TWI343123B - Vertical nanotube semiconductor device structures and methods of forming the same - Google Patents

Vertical nanotube semiconductor device structures and methods of forming the same Download PDF

Info

Publication number
TWI343123B
TWI343123B TW094100109A TW94100109A TWI343123B TW I343123 B TWI343123 B TW I343123B TW 094100109 A TW094100109 A TW 094100109A TW 94100109 A TW94100109 A TW 94100109A TW I343123 B TWI343123 B TW I343123B
Authority
TW
Taiwan
Prior art keywords
nanotube
semiconductor
gate
conductor
forming
Prior art date
Application number
TW094100109A
Other languages
English (en)
Other versions
TW200527667A (en
Inventor
Toshiharu Furukawa
Mark Charles Hakey
Steven John Holmes
David Vaclav Horak
Charles William Koburger Iii
Peter H Mitchell
Larry Alan Nesbit
Original Assignee
Ibm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibm filed Critical Ibm
Publication of TW200527667A publication Critical patent/TW200527667A/zh
Application granted granted Critical
Publication of TWI343123B publication Critical patent/TWI343123B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/491Vertical transistors, e.g. vertical carbon nanotube field effect transistors [CNT-FETs]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thin Film Transistor (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

1343123 玖、發明說明: 【發明所屬之技術領域】 本發明係有關於半導趙元件製造,且特別是關於 合奈米管成為一兀件單元之垂直半導體元件結構(例如 效電晶體及電容器),以及製造該垂直半導體元件結構的 法。 【先前技術】 傳統的場效電晶體(FET)為熟悉的傳統元件,其通巧 結合至積想電路(IC)晶片的複雜電路内,而作為一基^ 構區塊。- IC晶片可容載有數千至數百$的而 及其他像是電阻器及電容器而由各導想線徑所互聯的系 疋件可藉改變在—區隔—源極及_汲極之通道區域户 通道的電阻來操作纟FET。從源極經由該通道而流至分 之載子係正比於該電阻的變異度。電子會負責各η ^ Τ内的通道傳導,而在各P通道FET裡,電洞會負$ 通道内的傳導。