TWI354531B - - Google Patents

Download PDF

Info

Publication number
TWI354531B
TWI354531B TW97125176A TW97125176A TWI354531B TW I354531 B TWI354531 B TW I354531B TW 97125176 A TW97125176 A TW 97125176A TW 97125176 A TW97125176 A TW 97125176A TW I354531 B TWI354531 B TW I354531B
Authority
TW
Taiwan
Prior art keywords
ceramic substrate
ceramic
recess
solder
solderable metal
Prior art date
Application number
TW97125176A
Other languages
Chinese (zh)
Other versions
TW201004546A (en
Inventor
ting wei Lin
Yung Ping Wu
Jen Chien Yao
Original Assignee
Darfon Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Darfon Electronics Corp filed Critical Darfon Electronics Corp
Priority to TW97125176A priority Critical patent/TW201004546A/en
Publication of TW201004546A publication Critical patent/TW201004546A/en
Application granted granted Critical
Publication of TWI354531B publication Critical patent/TWI354531B/zh

Links

Landscapes

  • Led Device Packages (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

J〇453l 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種陶瓷基板結構及其製造方法,且 特別是有關於一種具有散熱功能之陶瓷基板結構及其製造 方法。 【先前技術】 近年來,來由於消費性電子與無線通訊產品的快速發 展,電子產品紛紛趨向具備多功能、外型輕薄短小等需求 發展,因此,各種整合型技術開始受到重視,低溫共燒陶 瓷(Low_Temperature Cofired Ceramics ; LTCC)為電子產 朝向輕薄短小的發展技術之—。低溫共燒陶瓷技術,係 將被動元件埋入多層陶瓷基板中燒結形成整合式陶瓷元 件’以有效減少元件的空間,使得元件高度集積,達成元 件/模組縮小化、電子產品小型化的目的 LTCC整合型元件,係以陶瓷材料作為基板,將被動 元件埋入多層陶瓷基板中燒結形成整合式陶瓷元件,以有 效減少元件的空間,使得元件高度集積,達到節省空間之 便0 一般在LTCC技術中常見的散熱方法,為一具有貫穿 的導熱通道(thermal via)之陶瓷基板結構1,如圖1,陶瓷 基板11具有複數個導熱通道(thermal via)12並透過一煤 錫層15使陶瓷基板11與印刷電路板16彼此連接,而透過 這些導熱通道12的設計,可協助基板散熱。 然而’利用貝穿陶資•基板之導熱通道(thermal via)的散 熱功能具有一定之功效,對於高功率之產品並不適用,所 乂為又針對问功率之產品,會採用金屬貼片的方法以增 強其散熱功率,然而此金屬貼片的方式,f要額外的製程 步驟與材料,而提高產品製㈣複雜度與費用。 【發明内容】 有鑑於此,本發明所欲解決的問題在於提供一種具有 散熱功能之陶瓷基板結構及其製造方法。 為解決上述問題,本發明所提出之技術手段係在於, 本發明提供一種具有散熱功能之陶瓷基板結構,此陶瓷基 板結構包括一陶瓷基板,係具有相對之一第一表面及一第 二表面,第一表面具有一凹陷處;複數個導熱通道(thennal via),係設於凹陷處底面並貫通至第二表面;一可焊金屬 層,係形成於凹陷處底面並上述之導熱通道連接;以及一焊 料層,係填滿於可焊金屬層上方的凹陷處内。 上述發明實施例中,導熱通道係為一金屬柱,可焊金 屬可為Ag-Pt、Ag-Pd ' Ag或銅;亦可用表面電鍍的方法 行成可焊金屬Sn或無電電鍍的方法形成可焊金屬Ni、Pd 或Au,陶瓷基材可設置於一印刷電路板(Printed Circuit Board, PCB)之上,並可透過印刷電路板之焊錫層彼此連 接,且陶瓷基材可應用於高功率或高亮度之LED。 本發明另外提供一種具有散熱功能之陶瓷基板的製 程。首先,提供一陶瓷薄板,陶瓷薄板具有複數個導熱通 道(thermal via)。接著,塗佈或印刷一可焊金屬於導熱通道 1354531 上方,以形成一可焊金屬層。之後,提供一生胚片,生胚 片具有至少一孔洞(cavity),孔洞尺寸大於導熱通道尺寸。 之後,堆疊生胚片於陶瓷薄板上,孔洞形成一凹陷處,且 凹陷處外露出可焊金屬層。之後,進行燒結陶瓷薄板、生 胚片與可焊金屬層,以共同形成陶瓷基板。之後,放入一 焊料於凹陷處内。以及進行一迴焊步驟,使焊料固化於凹 陷處内。 其中,焊料係選自含錫的任何錫膏原料。可焊金屬可 為Ag-Pt、Ag-Pd、Ag或銅;亦可用表面電鏡的方法行成 可焊金屬Sn,或無電電鍍的方法形成可焊金屬Ni、Pd或 Au在進行迴焊步驟之後,更可包含一步驟將陶瓷基板連接 於一印刷電路板上,而陶瓷基板與印刷電路板係透過一焊 錫層彼此連接。陶瓷薄板係為一低溫共燒陶瓷基板,且陶 瓷基板可應用於高功率或高亮度之LED。 運用本發明所獲得的功效係在於,本發明係透過習知 之孔洞製程在一生胚片上形成一孔洞,並搭配一具有可焊 金屬於導熱通道上方之陶瓷薄板,將並填入焊料於孔洞 内,因而提生金屬散熱體積,藉此可自然形成一散熱片, 改善基板散熱效率而提高散熱功率,擴大陶瓷基板應用於 高功率產品之應用範圍,如:高功率1C及LED等基板之 散熱,且此方式與金屬片貼合的方式相較下,可減少製程 步驟及製造成本,此外,本發明之陶瓷基板結構可直接與 基板藉由焊料層相接合,而減少導熱膠酯使用。 【實施方式】 7 1354531 以下將參照相關圖示,說明依本發明較佳實施例之具 有散熱功能之陶瓷基板結構,為使便於理解,下述實施例 中之相同元件係以相同之符號標示來說明。 請參考圖2,其係為本發明之具有散熱功能之陶瓷基 板結構。圖中,陶瓷基板結構2包括一陶瓷基板21、複數 個導熱通道(thermal via)22、一可焊金屬層23以及一焊 料層24。陶瓷基板21具有相對之一第一表面211及一第 二表面212,且第一表面211上有一凹陷處216,複數個導 熱通道(thermal via)22係設於凹陷處216底面並貫通至 第二表面212,可焊金屬層23係形成於凹陷處216底面並 與些導熱通道22連接,焊料層24係填滿於可焊金屬層23 上方的凹陷處216内。 承上述,本實絶例之導熱通道係為一金屬柱,金屬柱 材料可以是任何含有金屬成份的金屬材料,此外,上述之 可焊金屬的材質可以是Ag-Pt、Ag-Pd、Ag或銅;亦可用 表面電鍍的方法行成可焊金屬Sn,或無電電鍍的方法形成 可焊金屬Ni、Pd或Au,或其他適當的金屬材料,或者也 可以是上述金屬材料的任意組合。 在上述實施例中,具有散熱功能之陶瓷基板結構2更 可設置於一印刷電路板(Printed Circuit Board, PCB)26 之上,其中可透過焊錫層25彼此連接。 在上述實施例中,具有散熱功能之陶瓷基板結構2可 應用於高功率或高亮度之LED,但可應用之相關產品並不 以此為限。 相較於習知技術而言(請參考圖1 ),習知技術只單 8 1354531 純透過導熱通道進行散熱,此散熱功效有限,本發明將焊 料於孔洞内,因而提升金屬散熱體積,藉此可自然形成一 散熱片,改善基板散熱效率而提高散熱功率,擴大陶瓷基 板應用於高功率產品之應用範圍,如:高功率1C及LED等 基板之散熱,且此方式與金屬片貼合的方式相較下,可減 少製程步驟及製造成本,此外,本發明之陶瓷基板結構可 直接與基板藉由焊料層相接合,而減少導熱膠酯使用。 以上僅介紹陶瓷基板的結構,而關於陶瓷基板的製 程,以下將配合圖3A至圖3F進行詳細的說明。 請依序參閱圖3A與圖3B,首先,提供一陶瓷薄板 213,此陶瓷薄板213具有複數個導熱通道22,其中,陶 瓷薄板213可為一低溫共燒陶瓷(Low Temperature Co-fired Ceramic, LTCC)基板。接著,形成一可焊金屬層23於陶瓷 薄板213上,其中可焊金屬層23可透過塗佈或印刷一可焊 金屬的方法,形成於導熱通道22上方,此可焊金屬的材質 可以是Ag-Pt、Ag-Pd、Ag或銅;亦可用表面電鍍的方法 行成可焊金屬Sn,或無電電鍍的方法形成可焊金屬Ni、Pd 或Au、或其他金屬材料,或者也可以是上述金屬材料的任 意組合。 接著,請參閱圖3C與圖3D,另外提供一生胚片214, 此生胚片214具有至少一孔洞215,其中,生胚片214的 孔洞215尺寸至少大於導熱通道22尺寸。形成孔洞215於 生胚片214上的方式可以有很多種,舉例來說,雷射或機 器鑽孔等方法均可採用。 之後,堆疊生胚片214於陶瓷薄板213上,其中這些 9 1354531 孔洞215會座落在相對應於導熱通道22上的可焊金屬層 23上方,即這些形成在導熱通道22上方的可焊金屬層23 會對應於這些孔洞215。 堆疊完畢後,燒結此堆疊在一起之陶瓷薄板213、生 胚片214與可焊金屬層23,以共同形成陶瓷基板21。燒結 完畢後,生胚片上的原有之孔洞215則形成一陶瓷基板21 的一凹陷處216,且凹陷處216外露出可焊金屬層23。 φ 請參閱圖3E與圖3F,接著,放入一焊料241於凹陷 處内216,其中焊料241的材料可為任何一種含錫的錫膏 原料,最後進行一迴焊步驟,使焊料241固化於凹陷處内 216,而進行迴焊步驟時的溫度設定,則依錫膏原料的種類 而決定,在此不限定之。 如此,具有散熱功能之陶瓷基板21已完成,透過焊料 植於孔洞内的方式,此可自然形成一散熱片,因而提升陶 瓷基板的散熱效率。 φ 此外,此方法更可包含將陶瓷基板21連接於一印刷電 路板26上。其中,陶瓷基板21與印刷電路板(或其它基 板)26係透過一焊錫層25彼此連接,連接陶瓷基板21於印 刷電路板26的方法與習知技術相同,故不再重複介紹。 如此,本發明所使用的焊料金屬散熱方法,藉由焊料 填充的方式,提高散熱體積此一設計,由此可提升陶瓷基 板之散熱效率,擴大陶瓷基板於高功率產品之應用範圍, 即本發明的陶瓷基板的可應用於高功率或高亮度之LED 上,此外,透過焊錫層與基板接合,減少導熱膠酯使用, 亦具有降低成本之一功效。 技術手=實乃:;==解相題所採用的 r⑽㈣圍。即凡=;利 符,或依本發明直剎浐网a j〒叫乾圍文義相 發明專丄:ΐ顺 【圖式簡單說明】 圖1係為習知陶瓷基板結構之結構剖面圖; 圖2係為本發明之具有散熱功m綠板結構之結構剖 面圖;以及 圖3A〜圖3F係為本發明之具有散熱功能之陶瓷基板結構 的製作流程圖。 【主要元件符號說明】 1 陶瓷基板結構 11 陶瓷基板 12 導熱通道 15 焊錫層 16 印刷電路板 2 陶瓷基板結構 21 陶瓷基板 211 第一表面 212 第二表面 1354531 213 陶瓷薄板 214 生胚片 215 孔洞. 216 凹陷處 22 導熱通道 23 可焊金屬層 24 焊料層 241 焊料 25 焊錫層 印刷電路板 26BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a ceramic substrate structure and a method of fabricating the same, and more particularly to a ceramic substrate structure having a heat dissipation function and a method of fabricating the same. [Prior Art] In recent years, due to the rapid development of consumer electronics and wireless communication products, electronic products have become more and more demanding, and the demand for light, thin and short is growing. Therefore, various integrated technologies have begun to receive attention, low-temperature co-fired ceramics. (Low_Temperature Cofired Ceramics; LTCC) is a development technology for electronics that is geared towards light and thin. The low-temperature co-fired ceramic technology is to embed passive components in a multi-layer ceramic substrate to form an integrated ceramic component to effectively reduce the space of components, so that the components are highly concentrated, and the components/modules are reduced and the electronic products are miniaturized. The integrated component is made of ceramic material as the substrate, and the passive component is buried in the multilayer ceramic substrate to form an integrated ceramic component, so as to effectively reduce the space of the component, so that the component is highly accumulated, and space saving is achieved. 0 Generally, in the LTCC technology. A common heat dissipation method is a ceramic substrate structure 1 having a thermal via therethrough. As shown in FIG. 1, the ceramic substrate 11 has a plurality of thermal vias 12 and is passed through a coal tin layer 15 to make the ceramic substrate 11 The printed circuit boards 16 are connected to each other, and the heat conduction channels 12 are designed to assist in heat dissipation of the substrate. However, the heat dissipation function of the thermal via using the ceramics and the substrate has a certain effect, and is not suitable for high-power products. In order to enhance its heat dissipation power, however, the way of the metal patch, f requires additional process steps and materials, and improves the product system (IV) complexity and cost. SUMMARY OF THE INVENTION In view of the above, the problem to be solved by the present invention is to provide a ceramic substrate structure having a heat dissipation function and a method of fabricating the same. In order to solve the above problems, the technical means of the present invention is to provide a ceramic substrate structure having a heat dissipation function, the ceramic substrate structure comprising a ceramic substrate having a first surface and a second surface. The first surface has a recess; a plurality of thirnal vias are disposed on the bottom surface of the recess and penetrate to the second surface; a solderable metal layer is formed on the bottom surface of the recess and connected to the heat conducting channel; A layer of solder is filled in the recess above the solderable metal layer. In the above embodiment of the invention, the heat conduction channel is a metal pillar, and the solderable metal may be Ag-Pt, Ag-Pd 'Ag or copper; or may be formed by a surface plating method to form a solderable metal Sn or an electroless plating method. Soldering metal Ni, Pd or Au, the ceramic substrate can be disposed on a printed circuit board (PCB) and can be connected to each other through a solder layer of the printed circuit board, and the ceramic substrate can be applied to high power or High brightness LED. The present invention further provides a process for a ceramic substrate having a heat dissipation function. First, a ceramic sheet is provided which has a plurality of thermal vias. Next, a solderable metal is applied or printed over the thermally conductive via 1354531 to form a solderable metal layer. Thereafter, a green sheet is provided, the green sheet having at least one cavity having a pore size larger than the size of the heat conduction channel. Thereafter, the green sheets are stacked on the ceramic sheet, the holes form a depression, and the weldable metal layer is exposed outside the depressions. Thereafter, a sintered ceramic sheet, a green sheet, and a solderable metal layer are formed to collectively form a ceramic substrate. After that, a solder is placed in the recess. And performing a reflow step to cure the solder in the recess. Wherein, the solder is selected from any solder paste material containing tin. The solderable metal may be Ag-Pt, Ag-Pd, Ag or copper; or may be formed into a solderable metal Sn by surface electron microscopy or electroless plating to form a solderable metal Ni, Pd or Au after the reflow step Further, the method further includes the step of connecting the ceramic substrate to a printed circuit board, and the ceramic substrate and the printed circuit board are connected to each other through a solder layer. The ceramic sheet is a low temperature co-fired ceramic substrate, and the ceramic substrate can be applied to high power or high brightness LEDs. The effect obtained by the present invention is that the present invention forms a hole in a green sheet through a conventional hole process, and is matched with a ceramic thin plate having a solderable metal over the heat conduction channel, and is filled into the hole in the solder. Therefore, the metal heat dissipation volume is extracted, thereby naturally forming a heat sink, improving the heat dissipation efficiency of the substrate and improving the heat dissipation power, and expanding the application range of the ceramic substrate for high-power products, such as heat dissipation of high-power 1C and LED substrates, and Compared with the manner in which the metal sheets are bonded, the method can reduce the manufacturing process and the manufacturing cost. In addition, the ceramic substrate structure of the present invention can be directly bonded to the substrate by the solder layer to reduce the use of the thermal paste. [Embodiment] 7 1354531 Hereinafter, a ceramic substrate structure having a heat dissipation function according to a preferred embodiment of the present invention will be described with reference to the related drawings. For ease of understanding, the same components in the following embodiments are denoted by the same reference numerals. Description. Please refer to FIG. 2, which is a ceramic substrate structure with heat dissipation function of the present invention. In the figure, the ceramic substrate structure 2 comprises a ceramic substrate 21, a plurality of thermal vias 22, a solderable metal layer 23 and a solder layer 24. The ceramic substrate 21 has a first surface 211 and a second surface 212. The first surface 211 has a recess 216. A plurality of thermal vias 22 are disposed on the bottom surface of the recess 216 and extend through the second surface. The surface 212, the solderable metal layer 23 is formed on the bottom surface of the recess 216 and connected to the heat conduction channels 22, and the solder layer 24 is filled in the recesses 216 above the solderable metal layer 23. In view of the above, the heat conduction channel of the present embodiment is a metal column, and the metal column material may be any metal material containing a metal component. Further, the material of the solderable metal may be Ag-Pt, Ag-Pd, Ag or Copper; may be formed by a surface plating method to form a solderable metal Sn, or a method of electroless plating to form a solderable metal Ni, Pd or Au, or other suitable metal material, or may be any combination of the above metal materials. In the above embodiment, the ceramic substrate structure 2 having a heat dissipation function can be further disposed on a printed circuit board (PCB) 26, wherein the solder layer 25 can be connected to each other. In the above embodiment, the ceramic substrate structure 2 having a heat dissipation function can be applied to a high power or high brightness LED, but the related products to be applied are not limited thereto. Compared with the prior art (please refer to FIG. 1 ), the conventional technology only uses 8 1354531 to dissipate heat through the heat conduction channel, and the heat dissipation effect is limited. The invention places the solder in the hole, thereby increasing the heat dissipation volume of the metal. Naturally, a heat sink can be formed to improve the heat dissipation efficiency of the substrate and improve the heat dissipation power, and expand the application range of the ceramic substrate for high-power products, such as heat dissipation of high-power 1C and LED substrates, and the manner of bonding with the metal sheet. In comparison, the process steps and manufacturing costs can be reduced. In addition, the ceramic substrate structure of the present invention can be directly bonded to the substrate by the solder layer to reduce the use of the thermal paste. Only the structure of the ceramic substrate will be described above, and the process of the ceramic substrate will be described in detail below with reference to Figs. 3A to 3F. Referring to FIG. 3A and FIG. 3B, first, a ceramic thin plate 213 is provided. The ceramic thin plate 213 has a plurality of heat conduction channels 22, wherein the ceramic thin plate 213 can be a low temperature co-fired ceramic (LTCC). ) substrate. Then, a solderable metal layer 23 is formed on the ceramic thin plate 213, wherein the solderable metal layer 23 can be formed on the heat conduction channel 22 by coating or printing a solderable metal. The material of the solderable metal can be Ag. -Pt, Ag-Pd, Ag or copper; may be formed by a surface plating method to form a solderable metal Sn, or electroless plating to form a solderable metal Ni, Pd or Au, or other metal material, or may be the above metal Any combination of materials. Next, referring to FIG. 3C and FIG. 3D, a green sheet 214 is further provided. The green sheet 214 has at least one hole 215, wherein the hole 215 of the green sheet 214 is at least larger than the size of the heat conduction channel 22. There are many ways in which the holes 215 can be formed in the green sheets 214. For example, laser or machine drilling can be used. Thereafter, the green sheets 214 are stacked on the ceramic sheet 213, wherein the 9 1354531 holes 215 are seated above the solderable metal layer 23 corresponding to the heat conducting channels 22, that is, the solderable metals formed above the heat conducting channels 22 Layer 23 will correspond to these holes 215. After the stacking is completed, the stacked ceramic sheets 213, green sheets 214 and solderable metal layers 23 are sintered to collectively form the ceramic substrate 21. After the sintering is completed, the original hole 215 on the green sheet forms a recess 216 of the ceramic substrate 21, and the recess 216 exposes the solderable metal layer 23. φ Referring to FIG. 3E and FIG. 3F, a solder 241 is placed in the recess 216. The material of the solder 241 can be any tin-containing solder paste material, and finally a reflow step is performed to cure the solder 241. In the recessed portion 216, the temperature setting at the time of performing the reflow step is determined depending on the type of the solder paste material, and is not limited thereto. Thus, the ceramic substrate 21 having the heat dissipation function has been completed, and the heat sink is naturally formed by the way in which the solder is implanted in the holes, thereby improving the heat dissipation efficiency of the ceramic substrate. In addition, the method may further include attaching the ceramic substrate 21 to a printed circuit board 26. The ceramic substrate 21 and the printed circuit board (or other substrate) 26 are connected to each other through a solder layer 25, and the method of connecting the ceramic substrate 21 to the printed circuit board 26 is the same as that of the prior art, and therefore will not be repeatedly described. Therefore, the solder metal heat dissipation method used in the present invention increases the heat dissipation volume by means of solder filling, thereby improving the heat dissipation efficiency of the ceramic substrate and expanding the application range of the ceramic substrate in the high power product, that is, the present invention. The ceramic substrate can be applied to high-power or high-brightness LEDs. In addition, the solder layer is bonded to the substrate to reduce the use of the thermal paste, which also has the effect of reducing cost. Technical hand = real is:; = = r (10) (four) circumference used in the solution. That is, where =; Li Fu, or according to the invention, the direct brake network aj 干 干 围 文 文 文 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 【 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图The structure is a cross-sectional view of a structure having a heat dissipation m green plate structure of the present invention; and FIGS. 3A to 3F are flow charts for fabricating a ceramic substrate structure having a heat dissipation function according to the present invention. [Main component symbol description] 1 Ceramic substrate structure 11 Ceramic substrate 12 Thermal conduction channel 15 Solder layer 16 Printed circuit board 2 Ceramic substrate structure 21 Ceramic substrate 211 First surface 212 Second surface 1354533 213 Ceramic thin plate 214 Raw green sheet 215 Hole. 216 Depression 22 Heat Conduction Channel 23 Solderable Metal Layer 24 Solder Layer 241 Solder 25 Solder Layer Printed Circuit Board 26

Claims (1)

1354531 十、申請專利範圍: 1. 一種具有散熱功能之陶瓷基板結構,包括: 一陶瓷基板,該陶瓷基板具有相對之一第一表面及 一第二表面,該第一表面具有一凹陷處; 複數個導熱通道(thermal via),係設於該凹陷處底面 並貫通至該第二表面; 一可焊金屬層,係形成於該凹陷處底面並與該些導 熱通道連接;以及 一焊料層,係填滿於該可焊金屬層上方的該凹陷處 内。 2. 如申請專利範圍第1項所述之陶瓷基板結構,其中該些 導熱通道係為一金屬柱。 、 3. 如申請專利範圍第1項所述之陶兗基板結構,其中該可 焊金屬可為 Ag-Pt、Ag-Pd、Ag、Cu、Sn、Ni、Pd 或 Au。 4. 如申請專利範圍第1項所述之陶瓷基板結構,其中該陶 曼基板可設置於一印刷電路板(Printed Circuit Board, PCB)之上,並可透過該印刷電路板之焊錫層彼此連接。 5. 如申請專利範圍第1項所述之陶瓷基板結構,其中該陶 瓷基板可應用於高功率或高亮度之LED。 6. —種具有散熱功能之陶瓷基板的製造方法,包括下列步 驟: 提供一陶瓷薄板,該陶瓷薄板具有複數個導熱通道 (thermal via) I 塗佈或印刷一可焊金屬於該些導熱通道上方,以形 13 1354531 成一可焊金屬層; 提供一生胚片,該生胚片具有至少一孔洞(cavity), 該孔洞尺寸大於該些導熱通道尺寸; 堆疊該生胚片於該陶瓷薄板上,該孔洞形成一凹陷 處,且該凹陷處外露出該可焊金屬層; 進行燒結該陶瓷薄板、該生胚片與該可焊金屬層, 以共同形成該陶瓷基板; 放入一焊料於該凹陷處内;以及 進行一迴焊步驟,使該焊料固化於該凹陷處内。 7. 如申請專利範圍第6項所述之製造方法,其中該焊料係 選自含錫的任何錫膏原料。 8. 如申請專利範圍第6項所述之製造方法,其中該可焊金 屬可為 Ag-Pt、Ag-Pd、Ag、Cu、Sn、.Ni、Pd 或 Au。 9. 如申請專利範圍第6項所述之製造方法,其中該進行一 迴焊步驟之後,更包含:連接該陶瓷基'板於一印刷電路板 上。 10. 如申請專利範圍第9項所述之製造方法,其中該陶瓷基 板與該印刷電路板係透過一焊錫層彼此連接。 11. 如申請專利範圍第6項所述之製造方法,其中該陶瓷薄 板係為一低溫共燒陶堯(Low Temperature Co-fired Ceramic, LTCC)基板。 12. 如申請專利範圍第6項所述之製造方法,其中該陶瓷基 板可應用於高功率或高亮度之LED。 141354531 X. Patent application scope: 1. A ceramic substrate structure having a heat dissipation function, comprising: a ceramic substrate having a first surface and a second surface, the first surface having a recess; a thermal via is disposed on the bottom surface of the recess and penetrates to the second surface; a solderable metal layer is formed on the bottom surface of the recess and connected to the heat conduction channels; and a solder layer Filling the recess above the solderable metal layer. 2. The ceramic substrate structure of claim 1, wherein the thermally conductive channels are a metal post. 3. The ceramic substrate structure according to claim 1, wherein the solderable metal may be Ag-Pt, Ag-Pd, Ag, Cu, Sn, Ni, Pd or Au. 4. The ceramic substrate structure of claim 1, wherein the Tauman substrate can be disposed on a printed circuit board (PCB) and can be connected to each other through a solder layer of the printed circuit board. . 5. The ceramic substrate structure of claim 1, wherein the ceramic substrate is applicable to high power or high brightness LEDs. 6. A method of manufacturing a ceramic substrate having a heat dissipating function, comprising the steps of: providing a ceramic thin plate having a plurality of thermal vias I coating or printing a solderable metal over the thermally conductive channels Forming a weldable metal layer in the shape 13 1354531; providing a green sheet having at least one cavity having a size larger than the heat conduction channel size; stacking the green sheet on the ceramic sheet Forming a recess in the hole, and exposing the solderable metal layer to the recess; sintering the ceramic thin plate, the green sheet and the solderable metal layer to jointly form the ceramic substrate; placing a solder in the recess And performing a reflow step to cure the solder in the recess. 7. The method of manufacture of claim 6, wherein the solder is selected from any solder paste containing tin. 8. The method of manufacture of claim 6, wherein the weldable metal is Ag-Pt, Ag-Pd, Ag, Cu, Sn, .Ni, Pd or Au. 9. The method of manufacturing of claim 6, wherein after the step of reflowing, the method further comprises: joining the ceramic substrate to a printed circuit board. 10. The manufacturing method according to claim 9, wherein the ceramic substrate and the printed circuit board are connected to each other through a solder layer. 11. The method of manufacturing of claim 6, wherein the ceramic sheet is a low temperature Co-fired Ceramic (LTCC) substrate. 12. The method of manufacturing of claim 6, wherein the ceramic substrate is applicable to high power or high brightness LEDs. 14
TW97125176A 2008-07-04 2008-07-04 Ceramic substrate structure and method thereof with heat dissipation function TW201004546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97125176A TW201004546A (en) 2008-07-04 2008-07-04 Ceramic substrate structure and method thereof with heat dissipation function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97125176A TW201004546A (en) 2008-07-04 2008-07-04 Ceramic substrate structure and method thereof with heat dissipation function

Publications (2)

Publication Number Publication Date
TW201004546A TW201004546A (en) 2010-01-16
TWI354531B true TWI354531B (en) 2011-12-11

Family

ID=44825910

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97125176A TW201004546A (en) 2008-07-04 2008-07-04 Ceramic substrate structure and method thereof with heat dissipation function

Country Status (1)

Country Link
TW (1) TW201004546A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI398596B (en) * 2010-11-08 2013-06-11 Jia-Shing Wong LED lamp module of the process

Also Published As

Publication number Publication date
TW201004546A (en) 2010-01-16

Similar Documents

Publication Publication Date Title
TWI294757B (en) Circuit board with a through hole wire, and forming method thereof
JP4789671B2 (en) WIRING BOARD FOR LIGHT EMITTING ELEMENT AND LIGHT EMITTING DEVICE
EP1659839A2 (en) Thermal management of surface-mount circuit devices on laminate ceramic substrate
CN107249252B (en) manufacturing method of printed circuit board and printed circuit board
WO2012083595A1 (en) Manufacturing method for printed circuit board with insulated micro radiator
CN107123601B (en) High-heat-dissipation device packaging structure and board-level manufacturing method
JPH06291216A (en) Substrate and ceramic package
US20110272179A1 (en) Printed Circuit Board with Embossed Hollow Heatsink Pad
CN103874345B (en) Method for manufacturing multilayer microwave circuit by using ceramic substrate
TWI296492B (en) Un-symmetric circuit board and method for fabricating the same
CN102683220A (en) Method for manufacturing multilayer organic liquid crystal polymer substrate structure
JP5212359B2 (en) Multilayer wiring board and manufacturing method thereof
JP2012114183A (en) Ceramic multilayer substrate
CN201796950U (en) Light emitting diode light source structure
JP2017212305A (en) Wiring board
TWI354531B (en)
TW201205731A (en) Substrate with built-in electronic component, and composite module
CN101635285B (en) Ceramic substrate structure with radiating function and manufacturing method thereof
CN102117801B (en) Manufacturing method of high-power light-emitting diode module structure
KR100657410B1 (en) Manufacturing multi-layer pcb
WO2017208309A1 (en) Electronic module and production method therefor
JP2003258160A (en) Multilayer ceramic board and multilayer ceramic electronic component employing it
JPH09293968A (en) Method of manufacturing multilayer wiring substrate
TWI231013B (en) Multilayer laminating structure of IC packing substrate and method for fabricating the same
JP4573185B2 (en) Ceramic multilayer substrate and method for manufacturing ceramic multilayer electronic component

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees