TWI334928B - Mura detection method and system - Google Patents

Mura detection method and system Download PDF

Info

Publication number
TWI334928B
TWI334928B TW96113819A TW96113819A TWI334928B TW I334928 B TWI334928 B TW I334928B TW 96113819 A TW96113819 A TW 96113819A TW 96113819 A TW96113819 A TW 96113819A TW I334928 B TWI334928 B TW I334928B
Authority
TW
Taiwan
Prior art keywords
image
tested
display
fuzzy
generating
Prior art date
Application number
TW96113819A
Other languages
Chinese (zh)
Other versions
TW200842339A (en
Inventor
Zhang Jian
Zhang Yu
Wu Li-Ying
Liu Bo-Han
Original Assignee
Au Optronics Corp
Harbin Inst Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Au Optronics Corp, Harbin Inst Of Technology filed Critical Au Optronics Corp
Priority to TW96113819A priority Critical patent/TWI334928B/en
Publication of TW200842339A publication Critical patent/TW200842339A/en
Application granted granted Critical
Publication of TWI334928B publication Critical patent/TWI334928B/en

Links

Description

1334928 九、發明說明: » 【發明所屬之技術領域】 本發明係為一種運用自動化影像(based 〇n machine vision)檢測顯示器之斑痕缺陷的方法與系統,係透過先進 的圖像處理及辨識之技術,可執行顯示器斑痕缺陷的快速 檢測。 【先前技術】 顯示器的生產製程非常複雜,儘管大部分的製程均於無 塵室内完成,但仍難以避免出現一些視覺缺陷。液晶顯示器 為顯示器的一種,亦不例外。 對於液晶顯示器而言’視覺缺陷的種類繁多,一般可依 據缺陷的面積與形狀分為三類,包括點缺陷、線缺陷及面缺 陷。面缺陷又可分為區塊缺陷和斑痕(英語中稱為mura, 該詞來源於曰語,表示髒污、斑痕之意,為最常見的一種面 缺陷)缺陷兩種。點缺陷、線缺陷和區塊缺陷主要係由於液 晶顯示器中的薄膜電晶體(TFT)陣列短路、斷路或晶體損 壞等電性原因所引起;斑痕缺陷一般係由於液晶分子材料的 分佈不均勻或背光板扭曲等非電性原因造成的。 液晶顯示器的所有視覺缺陷中,點缺陷、線缺陷及區塊 缺陷具有較高的對比度和規則的幾何形狀,因此相對較易檢 測。斑痕缺陷則因其對比度較低、面積大小不定、形狀不規 則、邊緣模糊且位置亦不固定,因此是所有視覺缺陷中最難 6 檢測的一種。 此外’整體的液晶顯示器產業迄今對於斑痕缺陷,尚 無統-的定義及-致的檢測標準,這些都造成斑痕缺陷實 行自動化檢測的困難。所以,到目前為止,斑痕缺陷的檢 測工作仍由熟練的技術工人以肉眼完成。 【發明内容】 本發明之-目的係提供-種運用自動化影像檢測顯示 器之斑痕缺陷的方法與系統,透過先進的圖像處理與辨識之 技術,直接對顯示器之斑痕缺陷進行快速的檢測。 本發明為一種運用自動化影像檢測顯示器之斑痕缺陷 的方法,該方法之步驟包括:產生一待測顯示器圖像;產生 一近似通過參考點且能代表該些參考點之基本趨勢的一多 項式曲面背景模型;以及將待測顯示器圖像減去該多項式曲 面背景模型,將一辨識度誤差值超過一設定門檻值的圖像區 域作為斑痕缺陷的可能目標(candidate),加以分離出來。 上述一種運用自動化影像檢測顯示器之斑痕缺陷的方 法’可進步包括一數學形癌學(Matheinat i ca 1 mcxrpho 1 ogy ) 的處理步驟及一濾除圖像雜訊之步驟;其中數學形態學的處 理步驟為膨脹(dilation)運算或侵姓(erosi〇n)運算或為二 項運算之組合。 在較佳實施例中,羞生制顯示器之圖像的步驟為:獲 取複數巾s該制顯示胃之51像’轴產缝數幅制顯示器 之圖像的平均值;其中獲取複數幅待咖示器之圖像的頻率 為大於10幅/秒,而其獲取之數量為50至7〇幅。 此外’待測顯示器之圖像可為待測顯示器之侧視圖像; 其側視角度在30至60度之間為宜。在較佳實施例中,可採 用一雙線性插值法對上述之側視圖像進行幾何校正。 在較佳實施例中’產生近似通過參考點且能代表該些參 考點基本趨勢的多項式曲面㈣模型之步驟包括:假設一圖 像中的每一像素之灰階值均為該像素二維座標的函數,而所 有像素之灰⑭值與其—維座標構成了分佈於矩形格點上之 空間參考點_合;以及制—二元料輕這些空間參考 點進行曲面擬合(surface fitting),求得近似通過參考 點且能代表檢測參考值基本趨勢的多項式曲面背景模型。 本發明-種運用自動化影像檢測顯示器之斑痕缺陷的 方法,更包括一斑痕缺陷之辨識模式步驟,該步驟包括•·產 生複數個輸人變量;進行—模糊運算;以及輸出—輪出變量。 在較佳實施例中,輸入變量包括對比度、面積、邊緣參 數、位置參數、灰階均句性和形狀參數;輸出變量則為斑痕 缺陷的等級。上述模糊運算係將前述輸入變量及輸出變量則 分成-定數目賴糊子集,並騎—難子集建立—相應的 函數;該相應的函數可為三角函數或梯職數。在較佳實施 _ ’ _識模式步驟更包括奴輸入變量與 輸出變量之步驟。 本發明的另-目的在於提供—種運用自動化影像檢測 顯示器之斑痕缺陷的系統。該檢測系統包括:一 圖像產生裝 置,用於產生複數帽待測顯示器之圖像;一紐裝置,用於 滤除前述之0像的雜訊;—曲面擬合裝置,用以產生-近似 通過參考點且能代表雜參考絲本驗的—多項式曲面 背景模型;以及-分離裝置,肋將上述經紐去除雜訊的 圖像減去多項式曲面背景模型,並將_職差值超過一 設定門檻值的圖像區域作為斑痕缺陷的可能目標分離出來。 在較佳實施例中,上述滤波裝置係位於圖像產生裝置與 曲面擬合裝置之間;且於該分離裝置之後更包括-數學形態 學(Mathema t i ca 1 morpho 1 〇gy )處理裝置。 在較佳實施例中,上述檢測系統更包括一判斷裝置,用 以將可能目標區域之對比度、面積、邊緣參數、位置參數、 灰階均勻性和形狀參數之_或組合作為系制輸人變量;斑 痕缺的等級作為系統的輸出變量,將前述之輸入變量及輸 出變量劃分成一定數目的模糊子集並為每一模糊子集建立 一相應的函數。 在較佳實施例中,上述檢測系統更包括:一載物台用於 ’·—三购㈣撕崎細置;以及 遮光罩.將载物台、三财位平台及_產生裝置設置於 曲面 傻八刺發㈣提供—種基於多項式曲面擬合技術之斑痕圖 ^方法,其步驟包括:假設一圖像中每一像素之灰階值 〜、該像素二維座標的函數,而所有像素的灰階值與其二維 座標構成了分佈於矩形袼點上的空間參考點的集合;以及採 、70多項式對上述之空間參考點進行曲面擬合,求得一 近似通過參相且賊表祕參相基本趨勢的-多項式 【實施方式】 本發明係一種運用自動化影像檢測顯示器之斑痕缺陷 的方法與系統,㈣先進的圖像處理和辨識技術,直接對顯 示器之斑痕缺陷進行快速的檢測。 茲配合圖式將本發明之較佳實施例加以詳細說明如 下。第一圖為本發明一種運用自動化影像檢測顯示器之斑痕 缺陷的方法與系統之整體結構示意圖。該運用自動化影像檢 測顯示器之斑痕缺陷的檢測系统包括:一三軸精密定位平台 1、 一電荷轉合元件(charge coupled device, CCD)攝影機 2、 一液晶顯示器驅動模組3、一載物台4、一圖像採集卡5及 一電腦6。載物台4係固定連結於三軸精密定位平台1上,並 1334928 透過電麟連接料㈣液晶顯示馳動漁3的介面上。 待測之液晶顯示器7置放在可於垂直方向進行1 & 〇度旋轉之 載物台4上。 CCD攝影機2可作為待測之液晶顯示器7之圖像採集設 備’並S1定於三減密定位平台丨上,使其可以根據待測液 晶顯示器7的型號在電腦6的控制下移_〜相對應的位置 進行圖像採集。 在較佳實施例中,圖像採針5是標準類比或數位圖像 採集卡,例如USB介面之數位攝影機或是視訊卡。電腦6是一 /、有“準计异功此的主控設備,其包含例如機殼本體、cpu、 主機板、硬碟及顯示器等裝置。CCD攝影機2連接到圖像採集 卡5的輸入端。在較佳實施例中,電腦6安裝有一執行自動檢 測任務的系統軟體,其可控制液晶顯示器驅動模組3及點亮 待測液晶顯示器7,並使待測液晶顯示器7顯示初始晝面。 檢測斑痕缺陷時’承載待測液晶顯示器7的載物台4可在 電腦6的控制下旋轉一定的角度,使CCD攝影機2的光軸與待 測液晶顯示器7之平面成30至60度的夹角。此時,CCD攝影機 2可以自待測液晶顯示器7的側面獲得側視圖像,利用重複採 樣的方式採集待測液晶顯示器7之整體圖像訊息。 由於待測液晶顯示器7係由液晶顯示器驅動模組3所驅 動’因此其自身可以發光,|需任何照明設備。為防止外界 光線的干擾,三_密定位平纟卜(XD卿、载物台4 11 以及待測液晶顯示器7孝均被放置於一個遮光罩8中。電腦6 可控制液晶顯示器驅動模組3,使待測液晶顯示器7顯示之畫 面為一灰階畫面β 第二圖為本發明一種運用自動化影像檢測顯示器之斑 痕缺陷的方法與系統之流程圖,透過上述系統可產生一待測 液晶顯示器上之像素點的電壓信號,執行一圖像採集步驟 801 ;在該步射,由於斑痕缺陷的對比度很低,為減小該 圖像雜訊之影響、提升該圖像之品f,因此於圖像採集步驟 801中採麟-幅待啦面重複採樣之方心採樣的頻率一 般應大於10幅/秒,而重複採樣的次數一般為5〇次至次。 完成採集圖像步驟801後,繼而進行一圖像遽波步驟 802 ’ :¾發生於圖像上的雜訊”㈣不具相關性,則具有均值 為零之隨機雜訊’可關用數·相同條件下產生之隨機圖 像之平均絲示顧像。假設顧像為加),發生之雜訊 為如),則具有雜訊之圖像為㈣=/(咖心),此時,可 间 來估計原圖像/(χ,β,其中A/為圖像之數量。 顯然,此種估計值應不具偏差,因為 E{g(Xiy)} = -~tf^y) = f{x,y) <* 疋成圖像濾波步驟802後,還需將待測液晶顯示器之部 为從圖像巾分離’並且採關如雙雜插值法_圖像進行 U349281334928 IX. INSTRUCTIONS: » [Technical Field of the Invention] The present invention is a method and system for detecting a flaw defect of a display using a 〇n machine vision, and adopts an advanced image processing and recognition technology. , can perform rapid detection of display spot defects. [Prior Art] The production process of the display is very complicated, and although most of the processes are completed in a clean room, it is still difficult to avoid some visual defects. The liquid crystal display is a type of display and is no exception. For liquid crystal displays, there are many types of visual defects, which can be classified into three types according to the area and shape of defects, including point defects, line defects, and surface defects. Surface defects can be further divided into block defects and plaques (called mura in English, which is derived from slang, meaning dirty, plaque, which is the most common type of surface defect). Point defects, line defects and block defects are mainly caused by electrical causes such as short circuit, open circuit or crystal damage of a thin film transistor (TFT) array in a liquid crystal display; the spot defects are generally due to uneven distribution of liquid crystal molecular materials or backlight Plate distortion and other non-electrical causes. Among all visual defects of liquid crystal displays, point defects, line defects, and block defects have high contrast and regular geometry, and thus are relatively easy to detect. Spot defects are the most difficult of all visual defects due to their low contrast, variable size, irregular shape, blurred edges and unfixed position. In addition, the overall liquid crystal display industry has so far not defined the flaws and the detection standards for the flaws, which have made it difficult to automatically detect the flaws. Therefore, so far, the detection of scar defects has been done by the skilled workers with the naked eye. SUMMARY OF THE INVENTION The object of the present invention is to provide a method and system for detecting scar defects in an image by using an automated image sensing display, and to directly detect scar defects on a display through advanced image processing and identification techniques. The present invention is a method for detecting a flaw defect of a display using an automated image, the method comprising the steps of: generating a display image to be tested; generating a polynomial curved surface that approximates a basic trend of the reference point by reference points and representing the reference points And subtracting the background image of the polynomial surface from the image of the display to be tested, and separating an image region whose identification error value exceeds a set threshold as a possible target of the spot defect is separated. The above-described method for detecting scar defects of a display using an automated image can include a mathematical step of Matheinat i ca 1 mcxrpho 1 ogy and a step of filtering out image noise; wherein the processing of mathematical morphology The steps are a dilation operation or an erosi〇n operation or a combination of binomial operations. In a preferred embodiment, the step of shaming the image of the display is: obtaining a plurality of towels, the average value of the image of the 51-segment display of the stomach is displayed; wherein the plurality of images are obtained The image of the display has a frequency greater than 10 frames per second and the number of acquisitions is 50 to 7 frames. In addition, the image of the display to be tested may be a side view image of the display to be tested; its side view angle is preferably between 30 and 60 degrees. In the preferred embodiment, the above-described side view image can be geometrically corrected using a bilinear interpolation method. In a preferred embodiment, the steps of 'generating a polynomial surface (four) model that approximates a reference point and can represent the basic trend of the reference points include: assuming that the grayscale value of each pixel in an image is a two-dimensional coordinate of the pixel The function, and the gray 14 value of all the pixels and its - dimensional coordinates constitute the spatial reference point _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ A polynomial surface background model that passes through the reference point and can represent the basic trend of the reference value. SUMMARY OF THE INVENTION The present invention provides a method for detecting scar defects in a display using an automated image, and further includes an identification mode step of a scar defect, the step comprising: • generating a plurality of input variables; performing a - fuzzy operation; and outputting - rotating variables. In the preferred embodiment, the input variables include contrast, area, edge parameters, positional parameters, grayscale uniformity and shape parameters; and the output variable is the level of the spot defect. The above fuzzy operation system divides the aforementioned input variables and output variables into a set number of dependent subsets, and rides a difficult subset to establish a corresponding function; the corresponding function may be a trigonometric function or a ladder number. In the preferred embodiment, the _ _ _ mode step further includes the step of inputting variables and output variables. Another object of the present invention is to provide a system for detecting scar defects in displays using automated imagery. The detection system comprises: an image generating device for generating an image of a plurality of caps to be tested; a button device for filtering out the noise of the zero image; and a surface fitting device for generating an approximation a polynomial surface background model that passes through the reference point and can represent the miscellaneous reference wire; and a separation device that subtracts the polynomial surface background model from the image of the noise removal by the rib, and sets the _ difference value to more than one setting The image area of the threshold value is separated as a possible target of the flaw defect. In a preferred embodiment, the filtering means is located between the image generating means and the surface fitting means; and after the separating means, further comprises - Mathema t i ca 1 morpho 1 〇 gy processing means. In a preferred embodiment, the detection system further includes a determining device for using a combination or combination of contrast, area, edge parameters, position parameters, gray level uniformity, and shape parameters of the target area as a system input variable. The level of the scar is used as the output variable of the system, and the aforementioned input variables and output variables are divided into a certain number of fuzzy subsets and a corresponding function is established for each fuzzy subset. In a preferred embodiment, the detecting system further comprises: a loading stage for '·-three purchases (four) tearing fines; and a hood. The stage, the three-finance platform and the _ generating device are arranged on the curved surface Stupid eight-prick (4) provides a method based on polynomial surface fitting technique, which includes: assuming a grayscale value of each pixel in an image, a function of the two-dimensional coordinates of the pixel, and all pixels The gray scale value and its two-dimensional coordinates constitute a set of spatial reference points distributed on the rectangular point; and the 70-degree polynomial performs surface fitting on the above spatial reference point, and obtains an approximation through the phase and the thief table The present invention is a method and system for detecting scar defects of a display using an automated image, and (4) advanced image processing and identification technology for directly detecting scar defects of the display. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The preferred embodiments of the present invention are described in detail below with reference to the drawings. The first figure is a schematic diagram of the overall structure of a method and system for detecting scar defects in a display using an automated image. The detection system for detecting the flaw defect of the display by the automatic image detection comprises: a three-axis precision positioning platform, a charge coupled device (CCD) camera 2, a liquid crystal display driving module 3, and a stage 4 , an image capture card 5 and a computer 6. The stage 4 is fixedly coupled to the three-axis precision positioning platform 1, and the 1334928 is transmitted through the interface of the electric lining material (4) liquid crystal display. The liquid crystal display 7 to be tested is placed on the stage 4 which can perform 1 & rotation in the vertical direction. The CCD camera 2 can be used as the image acquisition device of the liquid crystal display 7 to be tested and S1 is set on the three-reduction positioning platform , so that it can be moved under the control of the computer 6 according to the model of the liquid crystal display 7 to be tested. The corresponding position is used for image acquisition. In the preferred embodiment, the image pickup 5 is a standard analog or digital image capture card, such as a digital interface for a USB interface or a video card. The computer 6 is a master device having a quasi-counter-synchronization function, which includes devices such as a casing body, a cpu, a motherboard, a hard disk, and a display. The CCD camera 2 is connected to an input end of the image capture card 5. In the preferred embodiment, the computer 6 is provided with a system software for performing an automatic detection task, which can control the liquid crystal display driving module 3 and illuminate the liquid crystal display 7 to be tested, and cause the liquid crystal display 7 to be tested to display an initial face. When detecting the flaw defect, the stage 4 carrying the liquid crystal display 7 to be tested can be rotated by a certain angle under the control of the computer 6, so that the optical axis of the CCD camera 2 and the plane of the liquid crystal display 7 to be tested are clipped by 30 to 60 degrees. At this time, the CCD camera 2 can obtain a side view image from the side of the liquid crystal display 7 to be tested, and collect the overall image information of the liquid crystal display 7 to be tested by means of repeated sampling. Since the liquid crystal display 7 to be tested is composed of a liquid crystal display The drive module 3 is driven 'so that it can emit light itself.|All lighting equipment is required. To prevent external light interference, the three-dimensional positioning flat (XD Qing, the stage 4 11 and the liquid crystal to be tested) 7 filial piety is placed in a hood 8. The computer 6 can control the liquid crystal display driver module 3, so that the screen displayed by the liquid crystal display 7 to be tested is a grayscale image β. The second figure is an automatic image detecting display of the present invention. The method and system flow chart of the flaw defect, through which the voltage signal of the pixel on the liquid crystal display to be tested is generated, and an image acquisition step 801 is performed; in the step, the contrast of the flaw is low, In order to reduce the influence of the image noise and improve the product f of the image, the frequency of the square sampling of the sampling-receiving surface in the image capturing step 801 should generally be greater than 10 frames per second. The number of times of repeated sampling is generally 5 times to times. After the image acquisition step 801 is completed, an image chopping step 802 ': 3⁄4 occurs in the image on the image" (4) has no correlation, and has an average value. Zero random noise 'can be used · the average silk image of the random image generated under the same conditions. If the image is additive), the noise generated is as follows, then the image with noise is (4) = / (Caf At this time, the original image / (χ, β, where A / is the number of images) can be estimated. Obviously, such an estimate should have no deviation because E{g(Xiy)} = -~tf^ y) = f{x, y) <* After the image filtering step 802, the portion of the liquid crystal display to be tested is also separated from the image towel and the image is subjected to double-interpolation method_image U34928

幾何校正,從而將該圖像中由於CCD視角的原因而變為梯形 的待測液晶顯示器恢復為標準的矩形。 根據上述之雙線性插值法,校正圖像中像素點⑼取 得灰階值爪乃可以由其周圍四個像素的灰階值計算。 f 〇'»/)= [/ (/+1,y)-/(/5y)]*(/--〇+ [/(/,y+i). f(i _.. +[/(/+1, y+1)+/(/, j) -/(/+1, j) - f{i, j+1)] * (,·^ ^ 3 + ^ 力 經濾波之圖像於進行斑痕缺陷檢測時,由於液晶顯示器The geometric correction is such that the liquid crystal display to be tested which becomes trapezoidal due to the CCD viewing angle in the image is restored to a standard rectangle. According to the bilinear interpolation method described above, the gray point value of the pixel point (9) in the corrected image can be calculated from the gray scale values of the four pixels around it. f 〇'»/)= [/ (/+1,y)-/(/5y)]*(/--〇+ [/(/,y+i). f(i _.. +[/( /+1, y+1)+/(/, j) -/(/+1, j) - f{i, j+1)] * (,·^ ^ 3 + ^ Force filtered image When performing flaw detection, due to liquid crystal display

本身的特點航D視㈣關,待驗晶的灰階於整 個顯示器随_變化非常大,遠遠_ 了斑痕缺陷本身的 灰階變化。因此,對於喊缺陷的檢測來說,斑痕圖像的分 離是最為重要同時也是最顧個環節。運用傳統的圖 像分離方法’例如邊緣制等技術,根本難以完成斑痕圖像 的分離任務。因此,本發明提出了—種利用多項式曲面擬合 的斑痕圖像之分離方法。The characteristics of the navigation line D (four) off, the gray level of the crystal to be examined varies greatly with the whole display, far away from the gray scale change of the flaw defect itself. Therefore, for the detection of shouting defects, the separation of the scar image is the most important and the most important part. It is difficult to perform the separation task of the scar image by using a conventional image separation method such as edge processing. Therefore, the present invention proposes a method of separating a scar image using a polynomial surface fitting.

參閱第二圖之步驟8G3 ’於該步驟中,錢假設一圖像 中每-像素之灰階值/(以均為該像素二維座標Μ的 函數,而所有像素之灰階值與其二維座標構成了分布於矩形 格點上的空間參考闕集合。接下來顧二元多項式對上述 之空間參考點進行曲φ擬合,即求得-近似通過參考點且能 代表該些參考點趨勢的該多項式曲面:設已知矩形區域内 «XW個矩形格點(〜,观=01,,〜以=〇1,,所上的函數值 〜,假設待求的多項式為 13Referring to step 8G3 of the second figure, in this step, the money assumes a grayscale value per pixel in the image / (as a function of the two-dimensional coordinate 该 of the pixel, and the grayscale value of all pixels and its two-dimensional The coordinates constitute a set of spatial reference 分布 distributed over the rectangular grid points. Next, the bivariate polynomial is subjected to the φ fitting of the above spatial reference points, that is, the estimator is approximated by the reference point and can represent the trend of the reference points. Polynomial surface: Set the XX rectangles in the known rectangular area (~, view=01,,~==1, the value of the function on the ~, assuming the polynomial to be sought is 13

,(以=SSvV 1*0 7^0 其中从^””㈣心从㈣是一待定參數’它使〜, /(χ,β在矩形格點上的值的差之平方和於最小的二乘方下 達到最小,即 〜〜)=||(〜·||ν,)2=ηήη 由上式所蚊的待定參數〜,其對應的曲面稱為最小二乘 方多項式曲面。利用多元函數的極值理論,在上式中令 dl A/ ύ 便付到關於{%}的pxg階的代數方程式: ,…,,-1) 解這個階的代數方程式,就可以得到%。 由於斑痕缺陷的面積很小’並不會改變圖像的基本變化 趨勢’因此可將多項式曲面視為—不含斑痕缺陷的背景模 型。相對於背模型,待測液晶顯示器之圖像中没有缺陷的 區域辨識度之誤差值, (==SSvV 1*0 7^0 where from ^"" (four) heart from (four) is a pending parameter 'it makes ~, /(χ, β the square of the difference between the values of the square grid points and the smallest two The minimum is reached by the power, that is, ~~)=||(~·||ν,)2=ηήη The parameter to be determined by the above formula is ~, and the corresponding surface is called the least squares polynomial surface. Using the multivariate function In the extreme value theory, let dl A/ 付 pay the algebraic equation of pxg order for {%} in the above formula: ,...,,-1) Solve the algebraic equation of this order and get %. Since the area of the scar defect is small 'and does not change the basic change trend of the image', the polynomial surface can be regarded as a background model without the flaw defect. The error value of the area identification without defects in the image of the liquid crystal display to be tested relative to the back model

pA qA ζ» -ΣΣ 1=0 y=〇 很小’而斑痕缺陷所在的區域與背景模型的辨識度之誤差值 p*l zu - ΣΣ^ν *=0 7=0 則很大。 如第二圖之步驟804,利用該背景翻,將待測液晶顯 示器之圖像減去該背景模脅可賴識度誤差值超過人為 設定的Η減之_區域作為喊缺_可能目標從背景 模型中分離出來。 第三八圖為-CCD採集之原始圖像經過上述之多圖像平 均法及圖像校正處理步驟後的結果,圖中有五處斑痕缺陷。 第圖係為對第三細進行該多項式曲面擬合方法所獲得 之不含斑痕缺_背景模為第三A_去第三 B圖所示之背景模型躺麟的處理結果。 經由上述之圖像處理後,利用數學形態學 (Mathematics _hQlQgy)晴算纽步舰棚像形狀 和架構的分析及處理。利用膨腸(dilation)運算及侵蝕 (er〇sl〇n)運算及二者敝対執行上叙圖像形狀和架構 的分析及處理。 叹集合ζ為輸入圖像,集合5為結構元素,若集合 Z被集合B侵躲rC)siQn),就表示為: ^05 = {x:5 + xC^} 侵钱之作祕域軸料的—些獨立的雜訊點和 刺(burr)。 略脹(dilation)運算為侵钱(er〇si〇n)運算的逆運算, 可以透過餘集的觀念來定義。 ^破集合β膨脹表示為獅,其定義為: j㊉ 5 = [4εΘ(-ΰ)] 其中,,表示J的餘集於 膨脹係為填充圖像中比架構元素小的孔洞和圖像邊緣 處的小凹陷部分。 第三D圖為對第三C圖進行數學形態學處理後之結果。 如第二圖之步驟805,係將目標區域的對比度、面積、 邊緣參數、位置參數、灰階均勻性與形狀參數等六個參數之 一或組合作為斑痕缺陷等級評價的依據。 其中,對比度參數之定義為: c°⑽Σ 桃 式中 素點 合; 其中 /(,,y)和邱,_/)分别為可能目標區域及背景模型於像 (^)處之灰階值;¢/為目標區域内所有像素點的集 #為目標區域内像素點的個數。 面積參數之定義為: 如α= $ 1pA qA ζ» -ΣΣ 1=0 y=〇 Very small' and the error value of the area where the spot defect is located and the background model is p*l zu - ΣΣ^ν *=0 7=0 is large. As step 804 of the second figure, using the background flip, the image of the liquid crystal display to be tested is subtracted from the background modality, and the error value exceeds the artificially set _ area as a sneak _ possible target from the background Separated from the model. The third figure is the result of the original image captured by the CCD after the above-mentioned multi-image averaging method and image correction processing steps, and there are five spot defects in the figure. The figure is the result of the processing of the background model lying in the third A_ going to the third B picture obtained by the polynomial surface fitting method for the third detail. After the above image processing, the mathematical morphology (Mathematics _hQlQgy) is used to analyze and process the shape and structure of the Newport hangar image. Analysis and processing of the image shape and architecture of the above-mentioned images are performed using dilation operations and erosion (er〇sl〇n) operations and both. The sigh collection is the input image, and the collection 5 is the structural element. If the collection Z is invaded by the collection B, it is expressed as: ^05 = {x:5 + xC^} - some independent noise points and burrs. The dilation operation is the inverse of the er〇si〇n operation and can be defined by the concept of the remainder set. The broken set β expansion is expressed as a lion, which is defined as: j10 5 = [4εΘ(-ΰ)] where, the remainder of J is expressed in the expansion system as a hole in the filled image smaller than the architectural element and at the edge of the image Small concave part. The third D picture is the result of mathematical morphology processing on the third C picture. As step 805 of the second figure, one or a combination of six parameters such as contrast, area, edge parameters, position parameters, gray level uniformity and shape parameters of the target area is used as the basis for the evaluation of the spot defect level. Wherein, the contrast parameter is defined as: c°(10)Σ peach-type neutral point; wherein /(,,y) and Qiu, _/) are the grayscale values of the possible target region and the background model at the image (^); ¢/ is the set of all the pixels in the target area # is the number of pixels in the target area. The area parameter is defined as: α = $ 1

(U)eU(U)eU

U 為目標區域内所有像素點的集合 為:標區域中,待測_示器 其中 L〇c〇tion = 。和3Ή別為待顺晶顯示器之幾何中 座標與縱座標;i和 心點的橫 刀另!為可月色目標區域幾何中心點 的 橫座b與縱座標,且有·:U is the set of all the pixels in the target area: in the target area, the tester is to be tested, where L〇c〇tion = . And 3 are the coordinates and ordinates in the geometry of the crystal display; the cross tool of the i and the heart point is the horizontal seat b and the ordinate of the geometric center point of the moonlight target area, and has:

XX

N Σ: Oj)^u 〜分别為可能目魏射(u)像素點的横座 式中s和 標及縱座標 edge ·- 邊緣參數_雜普拉斯算式定義: ^ Σ|8/(〇·)-/(/,7-1)-/(/-1,y)-/ay+1) 式中(/為目標區域的所有邊界點的集合。 ^狀參數之疋義為·咖pe = max{ii,C}式中,7?為目標 區域的圓形度,描述了物體邊界的複雜程度,可以用目標區 域的面積與周長的關係來表示。圓形度的數學表達式為: R = 4π·χ™ 尸2 式中*5為目標區域的面積,/>為目標區域的周長。 C為目標區域的矩形度,用目標區域之面積與其最小 的外接矩形面積之比來描述,即: 其中,S為目標區域的面積’ Smer為目標區域最小外 接矩形的面積。 灰階均勻性係以目標區域之灰階標準差加以描述: uniformity = σ = i 乙(几,β一 气中 L . # %g/(IJ) ’為目標區域内所有像素點的灰階平均值。 於辨識模式步驟8()5中,本發明提出一種利用模糊集合 理娜和模糊邏輯之喊缺関-模糊辨識方法。 在設計該模糊辨識方法時,首先須定義出該系統之輸入 變量及輸㈣量。根據本發明之較佳實關,雜可能目標 區域之對比度、面積、邊緣參數、位置參數、灰階均勻性和 形狀參數等6個參數之—或組合作為輸人變量;喊缺陷的 等級作為輪出變量;其中喊缺_等級—般齡為不合格 (N級)、合格(p級)、良^級),實際應用可依工廠之實 際情況適當的加以調整。 接下來根據專業技術人員的經驗將上述之輸入變量與 輸出變量劃分成-定數目的模糊子集並為每一模糊子集建 立相應的函數;為簡化運算、提升系統的營運速度,一般 均選取形狀較簡單之三角形和梯形的函數。 例如,對於系統之六項輸入變量,將其作以下之劃分: 將對比度分成五級,即極低(VL)、低(L)、中等⑻、高⑻ 和極高(VH);面積分成小(S)、中(M)和大(B)三級;邊緣參 數分成低(L)、巾(M)、高⑻;位置參數分成靠邊⑴、一 般(N)和居中⑹三級;灰階均勻性分成低(L)、中等(M)和高 ⑻三級;形狀參數分成不規則⑽)和規則(R)兩級。系統之 輸出變量即mura缺陷#級劃分為輕微mura缺陷(p)、一般 mura缺陷(N)和嚴重mura缺陷(V)三級。在較佳實施例中, 輸入變量及輸出變量所對應之相應的函數均以三角函數和 梯形函數來表示,請參閱第四圖。 模糊if-then規則的制定是模糊辨識方法的核心問 題。根據本發明之較佳實施例,模糊if-then規則係根據專 家經驗制定。 例如’一 if-then規則如下:N Σ: Oj)^u ~ s and the ordinates and ordinates in the cross-station of the possible target (u) pixel points respectively ·- Edge parameter _ hetero-Pras equation definition: ^ Σ|8/(〇· )-/(/,7-1)-/(/-1,y)-/ay+1) where (/ is the set of all boundary points of the target area. The meaning of the ^ parameter is · coffee pe = In the max{ii, C} formula, 7? is the circularity of the target area, which describes the complexity of the object boundary, which can be expressed by the relationship between the area of the target area and the circumference. The mathematical expression of the circularity is: R = 4π·χTM corpse 2 where *5 is the area of the target area, /> is the perimeter of the target area. C is the squareness of the target area, using the ratio of the area of the target area to the area of the smallest circumscribed rectangle Description, where: S is the area of the target area 'Smer is the area of the smallest circumscribed rectangle of the target area. The gray level uniformity is described by the gray level standard deviation of the target area: uniformity = σ = i B (several, β one gas) Medium L. # %g/(IJ) ' is the grayscale average of all the pixels in the target area. In the identification mode step 8() 5, the present invention proposes to use a fuzzy set to be reasonable Na and the fuzzy logic shouting-fuzzy identification method. When designing the fuzzy identification method, we must first define the input variable and the input (four) quantity of the system. According to the better implementation of the present invention, the contrast of the possible target area , area, edge parameters, position parameters, gray level uniformity and shape parameters, etc. - or a combination of as a variable; the level of shouting defects as a rotation variable; where the lack of _ level - the age is unqualified ( N grade), qualified (p grade), good grade), the actual application can be adjusted according to the actual situation of the factory. Next, according to the experience of professional technicians, the above input variables and output variables are divided into a fixed number. Fuzzy subsets and corresponding functions for each fuzzy subset; in order to simplify the operation and improve the operating speed of the system, generally select triangles and trapezoids with simple shapes. For example, for the six input variables of the system, Make the following divisions: Divide the contrast into five levels, namely very low (VL), low (L), medium (8), high (8) and very high (VH); the area is divided into small (S), medium (M) and large (B) Level 3; the edge parameters are divided into low (L), towel (M), and high (8); the positional parameters are divided into three levels: edge (1), general (N), and center (6); gray level uniformity is divided into low (L), medium ( M) and high (8) three levels; shape parameters are divided into two levels: irregular (10)) and rule (R). The output variable of the system, mura defect #, is divided into three levels: mild mura defect (p), general mura defect (N), and severe mura defect (V). In the preferred embodiment, the corresponding functions corresponding to the input variables and output variables are represented by trigonometric functions and ladder functions, see Figure 4. The formulation of fuzzy if-then rules is the core problem of fuzzy identification methods. In accordance with a preferred embodiment of the present invention, the fuzzy if-then rules are based on expert experience. For example, the 'if-then rule' is as follows:

If (Const is H) and (Area is M) and (Edge is H) then (mura level is V) 採用模糊識別方法,系統可模仿人的辯識方式並充分利 用專豕的經驗和知識’完成對液晶顯示器之斑痕缺陷進行自 動識別。 上述實施例雖以液晶顯示器為例進行說明,但並非限定 本發明於液晶顯示器之檢測,利用其它顯示技術之顯示器的 缺陷檢測亦可以應用本發明。 以上所述僅為本發明之較佳實施例,其並非用來限定本 發明之範圍。針對本發明所做的均等變化與修飾,皆為本發 明專利範圍所涵蓋。 1334928 【圖式簡單說明】 帛一圖係、為本發明一種運用自動化影像檢測顯示器 一 之斑痕缺陷的系統之整體架構示意圖 係為種運用自動彳⑽像檢贿示ϋ之斑痕 缺陷的方法之流程圖 第三A ®係為CCD採集之原始圖像經過多圖像平均法及 •圖像校正處理後之結果 第^®係為對第三八圖進行多項式曲面擬合法後所產 生之不含斑痕缺陷的背景模型 第三C®係為第三八圖減去第三Β圖所示之背景模型所 得之處理結果 第三1)圖係、為對第以圖進行數學形態學之處理結果 第四圖係、為本發明提出的模糊辨識系統輸入變量及 _ 輸出變量所對應之函數實例 【主要元件符號說明】 1 三軸精密定位平台 2 CCD攝影機 3 液晶顯不1§驅動模組 4 載物台 20 1334928If (Const is H) and (Area is M) and (Edge is H) then (mura level is V), using fuzzy recognition method, the system can imitate the way of human identification and make full use of the experience and knowledge of the special 'completed pair The spot defect of the liquid crystal display is automatically recognized. Although the above embodiment has been described by taking a liquid crystal display as an example, the present invention is not limited to the detection of the liquid crystal display of the present invention, and the defect detection of the display using other display technologies can also be applied. The above is only the preferred embodiment of the present invention and is not intended to limit the scope of the present invention. Equivalent variations and modifications made to the invention are encompassed by the scope of the invention. 1334928 [Simple diagram of the diagram] The diagram of the overall architecture of a system using the automated image detection display for the flaw defect of the present invention is a flow of a method for applying the automatic flaw detection method to detect the flaw defect of the bribe Figure 3A ® is the result of the multi-image averaging method and image correction processing of the original image acquired by CCD. The ^® system is a non-stained mark produced by polynomial surface fitting method on the third eight figure. The background model of the defect The third C® system is the third eight figure minus the background result of the background model shown in the third figure. The third 1) the picture system is the fourth result of the mathematical morphology of the first picture. Figure system, the fuzzy identification system input variable and _ output variable corresponding to the function example [main component symbol description] 1 three-axis precision positioning platform 2 CCD camera 3 LCD display 1 § drive module 4 stage 20 1334928

5 圖像採集‘卡 6 電腦 7 待測之液晶顯示器 8 遮光罩 215 Image Acquisition ‘Card 6 Computer 7 LCD Monitor to Be Tested 8 Hood 21

Claims (1)

1334928 門年月/日修正替換頁 十、申請專利範圍: ^ 1. 一種運用自動化影像檢測顯示器之斑痕缺陷的方法,該 方法包括下列步驟: 產生一待測顯示器之圖像,該待測顯示器之圖像包括複數 個像素; 產生一近似通過參考點且能代表該些參考點的基本趨勢 之一多項式曲面背景模型;以及1334928 Door Year/Day Correction Replacement Page X. Patent Application Range: ^ 1. A method for detecting a flaw defect in a display using an automated image, the method comprising the steps of: generating an image of a display to be tested, the display to be tested The image includes a plurality of pixels; generating a polynomial surface background model that approximates one of the basic trends of the reference points and can represent the reference points; 將該待測顯示器之圖像減去該多項式曲面背景模型,將— 辨識度誤差值超過一設定門檻值之圖像區域,作為斑痕 缺陷的可能目標,並分離出來。 2.如申請專利範圍第1項所述之方法,其中更包括一數學 形態學(Mathematical morphology)之處理步驟。The image of the display to be tested is subtracted from the background model of the polynomial surface, and the image region whose identification error value exceeds a set threshold value is taken as a possible target of the flaw defect and separated. 2. The method of claim 1, further comprising a processing step of a mathematical morphology. 3·如申請專利範㈣2項所述之方法,其中該數學形態學 (Mathematical morphology)之處理步驟為膨脹(dilati〇n) 運算、侵韻(_i〇n)運算或膨脹與侵钱組合之運算。 4. 如申請專利範圍第1項所述之方法,其中更包括有一遠 除圖像的雜訊之步驟。 5. 如申請糊翻第1項所述之方法,其中產生該待測顯 示器之圖像的步驟為獲取複數幅該待測顯示器之圖像。 6. 如申請專利棚第5項所述之方法,其中魏除圖像的雜 訊之步驟係產生-平均值,該平均值為該複數幅待測顯示 裔之圖像的平均值。 22 Μ年9月/日修正替换頁 7. 如申請糊細第5 •顿叙綠,其帽— 待測顯示器之圖像的頻率為大於1〇幅/秒。 8. 如”專利範圍第5項所述之方法,其中該複數幅待測 顯示益之圖像的數量為50至70幅。 9. 如申請專利範圍第丨至8項中任„項所述之方法,其中 該待測顯示器之圖像係為該待測顯示器之側視圖像 H).如申請專利範圍第9項所述之方法,其中該待測顯示器 之側視圖像的角度為30至60度。 11.如申請專利範圍第9項所述之方法,更包括採用一雙線 性插值法對該制航H之側像進行幾何校正。 12·、如申請專利範圍第丨項所述之方法,其中產生該近似通 過蒼考點且能代表該些參考點之基本趨勢的該多項式曲 面背景模型之步驟包括: 假設-圖像中每—像素之灰階值均為該像素二維座標的 函數,而所有像素之灰階值與其二維座標構成了分佈於 矩形格點上之空間參考點的集合;以及 採用-二元多項式對上述之空間參考點進行曲面擬合,求 得該近似通過參考點且能代表該些參考點之基本趨勢 的该多項式曲面背景模型。 13. 如申請專利範圍第1項所述之方法,其中更包括-斑痕 缺陷的模糊辨識步驟。 14. 如申請專利範圍第13項所述之方法’其中該斑痕缺陷 的模糊辨識步驟包括: 產生複數個輸入變量; 進行一模糊運算;以及 輪出一輪出變量。 15. 如申請專利範圍第14項所述之方法,其中該複數個輪 入受里係包括對比度、面積、邊緣參數、位置參數、灰P比 均勻性和形狀參數。 16. 如申請專利範圍第14項所述之方法,其中該輪出變量 為斑痕缺陷的等級。 17·如申4專利範圍第14項所述之方法,其中該模糊運算 為將上述之輸入變量與輸出變量劃分成一定數目的模糊 子集’並為每一模糊子集建立一相對應的函數。 如申睛專利範圍第17項所述之方法,其中該函數為三 角函數或梯形函數。 19. 如申請專鄕圍第13項所述之絲,其巾該斑痕缺陪 的模糊辨識步驟更包括設定該複數個輸入變量及該輸出 變量。 20. 種運用自動化影像檢測顯示器之斑痕缺陷的系統,可 針對一待測顯示器進行斑痕缺陷的檢測,該系統包括: 圖像獲取裝置’用於產生複數幅該待測顯示器之圖像, 該複數幅待測顯示器之圖像包括複數個像素; 一濾波裝置,用於濾除上述圖像的雜訊; 24 1334928 乃年)月/日修正替换頁 一曲面擬合裝置,用以產生一近似通過參考-些參考點之基本趨勢的一多項式曲面背景模型;以及 一分#裝置’用以將上述經濾波去除雜訊之圖像減去上述 之多項式曲面背景模型,並將一辨識度誤差值超過一設 疋門檀值的圖像區域,作為斑痕缺陷的可能目標分離出 來0 .21·如申請專利範圍第20項所述之系統,其中該遽波裝置 • 設置於該圖像產生裝置及該曲面擬合裝置之間。 22. 如申請專利範圍第20項所述之系統,另包含一數學形 態學(Mathematical morphology)處理裴置,其中該分離 裝置連接該數學形態學處理裝置。 23. 如申請專利範圍第20項所述之系統,更包含一判斷裳 置,用以將可能目標區域之對比度、面積、邊緣參數、位 鲁 f參數、灰階均勻性及形狀參數之—或組合作為該系統之 輪入變量’其中斑痕缺陷的等級作為該系統之輸出變量, 將該輪入與該輸出變量劃分成一定數目的模糊子集,並為 每—模糊子集建立一相對應的函數。 2\如申請專利範圍第2()項所述之系統,更包括一载物 台’用於承载該待測顯示器。 25·如申睛專利範圍第20項所述之系統,更包括一 r轴^ 位平台’用於定位該圖像產生裝置。 26·如申請專利範圍第20項所述之系統,更包括一遮光 25 T)年q月/日修正替換頁 罩’該載物台、該三軸定位平台及該圖像產生裝置係設置 於該遮光罩内。 27.—種基於多項式曲面擬合技術之斑痕圖像分離方法,該 方法包括下列步驟: 假設一圖像中的每一像素之灰階值均為該像素二維座標 的函數,而所有像素之灰階值與其二維座標構成了分佈 於矩形格點上之空間參考點的集合;以及 採用-二元多項式對上述之空間參考點進行曲面擬合,求 4 于近似通過參考點且能代表該些參考點之基本趙勢 的一多項式曲面。 ”年〇月/曰修正替换頁 1334928 十一、圖式:3. The method described in claim 2, wherein the mathematical morphology processing step is an expansion (dilati〇n) operation, an invasive rhyme (_i〇n) operation, or a combination of expansion and invasion. . 4. The method of claim 1, further comprising the step of removing noise from the image. 5. The method of claim 1, wherein the step of generating an image of the display to be tested is to obtain an image of the plurality of displays to be tested. 6. The method of claim 5, wherein the step of removing the noise of the image is an average value, the average being an average of the images of the plurality of images to be tested. 22 September/Day Amendment Replacement Page 7. If the application is ambiguous, the cap—the frequency of the image to be tested is greater than 1 //sec. 8. The method of claim 5, wherein the number of images of the plurality of images to be tested is from 50 to 70. 9. as claimed in any of claims VIII to 8. The method of the display to be tested is a side view image of the display to be tested, wherein the angle of the side view image of the display to be tested is 30 to 60 degrees. 11. The method of claim 9, further comprising geometrically correcting the side image of the navigation H by a linear interpolation method. 12. The method of claim 2, wherein the step of generating the polynomial surface model that approximates the base trend of the reference points and representing the basic trend of the reference points comprises: hypothesis - each pixel in the image The gray scale values are functions of the two-dimensional coordinates of the pixel, and the gray scale values of all the pixels and their two-dimensional coordinates constitute a set of spatial reference points distributed on the rectangular grid points; and the space of the above is adopted by the -binary polynomial The reference point is surface-fitted, and the polynomial surface background model that approximates the reference point and can represent the basic trend of the reference points is obtained. 13. The method of claim 1, wherein the method further comprises a fuzzy identification step of the flaw defect. 14. The method of claim 13 wherein the fuzzy identification step of the flaw defect comprises: generating a plurality of input variables; performing a fuzzy operation; and rotating a round of out variables. 15. The method of claim 14, wherein the plurality of rounds of inclusions include contrast, area, edge parameters, positional parameters, ash P ratio uniformity, and shape parameters. 16. The method of claim 14, wherein the round-off variable is a grade of a scar defect. The method of claim 14, wherein the fuzzy operation is to divide the input variable and the output variable into a certain number of fuzzy subsets' and establish a corresponding function for each fuzzy subset. . The method of claim 17, wherein the function is a trigonometric function or a trapezoidal function. 19. If the application for the wire described in item 13 is applied, the fuzzy identification step of the towel missing includes further setting the plurality of input variables and the output variable. 20. A system for detecting a flaw defect of a display by using an automated image detection method for detecting a flaw defect on a display to be tested, the system comprising: an image acquisition device for generating an image of the plurality of displays to be tested, the plural The image of the display to be tested includes a plurality of pixels; a filtering device for filtering out the noise of the image; 24 1334928 is a year/day correction replacement page-surface fitting device for generating an approximate pass Referring to a polynomial surface background model of the basic trend of some reference points; and a sub-device for subtracting the above-mentioned polynomial surface background model from the image of the filtered noise removal, and a recognition error value exceeding An image area in which the value of the ceremonial value is set as a possible target of the smear defect. The system of claim 20, wherein the chopper device is disposed in the image generating device and Between surface fitting devices. 22. The system of claim 20, further comprising a mathematical morphology processing device, wherein the separation device is coupled to the mathematical morphology processing device. 23. The system of claim 20, further comprising a judging panel for contrasting, area, edge parameters, positional parameters, gray level uniformity, and shape parameters of the target area - or Combine as the wheeled variable of the system' where the level of the spot defect is the output variable of the system, divide the wheel and the output variable into a certain number of fuzzy subsets, and establish a corresponding one for each fuzzy subset. function. 2\ The system of claim 2, further comprising a carrier for carrying the display to be tested. 25. The system of claim 20, further comprising an r-axis platform for positioning the image generating device. 26. The system of claim 20, further comprising a shading 25 T) year q month/day correction replacement mask" the stage, the triaxial positioning platform and the image generating device are disposed Inside the hood. 27. A method for separating a scar image based on a polynomial surface fitting technique, the method comprising the steps of: assuming that a grayscale value of each pixel in an image is a function of a two-dimensional coordinate of the pixel, and all pixels The gray scale value and its two-dimensional coordinates constitute a set of spatial reference points distributed on the rectangular grid points; and the surface fitting points of the above spatial reference points are fitted by a bivariate polynomial, and the reference 4 is approximated by the reference point and can represent the A polynomial surface of the basic Zhao potential of some reference points. "Year of the month / 曰 correction replacement page 1334928 XI, schema: 第一圖 27 1334928 f~~**—-··— -— · ^First picture 27 1334928 f~~**—-··— -— · ^ 卜年w日修正替换頁I "· ' .·_ ---I ICorrected replacement page I "· ' .·_ ---I I 28 133492828 1334928 13349281334928
TW96113819A 2007-04-19 2007-04-19 Mura detection method and system TWI334928B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96113819A TWI334928B (en) 2007-04-19 2007-04-19 Mura detection method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96113819A TWI334928B (en) 2007-04-19 2007-04-19 Mura detection method and system

Publications (2)

Publication Number Publication Date
TW200842339A TW200842339A (en) 2008-11-01
TWI334928B true TWI334928B (en) 2010-12-21

Family

ID=44212151

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96113819A TWI334928B (en) 2007-04-19 2007-04-19 Mura detection method and system

Country Status (1)

Country Link
TW (1) TWI334928B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI456190B (en) * 2013-09-16 2014-10-11 Univ Nat Chunghsing Method of chip detects inspecting, system therefor, and computer program product thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5919370B2 (en) * 2012-03-01 2016-05-18 株式会社日本マイクロニクス Method and apparatus for detecting display unevenness of display device
CN107024485B (en) * 2017-04-10 2019-11-26 青岛海信电器股份有限公司 The defect inspection method and device of camber display screen
CN114112323B (en) * 2021-11-08 2024-03-22 云谷(固安)科技有限公司 Detection method and detection device for display uniformity of display panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI456190B (en) * 2013-09-16 2014-10-11 Univ Nat Chunghsing Method of chip detects inspecting, system therefor, and computer program product thereof

Also Published As

Publication number Publication date
TW200842339A (en) 2008-11-01

Similar Documents

Publication Publication Date Title
CN107845087B (en) Method and system for detecting uneven brightness defect of liquid crystal panel
JP4792109B2 (en) Image defect removal considering image features
JP4799329B2 (en) Unevenness inspection method, display panel manufacturing method, and unevenness inspection apparatus
US7783103B2 (en) Defect detecting device, image sensor device, image sensor module, image processing device, digital image quality tester, and defect detecting method
Lee et al. Automatic detection of region-mura defect in TFT-LCD
JP2002257679A (en) Method of obtaining luminance information, image quality evaluating method, device of obtaining luminance information of display apparatus and image quality evaluating method of the display apparatus
JP2007285754A (en) Flaw detection method and flaw detector
TWI334928B (en) Mura detection method and system
JP2009175041A (en) Method for estimating glare of displayed image
JP2005172559A (en) Method and device for detecting line defect on panel
JP2009229197A (en) Linear defect detecting method and device
JP2013117409A (en) Crack detection method
KR100271261B1 (en) Image data processing method and image data processing apparatus
JP2009036582A (en) Inspection method, inspection device and inspection program of plane display panel
JP4610656B2 (en) Inspection device, inspection method, program, and recording medium
KR20140067785A (en) Apparatus for automatic inspection of the color difference mura for the display panel and method for the same
JP4520880B2 (en) Blot inspection method and blot inspection apparatus
JP3854585B2 (en) Display defect detection method and display defect inspection apparatus for liquid crystal panel
JP2006194657A (en) Pseudo defective image creation method and device using it
KR20150125155A (en) Apparatus and method for brightness uniformity inspecting of display panel
JP4405407B2 (en) Defect inspection equipment
JP2008070242A (en) Noise-removing method and apparatus, unevenness defect inspecting method and apparatus
Chen et al. LOG-filter-based inspection of cluster Mura and vertical-band Mura on liquid crystal displays
JP2004219291A (en) Line defect detection method and device for screen
JP2006047077A (en) Method and device for detecting line defects of screen