FET的輸出電流可藉由將-電壓施加方 位在該源極與兮· 變 ,,'及極間之通道區域上的靜電耦接閘極ί 薄型閘極介電質可將該閘極絕緣於該通道區域< 極電壓的微,]、_ . 變化可造成從該源極流到該汲極之電流ό 大變異度。 FET可分猫^ , 成水平架構及垂直架構。水平FET之i 係以平行於i k 、、形成有該等FET之基材水平面的方向t 極流向汲極。而&丄 ^ 而垂直FET之載子則以垂直於齊上形成a 結 場 方 係 建 以 動 之 極 道 該 改 閘 極 子 源 該 3 等 FET « ll fet 基材垂直面的方向由踝極流向汲極。由於垂 ,通道長度與微影設備及方法所解析之最小特徵尺 :’因此可使垂I FET之通道長度短於水平FETe因 輪出功率。’ 可快迷切換並保有較高之電 ,奈米管係奈米等級之高深究比碳原子柱趙,用於形 :型(hybrid)元件。碳奈米管可因該等導體形式而有效率 一電且因其半導體形式而作為一半導體。&已利用一 —半導體碳奈米管將水平FET製作為一通道區域,並且 , 表面上而延伸於一黃金源極與一黃金汲極間之碳 未管的相對端形成歐姆接觸點…閉極係經界定於位在 :奈求管底之下的基材内,且通常是在該源極與該汲極 ,基材之一乳化曝出表面可於該經復蓋之閘極與該 …’管間界定出-閉極介電質<這種水平FET應可靠地 :於同時由於該碳奈米管之小維度,所耗損之電力應明 嚴”矽基元件。水平FET現已藉由-原子力顯微鏡來操 :-碳奈米管、或從一组散置之奈米管一致地£放一: =的方式在實驗室條件下成功地構建完成。然而, =成這種水平FET元件結構的方法與大量製造技術並 因此’所需者係一種結合一或多個半導體碳奈米管做 道區域且滿足大量製造技術之垂直FET結構。 【發明内容 直 寸 此 源 成 地 單 在 奈 該 之 碳 切 顯 縱 這 不 為 4 1343123 根據本發明之原理,係提出一種垂直半導體元件結構, 其包含一界定出一大致水平平面之基材;一自該基材垂直 地凸出之閘極;以及至少一經過該閘極,而在相對之第〜 與第二端間垂直地延伸的半導體奈米管。一可經置放在至 少一半導體奈米管之上的閘極介電質將該至少一半導體奈 米管電性絕緣於該閘極。一源極係電性麵接於該至少一半 導體奈米管的第一端,而一汲極則是電性耦接於該至少_ 半導體奈米管的第二端。
在本發明另一態樣裡,係提.供一種形成一半導體元件結 構之方法,包含於一基材上形成一導體板,然後成長出至 少一半導體奈米管,此者自該導體板而在一電性耦接於該 導體板之第一端與一第二自由端間大致垂直地延伸。該方 法更包含藉一閘極介電質電性絕緣該至少一半導體奈米 管,並形成一電性絕緣、且疊置在該導體板上之閘極,使 至^半導體奈米管經該閘極而垂直地延伸。一接觸點孫
以電性耦接於該至少一半導體奈米管之第二端且電性絕緣 於該閘極的方式形成。 各半導體奈米管界定出—場效電晶體之一通道區域該 電晶體具有一藉由對該閉極施加一控制電壓而予以調控的 通道#符於本發明原理,該源極與該汲極間之通道區域 的長度是Μ開極之垂直尺寸或厚度所界定,而不受半導 ,,製程裡用以於傳統場效電晶肖内形成通道區域的傳 統微影處理的限制β 根據本發明原理,一半導艘元件結構包含一界定出一大 1343123 致水平平面之基材、—經置放於該基材上之導 板’以及自該第一平板垂直a出之至少一奈米管 米管可具有一導體分子結構或一半導體分子結構 性麵接於該第一平板 '經垂直定位於該第一平板 管上者係第-平& ’此者係藉由-介電層而絕 一平板及該碳奈米管。 在本發明另一態樣中’係提出一種形成一半導 構之方法,其中包含於-基材上形成-導體第一 成長至少一自該第一平板所大致垂直地延伸之夺 者係電性耗接於該第-平板。該方法更包含包繞 管並將該第一平板覆蓋以-介電〗,且形成一疊 -平板上之第二平,此者係藉由該介電層而電 各奈米管及該第一平板。 【實施方式】 本發明係有關於垂直場效電晶體(FET),其係 米管作為半導體材料而為通道區域,當施加一電 電耦接閘極時,可於一源極與一汲極之間提供一 體線徑。根據本發明原g,於該源極與該汲極間 域的長度,是由該閘極之厚度所界定(其大致等於 的長度),且與具解析度限制之微影處理無關。該 不需個別地操控以置放於一源極與一》及極間,且 決一或多個隨機分佈於元件表面上之奈米管是否 源極與汲極。 睹第一乎 ^各個奈 ,且係電 及該奈米 緣於該第 體元件結 爭板,並 米管,此 各個奈米 置於該第 性絕緣於 運用碳奈 壓於一靜 選擇性導 之通道區 該奈米管 碳奈米管 亦無須取 一致對齊 6 見參照於第1圓,-適於幫助該等碳奈米管14成長 =劑材料的催化劑塾〗。在一絕緣基材12之區域上: 、平板10之圖案的一部分。$等碳奈米管14係經定 ::催化劑& 10大致垂直朝上延伸。該絕緣基材12 形成於—晶圓(未圖示)上,該晶圓係由任何適當半導體 料j包含但不限於矽(Si)及坤化鍺(GaAs),所組成者, 上可形成-絕緣基材12,例如矽氧化物。肖催化劑墊 的可藉任何傳統沉積技術將催化材料之毯復層沉積於絕 層12上的方式形成’其包含但不限於利用適當之先趨 (如金屬南化物及金屬羰基物)之化學氣相沉積(CVD)、濺 以及物理氣相沉積(PVD),接著使用一標準微影與負蝕 製程來圖案化該毯覆層。。該催化劑墊内的催化劑材 為任一種在適於促進奈米管成長之化學反應條件下暴露 適當反應劑時可成核並幫助碳奈米管14成長之材料。 如’適當的催化劑材料包含但不限於鐵、鉑、鎳、鈷、 等材料各者的化合物,以及此等材料各者之合金,像是 屬梦化物β 碳奈米管14可藉由任何適當成長或沉積技術而成長 該催化劑墊10上。在一本發明具體實施例中,碳奈米 14是利用任何適當氣態或氣化的碳基反應劑(該等反應 包含但不限於一氧化碳(CO)、乙烯(C2H4)、甲烷(CH4)、 炔(C2H4)、乙炔及氨(NH3)的混合物、乙炔及氮(N2)的混 物、乙炔及氫(H2)的混合物、二甲苯(C6H4(CH3)2)以及二 苯及二茂鐵(Fe(C5H5)2)的混合物),在適合於促進在形成 之 成 位 可 材 其 10 緣 物 鍍 刻 料 於 例 此 金 於 管 劑 乙 合 甲 該 7 1343123
參考。本發明亦涵蓋奈米管14可由除碳外、特徵在於具有 能量間隙與半導體特性之材料所組成。 在此所用之「水平」乙詞係經界定如一與該絕緣基材 12及該底置晶圓之傳統平面或表面相平行的平面無論其 指向為何。該「垂直」係指垂直於即如前定義之水平者。 像是「之上」、「高於」、「底下」、「邊側」(即如側壁)、「高 於」、Γ低於」、「其頂」、「其底」等詞係參照於該水平平面 所定義。 現參照第2圖,一薄型介電層20係完整均勻地沉積於 該催化劑塾10及該絕緣基材12之上。該介電層2〇可利用 四乙氧基矽烷(TEOS)作為矽先趨物來源,藉由一低壓化學 氣相沉積(LPCVD)製程沉積之二氧化矽(Si〇2)所組成。該介 電層20亦石著其各自之高度或長度而塗覆於該等碳奈米 管14之各者的外部。許多除該TEOS基氧化物以外的材料 亦可使用’只要能確保電性隔離即可。各碳奈米管1 4上的 9 1343123 【圊式簡單說明】 本發明原理連同前文之發明說明在參照本說明書及其 附加圖式之各具體實施例後,將可獲得最佳之領會,其中: 第1圖係一具經垂直成長於一經圖案化導體催化劑墊 上之碳奈米管的基材局部之截面視圖。 第2圖係一類似於第1圓而在後績製造階段内的載面視 圖。 • 第3圖係一類似於第2圖而在後續製造階段内的載面視 圖。 第4圖係一類似於第3圖而在後續製造階段内的截面視 圖。 — 第5圖係一類似於第4圖而在後續製造階段内的截面視 圖。 第6圖係一類似於第5圖而在後續製造階段内的載面視 圖。 第7圖係一類似於第6圖而在後續製造階段内的截面視 ^圖。 第8圖係一類似於第7圖而在後續製造階段内的截面視 圖a 第9圖係一根據本發明一替代性具體實施例,類似於第 2圖而在後續製造階段内的截面視圖。 第1 0圖係一類似於第9圖而在後績製造階段内的截面 視圖。 15

Claims (1)

1343123 年月日修正替換頁 mi. 1 9 拾、申請專利範圍: 1. 一種用以形成一半導體元件結構之方法,其至少包含下 列步驟: 於一基材上形成一導體墊;
自該導體墊大致垂直地延伸成長至少一半導體奈米管 於一電性耦接於該導體墊之第一端與一第二自由端之間; 施加一第一絕緣層於該導體墊與該至少一半導體奈米 管上,以致該第一絕緣層之一部分於該至少一半導體奈米 管上界定一閘極介電質; 施加一導體層於該第一絕緣層與該至少一半導體奈米 管上; 圖案化該導體層以形成一閘極,該閘極係藉由該第一絕 緣層而電性絕緣於該導體墊,並以該至少一半導體奈米管 疊置在導體墊上,該至少一半導體奈米管垂直延伸通過該 閘極中之一孔,並藉由該閘極介電質而電性絕緣於該閘 極;以及
形成一接觸點,其係電性耦接於該至少一半導體奈米管 之第二端,且電性絕緣於該閘極。 2.如申請專利範圍第1項所述之方法,其中該電性絕緣於 該至少一半導體奈米管的步驟包含: 將該至少一半導體奈米管包繞於該閘極介電質内。 3.如申請專利範圍第1項所述之方法,其中形成該接觸點 17 1343123 >rm 至少包含下列步驟: 從該至少一半導體奈米管之自由端移除該閘極介電 質;以及 提供一金屬特徵以作為該接觸點。 4. 如申請專利範圍第3項所述之方法,其更包含下列步 驟: 於該閘極上形成一第二絕緣層;以及 φ 縮钱(recessing)該第二絕緣層與該閘極介電質以曝出 該至少一半導體奈米管之自由端。 5. 如申請專利範圍第1項所述之方法,其中該至少一半導 ’ 體奈米管係一碳奈米管,且該導體墊係由一適於成長碳奈 米管之催化劑材料所形成,且成長該至少一半導體奈米管 更包含如下步驟: 在有效將碳原子併入該具一半導體分子結構之碳奈米 管的條件下,將該導體墊曝露於一含碳反應劑。
6. 如申請專利範圍第1項所述之方法,其中成長該至少一 半導體奈米管更包含如下步驟: 藉由一化學氣相沉積技術成長該至少一半導體奈米管。 7. 如申請專利範圍第1項所述之方法,其中該至少一半導 體奈米管之自由端係凸出至一構成該接觸點之金屬内。 18 1343123
8.如申請專利範圍第1項所述之方法,其中該至少一半導 體奈米管特徵在於經排置之碳原子。 9.如申請專利範圍第1項所述之方法,其中該至少一半導 體奈米管界定出一具有一通道之場效電晶體的通道區域, 該通道係由施加於該閘極之一控制電壓所調控。
10.如申請專利範圍第1項所述之方法,其中形成該接觸點 包含: 自該至少一半導體奈米管之第二端部分移除該閘極介 電質以曝露該至少一半導體奈米管之第二端。 11.如申請專利範圍第10項所述之方法,更包含: 提供一金屬特徵以作為該接觸點,該接觸點電性耦接於 該至少一半導體奈米管之第二端。
12.如申請專利範圍第1項所述之方法,其中該至少一半導 體奈米管可界定出一具一通道之場效電晶體的通道區域, 可藉由施加一控制電壓至該閘極來調控流經該通道之電 流。 13. —種用以形成一半導體元件結構之方法,其包含下列 步驟: 19 1343123 替換頁 於一基材上形成一第一導體板; 自該第一導體板大致垂直地延伸成長至少一電性耦接 於該第一導體板之奈米管; 以一介電層覆蓋該至少一奈米管與該第一導體板,以致 該至少一奈米管係包繞於該介電層中且該至少一奈米管之 一前尖端係由該介電層之一部分所覆蓋;及 於該介電層上沉積一導電材料之一毯覆層,該毯覆層藉 由該介電層與該至少一奈米管及該第一導體板電性絕緣。
14.如申請專利範圍第13項所述之方法,其中該至少一奈 米管具有一導體分子結構。 15.如申請專利範圍第13項所述之方法,其中該至少一奈 米管具有一半導體分子結構。 16.如申請專利範圍第13項所述之方法,更包括:
平坦化該毯覆層之導電材料至一高於該至少一碳奈米 管由介電質覆蓋的前尖端之深度。 17.如申請專利範圍第16項所述之方法,更包括: 於該毯覆層之平坦化導電材料上形成一第二導體板。 20 1343123 - -.......... < 正替換頁 第今φ丨扣|。1號專利案丨6畔I月修正 柒、指定代表圖: (一) 、本案指定代表圖為:第1圖。 (二) 、本代表圖之元件代表符號簡單說明: 10 催化劑 墊 12 絕緣基材 14 複奈米 管 16 前尖端 18 接附端 捌、本案若有化學式時,請揭示最能顯示發明 特徵的化學式:
TW094100109A 2004-01-29 2005-01-03 Vertical nanotube semiconductor device structures and methods of forming the same TWI343123B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/767,065 US20050167655A1 (en) 2004-01-29 2004-01-29 Vertical nanotube semiconductor device structures and methods of forming the same

Publications (2)

Publication Number Publication Date
TW200527667A TW200527667A (en) 2005-08-16
TWI343123B true TWI343123B (en) 2011-06-01

Family

ID=34807634

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094100109A TWI343123B (en) 2004-01-29 2005-01-03 Vertical nanotube semiconductor device structures and methods of forming the same

Country Status (9)

Country Link
US (2) US20050167655A1 (zh)
EP (1) EP1708960A1 (zh)
JP (2) JP2007520072A (zh)
KR (1) KR20060127105A (zh)
CN (1) CN100580971C (zh)
IL (1) IL177125A0 (zh)
RU (1) RU2342315C2 (zh)
TW (1) TWI343123B (zh)
WO (1) WO2005076381A1 (zh)

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7454295B2 (en) 1998-12-17 2008-11-18 The Watereye Corporation Anti-terrorism water quality monitoring system
US9056783B2 (en) * 1998-12-17 2015-06-16 Hach Company System for monitoring discharges into a waste water collection system
US20110125412A1 (en) * 1998-12-17 2011-05-26 Hach Company Remote monitoring of carbon nanotube sensor
US8958917B2 (en) * 1998-12-17 2015-02-17 Hach Company Method and system for remote monitoring of fluid quality and treatment
US8920619B2 (en) 2003-03-19 2014-12-30 Hach Company Carbon nanotube sensor
US7038299B2 (en) 2003-12-11 2006-05-02 International Business Machines Corporation Selective synthesis of semiconducting carbon nanotubes
US7374793B2 (en) * 2003-12-11 2008-05-20 International Business Machines Corporation Methods and structures for promoting stable synthesis of carbon nanotubes
US7211844B2 (en) 2004-01-29 2007-05-01 International Business Machines Corporation Vertical field effect transistors incorporating semiconducting nanotubes grown in a spacer-defined passage
US7829883B2 (en) 2004-02-12 2010-11-09 International Business Machines Corporation Vertical carbon nanotube field effect transistors and arrays
US20050279274A1 (en) * 2004-04-30 2005-12-22 Chunming Niu Systems and methods for nanowire growth and manufacturing
US7109546B2 (en) 2004-06-29 2006-09-19 International Business Machines Corporation Horizontal memory gain cells
US7351448B1 (en) * 2004-07-27 2008-04-01 The United States Of America As Represented By The Secretary Of The Navy Anti-reflective coating on patterned metals or metallic surfaces
US7233071B2 (en) * 2004-10-04 2007-06-19 International Business Machines Corporation Low-k dielectric layer based upon carbon nanostructures
US7126207B2 (en) * 2005-03-24 2006-10-24 Intel Corporation Capacitor with carbon nanotubes
US7230286B2 (en) * 2005-05-23 2007-06-12 International Business Machines Corporation Vertical FET with nanowire channels and a silicided bottom contact
KR100645064B1 (ko) * 2005-05-23 2006-11-10 삼성전자주식회사 금속 산화물 저항 기억소자 및 그 제조방법
WO2007022359A2 (en) * 2005-08-16 2007-02-22 The Regents Of The University Of California Vertical integrated silicon nanowire field effect transistors and methods of fabrication
US20070110639A1 (en) * 2005-10-14 2007-05-17 Pennsylvania State University System and method for positioning and synthesizing of nanostructures
US7268077B2 (en) * 2005-12-02 2007-09-11 Intel Corporation Carbon nanotube reinforced metallic layer
US7906803B2 (en) * 2005-12-06 2011-03-15 Canon Kabushiki Kaisha Nano-wire capacitor and circuit device therewith
US8394664B2 (en) * 2006-02-02 2013-03-12 William Marsh Rice University Electrical device fabrication from nanotube formations
US8506921B2 (en) * 2006-02-07 2013-08-13 William Marsh Rice University Production of vertical arrays of small diameter single-walled carbon nanotubes
US8679630B2 (en) * 2006-05-17 2014-03-25 Purdue Research Foundation Vertical carbon nanotube device in nanoporous templates
US8114774B2 (en) 2006-06-19 2012-02-14 Nxp B.V. Semiconductor device, and semiconductor device obtained by such a method
KR100771546B1 (ko) * 2006-06-29 2007-10-31 주식회사 하이닉스반도체 메모리 소자의 커패시터 및 형성 방법
WO2008000045A1 (en) * 2006-06-30 2008-01-03 University Of Wollongong Nanostructured composites
JP2008091566A (ja) * 2006-09-29 2008-04-17 Fujitsu Ltd 絶縁膜で被覆されたカーボンナノチューブ構造体の製造方法及びその構造体からなる電界効果トランジスタ装置
KR100820174B1 (ko) * 2006-12-05 2008-04-08 한국전자통신연구원 수직구조의 탄소나노튜브를 이용한 전자소자 및 그제조방법
WO2008069485A1 (en) * 2006-12-05 2008-06-12 Electronics And Telecommunications Research Institute The electronic devices using carbon nanotubes having vertical structure and the manufacturing method thereof
US20100173228A1 (en) * 2006-12-14 2010-07-08 University Of Wollongong Nanotube and Carbon Layer Nanostructured Composites
US9806273B2 (en) * 2007-01-03 2017-10-31 The United States Of America As Represented By The Secretary Of The Army Field effect transistor array using single wall carbon nano-tubes
DE102007001130B4 (de) * 2007-01-04 2014-07-03 Qimonda Ag Verfahren zum Herstellen einer Durchkontaktierung in einer Schicht und Anordnung mit einer Schicht mit Durchkontaktierung
JP5181512B2 (ja) * 2007-03-30 2013-04-10 富士通セミコンダクター株式会社 電子デバイスの製造方法
US8546027B2 (en) * 2007-06-20 2013-10-01 New Jersey Institute Of Technology System and method for directed self-assembly technique for the creation of carbon nanotube sensors and bio-fuel cells on single plane
US7964143B2 (en) 2007-06-20 2011-06-21 New Jersey Institute Of Technology Nanotube device and method of fabrication
US7736979B2 (en) * 2007-06-20 2010-06-15 New Jersey Institute Of Technology Method of forming nanotube vertical field effect transistor
US7892956B2 (en) * 2007-09-24 2011-02-22 International Business Machines Corporation Methods of manufacture of vertical nanowire FET devices
US8624224B2 (en) * 2008-01-24 2014-01-07 Nano-Electronic And Photonic Devices And Circuits, Llc Nanotube array bipolar transistors
FR2928093B1 (fr) * 2008-02-28 2010-12-31 Commissariat Energie Atomique Dispositif de separation de molecules et procede de fabrication.
JP2011523902A (ja) 2008-04-14 2011-08-25 バンドギャップ エンジニアリング, インコーポレイテッド ナノワイヤアレイを製造するためのプロセス
WO2009151397A1 (en) * 2008-06-13 2009-12-17 Qunano Ab Nanostructured mos capacitor
SE533531C2 (sv) * 2008-12-19 2010-10-19 Glo Ab Nanostrukturerad anordning
US8715981B2 (en) * 2009-01-27 2014-05-06 Purdue Research Foundation Electrochemical biosensor
US8148264B2 (en) 2009-02-25 2012-04-03 California Institue Of Technology Methods for fabrication of high aspect ratio micropillars and nanopillars
US8237150B2 (en) * 2009-04-03 2012-08-07 International Business Machines Corporation Nanowire devices for enhancing mobility through stress engineering
US8872154B2 (en) * 2009-04-06 2014-10-28 Purdue Research Foundation Field effect transistor fabrication from carbon nanotubes
KR20120092091A (ko) 2009-06-26 2012-08-20 캘리포니아 인스티튜트 오브 테크놀로지 페시베이팅된 실리콘 나노와이어들을 제조하기 위한 방법들 및 그에 따라 획득된 디바이스들
EP2499686A2 (en) 2009-11-11 2012-09-19 Amprius, Inc. Intermediate layers for electrode fabrication
US8809093B2 (en) 2009-11-19 2014-08-19 California Institute Of Technology Methods for fabricating self-aligning semicondutor heterostructures using silicon nanowires
US9018684B2 (en) 2009-11-23 2015-04-28 California Institute Of Technology Chemical sensing and/or measuring devices and methods
TWI476948B (zh) * 2011-01-27 2015-03-11 Hon Hai Prec Ind Co Ltd 外延結構及其製備方法
EP2727175A4 (en) 2011-07-01 2015-07-01 Amprius Inc ELECTRODE TEMPLATE STRUCTURES WITH IMPROVED ADHESION PROPERTIES
EP2758988A4 (en) 2011-09-19 2015-04-29 Bandgap Eng Inc ELECTRICAL CONTACTS TO NANOSTRUCTURED AREAS
WO2013156085A1 (en) * 2012-04-20 2013-10-24 Hewlett-Packard Development Company, L.P. Method of manufacturing a semiconductor device
GB201207766D0 (en) * 2012-05-03 2012-06-13 Dyson Technology Ltd Dielectric capacitor
US9142400B1 (en) 2012-07-17 2015-09-22 Stc.Unm Method of making a heteroepitaxial layer on a seed area
AU2013330962B2 (en) 2012-10-19 2017-10-19 Georgia Tech Research Corporation Multilayer coatings formed on aligned arrays of carbon nanotubes
US9064942B2 (en) 2013-01-28 2015-06-23 International Business Machines Corporation Nanowire capacitor for bidirectional operation
DE102014107167B4 (de) * 2014-05-21 2022-04-21 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines Halbleiterbauelements mit einer Strukturschicht mit einer Mehrzahl von dreidimensionalen Strukturelementen und strahlungsemittierendes Halbleiterbauelement mit einer Strukturschicht mit einer Mehrzahl von dreidimensionalen Strukturelementen
WO2018125108A1 (en) * 2016-12-29 2018-07-05 Intel Corporation Using nanotubes as a guide for selective deposition in manufacturing integrated circuit components
WO2021079566A1 (ja) 2019-10-24 2021-04-29 株式会社村田製作所 複合キャパシタ
KR20230001375A (ko) * 2021-06-28 2023-01-04 서울대학교산학협력단 나노튜브 반도체 소자 및 이를 포함하는 전단력 센서

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100365444B1 (ko) * 1996-09-18 2004-01-24 가부시끼가이샤 도시바 진공마이크로장치와이를이용한화상표시장치
US5796573A (en) * 1997-05-29 1998-08-18 International Business Machines Corporation Overhanging separator for self-defining stacked capacitor
JP4078721B2 (ja) * 1998-08-24 2008-04-23 ソニー株式会社 半導体装置とその製造方法
JP2000101037A (ja) * 1998-09-17 2000-04-07 Matsushita Electronics Industry Corp 半導体装置及びその製造方法
US6250984B1 (en) * 1999-01-25 2001-06-26 Agere Systems Guardian Corp. Article comprising enhanced nanotube emitter structure and process for fabricating article
US6322713B1 (en) * 1999-07-15 2001-11-27 Agere Systems Guardian Corp. Nanoscale conductive connectors and method for making same
US6286226B1 (en) * 1999-09-24 2001-09-11 Agere Systems Guardian Corp. Tactile sensor comprising nanowires and method for making the same
KR100360476B1 (ko) * 2000-06-27 2002-11-08 삼성전자 주식회사 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터 및 그제조방법
DE10036897C1 (de) * 2000-07-28 2002-01-03 Infineon Technologies Ag Feldeffekttransistor, Schaltungsanordnung und Verfahren zum Herstellen eines Feldeffekttransistors
JP2002141633A (ja) * 2000-10-25 2002-05-17 Lucent Technol Inc 垂直にナノ相互接続された回路デバイスからなる製品及びその製造方法
DE60131036T2 (de) 2000-11-01 2008-02-14 Japan Science And Technology Agency, Kawaguchi Ein NOT-Schaltkreis
US6423583B1 (en) * 2001-01-03 2002-07-23 International Business Machines Corporation Methodology for electrically induced selective breakdown of nanotubes
US6448701B1 (en) * 2001-03-09 2002-09-10 The United States Of America As Represented By The Secretary Of The Navy Self-aligned integrally gated nanofilament field emitter cell and array
JP4225716B2 (ja) * 2001-09-11 2009-02-18 富士通株式会社 円筒状多層構造体による半導体装置
US7084507B2 (en) * 2001-05-02 2006-08-01 Fujitsu Limited Integrated circuit device and method of producing the same
US6599808B2 (en) * 2001-09-12 2003-07-29 Intel Corporation Method and device for on-chip decoupling capacitor using nanostructures as bottom electrode
DE10161312A1 (de) * 2001-12-13 2003-07-10 Infineon Technologies Ag Verfahren zum Herstellen einer Schicht-Anordnung und Schicht-Anordnung
WO2003063208A2 (en) 2002-01-18 2003-07-31 California Institute Of Technology Array-based architecture for molecular electronics
JP2003234254A (ja) * 2002-02-07 2003-08-22 Hitachi Zosen Corp カーボンナノチューブを用いた電気二重層キャパシタ
DE60301582T2 (de) * 2002-02-09 2006-06-22 Samsung Electronics Co., Ltd., Suwon Speicheranordnung mit Kohlenstoffnanoröhre und Verfahren zur Herstellung der Speicheranordnung
JP2003258336A (ja) * 2002-02-28 2003-09-12 Japan Science & Technology Corp 分子デバイス及びその製造方法
US6515325B1 (en) * 2002-03-06 2003-02-04 Micron Technology, Inc. Nanotube semiconductor devices and methods for making the same
JP4120918B2 (ja) * 2002-03-18 2008-07-16 富士通株式会社 柱状カーボン構造物の選択成長方法及び電子デバイス
US6891227B2 (en) * 2002-03-20 2005-05-10 International Business Machines Corporation Self-aligned nanotube field effect transistor and method of fabricating same
US20030211724A1 (en) * 2002-05-10 2003-11-13 Texas Instruments Incorporated Providing electrical conductivity between an active region and a conductive layer in a semiconductor device using carbon nanotubes
DE10250984A1 (de) 2002-10-29 2004-05-19 Hahn-Meitner-Institut Berlin Gmbh Feldeffekttransistor sowie Verfahren zu seiner Herstellung
DE10250830B4 (de) 2002-10-31 2015-02-26 Qimonda Ag Verfahren zum Herstellung eines Schaltkreis-Arrays
DE10250829B4 (de) * 2002-10-31 2006-11-02 Infineon Technologies Ag Nichtflüchtige Speicherzelle, Speicherzellen-Anordnung und Verfahren zum Herstellen einer nichtflüchtigen Speicherzelle
KR100790859B1 (ko) 2002-11-15 2008-01-03 삼성전자주식회사 수직 나노튜브를 이용한 비휘발성 메모리 소자
KR100493166B1 (ko) 2002-12-30 2005-06-02 삼성전자주식회사 수직나노튜브를 이용한 메모리
US6933222B2 (en) * 2003-01-02 2005-08-23 Intel Corporation Microcircuit fabrication and interconnection
JP4627188B2 (ja) 2003-05-22 2011-02-09 富士通株式会社 電界効果トランジスタ及びその製造方法
US7374793B2 (en) * 2003-12-11 2008-05-20 International Business Machines Corporation Methods and structures for promoting stable synthesis of carbon nanotubes
US7038299B2 (en) * 2003-12-11 2006-05-02 International Business Machines Corporation Selective synthesis of semiconducting carbon nanotubes
US7211844B2 (en) * 2004-01-29 2007-05-01 International Business Machines Corporation Vertical field effect transistors incorporating semiconducting nanotubes grown in a spacer-defined passage
US7829883B2 (en) * 2004-02-12 2010-11-09 International Business Machines Corporation Vertical carbon nanotube field effect transistors and arrays

Also Published As

Publication number Publication date
JP2007520072A (ja) 2007-07-19
CN1914746A (zh) 2007-02-14
US7691720B2 (en) 2010-04-06
RU2342315C2 (ru) 2008-12-27
US20080227264A1 (en) 2008-09-18
TW200527667A (en) 2005-08-16
KR20060127105A (ko) 2006-12-11
US20050167655A1 (en) 2005-08-04
JP2011258969A (ja) 2011-12-22
EP1708960A1 (en) 2006-10-11
RU2006130861A (ru) 2008-03-10
IL177125A0 (en) 2006-12-10
CN100580971C (zh) 2010-01-13
JP5511746B2 (ja) 2014-06-04
WO2005076381A1 (en) 2005-08-18

Similar Documents

Publication Publication Date Title
TWI343123B (en) Vertical nanotube semiconductor device structures and methods of forming the same
JP5089174B2 (ja) 半導体デバイス構造体のアレイを含む回路を製造するための方法
JP4521409B2 (ja) 垂直型半導体デバイス構造体、およびその形成方法
JP3859199B2 (ja) カーボンナノチューブの水平成長方法及びこれを利用した電界効果トランジスタ
KR100645410B1 (ko) 탄소 나노튜브의 안정된 합성을 촉진하기 위한 방법 및 구조
CN102471069B (zh) 石墨烯器件和制造石墨烯器件的方法
US20110233512A1 (en) Vertical integrated silicon nanowire field effect transistors and methods of fabrication
US20110291075A1 (en) Field effect transistor, method for manufacturing the same, and biosensor
JP2007534508A (ja) ナノ構造及びそのようなナノ構造の製造方法
JP4208668B2 (ja) 半導体装置およびその製造方法
JP2009032819A (ja) 電子装置の製造方法及びそれを用いた電子装置
Franklin et al. Vertical carbon nanotube devices with nanoscale lengths controlled without lithography
KR101319612B1 (ko) 탄소나노튜브 수평성장방법 및 이를 이용한 전계 효과 트랜지스터
EP1973179B1 (en) Guiding nanowire growth
KR100927634B1 (ko) 멀티 게이트 나노튜브 소자의 제조 방법 및 그 소자
KR101319613B1 (ko) 탄소나노튜브 수평성장방법 및 이를 이용하여 형성된 수평배선
JP2013021149A (ja) グラフェンの合成方法並びに半導体装置及びその製造方法
US8212234B2 (en) Method of fabricating nanosized filamentary carbon devices over a relatively large-area
Nosik Carbon Nanotubes and Si Nanowires as an Alternative Route to Future Nanoelectronics
MXPA06008502A (en) Vertical field effect transistors incorporating semiconducting nanotubes grown in a spacer-defined passage
Franklin Vertical devices from single-walled carbon nanotubes templated in porous anodic alumina

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees