝置4之各結構與第一 實施形態相同。缺陷檢查裝置6與第一實施形態之缺陷檢 查裝置3相同。檢查用於描繪之運行長度資料D2的缺陷。 128482.doc -34- 1361889 其次,就缺陷檢查裝置6之具體結構作說明。 <lb.缺陷檢查裝置之結構> 缺陷檢查裝置6藉由與第一實施形態之缺陷檢查裝置3相 •同的硬體結構而實現(參照圖2)。 就缺陷檢查裝置6之功能性結構,參照圖12、圖13作說 明。圖12係顯示缺陷檢查裝置6之功能性結構的概略圖。 • 圖13係模式顯示在缺陷檢查裝置6中執行之缺陷檢測處理 中取得之各種資料及其相關關係圖。 ® 缺陷檢查裝置6具備:CAD資料取得部61、運行長度資 料取得部62、缺陷檢測部63、缺陷修復部64、描繪用運行 長度資料取得部65及描繪用運行長度資料傳送部66。此等 各部分之功能係藉由讀取預先儲存於R〇M 1 2等之程式p, 或是記錄於記錄媒體Μ之程式,在控制部丨丨中執行而實現 (參照圖2)。CAD資料取得部61、運行長度資料取得部62、 缺陷修復部64、描繪用運行長度資料取得部65及描繪用運 φ 行長度資料傳送部66之各功能,分別與CAD資料取得部 31、運行長度資料取得部32、缺陷修復部34、描繪用運行 長度資料取得部35及描繪用運行長度資料傳送部邗相同。 ' 缺陷檢測部63檢測運行長度資料D2之缺陷。更具體而 .言,係比較輸入CAD資料D1與運行長度資料D2,有差異 區域時,檢測該差異區域作為運行長度資料02之缺陷區 域。缺陷檢測部63具備··變換處理部631與差異區域指定 部 632 〇 變換處理部631在以相互不同之形式記述之輸入cad資 128482.doc •35- 1361889 料D1與運行長度資料D2的至少一方(此處為輸入cad資料 丄)執行特疋之變換處理,而取得整理成可相互比較之資 料形式的比較CAD資料H1與比較運行長度資料H2(參照圖 1 3)。變換處理部631具備:比較輸入CAD資料取得部6311 與比較運行長度資料取得部63丨2。 比較輸入CAD資料取得部6311對(:八1)資料取得部61取得 之輸入CAD資料D1執行「座標值化處理」,而取得執行該The image of the CAD data obtained by performing the processing is obtained as the comparison CAD data G1. Further, the comparison run length data acquisition unit executes the run length imaging process on the run length data D2 (that is, the data acquired by the run length data acquisition unit 52 in the previous step (refer to step si2)), and obtains the execution of the process. Obtain the imaged run length data D202' as the comparison run length data g2. The continuation' difference area specifying unit 532 compares the comparison CAD data G1 with the comparison operation length data G2, and acquires the difference area data D3 specifying the difference area between the two data (refer to step S14). Further, the 'differential region specifying unit 532 acquires the unnecessary defective region data D3a in which the region (excess defective region Ae) composed of the unnecessary pixels is extracted in the different region (refer to step S15). Further, in the difference region, the missing defect region data D3b of the region (the defective region Af) which is formed by the missing pixel is extracted (refer to step S16). Continuing, the defect repairing unit 54 determines whether or not the defect detecting unit 53 detects the defect of the running length resource D2 (that is, whether or not the difference area is detected) based on the difference area data D3 acquired in the previous step (refer to step S14) ( Refer to step S17). 128482.doc -33- Here, it is determined that the detected defect is detected: in the case of trapping, the defect repairing unit 34 repairs the S18), and the drawing uses the #repair run length data D4 (refer to the step line length data C acquisition unit 55). When the acquired repair call is obtained, the d-use run length data 1 is referred to (the step-by-step transfer operation is performed by the step-and-length material transfer unit 56 to the drawing device 4 (refer to step S21). When it is judged that the defect is not detected, the length of the material D2 taken in the "step (refer to (4) si2) is obtained as the running length data T (see step S20). The H-ride running length data transfer unit transmits the m-type device 4 for the drawing run length data T (see step S21). [Third embodiment] <1 · Structure>< 1 a. Graphic drawing system (Embodiment) A description will be given of a pattern drawing system according to a second embodiment of the present invention. The following description is omitted for the configuration of the first embodiment, and the same configuration is omitted. Make In the same manner as the graphic drawing system 100 of the first embodiment, the graphic drawing system of the third embodiment includes a CAD device 1 and a RIP device that are connected to each other via a network N such as a LAN. 2. The defect inspection device 6 and the drawing device 4 (see Fig. 1). The respective configurations of the CAD device 1, the rip device 2, and the drawing device 4 are the same as those of the first embodiment. The defect inspection device 6 and the defect inspection device of the first embodiment 3 is the same. The defect for describing the running length data D2 is checked. 128482.doc -34- 1361889 Next, the specific structure of the defect inspection device 6 will be described. <lb. Structure of defect inspection device> Defect inspection device 6 This is realized by the same hardware configuration as that of the defect inspection device 3 of the first embodiment (see Fig. 2). The functional configuration of the defect inspection device 6 will be described with reference to Figs. 12 and 13. Fig. 12 shows A schematic diagram of the functional configuration of the defect inspection device 6. Fig. 13 is a diagram showing various materials and correlation diagrams acquired in the defect detection process performed by the defect inspection device 6. The inspection device 6 includes a CAD data acquisition unit 61, an operation length data acquisition unit 62, a defect detection unit 63, a defect repair unit 64, a drawing run length data acquisition unit 65, and a drawing run length data transfer unit 66. The function is realized by reading a program p stored in the R〇M 1 2 or the like, or a program recorded in the recording medium, and executing it in the control unit (see FIG. 2). The CAD data acquisition unit 61 The functions of the run length data acquisition unit 62, the defect repair unit 64, the drawing run length data acquisition unit 65, and the drawing operation length data transfer unit 66 are respectively associated with the CAD data acquisition unit 31 and the run length data acquisition unit 32. The defect repairing unit 34, the drawing run length data acquisition unit 35, and the drawing run length data transfer unit 邗 are the same. The defect detecting unit 63 detects the defect of the running length data D2. More specifically, it is compared with the input CAD data D1 and the running length data D2, and when there is a difference area, the difference area is detected as the defect area of the running length data 02. The defect detecting unit 63 includes the conversion processing unit 631 and the difference area specifying unit 632. The conversion processing unit 631 inputs at least one of the input cad 12482.doc • 35-1361889 material D1 and the running length data D2 in a mutually different format. (In this case, the cad data is input), the special conversion processing is performed, and the comparison CAD data H1 and the comparison operation length data H2 (see FIG. 13) which are collated into mutually comparable data forms are obtained. The conversion processing unit 631 includes a comparison input CAD data acquisition unit 6311 and a comparison operation length data acquisition unit 63丨2. The comparison input CAD data acquisition unit 6311 performs "coordinate value processing" on the input CAD data D1 obtained by the (:1) data acquisition unit 61, and acquires and executes the
處理所獲得之座標值化CAD資料Du,作為比較cad資料 Η1 (參照圖13 )。 所吻座標值化處理J,如圖1 4所示,係將藉由圖形而 記述之資料的輸入CAD資料m變換成藉由座標值之集合而 記述之資料形式的處理。座標值化處理中,首先,在輸入 CAD資料D1令,s定於掃描方向(或是副掃描方向)平行之 數條直細(问,2, · · ·)(⑽)。而後,取得各直線阳與 輸入CAD資料D1中包含之多角形圖形(p〇lyg〇n)之交點的座 標資^但是,直線. · ·)與各多角形圓形在2 .·-占相又此處,將該2點之各座標值作為一對座標值組(以 下,顯示為「座標值組2, · · ·)」)。再者,座標 值組Mi中,將X座標值小者之座標值作為起點座標值^ (1 L 2, ·)’將另一方座標值作為終點座標值Mei(i=q, 2’ )。藉此,取得藉由複數座標值組Mi(起點座標值 編及終點座標值Mei)(i=1,2, · · ·)而規定輸入CAD資料 D1中包含的各個多角形圖形的座標值化CAD資料Dll。 再度參照圖12。比較運行長度資料取得部仙取得運行 128482.doc • 36 · 1361889 長度資料取得部52所取得之運行長度資料D2,照樣作為比 較運行長度資料H2(參照圖13)。 差異區域指定部632比較比較CAD資料H1與比較運行長 度資料H2,檢測兩資料間之差異。更具體而言,藉由比較 比較運行長度資料H2(亦即,此處係運行長度資料D2)中包 含之複數運行Li(i=l,2,· · ·)的各個,與比較CAD資料 H1(亦即’此處係座標值化cad資料D11)中包含之複數座 標值組Mi(i=l,2,· · ·)的各個(更具體而言,藉由比較各 運行Li之起點位置以及與該運行u對應之座標值組Mi的起 點座標值Msi,此外,藉由比較各運行以之終點位置以及 與該運行Li對應之座標值組河丨的終點座標值Mei),指定兩 資料間之差異區域(多餘缺陷區域心及欠缺缺陷區域Af), 而取得差異區域資料D3。但是,座標值化CAD資料Dn中 包含之座標值組Μι的各個與運行長度資料1)2中包含之運 )的起點及終點之位置,係使用共通之 φ 座標系統(如將CAD資料之原點座標作為共通之基準的共 通座標系統)而表現者。The obtained coordinate-valued CAD data Du is processed as a comparison cad data Η1 (refer to FIG. 13). The kiss coordinate value processing J, as shown in Fig. 14 is a process of converting the input CAD data m of the data described by the graphic into a data form described by the set of coordinate values. In the coordinate value processing, first, when the CAD data D1 is input, s is set to be parallel to the scanning direction (or the sub-scanning direction), and the number is straight (Q, 2, · · ·) ((10)). Then, the coordinates of the intersection of each of the straight line and the polygon pattern (p〇lyg〇n) included in the input CAD data D1 are obtained. However, the straight line. · ·) and each polygon circle are in the 2 . Here, the coordinate values of the two points are used as a pair of coordinate value groups (hereinafter, "coordinate value group 2, · · ·)"). Further, in the coordinate value group Mi, the coordinate value of the smaller X coordinate value is used as the starting coordinate value ^ (1 L 2, ·)', and the other coordinate value is used as the end point coordinate value Mei (i = q, 2'). Thereby, the coordinate value of each polygon pattern included in the input CAD data D1 is specified by the complex coordinate value group Mi (starting point coordinate value and end point coordinate value Mei) (i=1, 2, · · ·). CAD data Dll. Referring again to Figure 12. The comparison operation length data acquisition unit acquisition operation 128482.doc • 36 · 1361889 The operation length data D2 obtained by the length data acquisition unit 52 is also used as the comparison operation length data H2 (see Fig. 13). The difference area specifying unit 632 compares the comparison CAD data H1 with the comparison operation length data H2 to detect the difference between the two data. More specifically, by comparing the comparison running length data H2 (that is, here the running length data D2), the plural running Li (i=l, 2, · · ·), and comparing the CAD data H1 (i.e., 'here the coordinate valued cad data D11') includes the complex coordinate value group Mi(i=l, 2, · · ·) (more specifically, by comparing the starting positions of the respective running Lis) And a starting coordinate value Msi of the coordinate value group Mi corresponding to the running u, and further, by comparing the end position of each running and the end point coordinate value Mei of the coordinate value group corresponding to the running Li, The difference area (the excess defect area heart and the defect area Af) is obtained, and the difference area data D3 is obtained. However, the position of the starting point and the end point of each coordinate value group Μι included in the coordinate value CAD data Dn and the running length data 1) 2 is the common φ coordinate system (such as the original CAD data) The point coordinates are expressed as a common coordinate system of the common benchmark.
圖。圖17係模式性例示差異區域之圖。 [指定產生於-X側之差異區域]Figure. Figure 17 is a diagram schematically illustrating a difference region. [Specify the difference area resulting from the -X side]
含之運行Li(i=l,2,· · · …子乂比較運行長度資料H2中包 )的起點位置與比較CAD資料Η1 128482.doc -37- 1361889 中包含之座標值組Mi(i=l,2,· · ·)的起點座標值Msi,來 私疋在運行長度資料H2之_又側(更具體而言,係須描繪之 多角形圖形的-X側)產生的差異區域。 參照圖15、圖17說明指定產生於-χ側之差異區域的處 理。差異區域指定部632首先選擇比較運行長度資料H2* 包含之運行Li(i=l,2,. · ·)中的丨個運行,而取得該運行 ' (顯示為「運行Lt」)之起點的座標值(步驟S31)。 φ 繼續,在比較CAD資料H1中包含之座標值組Mi(i=l, 2,· · ·)中,取得與步驟S31所取得之運行Lt對應的座標 值組Mi(顯示為「座標值組Mt」)的起點座標值編(顯示為 「起點座標值Mst」)(步驟S32)。所謂「對應之座標值 組J,係連結該座標值組Mi中包含之起點座標值Msi與終點 座標值Mei的線段區域與運行u原本(亦即正確地產生運行 u時)處於-致之_的座標值組。如取得與運行u相同源 於多角形圖形’且具有與運#Lt相等(或是最接近)之丫座 • 標值的座標值組,作為「對應之座標值組Mtj。 繼續,判斷在步驟S31從比較運行長度資料_得之運 行U的起點座標值之乂成分,與對應之起點座標值遍(在 步驟S32從比較CAD資料m取得之起點座標值編)的又成 分是否一致(步驟S33)。 在步驟S33判斷為兩值一致時,判斷為運行^並非在_χ 側構成差異區域的運行(步驟S34)(如圖17之運行與起點 座標值Msi、運行L2與起點座標值Ms2)。 另外在步驟S33判斷為兩值不一致時,判斷為運行u 128482.doc -38- 1361889 係在-x側構成差異區域的運行。此時,藉由判斷從比較運 行長度資料H2取得之運行Lt的起點座標值之χ成分是否 比對應之起點座標值Mst的X成分大,來賴運行u是:為 構成欠缺缺陷區域Af或多餘缺陷區域心之其中之一的運行 (步驟S35)。The starting point position of the running Li (i=l, 2, · · · ... sub-comparison running length data H2 package) and the coordinate value group Mi (i=i) included in the comparison CAD data 1281 128482.doc -37- 1361889 The starting coordinate value Msi of l, 2, · · ·) is used to privately generate the difference region generated on the _ side of the running length data H2 (more specifically, the -X side of the polygonal pattern to be drawn). The process of designating the difference region generated on the -χ side will be described with reference to Figs. 15 and 17 . The difference area specifying unit 632 first selects one of the operations Li (i=l, 2, . . . ) in which the running length data H2* is included, and obtains the starting point of the running ' (displayed as "running Lt"). The coordinate value (step S31). φ continues, in the coordinate value group Mi (i=l, 2, · · ·) included in the comparison CAD data H1, the coordinate value group Mi corresponding to the operation Lt obtained in step S31 is obtained (displayed as "coordinate value group" The starting coordinate value of Mt") is displayed (displayed as "starting coordinate value Mst") (step S32). The corresponding coordinate value group J is connected to the line segment area of the starting coordinate value Msi and the end point coordinate value Mei included in the coordinate value group Mi and the operation u original (that is, when the operation u is correctly generated). The coordinate value group is obtained as the coordinate value group Mtj corresponding to the coordinate value group which is the same as the running u and has the same or the closest to the #Lt. Continuing, judging the component of the starting coordinate value of the running U obtained from the comparison of the running length data in step S31, and the corresponding component of the starting coordinate value (the starting coordinate value obtained from the comparison CAD data m in step S32) If it is determined in step S33 that the two values are identical, it is determined that the operation is not the operation of the difference region on the _χ side (step S34) (the operation of FIG. 17 and the starting point coordinate value Msi, the operation L2 and The starting point coordinate value Ms2). When it is determined in step S33 that the two values do not match, it is determined that the operation u 128482.doc -38 - 1361889 is on the -x side to constitute the operation of the difference area. At this time, by judging the comparison operation length data H2 acquisition χ coordinate values of the starting point operation component Lt is larger than the starting point X coordinate component value of the Mst corresponding to Lai u is run: lack of defects constituting the operation (step S35) one of the regions or areas Af excess heart defect.
亦即,在步驟S35,騎為運仙之起點座標值的乂成分 比對應之起點座標值MSt的X成分大時,判斷為運行⑷系 在-X側構成欠缺缺陷區域Af的運行(步驟S36)(如圖17之運 行L22與起點座標值Ms22、運行L23與起點座標值Ms23)。 此時’差異區域指定部632抽出將起點座標值驗作為起點 位置,將運行Lt之起點的座標值作為終點位置之線段區 域,作為欠缺缺陷區域Af。 另外,在步驟S35,判斷為運行Lt之起點座標值的χ成分 比對應之起點座標值Mst的X成分小時,判斷為運行“係 在-χ側構成多餘缺陷區域Ae的運行(步驟S37) ^此時差 異區域指定部632抽出將運行Lt之起點的座標值作為起點 位置’將起點座標值Mst作為終點位置之線段區域,作為 多餘缺陷區域Ae。 就比較運行長度資料H2中包含之全部運行Li(i = i, 2,· · ·)’執行以上步驟S31~步驟S37的處理。就全部之 運行進行步驟S3 1〜步驟S37的處理時,結束處理(步驟 S38)。 [指定產生於+ X側之差異區域] 差異區域指定部6 3 2藉由比較比較運行長度資料H2中包 128482.doc •39- 1361889 含之運行Li(i = l,2,· · ·)的終點位置與比較CAD資料m 中包含之座標值組Mi(i=1,2, · · ·)的終點座標值Mei,來 指定在運行長度資料H2之+ X側(更具體而言,係須描繪之 多角形圖形的+ X側)產生的差異區域。That is, in step S35, when the 乂 component of the starting point coordinate value of the ride is larger than the X component of the corresponding starting coordinate value MSt, it is determined that the operation (4) is the operation of constituting the defective area Af on the -X side (step S36). (Fig. 17 operation L22 and starting point coordinate value Ms22, running L23 and starting point coordinate value Ms23). At this time, the difference area specifying unit 632 extracts the starting point coordinate as the starting point position, and uses the coordinate value of the starting point of the running Lt as the line segment area of the end position as the missing defect area Af. Further, in step S35, it is determined that the χ component of the starting point coordinate value of the running Lt is smaller than the X component of the corresponding starting coordinate value Mst, and it is determined that the operation of "the 在-χ side constitutes the unnecessary defective area Ae" (step S37) ^ At this time, the different area specifying unit 632 extracts the coordinate value of the starting point of the running Lt as the starting point position 'the starting point coordinate value Mst as the end point position as the excess defect area Ae. Compares all the running Lis included in the running length data H2. (i = i, 2, · · ·) "Performs the processing of steps S31 to S37. When the processing of steps S3 1 to S37 is performed for all the operations, the processing is terminated (step S38). [Specification is generated at + X Difference area on the side] The difference area designation section 6 3 2 compares the end position of the running Li (i = l, 2, · · ·) and the comparison CAD by comparing the running length data H2 package 128482.doc • 39-1361889 The end point coordinate value Mei of the coordinate value group Mi (i = 1, 2, · · ·) contained in the data m is specified on the + X side of the running length data H2 (more specifically, the polygonal pattern to be depicted) + X side) difference zone area.
參照圖16、圖17說明指定產生於+ χ側之差異區域的處 理差異區域指定部632首先選擇比較運行長度資料Η2中 包含之運行Li(i=l,2,· · ·)中的!個運行,而取得該運行 (顯示為「運行Lt」)之終點的座標值(步驟s4i)。 繼續,在比較CAD資料m中包含之座標值組Mi(i=i, 2’ · · ·)中’取得與步驟S41所取得之運行u對應的座標 值組呵顯示為「座標值組Mt」)的終點座標值歸(顯示為 「終點座標值Met」)(步驟S42)。 繼續,判斷在步驟S41從比較運行長度資料H2取得之運 行Lt的終點座標值之X成分’與對應之終點座標值胸(在Referring to Fig. 16 and Fig. 17, the processing difference area specifying unit 632 which specifies the difference area generated on the + χ side first selects the operation Li (i = 1, 2, ...) included in the comparison run length data Η 2! Runs and gets the coordinate value of the end of the run (shown as "Run Lt") (step s4i). Continuing, in the coordinate value group Mi (i=i, 2' · · ·) included in the comparison CAD data m, 'the coordinate value group corresponding to the operation u obtained in step S41 is displayed as the "coordinate value group Mt". The end point coordinate value is (displayed as "end point coordinate value Met") (step S42). Continuing, it is judged that the X component ' of the end point coordinate value of the running Lt obtained from the comparison run length data H2 in step S41 and the corresponding end point coordinate value chest (in
步驟S42從比較CAD資料H1取得之終點座標值黯)的又成 分是否一致(步驟S43)。 在步驟S43判斷為兩值一致時,判斷為運行u並非在+ χ 側構成差異區域的運行(步驟S44)(如圖17之運行Η與終點 座標值Mel、運行L22與終點座標值Me22)。 另外,在步驟S43判斷為兩值不一致時,判斷為運行u 係在+ X側構成差異區域的運行。此時,藉由判斷從比較 運行長度資料H2取得之運行Lt的終點座標值之X成八,g 否比對應之終點座標值Met的χ成分大,來判斷運行U是^ 為構成欠缺缺陷區域Af或多餘缺陷區域A 士 、丹1f之一的運 128482.doc -40- 1361889 行(步驟S45)。 亦即,在步驟S45 ’判斷為運行。之終點座標值的χ成分 比對應之終點座標值Met的Χ成分大時,判斷為運行Lt係在 + X側構成多餘缺陷區域Ae的運行(步驟S46)(如圖17之運 行L2與終點座標值Me2、運行L3與終點座標值卜此 • 時,差異區域指定部632抽出將終點座標值驗作為起點位 • i,將運行Lt之終點的座標值作為終點位置之線段區域, • 作為多餘缺陷區域Ae。 另外,在步驟S45’判斷為運行Lt之終點座標值的又成分 比對應之終點座標值M_X成分小時,判斷為運行^係在 + χ側構成欠缺缺陷區域Af的運行(步驟S47)。此時,差異 區域指定部632抽出將運行Lt之終點的座標值作為起點位 置,將終點座標值Met作為終點位置之線段區域,作為欠 缺缺陷區域Af。 就比較運行長度資料H2中包含之全部運行u(i = i, • 2,· · ·)’執行以上步驟S41〜步驟S47的處理。就全邻之 運行進行步驟S41〜步驟S47的處理時,結束處理(步驟 S48)。 <2.處理動作> <2a.圖形描繪系統中之處理動作> 第三實施形態之圖形描繪系統執行的全體處理之流程, 與第一實施形態之圖形描繪系統1〇〇執行的處理流程(參照 圖7)相同。 > … <2b.缺陷檢查裝置3中之處理動作> 128482.doc -41 · 1361889 就缺陷檢查裝置6執行之處理(亦即,缺陷檢查處理及缺 陷修復處理)作說明。由於缺陷檢查裝置6執行之處理的流 程與第一實施形態之缺陷檢查裝置3執行的處理之流程(參 照圖8)大致相同,因此’在以下參照圖8,就與其不同之 處作說明。 首先,CAD資料取得部61自CAD裝置1取得輸入CAD資 料D1,運行長度資料取得部62自RIP裝置2取得運行長度資 料D2(參照步驟S11-S12)。 繼續,缺陷檢測部63檢測在之前的步驟(參照步驟s i 2) 所取得之運行長度資料D2的缺陷(參照步驟sn〜步驟 S16)。 亦即’首先’變換處理部631取得整理成相互可比較之 資料开^式的比較CAD資料Η1與比較運行長度資料H2(參照 步驟S13)。更具體而言,比較輸入CAD資料取得部〇丨丨對 輸入CAD資料D1(亦即,在之前的步驟(參照步驟sn), CAD資料取得部61取得之資料)執行座標值化處理,而取 付執行该處理所獲得之座標值化CAD資料D11,作為比較 CAD資料H1。此外,比較運行長度資料取得部6312取得運 行長度資料D2(亦即在之前的步驟(參照步驟S12)運行長度 資料取得部52取得之資料)’作為比較運行長度資料112。 繼續,差異區域指定部632比較比較運行長度資料H2中 包含之運行Li(i=1,2,. ·.)的各個與比較CAD資料H1中 包含之座標值組MKi^, 2,· . ·)的各個,而取得指定兩 資料間之差異區域(多餘缺陷區域Ae&欠缺缺陷區域Af)的 128482.doc •42- 差異區域資料D3(參照 處理)。 繼續,缺陷修復部64依據在之前时驟所取得之差異區 域資料D3,判斷缺陷檢測部^是否檢測出運行長度資料 D2之缺陷(亦即,是否檢測出差異區域K參照步驟川)。In step S42, whether or not the further components of the end point coordinate value 取得) obtained from the comparison CAD data H1 are identical (step S43). When it is judged at step S43 that the two values coincide, it is determined that the operation u does not constitute the operation of the difference area on the + χ side (step S44) (the operation Η and the end point coordinate value Mel, the operation L22 and the end point coordinate value Me22 of Fig. 17). Further, when it is determined in step S43 that the two values do not match, it is determined that the operation u is on the + X side to constitute the operation of the difference region. At this time, by judging that the X value of the end point coordinate value of the operation Lt obtained from the comparison run length data H2 is eight, and g is larger than the χ component of the corresponding end point coordinate value Met, it is judged that the operation U is ^ to constitute the defect-deficient region. Af or one of the excess defect areas A, Dan 1f, 128482.doc -40 - 1361889 (step S45). That is, it is determined to be operational at step S45'. When the χ component of the end point coordinate value is larger than the Χ component of the corresponding end point coordinate value Met, it is determined that the operation Lt is on the + X side to constitute the operation of the excess defect area Ae (step S46) (operation L2 and end point coordinates as shown in FIG. 17) When the value Me2, the running L3, and the end point coordinate value are included, the difference area specifying unit 632 extracts the end point coordinate value as the starting point position • i, and sets the coordinate value of the end point of the running Lt as the line segment area of the end point position, • as an unnecessary defect In addition, when it is determined in step S45' that the component of the end point coordinate value of the running Lt is smaller than the corresponding end point coordinate value M_X component, it is determined that the operation is performed on the + χ side to constitute the operation of the defective area Af (step S47). At this time, the different area specifying unit 632 extracts the coordinate value of the end point of the running Lt as the starting point position, and uses the end point coordinate value Met as the line segment area of the end point position as the missing defect area Af. When u (i = i, • 2, · · ·) is executed, the processes of the above steps S41 to S47 are executed. When the processes of steps S41 to S47 are performed for the operation of the neighbors, the process is performed. Processing (Step S48). <2. Processing Operation><2a. Processing Operation in Graphic Drawing System> The flow of the overall processing executed by the graphic drawing system of the third embodiment, and the graphic drawing of the first embodiment The processing flow (see Fig. 7) executed by the system 1 is the same. > 2 <2b. Processing operation in the defect inspection device 3> 128482.doc -41 · 1361889 The processing performed by the defect inspection device 6 (ie, The process of performing the defect inspection device 6 is substantially the same as the flow of the process performed by the defect inspection device 3 of the first embodiment (see FIG. 8). In the first embodiment, the CAD data acquisition unit 61 acquires the input CAD data D1 from the CAD device 1, and the operation length data acquisition unit 62 acquires the operation length data D2 from the RIP device 2 (refer to steps S11-S12). Continuing, the defect detecting unit 63 detects a defect of the run length data D2 obtained in the previous step (refer to step si 2) (refer to steps sn to S16). That is, 'first' The processing unit 631 obtains the comparison CAD data Η1 and the comparison operation length data H2 arranged in a mutually comparable data opening type (refer to step S13). More specifically, the comparison input CAD data acquisition unit 〇丨丨 pairs the input CAD data D1. (In other words, in the previous step (refer to step sn), the data acquired by the CAD data acquisition unit 61) performs the coordinate value processing, and the coordinate valued CAD data D11 obtained by executing the processing is taken as the comparison CAD data H1. Further, the comparison run length data acquisition unit 6312 obtains the operation length data D2 (i.e., the data acquired by the run length data acquisition unit 52 in the previous step (refer to step S12) as the comparison run length data 112. Continuing, the difference area specifying unit 632 compares the coordinate value groups MKi^, 2, . . . included in each of the comparison CAD data H1 included in the comparison run length data H2. In each case, the difference area (excess defect area Ae& lack defect area Af) of the designated two data is obtained 128482.doc • 42- difference area data D3 (reference processing). Continuing, the defect repairing unit 64 determines whether or not the defect detecting unit detects the defect of the running length data D2 based on the difference area data D3 obtained at the previous time (i.e., whether the difference area K is detected or not).
處#斷為檢測出缺陷情況.下,缺陷修復部Μ修復該 測出之缺陷,而取得修復運行長度資料以(參照步驟 =18) U用運仃長度資料取得部65取得該取得之修復運 订長度貝料D4 ’作為描繪用運行長度資料τ(參照步驟 S19)°而後’料用運行長度資料傳送部66將該取得之描 繪用運行長度資料τ傳送至騎裝置4(參照步驟s2i)。 一另外#斷為並未檢測出缺陷情況下,描繪用運行長度 貧料取得部65取得在之前的步驟(參照步驟S12)所取得之 運仃長度資料D2 ’作為描繪用運行長度資料τ(參照步驟 S2〇)。而後,描繪用運行長度資料傳送部66將該取得之描When the defect is detected, the defect repairing unit repairs the detected defect and obtains the repair running length data (refer to step = 18). The U uses the length data obtaining unit 65 to obtain the obtained repairing operation. The predetermined length of the billet D4' is used as the drawing run length data τ (refer to step S19). Then, the material running length data transfer unit 66 transmits the acquired drawing run length data τ to the riding device 4 (refer to step s2i). In the case where the defect is not detected, the drawing run length lean obtaining unit 65 acquires the transport length data D2' obtained in the previous step (refer to step S12) as the drawing run length data τ (refer to Step S2〇). Then, the drawing length data transfer unit 66 describes the acquisition
圖15及圖16)(相當於步驟S14〜16之 繪用運行長度資料τ傳送至崎裝置4(參照步驟s2i)。 <3.效果> 藉由上述之實㈣態’比較輸人CAD資料取得部6311藉 由對輸入CAD資料D1進行「座標值化處理」,巾將其變換 成藉由座钛值之集合(更具體而t,係由起點座標值與終 點座標值構成之座標值組的集合)而記述之資料(座標值化 CAD資料D11)。藉由將該座標值化CAD資料〇ιι與運行長 度資料D2(亦即作為線段之集合而記述的資料)比較,可指 定運行長度資料D2中產生之缺陷區域。 128482.doc -43· 1361889 另外,RIP處理係從多角形圖形取得線段之集合的處 理。RIP處理在將關於長度之資訊予以線段化的處理中, 可能發生錯誤,或是因解像度等之參數,而在解釋中產生 寬度,此等成為運行長度資料D2之缺陷。另外,由於座標 值化處理係從多角形圖形取得座標值之集合的處理,因此 藉由座標化處理而獲得之座標值化CAD資料Dn中不致產 生此種缺陷。因此,藉由比較座標值化CAD資料D1丨與運 行長度資料D2,可確實地檢測運行長度資料d2中產生之 缺陷。 [第一變形例] 上述第一實施形態之缺陷檢測部33的多餘缺陷區域指定 部333及欠缺缺陷區域指定部334,係分別進行差異區域資 料D3與比較運行長度資料F2之"且"邏輯運算,以及差異區 域資料D3與比較CAD資料F1之"且"邏輯運算,而取得分別 指定多餘缺陷區域Ae、欠缺缺陷區域Af之多餘缺陷區域資 料D3a、欠缺缺陷區域資料D3b(參照圖3、圖4),不過,亦 可藉由其次之態樣而取得各資料S3a,D3b。 該變形例之缺陷檢測部8如圖1 8所示,具備:變換處理 部8 1、第一差分區域指定部82、多餘缺陷區域指定部83、 第二差分區域指定部84及欠缺缺陷區域指定部85。變換處 理部81與第一實施形態之變換處理部331相同。 第一差分區域指定部82如圖19(a)所示,從藉由比較運行 長度資料F2(亦即圖形化運行長度資料D22)規定之圖形區 域,減去比較C AD資料F1 (亦即輸入C AD資料D1)而規定之 128482.doc -44 - 1361889 圖形區域(F2-F1),取得第一差分區域資料1^。第一差分 區域資料Ka中,存在於比較運行長度資料F2,而不存在於 比較CAD資料F1之區域的值為「正」(正區域以)。此外, 不存在於比較運行長度資料F2,而存在於比較資料Η 的區域之值為「負」(負區域S2),存在於比較CAD資料F1 與比較運行長度資料F2兩者之區域的值為「〇」。 多餘缺陷區域指定部83如圖19(a)所示,藉由在第一差分 區域貝料Ka中抽出「正」之值的區域,而取得指定多餘缺 陷區域Ae之多餘缺陷區域資料D3a。 第二差分區域指定部84如圖19(b)所示,從藉由比較 CAD資料F1(亦即輸入CAD資料D1)規定之圖形區域減去藉 由比較運行長度資料F2(亦即圖形化運行長度資料D22)規 疋之圖形區域(F1-F2),而取得第二差分區域資料尺匕。第 二差分區域資料Kb中,存在於比較CAD資料F1,而不存在 於比較運行長度資料F2的區域之值為「正」(正區域81)。 此外’不存在於比較CAD資料F1,而存在於比較運行長度 資料F2之區域的值為「負」(負區域s2),存在於比較caD 資料F1與比較運行長度資料F2兩者之區域的值為「〇」。 欠缺缺陷區域指定部85如圖19(b)所示,藉由在第二差 刀Εέ域資料Kb中抽出「正」之值的區域,而取得指定欠缺 缺陷區域Af之欠缺缺陷區域資料D3b。 該變形例中’檢測缺陷之處理動作(相當於圖8之步驟 S 13〜步驟S 16的處理)進行如下。 亦即,首先變換處理部81取得輸入CAD資料D1作為比較 128482.doc • 45- 1361889 CAD資料FI ’並取得圖形化運行長度資料D22作為比較運 行長度資料F2。 繼續’第一差分區域指定部82從藉由比較運行長度資料 F2規定之圖形區域減去藉由比較CAD資料F1規定之圖形區 域’而取得第一差分區域資料Ka。 繼縯,多餘缺陷區域指定部83藉由在第一差分區域資料 Ka中抽出「正」之值的區域,而取得指定多餘缺陷區域 Ae之多餘缺陷區域資料D3a。 繼續,第二差分區域指定部84從藉由比較CAD資料F1規 定之圖形區域減去藉由比較運行長度資料F2規定之圖形區 域,而取得第二差分區域資料Kb。 繼續’欠缺缺陷區域指定部85藉由在第二差分區域資料Fig. 15 and Fig. 16) (corresponding to the drawing run length data τ of steps S14 to 16 is transmitted to the Kawasaki device 4 (refer to step s2i). <3. Effect> By comparing the input (four) state's comparison with the input CAD The data acquisition unit 6311 converts the input CAD data D1 into a set of titanium values by means of "coordinate value processing" (more specifically, t is a coordinate value composed of a starting coordinate value and an end point coordinate value). The data described in the group) (coordinated CAD data D11) can be specified by comparing the coordinated CAD data 〇ιι with the running length data D2 (that is, the data described as a set of line segments) The defect area generated in the length data D2. 128482.doc -43· 1361889 In addition, the RIP process acquires the set of line segments from the polygon pattern. The RIP process may cause an error in the process of segmenting the information about the length. Or, due to the parameters such as the resolution, the width is generated in the interpretation, which becomes a defect of the running length data D2. In addition, since the coordinate value processing is processing for obtaining the set of coordinate values from the polygonal figure, The coordinate valued CAD data Dn obtained by the coordinate processing does not cause such a defect. Therefore, by comparing the coordinate value CAD data D1丨 with the running length data D2, the running length data d2 can be surely detected. [First Modification] The excess defect area specifying unit 333 and the missing defect area specifying unit 334 of the defect detecting unit 33 of the first embodiment respectively perform the difference area data D3 and the comparative running length data F2. "Logical operation, and the difference area data D3 and the comparison of the CAD data F1"and" logical operation, and obtain the excess defect area Ae, the missing defect area data D3a, and the defect area data D3b respectively (the defect area Af) Referring to Fig. 3 and Fig. 4), each of the data S3a and D3b may be obtained by the second aspect. The defect detecting unit 8 of the modified example includes the conversion processing unit 8 1 and the first The difference area specifying unit 82, the unnecessary defect area specifying unit 83, the second difference area specifying unit 84, and the missing defect area specifying unit 85. The conversion processing unit 81 and the first embodiment The conversion processing unit 331 is the same. As shown in Fig. 19 (a), the first difference region specifying unit 82 subtracts the comparison C AD from the graphic region defined by the comparison of the run length data F2 (that is, the graphical run length data D22). The data area F1 (that is, the input C AD data D1) and the 128482.doc -44 - 1361889 graphics area (F2-F1) are obtained, and the first difference area data 1^ is obtained. The first difference area data Ka exists in the comparison operation. The length data F2, but not the area of the comparison CAD data F1, is "positive" (positive area). Further, it does not exist in the comparison run length data F2, but the value of the region existing in the comparison data Η is "negative" (negative region S2), and the value existing in the region comparing the CAD data F1 and the comparison run length data F2 is "〇". As shown in Fig. 19 (a), the unnecessary defect area specifying unit 83 acquires the unnecessary defect area data D3a specifying the unnecessary defective area Ae by extracting the area of the positive value in the first difference area Ka. As shown in FIG. 19(b), the second difference area specifying unit 84 subtracts the running length data F2 (that is, the graphic operation) from the graphic area specified by comparing the CAD data F1 (that is, the input CAD data D1). The length data D22) is defined by the graphic area (F1-F2), and the second differential area data size is obtained. The second difference area data Kb exists in the comparison CAD data F1, and the value in the area which does not exist in the comparison run length data F2 is "positive" (positive area 81). In addition, 'there is no comparison with the CAD data F1, and the value of the region existing in the comparison run length data F2 is "negative" (negative region s2), and exists in the region comparing the caD data F1 with the comparison run length data F2. It is "〇". As shown in Fig. 19 (b), the defective area specifying unit 85 obtains the missing defect area data D3b of the designated defective area Af by extracting the area of the "positive" value in the second differential area data Kb. In the modification, the processing operation for detecting defects (corresponding to the processing of steps S 13 to S 16 in Fig. 8) is as follows. That is, first, the conversion processing unit 81 acquires the input CAD data D1 as a comparison 128482.doc • 45-1361889 CAD data FI ′ and obtains the graphical run length data D22 as the comparison run length data F2. The continuation 'first difference area specifying unit 82 subtracts the pattern area defined by the comparison CAD data F1 from the pattern area defined by the comparison run length data F2 to obtain the first difference area data Ka. In the succession, the unnecessary defect area specifying unit 83 acquires the excess defective area data D3a specifying the unnecessary defective area Ae by extracting the area of the positive value in the first difference area data Ka. Continuing, the second difference area specifying unit 84 obtains the second difference area data Kb by subtracting the pattern area defined by the comparison run length data F2 by comparing the pattern area specified by the CAD data F1. Continuing the 'defective area specifying section 85 by using the data in the second differential area
Kb中抽出「正」之值的區域,而取得指定欠缺缺陷區域八尸 之欠缺缺陷區域資料D3b。 另外,取得欠缺缺陷區域資料D3 b之處理與取得多餘缺 陷區域資料D3a之處理,亦可先進行其中之一。 上述之變形例中,可以不進行2個資料之”且„邏輯運 算,而藉由運异差分,來指定多餘缺陷區域及欠缺缺陷區 域。此外,可依據比較CAD資料F1與比較運行長度資料F2 之差,直接取得多餘缺陷區域資料D3a及欠缺缺陷區域資 料D3b。因此,無需如第一實施形態地產生差異區域資料 D3。 另外’上述變形例中,係取得第二差分區域資料Kb,藉 由抽出其「正」的值之區域,來指定欠缺缺陷區域Af,不 128482.doc -46- 1361889 過,亦可藉由抽出第一差分區域資料「負」之值的區 j,來衫欠缺缺陷區域Af。此外,上述變形例中,係取 得=一差分區域資料。,藉由抽出其「正」的值之區域來 指定多餘缺陷區域Ae,不過,亦可藉由抽出第二差分區域 資:Kb之「負」的值之區域,來指定多餘缺陷區域a” 換言之,亦可取得第一差分區域資料^或第二差分區域資 料Kb之其中一方,藉由分別抽出該取得之資料的「正」之 值的區域與「負」之值的區域,來指定多餘缺陷區域^與 欠缺缺陷區域Af。 [第二變形例] 多餘缺陷區域資料D3a、欠缺缺陷區域資料D3b亦可以 其次之態樣取得。該變形例之缺陷檢測部9如圖2〇所示, 具備.變換處理部91、差異區域指定部92、第一差異差分 區域指定部93、多餘缺陷區域指定部94、第二差異差分區 域指定部95及欠缺缺陷區域指定部96 ^變換處理部91及差 異區域指定部92分別與第一實施形態之變換處理部33丨及 差異區域指定部332相同。 第一差異差分區域指定部93如圖21(a)所示,從藉由差異 區域資料D3規定之圖形區域減去藉由比較cad資料F1 (亦 即輸入CAD資料D1)規定之圖形區域(D3_F1),而取得第一 差異差分區域資料La。第一差異差分區域資料La中,存在 於差異區域資料D3’而不存在於比較CAD資料F1之區域的 值為「正」(正區域S1)。此外,不存在於差異區域資料 D3 ’而存在於比較CAD資料F1之區域的值為「負」(負區 128482.doc •47· 1361889 域S2),存在於差異區域資料D3與比較CAE)資料fi兩者之 區域的值為「0」。 多餘缺陷區域指定部94如圖21(a)所示,藉由在第一差異 差分區域資料La中抽出「正」之值的區域,而取得指定多 餘缺陷區域Ae之多餘缺陷區域資料D3a。 第二差異差分區域指定部95如圖21(b)所示,從藉由差 異區域資料D3規定之圖形區域減去藉由比較運行長度資料 F2(亦即圖形化運行長度資料D22)規定之圖形區域(D3_ F2),而取得第二差異差分區域資料“。第二差異差分區 域資料Lb中’存在於差異區域資料d3,而不存在於比較 運行長度資料F2之區域的值為「正」(正區域“)。此外, 不存在於差異區域資料D3,而存在於比較運行長度資料F2 之區域的值為「負」(負區域S2),存在於差異區域資料D3 與比較運行長度資料F2兩者之區域的值為「〇」。 欠缺缺陷區域指定部96如圖21(b)所示,藉由在第二差 異差分區域資料Lb中抽出「正」之值的區域,而取得指定 欠缺缺陷區域Af之欠缺缺陷區域資料D3b。 該變形例中’檢測缺陷之處理動作(相當於圖8之步驟 S13〜步驟S16的處理)進行如下。 亦即,首先變換處理部91取得輸入CAD資料01作為比較 CAD資料F1 ’並取得圖形化運行長度資料d22作為比較運 行長度資料F2 ^ 繼續,差異區域指定部92進行比較CAD資料F1與比較運 行長度資料F2之"互斥或'’邏輯運算,而取得指定兩資料間 128482.doc -48- 1361889 之差異區域的差異區域資料D3。 繼續,第一差異差分區域指定部93從藉由差異區域資料 D3規定之圖形區域減去藉由比較CAD資料η規定之圖形區 域,而取得第一差異差分區域資料Lae 繼續,多餘缺陷區域指定部94藉由在第一差異差分區域 貧料La中抽出「正」之值的區域,而取得指定多餘缺陷區 域Ae之多餘缺陷區域資料D3a。 繼續,第一差異差分區域指定部95從藉由差異區域資料 D3規定之圖形區域減去藉由比較運行長度資料以規定之圖 形區域’而取得第二差異差分區域資料Lb。 繼續,欠缺缺陷區域指定部96藉由在第二差異差分區域 資料Lb中抽出「正」之值的區域,而取得指定欠缺缺陷區 域Af之欠缺缺陷區域資料D3b。 另外’取得欠缺缺陷區域資料D3b之處理與取得多餘缺 陷區域資料D3 a之處理,亦可先進行其中一個。 上述之變形例中,可以不進行2個資料之,,且"邏輯運 算,而藉由運算差分,來指定多餘缺陷區域及欠缺缺陷區 域。 [其他變形例] 上述各實施形態中,缺陷檢查裝置3, 5, 6係作為與描繪 裝置4獨立之裝置而構成,不過,缺陷檢查裝置3, 5, 6之功 能結構(參照圖3及圖9)亦可作為在描緣裝置4中實現者。亦 即,亦可將描繪裝置4作為與缺陷檢查裝置3(或是缺陷檢 查裝置5,或是缺陷檢查裝置6)一體化之裝置而構成。 128482.doc • 49- 1361889In Kb, the area of the "positive" value is extracted, and the defect-deficient area data D3b of the eight bodies of the designated defect-deficient area is obtained. In addition, one of the processes of obtaining the defect-deficient area data D3b and obtaining the redundant defect area data D3a may be performed first. In the above-described modification, it is possible to specify the excess defect area and the defect area by performing the difference between the two data and the logical operation. In addition, the excess defect area data D3a and the missing defect area data D3b can be directly obtained based on the difference between the comparison CAD data F1 and the comparison running length data F2. Therefore, it is not necessary to generate the difference area data D3 as in the first embodiment. Further, in the above-described modification, the second difference area data Kb is obtained, and the missing defect area Af is specified by extracting the area of the "positive" value, which is not 128482.doc -46 - 1361889, and may be extracted by The area j of the value of the "negative" of the first difference area data is the missing defect area Af. Further, in the above modification, the data of = difference area is obtained. The excess defect area Ae is specified by extracting the area of the "positive" value, but the excess defect area a" may be specified by extracting the area of the "negative" value of the second differential area: Kb. Or one of the first difference area data^ or the second difference area data Kb may be obtained, and the excess defect is specified by extracting the area of the positive value of the obtained data and the area of the value of "negative", respectively. Area ^ and defect area Af. [Second Modification] The excess defect area data D3a and the missing defect area data D3b can also be obtained in the second aspect. As shown in FIG. 2A, the defect detecting unit 9 of the modified example includes a conversion processing unit 91, a different area specifying unit 92, a first difference difference area specifying unit 93, an unnecessary defect area specifying unit 94, and a second difference difference area designation. The part 95 and the defective area specifying unit 96 ^ conversion processing unit 91 and the different area specifying unit 92 are the same as the conversion processing unit 33 and the different area specifying unit 332 of the first embodiment. As shown in FIG. 21(a), the first difference-difference area specifying unit 93 subtracts the pattern area (D3_F1) defined by comparing the cad data F1 (that is, the input CAD data D1) from the pattern area defined by the difference area data D3. ), and obtain the first difference difference region data La. In the first difference difference region data La, the value of the region existing in the difference region data D3' and not present in the comparison CAD data F1 is "positive" (positive region S1). In addition, the value that does not exist in the difference area data D3' and exists in the area of the comparison CAD data F1 is "negative" (negative area 128482.doc •47·1361889 domain S2), and exists in the difference area data D3 and the comparison CAE) The value of the area of both fi is "0". As shown in Fig. 21 (a), the unnecessary defect area specifying unit 94 acquires the excess defect area data D3a of the specified excess defect area Ae by extracting the area of the "positive" value in the first difference difference area data La. As shown in FIG. 21(b), the second difference difference area specifying unit 95 subtracts the pattern specified by the comparison run length data F2 (that is, the graphic run length data D22) from the pattern area defined by the difference area data D3. The area (D3_F2) obtains the second difference difference area data ". The second difference difference area data Lb" exists in the difference area data d3, and the value which does not exist in the area of the comparison run length data F2 is "positive" ( Positive region "). In addition, there is no difference region data D3, and the value of the region existing in the comparison run length data F2 is "negative" (negative region S2), and exists in the difference region data D3 and the comparison run length data F2. The value of the area is "〇". As shown in Fig. 21 (b), the defective area specifying unit 96 obtains the missing defect area data D3b specifying the missing defective area Af by extracting the area of the "positive" value in the second differential difference area data Lb. In the modification, the processing operation for detecting a defect (corresponding to the processing of steps S13 to S16 in Fig. 8) is as follows. That is, first, the conversion processing unit 91 acquires the input CAD data 01 as the comparison CAD data F1' and obtains the graphical run length data d22 as the comparison run length data F2^, and the difference region specifying portion 92 compares the CAD data F1 with the comparison run length. The data F2's "mutual exclusion or ''logical operation, and obtain the difference area data D3 of the difference area of 128482.doc -48-1361889 between the two data. Continuing, the first difference difference area specifying unit 93 subtracts the pattern area defined by the comparison CAD data n from the pattern area defined by the difference area data D3, and obtains the first difference difference area data Lae to continue, and the excess defect area specifying unit The excess defect area data D3a specifying the excess defect area Ae is obtained by extracting the area of the "positive" value in the first difference difference region lean material La. Continuing, the first difference-difference area specifying unit 95 subtracts the pattern area defined by the difference area data D3 to obtain the second difference-difference area data Lb by comparing the run length data to the predetermined figure area'. Continuing, the defective area specifying unit 96 acquires the missing defect area data D3b of the designated defective area Af by extracting the area of the "positive" value in the second difference difference area data Lb. In addition, the processing of obtaining the defect-deficient area data D3b and the processing of the redundant defect area data D3a may be performed first. In the above-described modification, the unnecessary defect area and the missing defect area can be specified by calculating the difference without performing two pieces of data and "logic operation. [Other Modifications] In the above embodiments, the defect inspection devices 3, 5, and 6 are configured as separate devices from the drawing device 4, but the functional configurations of the defect inspection devices 3, 5, and 6 (see FIG. 3 and FIG. 9) It can also be implemented as the edge device 4. That is, the drawing device 4 can be configured as a device integrated with the defect inspection device 3 (or the defect inspection device 5 or the defect inspection device 6). 128482.doc • 49- 1361889
圖22中顯示該變形例之描績襄置7的結構。如 不’描繪裝置7具備在輸出媒體上料圖形之功能部(騎 處理部71),並且在上述各實施形態中,缺陷檢查裝置 缺陷檢查裝置5, 6)具備之各部分(亦即⑽資料取得部 3U51)(61)、運行長度資料取得部&⑼㈣缺陷檢測部 33(53)(63)、缺陷修復部叫叫64)、描繪用運行長度資料 取得部35(55)(65))之功能係、藉由描繪裝置7具備之硬體結 構而實現m繪處理部71取得描㈣運行長度資料 取得部35(55)(65)取得之騎用運行長度資料了,並依據該 取得之描繪用運行長度資料了執行描繪處理。 此外’上述各實施形態中,就運行長度資料的之欠缺缺 Ρ各區域Af’係藉由對該區域再度執行Rip處理,產生運行 資料,來修復欠缺缺陷之結構(圖8之步驟S26),不過,亦 可為不藉由RIP處理’而直接在該欠缺缺㈣域…中產生 新的運行資料的結構。如亦可藉由強制性延伸存在於缺陷 區域附近之運行資料,而在欠缺缺陷區域Af中產生運行長 度資料。 此外,亦可為藉由受理作業人員之輸人操作來進行缺陷 區域之修復的結構。如亦可為使將缺陷區域示意給作業人 員之畫面(如在晝面上顯示運行長度資料D2之全體,就運 行長度資料D2中之多餘缺陷區域Ae以紅色顯示,就欠缺 缺陷區域Af以藍色顯示之畫面)顯示於顯示部丨6,並且就 各缺陷區域,從作業人員受理產生運行資料之指示或是刪 除運行資料之指示的輸入,因應該指示輸入而修復缺陷區 128482.doc -50· 1361889 域的結構》 再者,上述各實施形態中,記述須描繪之圖形的資料係 CAD資料,不過’亦可為處理影像及文字文書之文件檔 案。此時,運行長度資料D2係藉由將該文件檔案予以 處理而取得之資料。 此外,上述各實施形態申,須描繪之圖形係電路圖案, • 不過,須描繪之圖形亦可並非電路圖案。 φ 此外,上述各實施形態中,缺陷檢查裝置3’ 5, 6係藉由 經由網路N而連接之CAD裝置1及]111>裝置2,分別取得^入 cad資料D1、運行長度資料D2,不過,取得此等資料之 方法不限於此。如亦可從儲存此等資料之記錄媒㈣讀取 而取得。 此外,上述各實施形態中,依據描繪用運行長度資料丁 執行描繪之裝置(描繪裝置4),係藉由在基板上描繪^電路圖 案之直接描繪裝置而構成,不過,執行描繪之裝置不限於 • 此等直接描繪裝置,可藉由採用依據運行長度資料而在輸 出媒體上描繪圖形之描繪方式的各種裝置而構成。如亦可 藉由依據運行長度資料,而在紙等之記錄媒體上描繪圖形 的印刷裝置而構成。 此外,上述各實施形態中,缺陷檢查裝置3, 5, 6具備之 各功能部,係藉由電腦執行特定之程式p而實現,不過, 亦可藉由專用之硬體來實現。 【圖式簡單說明】 圖1係顯示本發明第一實施形態之圖形描繪系統的全體 i2S482.doc 51 結構圖。 圖2係顯示缺陷檢查裝置之結構的概略圖。 圖3係顯示缺陷檢查裝置之功能性結構的概略圖。 圖4係模式顯示缺陷檢測處理中取得之各種資料及其相 關關係圖。 圖5係說明圓形化處理用之模式圖。 • 圖6係說明缺陷修復處理用之模式圖。 φ 圖7係顯示從取得輸入CAD資料至執行圖形之描繪為止 的處理流程圖。 圖8係顯示缺陷檢查處理及缺陷修復處理之流程圖。 圖9係顯示缺陷檢查裝置之功能性結構的概略圖。 圖10係模式顯示在缺陷檢測處理中取得之各種資料及其 相關關係圖。 圖11係說明CAD資料影像化處理及運行長度影像化處理 用之模式圖。 • 圖12係顯示缺陷檢查裝置之功能性結構的概略圖。 圖13係模式顯示在缺陷檢查裝置中執行之缺陷檢測處理 中取得的各種資料及其相關關係圖。 圖1 4係說明座標值化處理用之模式圖。 _ 圖1 5係顯示差異區域指定部執行之處理的流程圖。 圖1 6係顯示差異區域指定部執行之處理的流程圖。 圖17係模式性例示差異區域之圖。 圖1 8係顯不第一變形例之缺陷檢測部之功能性結構圖。 圖19(a) (b)係模式顯示第一變形例中,於缺陷檢測處 128482.doc -52- 1361889 中取得的各種資料及其相關關係圖。 圖2〇係顯示第二變形例之缺陷檢測部之功能性結構圖。 圖21⑷、⑻係模式顯示第二變形例中,於缺陷檢測處 理中取得的各種資料及其相關關係圖。 圖22係顯示描繪裝置之結構的概略圖。 【主要元件符號說明】The structure of the performance device 7 of this modification is shown in FIG. The drawing device 7 includes a function unit (riding processing unit 71) for feeding a pattern on the output medium, and in each of the above embodiments, the defect inspection device defect inspection device 5, 6) has various parts (i.e., (10) data. Acquisition unit 3U51) (61), operation length data acquisition unit & (9) (4) defect detection unit 33 (53) (63), defect repair unit call 64), drawing run length data acquisition unit 35 (55) (65)) In the function, the m-drawing processing unit 71 obtains the riding running length data obtained by the drawing (4) running length data acquiring unit 35 (55) (65) by the hardware configuration of the drawing device 7, and based on the obtained The rendering process is performed using the run length data. Further, in the above embodiments, the lack of the length data of each area Af' is performed by re-executing the Rip processing on the area to generate the operational data to repair the structure of the missing defect (step S26 of FIG. 8). However, it is also possible to generate a new operational data structure directly in the under-(four) domain... without RIP processing. Run length information can also be generated in the defect-deficient area Af by forcibly extending the operational data present in the vicinity of the defect area. Further, it is also possible to perform a repair of the defective area by accepting an operator's input operation. For example, if the defect area is indicated to the operator (if the running length data D2 is displayed on the top surface, the excess defect area Ae in the running length data D2 is displayed in red, and the defective area Af is blue. The screen of the color display is displayed on the display unit ,6, and the input of the operation data is instructed or the input of the instruction to delete the operation data is accepted from the operator in each defect area, and the defect area 128482.doc-50 is repaired as the input should be instructed. · Structure of the domain of 1361889>> In the above embodiments, the data of the graphic to be drawn is CAD data, but 'can also be a file file for processing images and text documents. At this time, the run length data D2 is obtained by processing the file file. Further, in the above embodiments, the pattern to be drawn is a circuit pattern, • However, the pattern to be drawn may not be a circuit pattern. In addition, in each of the above embodiments, the defect inspection devices 3' 5, 6 acquire the cad data D1 and the run length data D2 by the CAD device 1 and the 111 device 2 connected via the network N, respectively. However, the method of obtaining such information is not limited to this. It can also be obtained by reading from the recording medium (4) storing this information. Further, in each of the above-described embodiments, the device (drawing device 4) that performs drawing based on the drawing run length data is configured by drawing a direct drawing device of the circuit pattern on the substrate, but the device for performing the drawing is not limited. • These direct rendering devices can be constructed using a variety of devices that draw a graphical representation of the graphics on the output media based on the run length data. For example, it can be constructed by drawing a graphic printing device on a recording medium such as paper based on the running length data. Further, in each of the above embodiments, the functional units included in the defect inspection devices 3, 5, and 6 are realized by executing a specific program p by a computer, but may be realized by a dedicated hardware. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a block diagram showing the entire i2S482.doc 51 of the graphic drawing system according to the first embodiment of the present invention. Fig. 2 is a schematic view showing the structure of a defect inspection device. Fig. 3 is a schematic view showing a functional configuration of a defect inspection device. Fig. 4 is a diagram showing various kinds of data obtained in the defect detecting process and their related relationship diagrams. Fig. 5 is a schematic view for explaining a circularization process. • Figure 6 is a schematic diagram illustrating the defect repair process. φ Fig. 7 is a flowchart showing the processing from the acquisition of the input CAD data to the drawing of the execution pattern. Fig. 8 is a flow chart showing the defect inspection process and the defect repair process. Fig. 9 is a schematic view showing a functional configuration of a defect inspection device. Fig. 10 is a diagram showing various kinds of data acquired in the defect detecting process and their correlation diagrams. Fig. 11 is a schematic view showing the CAD data processing and the run length imaging processing. • Fig. 12 is a schematic view showing the functional configuration of the defect inspection device. Fig. 13 is a view showing various materials obtained in the defect detecting process executed in the defect inspecting apparatus and their correlation diagrams. Fig. 1 is a schematic diagram for explaining coordinate value processing. _ Fig. 1 is a flowchart showing the processing executed by the difference area specifying unit. Fig. 16 is a flowchart showing the processing executed by the difference area specifying unit. Figure 17 is a diagram schematically illustrating a difference region. Fig. 18 is a functional structural view showing a defect detecting portion of a first modification. Fig. 19 (a) and (b) are diagrams showing various materials and correlation diagrams obtained in the defect detection section 128482.doc - 52 - 1361889 in the first modification. Fig. 2 is a view showing a functional configuration of a defect detecting portion of a second modification. Fig. 21 (4) and (8) show various kinds of data acquired in the defect detecting process and their correlation diagrams in the second modification. Fig. 22 is a schematic view showing the structure of the drawing device. [Main component symbol description]
1 CAD裝置 2 RIP裝置 3, 5, 6 缺陷檢查裝置 4, 7 描繪裝置 31,51,61 CAD資料取得部 32, 52, 62 運行長度資料取得部 33, 53, 63 缺陷檢測部 34, 54, 64 描繪用運行長度資料取得部 100 圖形描繪系統 33 1, 53 1, 63 1 變換處理部 332, 532, 632 差異區域指定部 333 多餘缺陷區域指定部 334 欠缺缺陷區域指定部 341, 541 缺陷修復部 3311 比較輸入CAD資料取得部 3312 比較運行長度資料取得部 3411 多餘缺陷修復部 3412 欠缺缺陷修復部 128482.doc •53 . 13618891 CAD device 2 RIP device 3, 5, 6 Defect inspection device 4, 7 Drawing device 31, 51, 61 CAD data acquisition unit 32, 52, 62 Operation length data acquisition unit 33, 53, 63 Defect detection unit 34, 54, 64 drawing run length data acquisition unit 100 graphic drawing system 33 1, 53 1, 63 1 conversion processing unit 332, 532, 632 difference area specifying unit 333 redundant defect area specifying unit 334 defective area specifying unit 341, 541 defect repairing unit 3311 Comparison input CAD data acquisition unit 3312 Comparison operation length data acquisition unit 3411 Excess defect repair unit 3412 Defect repair unit 128482.doc • 53 . 1361889
D1 輸入CAD資料 D2 運行長度資料 D3 差異區域資料 D3a 多餘缺陷區域資料 D3b 欠缺缺陷區域資料 D4 修復運行長度資料 FI, Gl, HI 比較CAD資料 F2, G2, H2 比較運行長度資料 T 描繪用運行長度資料 P 程式 M 記錄媒體D1 Input CAD data D2 Run length data D3 Difference area data D3a Excess defect area data D3b Missing defect area data D4 Repair run length data FI, Gl, HI Compare CAD data F2, G2, H2 Compare run length data T Trace run length data P program M recording media
128482.doc -54-128482.doc -54-
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007090093 | 2007-03-30 | ||
JP2007276775A JP5015721B2 (en) | 2007-03-30 | 2007-10-24 | Defect inspection apparatus, defect inspection program, graphic drawing apparatus, and graphic drawing system |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200900684A TW200900684A (en) | 2009-01-01 |
TWI361889B true TWI361889B (en) | 2012-04-11 |
Family
ID=39995562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW97102547A TWI361889B (en) | 2007-03-30 | 2008-01-23 | Defect inspection apparatus, pattern drawing apparatus, pattern drawing system and recording medium storing defect inspection program |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5015721B2 (en) |
KR (1) | KR100938324B1 (en) |
CN (1) | CN101275917B (en) |
TW (1) | TWI361889B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5373518B2 (en) * | 2009-09-15 | 2013-12-18 | 大日本スクリーン製造株式会社 | Data conversion method, drawing system, and program |
JP5371658B2 (en) * | 2009-09-25 | 2013-12-18 | 大日本スクリーン製造株式会社 | Pattern drawing apparatus and pattern drawing method |
TW201314376A (en) | 2011-09-30 | 2013-04-01 | Dainippon Screen Mfg | Image display apparatus for direct drawing apparatus and recording medium |
JP6034112B2 (en) * | 2012-09-28 | 2016-11-30 | 株式会社Screenホールディングス | Support device, drawing system, and support method |
JP2015103226A (en) * | 2013-11-28 | 2015-06-04 | 株式会社Screenホールディングス | Data calculation method, data calculation apparatus, and defect inspection apparatus |
JP6460660B2 (en) * | 2014-07-01 | 2019-01-30 | 株式会社Screenホールディングス | Data operation device, data operation method, and defect inspection device |
JP6350204B2 (en) | 2014-10-21 | 2018-07-04 | 株式会社ニューフレアテクノロジー | Drawing data verification method, program, and multi-charged particle beam drawing apparatus |
CN104463928B (en) * | 2014-12-15 | 2018-01-05 | 重庆市勘测院 | The method that progress graphics calculations in AutoCAD faces domain are replaced using Region classes |
KR102536331B1 (en) | 2017-12-31 | 2023-05-26 | 에이에스엠엘 네델란즈 비.브이. | Systems and methods for defect inspection and review |
TWI764770B (en) * | 2021-06-29 | 2022-05-11 | 倍利科技股份有限公司 | Method for determining wire regions of a circuit |
JP2023032758A (en) * | 2021-08-27 | 2023-03-09 | 株式会社Screenホールディングス | Drawing apparatus, drawing method, and program |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6097482A (en) * | 1983-10-31 | 1985-05-31 | Meidensha Electric Mfg Co Ltd | Pattern recognizing device |
KR100268777B1 (en) | 1993-11-12 | 2000-11-01 | 김영환 | Pattern defect inspection method for semiconductor device |
JP2816091B2 (en) * | 1994-01-31 | 1998-10-27 | 大日本スクリーン製造株式会社 | Digital plate inspection equipment |
JPH1083452A (en) * | 1996-09-09 | 1998-03-31 | Kokusai Gijutsu Kaihatsu Kk | Pattern defect detecting device |
JPH10171093A (en) * | 1996-12-10 | 1998-06-26 | Dainippon Screen Mfg Co Ltd | Plate inspection apparatus |
JP2000155408A (en) * | 1998-09-14 | 2000-06-06 | Matsushita Electronics Industry Corp | Pattern data certification method and pattern data correction method |
JP2000250960A (en) * | 1999-03-02 | 2000-09-14 | Sony Corp | Verifying method of data for drawing device and manufacture of photomask |
JP4538135B2 (en) * | 2000-05-30 | 2010-09-08 | 株式会社メック | Defect inspection equipment |
JP2001344302A (en) * | 2000-06-02 | 2001-12-14 | Nec Corp | Verification method and verifying device for electron beam exposure system data |
JP2002071330A (en) * | 2000-08-25 | 2002-03-08 | Seiko Instruments Inc | Method and apparatus for inspecting pattern defect |
JP3952358B2 (en) * | 2001-09-25 | 2007-08-01 | 大日本スクリーン製造株式会社 | Data conversion apparatus and method, and program using the method |
JP2003099771A (en) * | 2001-09-26 | 2003-04-04 | Dainippon Screen Mfg Co Ltd | Data converter, its method, and program using it |
JP4281314B2 (en) * | 2002-09-02 | 2009-06-17 | 日本電気株式会社 | Reticle manufacturing method |
US6878495B1 (en) * | 2003-10-15 | 2005-04-12 | Eastman Kodak Company | Producing an image data to be used by a laser thermal transfer apparatus for use in making color emissive sites |
JP4518835B2 (en) * | 2004-05-13 | 2010-08-04 | 大日本スクリーン製造株式会社 | Defect detection device, wiring region extraction device, defect detection method, and wiring region extraction method |
JP4648660B2 (en) * | 2004-07-21 | 2011-03-09 | 大日本スクリーン製造株式会社 | Acquisition of surface area arrangement of objects by image segmentation |
JP2006078421A (en) * | 2004-09-13 | 2006-03-23 | Olympus Corp | Pattern defect detector, and method of detecting pattern defect |
JP4695942B2 (en) * | 2005-08-22 | 2011-06-08 | 株式会社ニューフレアテクノロジー | Data validation method |
JP2007081326A (en) | 2005-09-16 | 2007-03-29 | Dainippon Screen Mfg Co Ltd | Wiring formation system and method of the same |
-
2007
- 2007-10-24 JP JP2007276775A patent/JP5015721B2/en active Active
-
2008
- 2008-01-23 TW TW97102547A patent/TWI361889B/en active
- 2008-03-07 KR KR1020080021639A patent/KR100938324B1/en active IP Right Grant
- 2008-03-25 CN CN 200810086302 patent/CN101275917B/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008277730A (en) | 2008-11-13 |
JP5015721B2 (en) | 2012-08-29 |
TW200900684A (en) | 2009-01-01 |
CN101275917A (en) | 2008-10-01 |
CN101275917B (en) | 2013-03-06 |
KR20080089175A (en) | 2008-10-06 |
KR100938324B1 (en) | 2010-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI361889B (en) | Defect inspection apparatus, pattern drawing apparatus, pattern drawing system and recording medium storing defect inspection program | |
JP3448041B2 (en) | Pattern defect inspection equipment | |
JP4542164B2 (en) | Pattern inspection apparatus, pattern inspection method, and program | |
JP6609057B2 (en) | Image processing device | |
US20080260234A1 (en) | Pattern inspection apparatus, corrected image generation method, and computer-readable recording medium storing program | |
US20200162626A1 (en) | Damage diagram creation method, damage diagram creation device, damage diagram creation system, and recording medium | |
US20120092482A1 (en) | Method and device for creating composite image | |
US11423511B2 (en) | Image composition method, image composition device, and recording medium | |
JP2009157543A (en) | Method and apparatus for creating image | |
JP2009071271A (en) | Pattern figure evaluating method, pattern figure evaluating device, pattern figure evaluating data generating device, and semiconductor figure evaluating system employing them | |
JP2009294170A (en) | Apparatus, method, and program for defect detection and recording medium | |
US7715650B2 (en) | Method and apparatus for digital processing of images | |
US9224226B2 (en) | Image display device for direct drawing apparatus, and recording medium | |
JPH03182976A (en) | Joining method for digital picture | |
US8300918B2 (en) | Defect inspection apparatus, defect inspection program, recording medium storing defect inspection program, figure drawing apparatus and figure drawing system | |
JP2008014717A (en) | Flaw inspection system and flaw inspection method | |
JP4467591B2 (en) | Sample inspection apparatus and sample inspection method | |
JP4090720B2 (en) | Area calculation device for photomask data display device and photomask data display device | |
JP2000258349A (en) | Apparatus for visual examination of photomask | |
CN113205110B (en) | Method for establishing panel defect classification model and panel defect classification method | |
JP2012014430A (en) | Image processing device, control method and program | |
JP2006091790A (en) | Pattern inspecting method | |
JP4061045B2 (en) | Photomask data display device | |
US20230296531A1 (en) | Information processing apparatus, information processing method, and information processing program | |
JP2005346300A (en) | Stripe defect detection method and device |