TWI313673B - - Google Patents

Download PDF

Info

Publication number
TWI313673B
TWI313673B TW094139648A TW94139648A TWI313673B TW I313673 B TWI313673 B TW I313673B TW 094139648 A TW094139648 A TW 094139648A TW 94139648 A TW94139648 A TW 94139648A TW I313673 B TWI313673 B TW I313673B
Authority
TW
Taiwan
Prior art keywords
water
liquid
blast furnace
parts
cement
Prior art date
Application number
TW094139648A
Other languages
Chinese (zh)
Other versions
TW200640821A (en
Inventor
Kenji Yamamoto
Katsuaki Iriuchijima
Minoru Morioka
Mitsuo Takahashi
Original Assignee
Denki Kagaku Kogyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo Kk filed Critical Denki Kagaku Kogyo Kk
Publication of TW200640821A publication Critical patent/TW200640821A/en
Application granted granted Critical
Publication of TWI313673B publication Critical patent/TWI313673B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/06Calcium compounds, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/10Cements, e.g. Portland cement
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
    • C09K17/48Organic compounds mixed with inorganic active ingredients, e.g. polymerisation catalysts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00732Uses not provided for elsewhere in C04B2111/00 for soil stabilisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/70Grouts, e.g. injection mixtures for cables for prestressed concrete
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

1313673 (1) 九、發明說明 【發明所屬之技術領域】 本發明係關於高爐煙霧之有效的利用方法及土木、建 •築業界中之地盤改良工程和止水工程等所廣泛使用的改良 . 地盤用材料組成物,其調製方法,及使用其之灌注材料。 【先前技術】 Φ 近年來,環境問題大爲成長,特別,關於產業副產物 之有效利用,已進行各式各樣的嘗試。其中,高爐水碎爐 渣、飛灰、或矽灰等已確立許多有效的利用方法,例如, 於波特蘭水泥中大量混合使用,且於JIS中亦已被制定。 但是,仍未確立有效利用法之產業副產物亦察見許多 ,確立其利用方法乃爲朝向循環型社會的構築上所強烈要 求。其一者可列舉高爐煙霧。 高爐煙霧爲鋼鐵製造過程所發生的副產物,係爲取得 Φ 生鐵將來自高爐發生之煙霧予以集塵的灰麈。高爐煙霧的 有效利用法,直到目前已提案作爲玻璃纖維補強水泥複合 體中所用的混合材(參照專利文獻1、專利文獻2 )。但 是,於高爐煙霧之成分中含有鹼金屬,目前狀況爲因擔心 鹼骨材反應而難使用於混凝土,期望確立其利用方法。 另一方面,改良地盤用材料被廣泛使用於改良地盤工 程和止水工程等。 所謂改良地盤工程,爲指軟弱地盤爲首’於水壩和發 電廠等大型特殊構造物之基礎地盤補強的幕流地、隧道、 -5- (2) 1313673 石油和LPG儲備基地等之地中構造物施工時經由藥液注入 改良地盤之工程。所謂止水工程,爲指在低於地下水位的 場所、海底下、及帶水地盤中,防止令地下構造物掘削工 •程時所發生的湧水灌注至灌注材料,並且爲了提高地盤的 、水密性而灌注改良地盤用材料的工程。又,其他,亦有排 水性差的地盤和液狀化地盤等之一般住宅和大廈的地盤改 良和上下水道等之基本設施裝備中的防止地盤崩落工程等 •。 改良地盤用材料爲於此等工程中被廣泛使用,係指令 地盤固黏、並經由壓密脫水而令地盤強化等之目的中使用 的材料。 其次’列舉具體例說明關於上述之改良地盤用材料及 使用其之工程。 例如’於隧道的覆蓋中,於施工時和施工後,有時於 覆蓋混凝土背面發生空洞。若將此空洞就其原樣放置,則 # 隨著地面高物對於空洞部的崩落,令地表面下沈。於地面 高物崩落激烈的情形中,發生覆蓋混凝土的變形和破壞, 特別,發生隧道崩落’且地下水對於空洞的流入造成覆蓋 混凝土惡化、及其伴隨之惡化令混凝土片往行車線落下, 和由裂痕部之漏水造成冬季行車線凍結等之問題。 又’近年來’施工件數增加之隧道修補工程中,於^覆 蓋混凝土背面的空洞中充塡灌注材料,圖謀隧道安定化的 灌注方法。此處將所使用之灌注材料稱爲裹入材料,過去 以來一般係使用水泥一膨潤土。但是,其具有流動性過大 -6- (3) 1313673 、裹入材料於到達遠方爲止不必要地逸流,若具有湧水則 裹入材料流出,被稀釋令物性降低等之問題。 於是,提案於水泥和膨潤土之主材中,添加高吸水性 •樹脂’增大其黏度的方法,和添加水玻璃促進硬化的方法 • (參照專利文獻3 '專利文獻4 )。 但是’任一種方法均必須耗費時間令黏度上升,加上 添加高吸水性樹脂的方法爲高吸水性樹脂本身爲昂貴的。 φ 又’若由最初投入至灌注材料並且混練,則主材的黏度變 高’故不得不縮短壓送距離,具有令灌注場所受到限定的 問題。 另一方面,添加水玻璃的方法,因爲水玻璃的Ρ Η爲 1 3以上之強鹼性,故作業相當受到限制,來自硬化體的落 出水對環境造成負擔’以及具有硬化體之長期強度降低等 問題。 又,最近解決裹入材料所具有之問題的方法,已提案 # 於水泥一膨潤土和水泥一石碳灰(飛灰)的主材中,添加 聚合物作爲可塑化材料令其瞬間可塑化,改善水中不分離 性和安全性(參照專利文獻3、專利文獻5、及專利文獻6 )。 另一方面,爲了取得地盤的補強和止水效果,乃使用 利用水泥的灌注材料(參照專利文獻7 )。但是,於地質 爲細砂、泥渣、或黏土之情形中,具有對於地盤的滲透性 小,且灌注困難等之問題。 專利文獻1 :特開2002_47037號公報 (4) 1313673 專利文獻2 :特開2004-67477號公報 專利文獻3 :特開平1 0-237466號公報 專利文獻4 :特開平1 1 -6 1 1 23號公報 -專利文獻5 :特開平10-238289號公報 .專利文獻6:特開20 00-280231號公報 專利文獻7 :特開2004-149685號公報 φ 【發明內容】 [發明所欲解決之課題] 本發明爲可於地盤改良工程和止水工程等中廣泛利用 的改良地盤用材料,特別爲使用未發現有效利用法的高爐 飛灰,提供(1 )滲透性和耐久性優良的改良地盤用材料 組成物,(2 )比使用膨潤土和高吸水性樹脂之灌注材料 的長距離壓送性更優良,又,添加可塑化材料後迅速增黏 ’例如,裹入材料等之空隙充塡材料於到達遠方爲止不會 # 不必要地逸流,且即使有湧水亦不會流出空隙充塡材料, 且不會被稀釋而降低物性,更且,如水玻璃般之溶出水不 會變成強鹼性的改良地盤用材料組成物,及(3 )使用此 等改良地盤用材料組成物所構成之對於地盤具有高滲透性 的灌注材料。 [解決課題之手段] 本發明者重複致力硏究之結果,發現含有高爐煙霧所 構成之改良地盤用材料組成物可良好達成上述課題,並且 -8 - (5) 1313673 達到完成本發明。另外’本說明書中「份」和「%」只要 無特別規定則以質量基準表示。 即,本發明爲以下述爲要旨。 (1)—種改良地盤用材料組成物,其特徵爲含有高 爐煙霧。 (2 )如上述(1 )中記載之改良地盤用材料組成物, 其爲進一步含有砍灰(silica fume)。 (3)如上述(1)或(2)中記載之改良地盤用材料 組成物,其爲含有最大粒徑4Ο μπι之水泥或氫氧化鈣。 (4 )如上述(1 )中記載之改良地盤用材料組成物, 其爲含有水泥、及鹼性增黏型聚合物乳液所成者。 (5 )如上述(4 )中記載之改良地盤用材料組成物, 其中高爐煙霧爲相對於水泥100質量份,爲30~5〇0質量 份者。 (6 )如上述(4 )或(5 )中記載之改良地盤用材料 組成物,其中鹼性增黏型聚合物乳液,爲經由不飽和羧酸 類與乙烯性不飽和化合物之共聚所得的聚合物乳液。 (7)如上述(1) ~(6)中任一項記載之改良地盤用 材料組成物,其爲進一步含有硬化促進劑所成者。 (8 )如上述(1 ) ~ ( 7 )中任一項記載之改良地盤用 材料組成物,其中硬化促進劑爲含有鋁酸鹽及/或硫酸鹽 〇 (9)如上述(1)〜(8)中任一項記載之改良地盤用 材料組成物’其中高爐煙霧爲具有最大粒徑3〇 μ®。 (6) 1313673 (1 〇 )如上述(1 ) ~ ( 9 )中任一項記載之改良地盤 用材料組成物,其中高爐煙霧爲具有Si 02爲20 ~ 3 0%、 AI2〇3 爲 10~15%、及 CaO 爲 15~25%。 (11 ) 一種灌注材料,其特徵爲使用如上述(1 ) ~ ( 1 〇 )中任一項記載之改良地盤用材料組成物所構成。 (1 2 )如上述(1 1 )中記載之灌注材料,其爲含有鋁 酸鈣或鋁矽酸鈣、石膏、及鹼性刺激材料所構成。 (13 )如上述(1 1 )或(12 )中記載之灌注材料,其 爲相對於高爐煙霧1 〇〇質量份,含有鋁酸鈣或鋁矽酸鈣 1〜15質量份、石膏1~50質量份、及鹼性刺激材料^50 質量份所構成者。 (1 4 )如上述(1 1 )〜(1 3 )中任一項記載之灌注材 料,其中最大粒徑爲20 μιη以下。 (1 5 ) —種上述(4 ) ~ ( i 〇 )中任一項記載之改良地 盤用材料組成物的使用方法,其特徵爲將含有水泥、高爐 煙霧及水所構成的A液’與含有鹼性增黏型聚合物乳液和 水所Ϊ善成的B液’分別預先調製,並且於使用前立即混合 A液與B液。 (1 6 ) —種如上述(4 )〜(1 0 )中任一項記載之改良 地盤用材料組成物的使用方法,其特徵爲將含有水泥、高 爐煙霧及水所構成的A液’與含有硬化促進劑和鹼性增黏 型聚合物乳液和水所構成的B液,分別預先調製,並且於 使用前立即混合A液與B液。 (1 7 ) —種如上述(4 )〜(1 〇 )中任一項記載之改良 -10- (7) 13136731313673 (1) IX. INSTRUCTIONS OF THE INVENTION [Technical Fields of the Invention] The present invention relates to an effective use of blast furnace smog and a widely used improvement in site improvement works and water stop projects in the civil engineering, construction, and construction industries. A material composition, a method of preparing the same, and a potting material using the same. [Prior Art] Φ In recent years, environmental problems have grown tremendously. In particular, various attempts have been made to effectively utilize industrial by-products. Among them, blast furnace slag, fly ash, or ash has established many effective utilization methods, for example, a large amount of mixed use in Portland cement, and has also been formulated in JIS. However, there are many industrial by-products that have not yet established an effective utilization method, and the establishment of their use methods is strongly demanded for the construction of a recycling-oriented society. One of them can be cited as blast furnace smog. Blast furnace smog is a by-product of the steel manufacturing process. It is the ash that obtains Φ pig iron to collect dust from the blast furnace. The effective use of blast furnace smog has been proposed as a mixed material for use in a glass fiber reinforced cement composite (see Patent Document 1 and Patent Document 2). However, alkali metals are contained in the components of blast furnace smog, and the current situation is difficult to use in concrete due to fear of alkali-bone reaction, and it is desired to establish a utilization method. On the other hand, materials for improving the site are widely used for improving site engineering and water stopping projects. The so-called improved site construction refers to the construction of the site of the site of the large-scale special structures such as dams and power plants, tunnels, and -5- (2) 1313673 oil and LPG reserve bases. The project of injecting the improved site through the liquid medicine during the construction of the material. The so-called water stop project refers to the prevention of flooding of water into the infusion material during the construction of underground structures below the groundwater level, under the sea, and in the water-bearing site, and in order to improve the site, Watertightness and infusion of materials for improved site materials. In addition, there are also sites for the improvement of the general construction of houses and buildings such as sites with poor drainage and liquid-distributed sites, and the prevention of site collapse in basic facilities such as water and sewage. The material for the improved site is widely used in such projects, and is a material used for the purpose of commanding the site to be fixed and being strengthened by compaction and dehydration. Next, the specific examples of the above-mentioned materials for improving the flooring and the works using the same will be described. For example, in the coverage of a tunnel, a void sometimes occurs on the back of the covered concrete during construction and after construction. If the hole is placed as it is, then # With the collapse of the ground high object for the cavity, the surface of the ground sinks. In the case of high ground mass collapse, deformation and damage of the covered concrete occur, in particular, tunnel collapse occurs, and the inflow of groundwater into the cavity causes the concrete to deteriorate, and the accompanying deterioration causes the concrete piece to fall toward the lane, and Water leakage in the cracks caused problems such as freezing of the winter traffic lanes. In the tunnel repairing project in which the number of constructions has increased in recent years, the infusion material is filled in the cavity covering the back of the concrete, and the tunneling method is used to stabilize the tunnel. The infusion material used herein is referred to as a wrap material, and cement-bentonite has been used in the past. However, it has excessive fluidity -6-(3) 1313673, and the wrapped material unnecessarily escapes when it reaches the far side. If there is water inrush, the material is swept in, and the material is diluted to reduce the physical properties. Then, it is proposed to add a high water absorbency resin to the main material of cement and bentonite to increase the viscosity thereof, and a method of adding water glass to promote hardening (see Patent Document 3 'Patent Document 4). However, any of the methods must take time to increase the viscosity, and the method of adding the super absorbent resin is that the superabsorbent resin itself is expensive. When φ and 'the initial injection into the potting material and kneading, the viscosity of the main material becomes high', so the pressure feed distance has to be shortened, and there is a problem that the filling place is limited. On the other hand, in the method of adding water glass, since the enthalpy of the water glass is strongly alkaline of 13 or more, the operation is considerably restricted, the falling water from the hardened body imposes a burden on the environment, and the long-term strength of the hardened body is lowered. And other issues. Moreover, recently, a method for solving the problem of the wrapped material has been proposed. In the main material of cement-bentonite and cement-stone carbon ash (fly ash), adding a polymer as a plasticizable material enables instant plasticization and improvement in water. Non-separability and safety (see Patent Document 3, Patent Document 5, and Patent Document 6). On the other hand, in order to obtain the reinforcing effect and the water stopping effect of the ground, a potting material using cement is used (refer to Patent Document 7). However, in the case where the geological is fine sand, sludge, or clay, there is a problem that the permeability to the ground is small, and the perfusion is difficult. Patent Document 1: JP-A-2002-47037 (4) 1313673 Patent Document 2: JP-A-2004-67477 Patent Document 3: Japanese Laid-Open Patent Publication No. Hei No. Hei No. Hei. Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. The present invention is an improved site material which can be widely used in a site improvement project, a water stop project, and the like, and particularly provides a material for an improved site which is excellent in permeability and durability by using blast furnace fly ash in which no effective use method is found. The composition, (2) is superior to the long-distance pressure-feeding property of the potting material using bentonite and superabsorbent resin, and is rapidly thickened by adding a plasticizable material. For example, a void-filled material that is wrapped in a material or the like is reached. It will not be unnecessarily escaping in the distance, and even if there is water inrush, it will not flow out of the void filling material, and will not be diluted to reduce the physical properties. Moreover, the water-like dissolved water will not become strongly alkaline. Improved site A material composition, and (3) a potting material having a high permeability to the ground made of the material composition for improving the composition of the ground. [Means for Solving the Problem] The inventors of the present invention have succeeded in the research and found that the material composition for the improved floor material composed of the blast furnace smoke can well achieve the above-mentioned problems, and -8 - (5) 1313673 achieve the present invention. In addition, "parts" and "%" in this manual are expressed on a quality basis unless otherwise specified. That is, the present invention is based on the following points. (1) A material composition for improving a site characterized by containing blast furnace fumes. (2) The material composition for improved flooring according to the above (1), which further comprises a silica fume. (3) The material composition for improved flooring according to the above (1) or (2), which is a cement or calcium hydroxide having a maximum particle diameter of 4 μm. (4) The material composition for improved flooring according to the above (1), which comprises a cement and an alkali-bonded polymer emulsion. (5) The material composition for a modified floor according to the above (4), wherein the blast furnace smog is 30 to 5,000 parts by mass based on 100 parts by mass of the cement. (6) The material composition for improved flooring according to the above (4) or (5), wherein the basic tackifying polymer emulsion is a polymer obtained by copolymerization of an unsaturated carboxylic acid and an ethylenically unsaturated compound. Emulsion. (7) The material composition for a modified ground according to any one of the above-mentioned (1) to (6), which further comprises a curing accelerator. (8) The material composition for an improved ground according to any one of the above (1), wherein the hardening accelerator is an aluminate and/or a sulfate (9) as described above (1) to (1) 8) The material composition for an improved site according to any one of the preceding claims, wherein the blast furnace smog has a maximum particle size of 3 〇μ®. (6) The material composition for the improved site according to any one of the above (1) to (9), wherein the blast furnace smoke has a Si 02 of 20 to 30% and an AI2〇3 of 10~ 15%, and CaO is 15~25%. (11) A potting material comprising the material composition for a modified floor according to any one of the above (1) to (1). (1) The infusion material according to the above (1 1), which comprises calcium aluminate or calcium aluminosilicate, gypsum, and a basic stimulating material. (13) The infusion material according to the above (1 1) or (12), which contains 1 to 15 parts by mass of calcium aluminate or calcium alumininate, and 1 to 50 parts of gypsum relative to 1 part by mass of blast furnace smoke The mass part and the alkaline stimulating material ^50 parts by mass. (1) The infusion material according to any one of the above (1 1) to (1), wherein the maximum particle diameter is 20 μm or less. (1) The method of using the material composition for improved flooring according to any one of the above (4) to (i), characterized in that the liquid A containing the cement, the blast furnace smoke, and the water The alkaline-adhesive polymer emulsion and the water-based B-liquid were separately prepared in advance, and the liquid A and the liquid B were mixed immediately before use. The method of using the material composition for improved flooring according to any one of the above (4) to (10), characterized in that the liquid A containing cement, blast furnace smoke, and water is The liquid B consisting of a hardening accelerator and a basic tackifying polymer emulsion and water is separately prepared in advance, and the liquid A and the liquid B are mixed immediately before use. (1 7 ) An improvement as described in any one of the above (4) to (1 〇 ) -10- (7) 1313673

地盤用材料組成物的使用方法,其特徵爲將含有水泥、高 爐煙霧及水所構成的A液,與含有硬化促進劑和水所構成 的B液,與含有鹼性增黏性聚合物乳液和水所構成的C液 ,分別預先調製,並且於使用前立即混合A液、B液及C 液。 (發明之效果) φ 根據本發明之含有高爐煙霧的改良地盤用材料組成物 及使用其之灌注材料,因滲透性和耐久性優良,故可廣泛 利用於改良地盤工程和止水工程等,又,因爲具有顯示急 劇的黏度上升、強度表現性優良、於水中具有不分離性、 且pH値爲比使用水玻璃之情況更低之特性,故可成爲地 面高物之空洞和空隙部分的裹入材料、密封水泥的充塡材 料、或以雙管單相或複相之灌注工法的瞬結性灌注材料。 更且,根據本發明之改良地盤用材料組成物及使用其 # 之灌注材料,於雙管雙包裝器工法中之密封材料和一次灌 注材料等之令水泥奶、水泥砂漿、或混凝土的黏度必須急 劇上升的用途中爲有效的。更且,因爲可達成對於地盤的 滲透性優良,灌注性高,且強度表現性優良等之效果,故 可對以往難以應用之地質地盤灌注。 【實施方式】 本發明所使用之高爐煙霧爲鋼鐵業界發生的副產物, 將取得生鐵時由高爐所發生之煙霧予以集塵的灰塵。本發 -11· V; (8) 1313673 明中,高爐煙霧之成分以Si02爲20~30%、Al2〇3爲 1〇~15%、及CaO爲15~25%爲佳。其他成分爲具有Fe2〇3 爲 1~5%、MgO 爲 3~9%、Na20 爲 0.5 〜2%、K20 爲 5~12% 、S〇3 爲 5~12%、S 爲 0.5% 以下、及]vinO 爲 0_1~0.5% 爲 佳。又’高爐煙霧以最大粒徑爲30 μιη、平均粒徑爲3~5 μηα爲適當。又’高爐煙霧的粉末度爲布萊恩粉體比表面 積値(以下,稱爲布萊恩値)爲15,000~25,000cm2/g之範 φ 圍爲佳。高爐煙霧可就其原樣使用,並且進一步進行粉碎 和分級、予以微粉末化供使用亦可。 本發明所使用之水泥並無特別限定,較佳具體例可列 舉例如普通、早強、超早強、低熱、及中庸熱等各種波特 蘭水泥、於此等波特蘭水泥中,混合高爐爐渣、飛灰、或 二氧化矽之各種混合水泥、或、石灰石粉末和高爐緩冷爐 渣微粉末的飛水泥、利用廢棄物型水泥,所謂的環保水泥 等。可倂用其中一種或二種以上。又,本發明所謂之水泥 • 混凝土,爲水泥奶、砂漿、或混凝土的總稱。 本發明之改良地盤用材料組成物中,高爐煙霧以外之 成分’由提高對於地盤之滲透性方面而言,則以含有矽灰 爲佳。其中,以使用酸性矽灰爲佳。又,含有酸性矽灰和 通常的砂灰亦爲佳。 此處,所謂酸性矽灰,爲將矽灰1克放入純水1 〇〇cc 中攪拌時之上清液的pH爲顯示5以下之酸性者。 矽灰之粉末度雖無特別限定,但通常以BET比表面積 爲2~20萬m2/g左右爲佳。 -12- (9) 1313673 又’本發明之改良地盤用材料組成物,於進一步提高 耐久性上’以倂用水泥或氧化鈣之微粉末作爲高爐煙霧以 外之成分爲佳。耐水性可根據經改良地盤材料所改良之硬 .化體中確認滲出水,所謂的“離漿水”而加以評價。 .本發明之上述改良地盤用材料組成物,比先前廣泛利 用之水玻璃系的改良地盤材料’和高爐爐渣微粉末作爲主 體的改良地盤材料,具有少發生離漿水,且耐久性優良的 φ 特徵。 上述之水泥或氫氧化鈣(以下,稱爲水泥類)爲最大 粒徑爲40 μιη ’且以實質上不含有超過40 μιη之粒子的水 泥類爲佳。具體而言,超過40 μπι之粒子含有率爲1 %以 下的水泥類,最大粒徑爲30 μιη爲更佳。又,平均粒徑爲 10 μιη以下爲佳,且5 μιη以下爲更佳。水泥類之最大粒 徑若超過40 μιη,則滲透性有時變差。另外,本發明中所 謂之平均粒徑,爲以雷射繞射式粒度分佈測定裝置予以測 φ 定者。 上述之氫氧化鈣並無特別限定,可令生石灰予以水合 而取得,且可利用市售物質。 更且,此等水泥類亦可經由粉碎操作予以微粉末化, 並將微粉末部分予以分級操作而取得。 本發明之上述改良地盤用材料組成物中之各材料的配 合比例並無特別限定,但以高爐煙霧與矽灰之合計1 00份 中,矽灰爲10〜90份爲佳,且以2〇~80份爲更佳。矽灰未 滿1 〇份,則有時無法充分期望提高滲透性之效果,相反A method for using a material composition for a site, characterized in that a liquid A comprising cement, blast furnace smoke and water, a liquid B composed of a hardening accelerator and water, and an alkaline thickening polymer emulsion and The liquid C composed of water is separately prepared in advance, and the liquid A, liquid B, and liquid C are mixed immediately before use. (Effect of the Invention) φ According to the present invention, the material composition for a modified floor material containing blast furnace fumes and the potting material using the same are excellent in permeability and durability, and can be widely used for improving site engineering and water stop engineering, etc. Because it has a sharp viscosity increase, excellent strength performance, non-separability in water, and pH 値 is lower than that of water glass, it can be wrapped in voids and voids on the ground. Materials, plugged materials for sealing cement, or transient knotting materials with double-tube single-phase or multi-phase filling methods. Moreover, according to the improved material composition for the disc and the potting material using the same according to the present invention, the viscosity of the cement, cement mortar, or concrete in the double-tube double-packer method, the sealing material and the primary infusion material must be It is effective for sharply rising uses. Further, since it is excellent in permeability to the ground, high in perfusion property, and excellent in strength expression, it can be infused into a geological site which has been difficult to apply in the past. [Embodiment] The blast furnace smog used in the present invention is a by-product produced in the steel industry, and dust which is collected by the smog generated by the blast furnace when the pig iron is obtained. This is a -11·V; (8) 1313673 In the Ming Dynasty, the composition of blast furnace smoke is preferably 20~30% for SiO2, 1〇~15% for Al2〇3, and 15~25% for CaO. Other components are 1 to 5% of Fe2〇3, 3 to 9% of MgO, 0.5 to 2% of Na20, 5 to 12% of K20, 5 to 12% of S〇3, and 0.5% or less of S, and ]vinO is preferably 0_1~0.5%. Further, the blast furnace smoke has a maximum particle size of 30 μηη and an average particle diameter of 3 to 5 μηα. Further, the powderiness of the blast furnace smog is preferably a Bran powder having a surface area (hereinafter referred to as Brian 値) of 15,000 to 25,000 cm 2 /g. The blast furnace fumes can be used as they are, and further pulverized and classified, and micronized for use. The cement used in the present invention is not particularly limited, and preferred examples thereof include various Portland cements such as ordinary, early strength, super early strength, low heat, and moderate heat, and Portland cement in such mixed blast furnaces. Various mixed cements of slag, fly ash, or cerium oxide, or fly ash of limestone powder and blast furnace slow-cooling slag powder, waste-type cement, so-called environmentally friendly cement. One or more of them may be used. Further, the so-called cement concrete according to the present invention is a general term for cement milk, mortar, or concrete. In the material composition for improved flooring of the present invention, the component other than the blast furnace smog is preferably ash-containing in terms of improving the permeability to the ground. Among them, it is preferred to use acidic ash. Further, it is preferable to contain acidic ash and usual sand ash. Here, the acidic ash is a pH at which the pH of the supernatant is 5 or less when the ash is put in 1 〇〇 cc of pure water. Although the powdery degree of the ash is not particularly limited, it is usually preferably about 20,000 to 200,000 m2/g. -12- (9) 1313673 Further, the material composition for the improved floor of the present invention is preferably a component other than blast furnace smoke, in which fine powder of cement or calcium oxide is used for further improvement in durability. The water resistance can be evaluated by confirming the oozing water in the hardened body improved by the improved slab material, so-called "slurry water". The material composition for improving the above-mentioned surface of the present invention has less water-repellent water and superior durability than the improved ground material of the water glass system and the improved ground material of the blast furnace slag fine powder which have been widely used in the prior art. feature. The cement or calcium hydroxide (hereinafter referred to as cement) is preferably a cement having a maximum particle diameter of 40 μm and having substantially no particles exceeding 40 μm. Specifically, a cement having a particle content of more than 40 μm and a content of less than 1% is more preferably 30 μmη. Further, the average particle diameter is preferably 10 μηη or less, and more preferably 5 μιη or less. If the maximum particle diameter of the cement exceeds 40 μm, the permeability sometimes deteriorates. Further, the average particle diameter referred to in the present invention is determined by a laser diffraction type particle size distribution measuring apparatus. The above-mentioned calcium hydroxide is not particularly limited, and the quicklime can be obtained by hydration, and a commercially available substance can be used. Furthermore, these cements can also be micronized by a pulverization operation, and the fine powder fraction can be obtained by fractional operation. The mixing ratio of each material in the material composition for improving the above-mentioned composition of the present invention is not particularly limited, but in a total of 100 parts of blast furnace smoke and ash, 10 to 90 parts of ash is preferable, and 2 〇 is preferable. ~80 servings are better. If the ash is less than 1 part, sometimes the effect of improving the permeability may not be fully expected.

-13- (10) 1313673 地,矽灰若超過90份則強度表性不夠充分,且有令離漿 水顯著存在的傾向。 又,高爐煙霧與石灰類之合計100份中,水泥類爲 1~50份爲佳,且以3~30份爲更佳。水泥類之配合比例未 滿1份,則有時無法期望初期之強度表現性爲以良好之效 果,若超過50份則滲透性有變差之傾向。 使用本發明之上述改良地盤用材料組成物時,所使用 φ 之水爲相對於改良地盤用材料組成物100份,以50〜500 份爲佳,且以1〇〇~ 3 00份爲更佳。未滿50份則有時滲透 性不夠充分,若超過500份則有時難以確保耐久性。 又,本發明之改良地盤用材料組成物爲含有高爐煙霧 、水泥及鹼性增黏型聚合物乳液時,所使用之高爐煙霧的 使用量爲根據高爐煙霧的品質而改變,故無法一槪規定, 但一般而言,相對於水泥1 0 0份,以3 0 ~ 5 0 0份爲佳,且 以5 0~ 3 00份爲更佳。未滿30份則有黏度不上升之情況, φ 和流動性變大、水中不分離性小之情況,若超過5 00份則 黏性變得過高,有時令改良地盤用材料組成物的混練變爲 困難。 上述本發明改良地盤用材料組成物所使用之鹼增黏型 聚合物乳液(以下,稱爲本乳液),爲指經由鹼而增黏的 聚合物乳液。 本乳液可列舉例如不飽和羧酸類、乙烯性不飽和化合 物、不飽和羧酸類與乙烯性不飽和化合物的共聚物等各種 。由顯示更優良效果方面而言,以不飽和羧酸類與乙烯性 -14 - (11) 1313673 不飽和化合物之共聚所得的聚合物乳液爲佳。 不飽和羧酸類與乙烯性不飽和化合物之聚 舉以乳化聚合、懸浮聚合、溶液聚合、或塊狀 予以共聚物的方法等。 .上述不飽和羧酸類可列舉丙烯酸、甲基丙 酸、順丁烯二酸、反丁烯二酸、檸康酸、烏頭 等之不飽和羧酸;順丁烯二酸酐和檸康酸酐等 Φ 酸酐;衣康酸單甲酯、衣康酸單丁酯、及順丁 酯等之不飽和羧酸酐。其中,由增黏性更加優 ,以不飽和羧酸爲佳,且以丙烯酸及/或甲基 佳。 上述乙烯性不飽和化合物並無特別限定, 更加優良方面而言,以丙烯酸酯單體及/或甲 單體爲佳。丙烯酸酯可列舉丙烯酸甲酯、丙烯 烯酸丁酯、丙烯酸己酯、丙烯酸環己酯、丙烯 φ 烯酸羥乙酯、丙烯酸2-乙基己酯、丙烯酸縮水 甲基丙烯酸酯可列舉甲基丙烯酸甲酯、甲基丙 甲基丙烯酸丁酯、甲基丙烯酸羥乙酯、甲基丙 油酯等。 本乳液之不飽和羧酸類與乙烯性不飽和化 化,於增黏型更加優良方面而言,不飽和羧酸 不飽和化合物=20 : 1 ~ 1 : 20爲佳,且以5 : 1 佳。於此範圍外有時無法取得良好的鹼增黏型 本乳液之使用量爲相對於水泥1 00份,以 合方法可列 聚合等方法 烯酸、衣康 酸、丁烯酸 之不飽和羧 烯二酸單乙 良方面而言 丙烯酸爲更 但由增黏型 基丙烯酸酯 酸乙酯、丙 酸辛酯、丙 甘油酯等。 烯酸乙酯、 烯酸縮水甘 合物之共聚 類:乙烯性 ~ 1 : 5爲更 〇 換算成固形 -15- (12) 1313673 成分爲0·1~20份爲佳,且以0.2〜1份爲佳。 增黏效果變少,流動性變大,水中不分離有 過2份則初期強度表現性有時變小。 本發明之改良地盤用材料組成物可進一 進劑。若改良地盤用材料組成物的硬化量, 料分離之析水(浮水),於硬化後生成空隙 缺隔。 本發明所使用之硬化促進劑爲促進改良 成物的硬化,減低析水,抑制空隙的生成, 度表現性。 硬化促進劑可列舉硫酸鋰、硫酸鈉、硫 、硫酸鈣、硫酸鋁、明礬鉀、硫酸鐵等之硫 、碳酸鈉、碳酸鉀等之碳酸鹽;氫氧化鉀、 氧化鎂、氫氧化鋁、氫氧化鉀、氫氧化鈣等 氯化鈣、氯化鎂、氯化鐵等之氯化物;鋁酸 鋁酸鉀、鋁酸鈣等之鋁酸鹽;矽酸鋰、矽酸 之矽酸鹽;二乙醇胺和三乙醇胺等之胺類; 鈣等之有機酸的鈣鹽;矽膠和氧化鋁膠等之 爲一種或倂用二種以上。其中,由促進和強 的方面而言,以鋁酸鹽及/或硫酸鹽爲佳, 鹽和硫酸鹽爲更佳。 鋁酸鹽中,由促進硬化和強度表現性〕 鈣(以下,亦稱爲CA)爲佳。CA爲Ca〇: 成分之化合物的總稱’例如’將含有氧化! 未滿0.1份則 時變小,若超 步使用硬化促 則引起一種材 且變成構造的 地盤用材料組 並且可助於強 酸鉀、硫酸鎂 酸鹽;碳酸鋰 氫氧化鈉、氫 之氫氧化物; 鋰、鋁酸鈉、 鈉、矽酸鉀等 甲酸鈣和乙酸 膠體等。其可 度表現性優良 且以倂用鋁酸 面而言以銘酸 [A1 2 Ο 3作爲主 之原料、與含 -16· (13) 1313673 有氧化鋁之原料等混合,並進行以審煅燒和以電爐熔融等 之熱處理所得之CaO與Al2〇3作爲主成分之化合物的總稱 。具體例可列舉 CaO · 2Al2〇3、CaO · Al2〇3、12CaO · 7 A12 〇 3 ' 1 1 C a O · 7 A12 〇 3 * C a F 2 ' 3 C a Ο · AI2O3 及 3 C a 0 · 3 A12 〇 3 · C a S O 4等所表示之結晶性銘酸耗類;和C a 〇和 Al2〇3作爲主成分之非晶質化合物。其中,於強度表現性 方面而言以非晶質之12CaO · 7Al2〇3組成者爲更佳。 鋁酸鈣之粉末度爲布萊恩値爲3,000cm2/g以上爲佳, 且以5,000cm2/g以上爲更佳,未滿3,000cm2/g則有時令 初期強度表現性小。 硫酸鹽中,於促進硬化和強度表現性方面而言則以硫 酸鈣及/或硫酸鋁爲佳。硫酸鈣可列舉無水石膏、半水石 膏、或二水石膏等。其中,於促進硬化和強度表現性方面 ,則以無水石膏爲佳。 硫酸鹽之粉末度爲布萊恩德比表面積爲3,000cm2/g以 上,且以5,000cm2/g以上爲更佳。未滿3,000cm2/g則有 時令強度表現性爲小。 於倂用鋁酸鹽和硫酸鹽作爲硬化促進劑時,硫酸鹽之 使用量相對於鋁酸鹽100份,以20〜500份爲佳,且以 50〜1 50份爲更佳。未滿20份則有時令初期強度表現性小 ’若超過500份則流動性變大,水中不分離性變小,長期 強度表現性有時變小。 硬化促進劑之使用量爲根據其種類而異,無法一槪規 定’一般而言,相對於水泥100份,以1~30份爲佳,且 -17- (14) 1313673 以2 ~ 2 0份爲更佳。未滿1份則流動性變大’水中不分離 性變小,強度表現性有時變小,若超過3 0份則黏度變高 ,壓送距離有時變短。 於本發明之含有水泥所構成之改良地盤用材料組成物 .中,亦可倂用砂和砂礫等之骨材、減水劑、及防凍劑等。 本發明中與水泥混合之水量並無特別限定,相對於水 泥100份,以100~3 00份爲佳,且以150~200份爲更佳。 % 未滿1 00份,則含有水泥所構成之改良地盤用材料組成物 的混練有時變爲困難,若超過3 00份則流動性變大,水中 不分離性有時變小。 本發明之改良地盤用材料組成物爲含有高爐煙霧、水 泥、及本乳液所構成之情況,其使用方法並無特別限定, 將混合高爐煙霧、水泥、及水所成之Α液,與含有本乳液 和水所成之B液,於使用前立即混合的使用方法,因可令 黏度急劇上升故爲較佳之方法。另外,將本乳液預先與水 ^ 混合作成溶液或懸浮液,爲混合性良好,且由增黏性方面 而百爲佳。 本乳液爲與水混合使用爲佳。此情況之水使用量並無 特別限定,但以本乳狀液之固形成分5 ~ 2 0倍之水予以稀 釋爲佳,使用硬化促進劑時,以稀釋1 ~ 3倍爲佳。水量若 少於此,則黏性變高且混合性有時變差,若水量變多,則 此稀釋水之稀釋效果變多,水中不分離性有時變差。 剩餘的水可於水泥和高爐煙霧中混合,並分別壓送水 泥·高爐煙霧液的A液;和本乳液的B液,且於管嘴前端 -18- (15) 1313673 〜邊合流混合一邊供使用亦可。特別,將水泥一高爐煙霧 液的A液,本乳液和水混合作成2倍量之本乳液的B液分 別壓送,且於管嘴前端一邊合流一邊供使用爲更佳。 上述合流混合的方法可列舉使用Y字管等之混合管的 方法、使用雙管的方法、及爲了將本乳液之B液以淋洗狀 合流混合至水泥一高爐煙霧液之A液而使用輸入塊之方法 等。 又,爲了更加均勻混合,亦可列舉於合流混合後之管 中安裝螺旋狀的混合器,進一步混合的方法。 本發明之改良地盤用材料組成物爲含有高爐煙霧、水 泥、本乳液、及硬化促進劑所構成之情況,其使用方法爲 同上述無特別限定,將高爐煙霧、水泥、及水混合所成的 A液、與含有硬化促進劑和水所成之液體(以下,稱爲硬 化促進劑)、與含有本乳液和水所成之液體(以下,稱爲 本乳液)混合所成之B液,於使用前立即混合,或者,將 高爐煙霧、水泥、及水混合所成之A液、與硬化促進劑所 成之B液 '與本乳液所成之C液,於使用前立即混合的方 法,因可令黏度急劇上升故爲較佳之方法。 將本乳液與硬化促進劑預先與水混合作成溶液或懸浮 液,爲混合性良好,由增黏型方面而言爲佳。此時之水使 用量並無特別限定,於本乳液之情況,以本乳液之固形成 分之5~20倍水予以稀釋爲佳,於硬化促進劑之情況,以 其1〜3倍之水予以稀釋爲佳。水量若較少,則黏度變高且 混合性有時變小,若水量變多,則流動性變大且水中不分 •19- (16) 1313673 離性有時變小。 於本發明中,將高爐煙霧、水泥、及混合所成之A液 '與硬化促進劑液與本乳液混合所成之B液分別壓送,並 於管嘴前端合流混合使用亦可。特別,將高爐煙霧、水泥 、及水混合所成之A液,硬化促進劑液所成之B液,及本 乳液所成之C液三種液體分別壓送,並於管嘴前端合流混 合供使用爲更佳。 # 又,硬化促進劑因與水混合後1小時以內硬化,故 以倂用延遲劑爲佳。延遲劑可列舉檸檬酸、酒石酸、葡糖 酸、及蘋果酸等之羥基羧酸或其鈉鹽和鉀鹽、硼酸、三多 磷酸鹽、及焦磷酸鹽等,且可倂用其一種或二種以上。其 中於延遲效果大之方面,以羥基羧酸及/或羥基羧酸鹽爲 佳,且以檸檬酸及/或檸檬酸鈉爲更佳。 延遲劑之使用量,相對於水泥100份,以0.01 ~ 10份 爲佳,且以0.05〜5份爲更佳。未滿0·01份則延遲效果小 ® ,若超過1 〇份則強度表現性有時變小。 上述之合流混合方法,可列舉使用Υ字管等混合管之 方法,使用三管之方法,及使用輸入塊,令硬化促進劑液 之Β液與本乳液之C液,分別以淋洗狀,於水泥、高爐煙 霧及水混合所成之Α液中合流混合的方法等。 又,爲了更加均勻混合,亦可列舉於合流混合後之管 中安裝螺旋狀的混合器,並且再混合的方法。 於使用本發明之改良地盤用材料組成物所構成之灌注 材料中所用的高爐煙霧,爲於鋼鐵的製造過程中,取得生 -20- (17) 1313673 鐵時將來自高爐所發生之煙霧予以集塵的灰塵,就其原樣 供使用亦可,更且,進行粉碎和分級’並且予以微粉末法 供使用亦可。本發明中以取得對於地盤的高滲透性般,以 最大粒子直徑爲20 μιη以下予以分級供使用爲佳。 於本發明之使用含有高爐煙霧、鋁酸鈣或鋁矽酸鈣、 石膏、及鹼刺激材料之改良地盤用材料組成物所成的灌注 材料中,所使用之鋁矽酸鈣(以下,稱爲CAS )爲含有 • CaO、Α12〇3 '及Si02,經由倂用石膏,主要有助於短期 強度的表現。 CAS的組成爲CaO含有率爲20~60%、A12〇3含有率 爲20~70%、及Si02含有率爲5-30%爲佳,且以CaO含有 率 3 0 ~ 5 5 % ' A12 〇 3 含有率 30〜60%、及 S i Ο 2含有率 10〜20%爲更佳。於此範圍外有時令短期強度變小。 CAS爲經由令石灰石等之氧化鈣原料、氧化鋁、 Boxide、長石、及黏土等之氧化銘原料,及砍石、砂砂、 • 石英、及砍藻土等之一氧化砂原料等以指定之比例配合後 ’以旋轉窖等予以煅燒’或以電爐和高周波爐等予以熔融 則可製造。 CAS 亦可使用 2CaO. Α12〇3· Si02 和 CaO. Al2〇3. 2Si〇2等之結晶性化合物’於短期強度大之方面,以將熔 融物予以急冷所得之玻璃質者爲佳。 CAS的玻璃化率爲將CAS於i,〇〇(TC下加熱2小時 後,以5 °C /分鐘之冷卻速度予以徐冷,並依據粉末X射線 繞射法求出結晶礦物的主波峯面積,由CAS結晶的主波 -21 - (18) 1313673 峯,以X ( % ) =100x ( l-S/S。)型式求出。由短期強度方 面而言以5 0 %以上爲佳,以8 0 %以上爲更佳,且以9 0 %以 上爲再佳。未滿5 0 %則短期強度小。 C AS的使用量爲相對於高爐煙霧1〇〇份,以1~50份 爲佳,且以5~30份爲更佳。未滿1份則短期強度小,若 超過5 0份則灌注材料作成懸浮液時的黏度變大,有時令 對於地盤的滲透性降低。 • 又,於本發明之灌注材料中所使用的鋁酸鈣,爲經由 倂用石膏而有助於強度表現。具體例可使用先前例示作爲 改良地盤用材料組成物中所含有的任一種C A。其中,由 注入材料之硬化時間和強度表現性方面而言,則以選定 Ca0/Al203莫耳比爲1~2之非晶質者爲佳。 CA之玻璃化率爲與上述CAS之情況完全同樣地,以 X(%)=100x(l-S/SQ)型式求出。但,S、S〇 爲與 CAS 之情況同樣求出。由短期強度方面而言以5 0 %以上爲佳, • 且以80%以上爲更佳,以90%以上爲再佳。未滿50%則短 期強度小。 CA爲將CaO原料與Al2〇3原料等以旋轉蜜和電爐予 以熱處理等之方法取得。製造C A時之原料並無特別限定 ,可列舉例如石灰石和貝殼等之碳酸鈣、消石灰、及生石 灰等作爲CaO原料,且AhC»3原料除了可列舉例如Boxide 和所謂鋁殘灰之產業副產物以外,可列舉鋁粉等。 CA之使用量爲相對於高爐煙霧1〇〇份,以i — sO份爲 佳’且以5〜3 0份爲更佳。未滿1份則短期強度小,若超 -22- (19) 1313673 過50份則將灌注材料作成懸浮液時之黏度變大,且對於 地盤的滲透性降低。 更且,於本發明之上述灌注材料中使用的石膏可列舉 無水石膏、半水石膏 '二水石膏。更且,可使用天然石膏 .、和磷酸副生成石膏、排除石膏、氟酸副生成石膏等之化 學石膏、或將其予以熱處理所得的石膏等。其中於強度表 現性大之方面而言以無水石膏爲佳。 φ 石膏之使用量爲相對於高爐煙霧100份,以1〜50份 爲佳,且以5 ~ 5 0份爲更佳。未滿1份則短期強度小,若 .超過50份則對於地盤的滲透性降低。 又,更且,本發明之上述灌注材料中所使用的鹼性刺 激材料,經由與高爐煙霧倂用,則有助於硬化、長期強度 之增大。 鹼性刺激材料可列舉氫氧化鈉、氫氧化鉀、氫氧化鋰 等之鹼金屬氫氧化物、碳酸鈉、碳酸鉀、碳酸鋰等之鹼金 • 屬碳酸鹽,及消石灰等。雖無特別限定,但其中由倂用高 爐煙霧所造成之硬化、長期強度之增大方面而言,以消石 灰爲佳。 鹼性刺激材料之使用量爲相對於高爐煙霧1 〇〇份,以 1~50份爲佳,且以3~20份爲更佳。未滿1份則長期強度 小,若超過50份則對於地盤之滲透性有時降低。 本發明中灌注材料之最大粒徑爲20 μπι爲佳,且以 15 μπι爲更佳,以10 μιη以下爲最佳。若超過20 μιη,則 根據地盤之地質有時令對於微細間隙的灌注變爲困難。 V'..: -23- (20) 1313673 灌注材料之粒度的調製方法並無特別限定,可將各材 料分別以球磨等之粉碎機予以粉碎,並且經由分級收集20 μπι以下者,並於其後混合,或者將各材料混合後粉碎, • 並且經由分級收集.2 〇 μ m下者之任一種方法。但是,若將 . 各材料混合後粉碎,並且分級,則恐因各材料的密度差而 令混合比改變,故將各材料分別粉碎,且分級並於其後混 合爲佳。 φ 更且,本發明中,爲了調整取得所需的硬化時間,乃 以倂用凝結調整劑爲佳。 凝結調整劑可列舉鋁酸鈉和鋁酸鉀等之鋁酸鹽、碳酸 鈉和碳酸鉀等之碳酸鹽、氫氧化鈉和氫氧化鉀等之氫氧化 物、硫酸鋁、硫酸鐵(III )、及明礬等之硫酸鹽、矽酸鈉 和矽酸鉀等之矽酸鹽、磷酸鈉、磷酸鈣、及磷酸鎂等之磷 酸鹽、及、硼酸鋰和硼酸鈉等之硼酸鹽等之無機鹽類、檸 檬酸、葡糖酸、酒石酸、及蘋果酸或其鈉鹽、鉀鹽、及鈣 # 鹽等之有機酸或其金屬鹽類、及糖類等。可爲其中一種或 倂用二種以上。其中於確保所需之硬化時間上,以倂用碳 酸鹽和有機酸類爲佳。 凝結調整劑之使用量,爲根據硬化時間而調整,故無 特別限定,但相對於CAS、或CA與石膏之合計100份, 以0 · 1 ~ 1 0份爲佳,且以0 · 5 ~ 5份爲更佳。未滿0 · 1份則有 時難以確保硬化時間,若超過1 0份則硬化時間變長,強 度變小。 爲了提高於地盤中的滲透性,於本發明中,進一步使 -24- (21) 1313673 用分散劑爲佳。 分散劑可列舉萘磺酸甲醛縮合物鹽系、木質素磺酸鹽 系、蜜胺磺酸甲醛縮合物鹽系、聚羧酸鹽系、及聚醚系之 分散劑。 分散劑之使用量爲相對於高爐煙霧1 00份,以0.1〜1 〇 份爲佳,且以0.5〜3份爲更佳。未滿0.1份則滲透性小, 若超過1 0份則強度有時變小。 將灌注材料作成懸浮液時的水量,若可經泵將懸浮液 予以壓送則無特別限定,相對於高爐煙霧、CAS或CA、 石膏、及鹼性刺激材料之合計1 00份,以1 00~ 1,000份爲 佳,且以200〜5 00份爲更佳。未滿1〇〇份則懸浮液的黏度 變高且滲透性小,若超過1,〇〇〇份則強度有時變小。 灌注材料之混練方法和灌注方法並無特別限定,可應 用單管線材工法、單管濾網工法、雙管單相工法、雙管複 相工法、及雙管雙包裝器工法等現在所使用的工法。 實施例 以下,根據實施例詳細說明本發明,但本發明並非解 釋成被其限定。 實施例1 -1 配合表1-1所示之高爐煙霧和矽灰調製改良地盤用材 料組成物,並相對於所調製之改良地盤用材料組成物1 00 份’加入水150份並攪拌,調製改良地盤材料,並且對於 -25- (22) 1313673 此改良地盤材料的滲透性、和硬化後之改良體的耐久性進 行確認。 另外,爲了比較,對於使用高爐爐渣微粉末和水玻璃 系改良地盤材料代替本發明之改良地盤用材料組成物的情 況,亦進行同樣之實驗。結果倂記於表1 -1。 <使用材料> • 高爐煙霧:中國產、市售品、Si02 25%、Fe2033%、 Al2〇3 13%、CaO 19%、MgO 6%、Na20 1.3%、K20 9%、 S03 10%、S 0.3%、及 MnO 0.2%、布萊恩値 21,000cm2/g 、最大粒徑爲30 μπι、平均粒徑爲4 μιη 矽灰:市售品、酸性之矽灰、平均粒徑0.1 μπι,布萊 恩値1 5萬c m 2 / g 高爐爐渣微粉末:市售之高爐水碎爐渣的微粉末、最 大粒徑5 μπι、平均粒徑5 μιη # 水玻璃系改良地盤材料:市售品、主成分爲水玻璃、 副成分爲碳酸鈉 水:自來水 <測定方法> 滲透性:於直徑5公分X高度30公分之乙烯管中,將 8號矽砂充塡至高度20公分爲止’於乙烯管之底面控出 0.5mm左右之孔後,由上面投入改良地盤材料2500cc,於 1曰後測定滲透深度 -26- (23) 1313673 耐久性:將滲透性試驗所得之硬化體觀察至材齡9 1 日爲止,並測定離漿水且評價。離漿水爲測定由乙烯管之 底面挖孔流下之水重,並以相對於改良地盤材料25 Occ之 體積%表不。 [表1] 表1-1 實驗No. 高爐煙霧 石夕灰 滲透性(mm) 耐久性(體積%) 備註 1-1-1 100 0 160 5 實施例 1-1-2 90 10 165 6 實施例 1-1-3 80 20 170 8 實施例 1-1-4 70 30 175 9 實施例 1-1-5 60 40 180 10 實施例 1-1-6 50 50 185 12 實施例 1-1-7 40 60 190 14 實施例 1-1-8 30 70 190 16 實施例 1-1-9 20 80 190 18 實施例 1-1-10 10 90 190 20 實施例 1-1-11 0 100 195 50 比較例 1-1-12 高爐水碎爐渣微粉末100 100 45 比較例 1-1-13 水玻璃系改良地盤材料1〇〇 200 60 比較例 高爐煙霧、矽灰、高爐水碎爐渣微粉末、及水玻璃系 改良地盤材料爲(份) 實施例1-2 -27- (24) 1313673 除了使用表1 -2所示之高爐煙霧、矽灰、及水泥類以 外爲同實施例1 -1進行。結果倂記於表1 -2。 <使用材料> 水泥類A :市售品之微粉水泥、最大粒徑40 μιη、平 均粒徑5 μπι 水泥類Β :市售之氫氧化鈣、最大粒徑40 μιη、平均 φ 粒徑5 μιη-13- (10) 1313673 Ground, if the ash is more than 90 parts, the strength is not sufficient, and there is a tendency for the slag to remarkably exist. Further, among the total of 100 parts of the blast furnace smog and the lime type, the cement type is preferably 1 to 50 parts, and more preferably 3 to 30 parts. When the blending ratio of the cement is less than one part, the initial strength expression may not be expected to have a good effect, and if it exceeds 50 parts, the permeability tends to be deteriorated. When the material composition for improving the above-mentioned composition of the present invention is used, the water of φ is preferably used in an amount of 50 to 500 parts, and more preferably 1 to 300 parts, relative to 100 parts of the material composition for improved flooring. . If it is less than 50 parts, the permeability may be insufficient, and if it exceeds 500 parts, it may be difficult to ensure durability. Further, when the material composition for improving the disk of the present invention is a blast furnace smog, a cement, and an alkali-bonded polymer emulsion, the amount of blast furnace smoke used is changed according to the quality of the blast furnace smog, so it is impossible to stipulate However, in general, it is preferably 30 to 500 parts, and more preferably 50 to 300 parts, relative to 100 parts of cement. If there is less than 30 parts, the viscosity does not rise, φ and fluidity become large, and the water does not have small separation. If it exceeds 500 parts, the viscosity becomes too high, and sometimes the material composition for the improved site is improved. Mixing becomes difficult. The alkali-bonded polymer emulsion (hereinafter referred to as the present emulsion) used in the material composition for improving the composition of the present invention described above is a polymer emulsion which is viscosified by alkali. Examples of the emulsion include various types of unsaturated carboxylic acids, ethylenically unsaturated compounds, and copolymers of unsaturated carboxylic acids and ethylenically unsaturated compounds. From the viewpoint of exhibiting a more excellent effect, a polymer emulsion obtained by copolymerization of an unsaturated carboxylic acid and an ethylenic -14 - (11) 1313673 unsaturated compound is preferred. The polymerization of an unsaturated carboxylic acid and an ethylenically unsaturated compound is carried out by emulsion polymerization, suspension polymerization, solution polymerization, or a method of copolymerizing a block. The unsaturated carboxylic acid may, for example, be an unsaturated carboxylic acid such as acrylic acid, methyl propionic acid, maleic acid, fumaric acid, citraconic acid or aconite; maleic anhydride or citraconic anhydride; Anhydride; an unsaturated carboxylic acid anhydride such as monomethyl itaconate, monobutyl itaconate, and cis-butyl ester. Among them, the viscosity-increasing property is more excellent, and an unsaturated carboxylic acid is preferred, and acrylic acid and/or methyl group are preferred. The ethylenically unsaturated compound is not particularly limited, and more preferably, it is preferably an acrylate monomer and/or a methyl monomer. Examples of the acrylate include methyl acrylate, butyl acrylate, hexyl acrylate, cyclohexyl acrylate, hydroxyethyl acrylate, 2-ethylhexyl acrylate, and methacrylic acid methacrylate. Methyl ester, butyl methacrylate, hydroxyethyl methacrylate, methyl propyl oleate, and the like. The unsaturated carboxylic acid of the emulsion is unsaturated with ethylenic acid, and the unsaturated carboxylic acid unsaturated compound = 20:1 to 1:20 is preferable, and 5:1 is preferable in terms of more excellent adhesion. In this case, it is sometimes impossible to obtain a good alkali-adhesive type. The amount of the emulsion used is 1 00 parts relative to the cement, and the method can be used for the polymerization of the olefinic acid, itaconic acid, and crotonic acid. In the case of diacid monoethylate, acrylic acid is more but is made of viscosifying acrylate, octyl propionate, glyceryl propionate or the like. Copolymers of ethyl enoate and olefinic acid condensate: Ethylene ~ 1 : 5 is more converted to solid -15- (12) 1313673 The composition is preferably 0.1 to 20 parts, and is 0.2 to 1 It is better. When the viscosity-increasing effect is small and the fluidity is increased, if the water is not separated by two, the initial strength expression sometimes becomes small. The material composition for improved flooring of the present invention can be further advanced. If the amount of hardening of the material composition for the improved site is improved, the water separated by the material (floating water) will form a void after hardening. The hardening accelerator used in the present invention promotes the hardening of the improved product, reduces water leaching, and suppresses the formation of voids and is expressive. Examples of the hardening accelerator include sulfuric acid such as sulfuric acid such as lithium sulfate, sodium sulfate, sulfur, calcium sulfate, aluminum sulfate, alum potassium, and iron sulfate; carbonates such as sodium carbonate and potassium carbonate; potassium hydroxide, magnesium oxide, aluminum hydroxide, and hydrogen; a chloride such as calcium chloride, calcium chloride or the like, a chloride such as magnesium chloride or ferric chloride; an aluminate such as potassium aluminate aluminate or calcium aluminate; a lithium niobate or a niobate of tannic acid; diethanolamine and An amine such as triethanolamine; a calcium salt of an organic acid such as calcium; or a mixture of two or more of a silicone rubber and an alumina rubber. Among them, in terms of promotion and strength, aluminates and/or sulfates are preferred, and salts and sulfates are more preferred. Among the aluminates, calcium (hereinafter, also referred to as CA) is preferred to promote hardening and strength expression. CA is Ca〇: The general name of the compound of the component 'for example' will contain oxidation! If it is less than 0.1 part, it will become smaller. If it is used in a super step, it will cause a material and become a structural material group for the site and can help potassium strongate, magnesium sulfate; lithium carbonate sodium hydroxide, hydrogen hydroxide ; calcium formate and colloidal acid such as lithium, sodium aluminate, sodium, potassium citrate. It has excellent reflectability and is mixed with glyceric acid [A1 2 Ο 3 as the main raw material, and raw material containing -16· (13) 1313673 alumina, and is used for calcination. And a general term for a compound having CaO and Al2〇3 as a main component obtained by heat treatment such as electric furnace melting. Specific examples include CaO · 2Al2〇3, CaO · Al2〇3, 12CaO · 7 A12 〇 3 ' 1 1 C a O · 7 A12 〇 3 * C a F 2 ' 3 C a Ο · AI2O3 and 3 C a 0 · 3 A12 〇3 · C a SO 4 , etc., represented by crystalline acid consumption; and amorphous compounds with C a 〇 and Al 2 〇 3 as main components. Among them, those having an amorphous 12CaO · 7Al 2 〇 3 composition are more preferable in terms of strength expression. The powder of calcium aluminate is preferably 3,000 cm 2 /g or more, and more preferably 5,000 cm 2 /g or more, and less than 3,000 cm 2 /g may cause initial strength to be small. Among the sulfates, calcium sulfate and/or aluminum sulfate are preferred in terms of promoting hardening and strength expression. Examples of the calcium sulfate include anhydrous gypsum, hemihydrate paste, and dihydrate gypsum. Among them, in terms of promoting hardening and strength expression, anhydrous gypsum is preferred. The powder of the sulfate has a Bryan Derby surface area of 3,000 cm 2 /g or more, and more preferably 5,000 cm 2 /g or more. When the temperature is less than 3,000 cm2/g, the seasonal strength is small. When the aluminate and the sulfate are used as the hardening accelerator, the amount of the sulfate to be used is preferably from 20 to 500 parts, more preferably from 50 to 150 parts, per 100 parts of the aluminate. When the amount is less than 20, the initial strength is small. When the amount is more than 500, the fluidity is increased, the water is not separated, and the long-term strength is sometimes small. The amount of the hardening accelerator to be used varies depending on the type thereof, and it is not possible to provide a general specification. In general, it is preferably 1 to 30 parts, and -17-(14) 1313673 to 2 to 20 parts, relative to 100 parts of cement. For better. When the amount is less than one part, the fluidity becomes large. The non-separability in the water is small, and the strength expression is sometimes small. When the amount is more than 30 parts, the viscosity is high, and the pressure feed distance may be shortened. In the material composition for an improved floor made of cement according to the present invention, an aggregate such as sand or gravel, a water reducing agent, an antifreezing agent, or the like may be used. The amount of water to be mixed with the cement in the present invention is not particularly limited, and is preferably 100 to 300 parts, and more preferably 150 to 200 parts, per 100 parts of the cement. When it is less than 100 parts, it may become difficult to knead the material composition for the improved ground made of cement. If it exceeds 300 parts, the fluidity will increase, and the water separation will become small. The material composition for improving the composition of the present invention is composed of blast furnace fumes, cement, and the present emulsion, and the method of use thereof is not particularly limited, and the sputum mixed with blast furnace smoke, cement, and water is mixed with The use of the B solution of the emulsion and water, which is mixed immediately before use, is a preferred method because the viscosity can be sharply increased. Further, the emulsion is preliminarily mixed with water to form a solution or a suspension, which is excellent in compatibility, and is preferably in terms of adhesion. The emulsion is preferably used in combination with water. The amount of water used in this case is not particularly limited, but it is preferably diluted with 5 to 20 times the solid content of the emulsion, and preferably 1 to 3 times when the curing accelerator is used. When the amount of water is less than this, the viscosity is high and the mixing property is sometimes deteriorated. When the amount of water is increased, the dilution effect of the dilution water is increased, and the water separation property may be deteriorated. The remaining water can be mixed in the cement and blast furnace smog, and the cement A and the blast furnace smog A liquid are separately pumped; and the B liquid of the emulsion is mixed at the front end of the nozzle -18-(15) 1313673~ Can also be used. In particular, it is preferable to use the liquid A of the cement-blast furnace smog liquid, the liquid B which is mixed with the emulsion and the water to make the double-fold amount of the liquid B, and to use it at the front end of the nozzle. The method of mixing and mixing may be a method using a mixing tube such as a Y-shaped tube, a method using a double tube, and an input for mixing the liquid B of the emulsion in a rinse-like manner into the liquid A of the cement-blast furnace mist liquid. Block method, etc. Further, in order to more uniformly mix, a method in which a spiral mixer is attached to a tube after mixing and mixing, and further mixing may be mentioned. The material composition for improved flooring of the present invention is composed of blast furnace fumes, cement, the present emulsion, and a hardening accelerator, and the method of use thereof is not particularly limited as described above, and is formed by mixing blast furnace smoke, cement, and water. A liquid, a liquid formed by mixing a liquid containing a hardening accelerator and water (hereinafter referred to as a curing accelerator), and a liquid containing the emulsion and water (hereinafter referred to as the present emulsion), Mix immediately before use, or mix the blast furnace smog, cement, and water, and the liquid B, which is made of the hardening accelerator, and the liquid C, which is formed by the emulsion, immediately before use. It is a preferred method to increase the viscosity sharply. The emulsion and the hardening accelerator are mixed with water in advance to form a solution or a suspension, which is good in mixing property, and is preferably in terms of adhesion-promoting type. The amount of water used at this time is not particularly limited. In the case of the emulsion, it is preferably diluted by 5 to 20 times of the solid content of the emulsion, and in the case of the hardening accelerator, 1 to 3 times of the water is used. Dilution is better. If the amount of water is small, the viscosity becomes high and the mixing property may become small. If the amount of water is increased, the fluidity becomes large and the water does not separate. 19- (16) 1313673 The detachment may become small. In the present invention, the B liquid obtained by mixing the blast furnace smoke, the cement, and the mixed liquid A and the hardening accelerator liquid and the emulsion may be separately pumped and mixed and used at the tip end of the nozzle. In particular, the liquid A formed by mixing blast furnace smoke, cement, and water, the liquid B formed by the hardening accelerator liquid, and the three liquids of the liquid C formed by the emulsion are separately pumped and mixed and used at the tip end of the nozzle. For better. # Further, the hardening accelerator is hardened within one hour after mixing with water, so it is preferred to use a retarder. Examples of the retarding agent include hydroxycarboxylic acids such as citric acid, tartaric acid, gluconic acid, and malic acid, or sodium and potassium salts thereof, boric acid, tripolyphosphate, and pyrophosphate, and one or two of them may be used. More than one species. Among them, a hydroxycarboxylic acid and/or a hydroxycarboxylic acid salt is preferred in terms of a large retardation effect, and citric acid and/or sodium citrate is more preferred. The amount of the retarding agent to be used is preferably 0.01 to 10 parts, more preferably 0.05 to 5 parts, per 100 parts by weight of the cement. If the number is less than 0·01, the delay effect is small. If it exceeds 1 part, the intensity performance sometimes becomes small. The above-mentioned confluent mixing method may be a method of using a mixing tube such as a Υ-shaped tube, a method of using a three-tube, and an input block, and the sputum of the hardening accelerator liquid and the liquid C of the emulsion are respectively washed. A method of mixing and mixing in a mash formed by mixing cement, blast furnace smoke, and water. Further, in order to more uniformly mix, a method of installing a spiral mixer in a tube after mixing and mixing, and remixing may be mentioned. The blast furnace smog used in the potting material composed of the material composition for improving the disc of the present invention is used to collect the smog from the blast furnace when the -20-(17) 1313673 iron is obtained in the steel manufacturing process. Dust dust may be used as it is, and further, it may be pulverized and classified, and may be used in a micro powder method. In the present invention, in order to obtain high permeability to the ground, it is preferred to classify and use it with a maximum particle diameter of 20 μm or less. The calcium aluminosilicate used in the perfusion material of the present invention for using a material composition for a modified slab containing blast furnace smoke, calcium aluminate or calcium aluminosilicate, gypsum, and alkali stimulating material (hereinafter referred to as CAS) contains • CaO, Α12〇3' and SiO2, which are mainly used for the performance of short-term strength. The composition of CAS is such that the CaO content is 20-60%, the A12〇3 content is 20-70%, and the SiO2 content is 5-30%, and the CaO content is 30-55 % ' A12 〇 3 The content ratio is 30 to 60%, and the content of S i Ο 2 is preferably 10 to 20%. Outside of this range, the short-term strength sometimes becomes small. CAS is specified by oxidizing raw materials such as calcium oxide raw materials such as limestone, alumina, Boxide, feldspar, and clay, and oxidized sand raw materials such as chopping stone, sand sand, quartz, and chopping algae. After the ratio is blended, it can be produced by 'calcining with a rotary crucible or the like' or by melting it in an electric furnace or a high-frequency furnace. The CAS may also use a crystalline compound such as 2CaO. Α12〇3·SiO2 and CaO.Al2〇3.2.SiSi2, etc., in terms of short-term strength, it is preferred to use a glass obtained by quenching the melt. The glass transition rate of CAS is obtained by heating the CAS at i, 〇〇 (after heating for 2 hours at TC, and cooling at a cooling rate of 5 °C /min, and determining the main peak area of the crystalline mineral according to the powder X-ray diffraction method. The main wave of -21 (13) 1313673, which is crystallized by CAS, is obtained by X (%) = 100x (lS/S.). It is preferably more than 50% in terms of short-term strength, with 8 0 More than % is better, and more than 90% is better. If the temperature is less than 50%, the short-term strength is small. The amount of C AS used is 1 to 50 parts relative to the blast furnace smoke, preferably 1 to 50 parts, and It is preferably 5 to 30 parts. If the amount is less than 1 part, the short-term strength is small, and if it exceeds 50 parts, the viscosity of the infusion material as a suspension becomes large, and the permeability to the ground is sometimes lowered. The calcium aluminate used in the infusion material of the invention contributes to the strength expression by using gypsum plaster. Specific examples can be used as any of the CAs contained in the material composition for improving the composition of the ground. In terms of hardening time and strength performance, it is preferable to select an amorphous material having a Ca0/Al203 molar ratio of 1 to 2. The glass transition rate of CA is obtained in the same manner as in the case of CAS described above, and is obtained by X(%)=100x(lS/SQ). However, S and S〇 are obtained in the same manner as in the case of CAS. In terms of more than 50%, it is better to use 80% or more, and more preferably 90% or more. If the temperature is less than 50%, the short-term strength is small. CA is to rotate the CaO raw material and the Al2〇3 raw material. The raw material for the production of CA is not particularly limited, and examples thereof include calcium carbonate such as limestone and shells, hydrated lime, and quicklime as CaO raw materials, and examples of the AhC»3 raw material include, for example, Boxide. In addition to the industrial by-products of the aluminum residue, aluminum powder, etc. may be mentioned. The amount of CA used is preferably 1 part by weight with respect to blast furnace smoke, and more preferably 5 to 30 parts. If the amount is less than 1 part, the short-term strength is small, and if it exceeds 50 parts by -22-(19) 1313673, the viscosity of the infusion material becomes a large suspension, and the permeability to the ground plate is lowered. Further, in the above aspect of the present invention Examples of the gypsum used in the infusion material include anhydrite gypsum and hemihydrate gypsum 'dihydrate gypsum. Furthermore, it is possible to use natural gypsum, phosphoric acid to form gypsum, gypsum, sulphuric acid by-product gypsum, or the like, or gypsum obtained by heat-treating the gypsum, etc., wherein the water is anhydrous in terms of high performance. Gypsum is preferred. φ gypsum is used in an amount of 1 part to 50 parts per blast of blast furnace smoke, preferably 5 to 50 parts. If less than 1 part, the short-term strength is small, if more than 50 parts Further, the permeability to the ground plate is lowered. Further, the alkaline stimulating material used in the above-described infusion material of the present invention contributes to hardening and long-term strength by being used in combination with blast furnace smog. Examples of the alkaline stimulating material include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, and lithium hydroxide; alkali golds such as sodium carbonate, potassium carbonate, and lithium carbonate; and hydrated lime. Although it is not particularly limited, it is preferable that the stone is ash by the hardening caused by the blast furnace smog and the increase in the long-term strength. The amount of the alkaline stimulating material used is 1 part by weight relative to the blast furnace smog, preferably 1 to 50 parts, and more preferably 3 to 20 parts. If the amount is less than 1 part, the long-term strength is small, and if it exceeds 50 parts, the permeability to the site sometimes decreases. In the present invention, the maximum particle diameter of the infusion material is preferably 20 μm, and more preferably 15 μπι, and most preferably 10 μιη or less. If it exceeds 20 μm, it may become difficult to permeate the fine gap depending on the geology of the site. V'..: -23- (20) 1313673 The method of preparing the particle size of the infusion material is not particularly limited, and each material may be pulverized by a pulverizer such as a ball mill, and collected under a fraction of 20 μm or less, and After mixing, or mixing and pulverizing the materials, • and collecting any of the methods of .2 〇μm. However, if the materials are mixed, pulverized, and classified, the mixing ratio may be changed due to the difference in density of the materials. Therefore, it is preferred that the materials are separately pulverized and classified and thereafter mixed. Further, in the present invention, in order to adjust the hardening time required for the adjustment, it is preferred to use a coagulation adjusting agent. Examples of the coagulation adjusting agent include aluminates such as sodium aluminate and potassium aluminate, carbonates such as sodium carbonate and potassium carbonate, hydroxides such as sodium hydroxide and potassium hydroxide, aluminum sulfate, and iron (III) sulfate. Inorganic salts such as citrates such as sulfates, sodium citrate and potassium citrate, phosphates such as sodium phosphate, calcium phosphate, and magnesium phosphate, and borate such as lithium borate and sodium borate And organic acids such as citric acid, gluconic acid, tartaric acid, and malic acid or sodium, potassium, and calcium salts thereof, or metal salts thereof, and saccharides. It is possible to use one or more of them. Among them, carbonic acid salts and organic acids are preferred for ensuring the hardening time required. The amount of use of the coagulation adjusting agent is not particularly limited as long as it is adjusted according to the curing time. However, it is preferably from 0. 1 to 10 parts, and from 0. 5 to 100 parts of CAS, or a total of CA and gypsum. 5 servings are better. If it is less than 0 · 1 part, it is sometimes difficult to ensure the hardening time. If it exceeds 10 parts, the hardening time becomes longer and the strength becomes smaller. In order to improve the permeability in the ground, in the present invention, it is preferred to use a dispersant for -24-(21) 1313673. Examples of the dispersant include a naphthalenesulfonic acid formaldehyde condensate salt system, a lignosulfonate system, a melaminesulfonic acid formaldehyde condensate salt system, a polycarboxylate system, and a polyether-based dispersant. The dispersant is used in an amount of from 1 to 10 parts per blast of the blast furnace, preferably from 0.1 to 1 part by weight, more preferably from 0.5 to 3 parts. When the amount is less than 0.1 part, the permeability is small, and if it exceeds 10 parts, the strength sometimes becomes small. The amount of water when the infusion material is used as a suspension is not particularly limited as long as the suspension can be pumped by a pump, and the total amount of the blast furnace smoke, CAS or CA, gypsum, and alkaline stimulating material is 100, to 100. ~ 1,000 servings are preferred, and 200 to 500 servings are preferred. When the amount is less than 1 part, the viscosity of the suspension becomes high and the permeability is small. If it exceeds 1, the strength sometimes becomes small. The mixing method and the infusion method of the infusion material are not particularly limited, and the single-pipe material method, the single-tube filter method, the double-tube single-phase method, the double-tube multi-phase method, and the double-tube double-packer method can be applied. Construction method. EXAMPLES Hereinafter, the present invention will be specifically described based on examples, but the present invention is not construed as being limited thereto. Example 1-1 In combination with the blast furnace smog and ash ash shown in Table 1-1, the material composition for the improved slab was modified, and 150 parts of water was added to the prepared composition for improvement of the ground composition, and 150 parts of water was added and stirred to prepare The site material was improved, and the permeability of the improved site material of -25-(22) 1313673 and the durability of the improved body after hardening were confirmed. Further, for comparison, the same experiment was also conducted for the case where the blast furnace slag fine powder and the water glass-based modified ground material were used instead of the improved ground material composition of the present invention. The results are summarized in Table 1-1. <Use materials> • Blast furnace smoke: Chinese products, commercial products, 25% of SiO2, Fe2033%, Al2〇3 13%, CaO 19%, MgO 6%, Na20 1.3%, K20 9%, S03 10%, S 0.3%, and MnO 0.2%, Brian 値 21,000 cm 2 /g, maximum particle size 30 μπι, average particle size 4 μιη 矽 ash: commercial product, acid ash, average particle size 0.1 μπι, cloth莱1値550,000cm 2 / g blast furnace slag micropowder: commercially available blast furnace pulverized powder slag micropowder, maximum particle size 5 μπι, average particle size 5 μιη #水玻璃系修地盘材料: commercial products, main components It is water glass, and the subcomponent is sodium carbonate water: tap water <measurement method> Permeability: In a vinyl pipe having a diameter of 5 cm X and a height of 30 cm, the No. 8 tantalum sand is filled to a height of 20 cm until the ethylene pipe After the bottom surface was controlled with a hole of about 0.5 mm, 2500 cc of the improved site material was put in from above, and the penetration depth was measured after 1 -26 -26 - (23) 1313673. Durability: The hardened body obtained by the permeability test was observed to the age of 9 1 The semen water was measured and evaluated. The slurry water was measured for the water weight flowing from the bottom surface of the ethylene pipe and was expressed by volume % relative to the modified site material of 25 cc. [Table 1] Table 1-1 Experiment No. Blast Furnace Smoke Shishi Ash Permeability (mm) Durability (% by volume) Remarks 1-1-1 100 0 160 5 Example 1-1-2 90 10 165 6 Example 1-1-3 80 20 170 8 Examples 1-1-4 70 30 175 9 Examples 1-1-5 60 40 180 10 Examples 1-1-6 50 50 185 12 Examples 1-1-7 40 60 190 14 Examples 1-1-8 30 70 190 16 Examples 1-1-9 20 80 190 18 Examples 1-1-1 10 90 190 20 Examples 1-1-11 0 100 195 50 Comparative Example 1 -1-12 blast furnace slag powder 100 100 45 Comparative Example 1-1-13 Water glass improved site material 1〇〇200 60 Comparative blast furnace smog, ash, blast furnace slag powder, and water glass system The modified site material was (part). Example 1-2 -27- (24) 1313673 The same procedure as in Example 1-1 was carried out except that the blast furnace fumes, ash, and cement shown in Table 1-2 were used. The results are summarized in Table 1-2. <Materials used> Cement A: Commercially available micronized cement, maximum particle size 40 μm, average particle size 5 μπι Cement type Β: commercially available calcium hydroxide, maximum particle size 40 μιη, average φ particle size 5 Ιιη

-28- (25) 1313673-28- (25) 1313673

[表2] 表1-2 實驗No. 高爐煙霧 矽灰 水泥類 滲透性(mm) 耐久性(體積%) 備註 1-1-4 70 30 -0 175 9 實施例 1-2-1 69.5 29.5 A 1 175 6 實施例 1-2-2 68.5 28.5 A3 170 5 實施例 1-2-3 65 25 A 10 165 4 實施例 1-2-4 55 15 A 30 160 3 實施例 1-2-5 45 5 A 50 155 2 實施例 1-2-6 68.5 28.5 B3 175 5 實施例 1-2-7 55 15 B 30 165 3 實施例 1-2-8 50 50 A 50 180 3 實施例 1-2-9 50 50 B50 175 5 實施例 1-2-10 40 40 A 20 190 3 實施例 1-2-11 40 40 B20 185 3 實施例 1-2-12 0 0 A 100 120 2 比較例 1-2-13 0 0 B 100 145 55 比較例 高爐煙霧、矽灰、及水泥類爲(份) 實驗例2-1 相對於水泥1 〇〇,將表2- 1所示份量之高爐煙霧與水 以混合器予以混練調製A液。其次,相對於水泥1 00份, 將換算成固形成分之0.5份乳狀液α與水5份混合調製B 液。 -29- (26) 1313673 於A液中投入B液,並混練5秒鐘,調製混練物,並 測定其流動、水中不分離性、及壓縮強度。 另外,爲了比較,使用膨潤土代表高爐煙霧並進行同 樣之實驗。結果倂記於表2-1。 &lt;使用材料&gt; 水泥:波特蘭水泥、市售品 • 乳液α:本乳液、固形成分濃度30%、丙烯酸乙酯: 甲基丙烯酸=45: 55之丙烯酸乙酯/甲基丙烯酸共聚物聚合 物乳液 高爐煙霧:中國產、市售品Si02 25%、、Fe203 3 %、 Al2〇3 13%、CaO 19%、MgO 6%、Na20 1.3%、K20 9%、 S03 10%、S 0.3%、及 MnO 0.2%、布萊恩値 21,000cm2/g 、最大粒徑爲30 μπι、平均粒徑爲4 μιη 膨潤土 :市售品 &lt;測定方法&gt; 流動:於內徑80mmx高度80mm之圓筒中加入混練物 ,於2分鐘後測定拉出圓筒後的展開度 水中不分離性:根據土木學會之水中不分離混凝土設 計施工指針附屬書的水中分離度試驗實施,將水完全不混 濁之情況視爲優,水有稍微混濁之情況視爲良’水雖混濁 但可實用之情況視爲可,及材料分離、水之混濁大的情況 視爲不可。 -30- (27) 1313673 [表3] 表2-1 實驗 No. 局爐 煙霧 水 流動値 (mm) 水中不 分離性 壓縮強度 備註 7曰 28日 2-1-1 0 0 140 不可 0.7 2.5 比較例 2-1-2 30 100 110 可 4.2 6.9 實施例 2-1-3 50 150 90 優 3.5 5.7 實施例 2-1-4 100 200 85 優 3.0 5.3 實施例 2-1-5 300 250 85 良 2.4 5.0 實施例 2-1-6 500 300 85 可. 1.9 4.7 實施例 2-1-7 *1 100 200 85 良 0.2 1.3 比較例 高爐煙霧與水爲相對於水泥1 0 0份之(份),壓縮強 度爲(N / m m2 ),實驗N 0 · 2 -1 - 7 * 1爲使用膨潤土代替高爐 煙霧 ® 除了將水泥100份、高爐煙霧200份、及水1 80份以 混合器混練調製A液,且相對於水泥1 〇〇份,混合表2-2 所示之乳狀液,和乳狀液1 〇倍量之水調製B液以外爲同 實驗例2-1進行。 另外,爲了比較,使用不具有鹼增黏型之非本乳液代 替本乳液且進行同樣之實驗。結果倂記於表2-1。 &lt;使用材料&gt; 乳液/3 :本乳液、固形成分濃度30%、丙烯酸乙酯·· -31 - (28) 1313673 甲基丙烯酸=45: 55之乙烯/乙酸乙燃醋共聚聚合物乳液 70份、和乙烯:乙酸乙烯酯=1 8 : 82之丙烯酸乙醋/丙稀 酸共聚聚合物乳液30份之混合物 乳液1T :本乳液、固形成分濃度30%、苯乙烯:丙烯 酸2 -乙基己酯=45: 55之苯乙烯/丙稀酸2_乙基己醋共聚 聚合物乳液 [表4] 表2-2 實驗 商爐 乳液 流動値 水中不 壓縮強度 備註 No. 煙霧 (mm). 分離性 7曰 28曰 2-2-1 200 -0.0 250 不可 1.5 4.7 比較例 2-2-2 200 a 0.1 95 可 1.7 5.9 實施例 2-2-3 200 a 0.2 90 良 1.5 5.6 實施例 2-2-4 200 a 0.5 85 優 1.4 5.3 實施例 2-2-5 200 a 1.0 85 優 1.2 5.2 實施例 2-2-6 200 a 2.0 85 優 1.1 4.9 實施例 2-2-7 200 β 0.1 100 可 1.2 5.0 實施例 2-2-8 200 β 0.5 90 良 0.8 4.4 實施例 2-2-9 200 β 1.0 85 優 0.6 4.2 實施例 2-2-10 200 r 0.5 180 可 2.0 5.6 實施例 本乳液爲相對於水泥1 〇〇份換算成固形成分之(份) 、壓縮強度爲(N/mm2)。 實驗例3 -1 -32- (29) 1313673 相對於水泥100份,將表3_i所示份量之高爐煙霧與 水以混合器混練調製A液。其次,相對於水泥1 〇〇份,將 硬化促進劑a 5份與水〗〇份混合調製b液,並將換算成 固形成分之0.5份的本乳液α與水5份混合調製c液。 將Α液、Β液、及c液連續投入混合器並且混練5秒 鐘調製注入材料後,測定流動、水中不分離性、及壓縮強 度。另外’爲了比較、使用膨潤土代替高爐煙霧且同樣進 φ 行。結果倂記於表3 -1。 &lt;使用材料&gt; 水泥:普通波特蘭水泥、市售品 高爐煙霧:中國產、市售品Si02 25%、' Fe203 3 % ' Al2〇3 13%、CaO 19%、MgO 6%、Na20 1.3%、K2〇 9%、 S〇3 10%、S 0.3%、及 MnO 0.2%、布萊恩値 21,〇〇〇cm2/g '最大粒徑爲30 μιη、平均粒徑爲4 μιη ® 乳液α :本乳液、固形成分濃度30%、丙烯酸乙酯: 甲基丙烯酸=4 5: 55之丙烯酸乙酯/甲基丙烯酸共聚聚合物 乳液 硬化促進劑a : 12CaO · 7ΑΙ2〇3組成之鋁酸鈣 '玻璃 化率95%、布萊恩値6,000cm2/g之鋁酸鹽、與無水石膏、 布萊恩値5,400cm2/g之硫酸鹽的等量混合物 膨潤土 ·市售品 &lt;測定方法 -33- (30) 1313673 流動:於內徑80mmx高度80mm之圓筒中注入混練後 的灌注材料,於2分鐘後測定拉出圓筒後的展開度 水中不分離性:根據土木學會之水中不分離混凝土設 計施工指針附屬書的水中分離度試驗實驗,將水完全不混 濁之情況視爲優,水有稍微混濁之情況視爲良,水雖混濁 但可實用之情況視爲可,及材料分離、水之混濁大的情況 視爲不可。 # 壓縮強度:根據JIS R52〇l測定 [表5] 表3-1 實驗 No. 高爐 煙霧 水 流動値 (mm) 水中不 分離性 壓縮強g ;(N/mm2) 備註 7曰 28日 3-1-1 0 0 135 不可 1.7 3.5 比較例 3-1-2 30 100 105 可 5.2 7.9 實施例 3-1-3 50 150 85 優 4.5 6.7 實施例 3-1-4 100 200 85 優 4.0 6.3 實施例 3-1-5 300 250 85 良 3.4 6.0 實施例 3-1-6 500 300 85 可 2.9 5.7 實施例 3-1-7 ※⑽ 200 85 良 1.2 2.3 比較例 高爐煙霧與水爲相對於水泥100份之(份)、實驗 No.3-1-7之※爲使用膨潤土代替高爐煙霧 實施例3_2 除了將水泥1〇〇份、高爐煙霧200份、及水180份以 -34- (31) 1313673 混合器混練調製A液,並將相對於水泥1 〇〇份,硬化促進 劑a 5份與水10份混合調製b液,並且將表3-2所示&amp; 乳液、與乳液1 0倍量之水混合調製C液以外爲同實驗倒j 3 -1進行。 另外,爲了比較,使用不具有鹼增黏性之非本乳、液Θ 胃本1乳液且同樣進行。結果併記於表3-2。 Φ 〈使用材料&gt; 乳液/3 :本乳液、固形成分濃度30%、丙烯酸乙酯: 甲基丙烯酸=4 5: 55之丙烯酸乙酯/甲基丙烯酸共聚聚合物 乳液70份、與乙烯:乙酸乙烯酯=18 : 82之乙烯/乙酸乙 烯酯共聚聚合物乳液3 0份之混合物 乳液r :本乳液、固形成分濃度30%、苯乙烯:丙烯 酸2-乙基己酯=45: 55之苯乙烯/丙烯酸2_乙基己酯共聚 聚合物乳液 -35- (32) 1313673 [表6] 表3-2 實驗 水 流動値 水中不 壓縮強度(N/mm2) 備註 No. (mm) 分離性 7曰 28曰 3-2-1 -0 245 不可 2.5 5.7 比較例 3-2-2 a 0.1 90 可 2.7 6.9 實施例 3-2-3 a 0.2 85 良 2.5 6.6 實施例 3-2-4 a 0.5 85 優 2.4 6.3 實施例 3-2-5 a 1.0 85 優 2.2 6.2 實施例 3-2-6 a 2.0 85 優 2.1 5.9 實施例 3-2-7 β 0.1 95 可 2.2 6.0 實施例 3-2-8 β 0.5 85 良 1.8 5.4 實施例 3-2-9 β 1.0 85 優 1.6 5.2 實施例 3-2-10 r 0.5 175 可 3.0 6.6 實施例[Table 2] Table 1-2 Experiment No. Blast Furnace Smoke Ash Cement Permeability (mm) Durability (% by volume) Remarks 1-1-4 70 30 -0 175 9 Example 1-2-1 69.5 29.5 A 1 175 6 Example 1-2-2 68.5 28.5 A3 170 5 Example 1-2-3 65 25 A 10 165 4 Example 1-2-4 55 15 A 30 160 3 Example 1-2-5 45 5 A 50 155 2 Examples 1-2-6 68.5 28.5 B3 175 5 Examples 1-2-7 55 15 B 30 165 3 Examples 1-2-8 50 50 A 50 180 3 Examples 1-2-9 50 50 B50 175 5 Example 1-2-10 40 40 A 20 190 3 Example 1-2-11 40 40 B20 185 3 Example 1-2-12 0 0 A 100 120 2 Comparative Example 1-2-13 0 0 B 100 145 55 Comparative blast furnace smog, ash, and cement (parts) Experimental Example 2-1 Relative to cement 1 〇〇, the blast furnace smog and water shown in Table 2-1 are mixed with a mixer. Modulate the A solution. Next, with respect to 100 parts of cement, 0.5 parts of the emulsion α and 5 parts of water were mixed to prepare a liquid B. -29- (26) 1313673 Liquid B was added to liquid A, and kneaded for 5 seconds to prepare a kneaded material, and the flow, water non-separability, and compressive strength were measured. In addition, for comparison, bentonite was used to represent blast furnace smog and the same experiment was conducted. The results are summarized in Table 2-1. &lt;Materials used&gt; Cement: Portland cement, commercial products • Emulsion α: the emulsion, solid component concentration 30%, ethyl acrylate: methacrylic acid = 45: 55 ethyl acrylate/methacrylic acid copolymer Polymer emulsion blast furnace fumes: Chinese products, commercial products Si02 25%, Fe203 3 %, Al2〇3 13%, CaO 19%, MgO 6%, Na20 1.3%, K20 9%, S03 10%, S 0.3% And MnO 0.2%, Brian 値 21,000 cm 2 /g, maximum particle size 30 μπι, average particle diameter 4 μιη Bentonite: Commercial product &lt;Measurement method&gt; Flow: in a cylinder having an inner diameter of 80 mm x a height of 80 mm Adding the kneaded material, measuring the degree of unfolding in the water after the extraction of the cylinder after 2 minutes: According to the water separation test of the reference book of the design of the non-separating concrete in the water of the Society of Civil Engineering, the water is completely turbid. In the case where the water is slightly turbid, it is considered to be good. Although the water is turbid, it is considered to be practical, and the separation of the material and the turbidity of the water are considered as impossible. -30- (27) 1313673 [Table 3] Table 2-1 Experiment No. Local furnace smoke water flow 値 (mm) Non-separable compressive strength in water Remarks 7曰28日2-1-1 0 0 140 Not 0.7 2.5 Comparison Example 2-1-2 30 100 110 4.2 6.9 Example 2-1-3 50 150 90 Excellent 3.5 5.7 Example 2-1-4 100 200 85 Excellent 3.0 5.3 Example 2-1-5 300 250 85 Good 2.4 5.0 Example 2-1-6 500 300 85 Yes. 1.9 4.7 Example 2-1-7 *1 100 200 85 Good 0.2 1.3 Comparative blast furnace smog and water are 100 parts (parts) relative to cement, compressed The strength is (N / m m2 ), and the experiment N 0 · 2 -1 - 7 * 1 is to use bentonite instead of blast furnace smoke. In addition to 100 parts of cement, 200 parts of blast furnace smoke, and 180 parts of water, the mixture is mixed with a liquid. In the same manner as in Experimental Example 2-1, the emulsion shown in Table 2-2 was mixed with the emulsion of the water solution of the emulsion of 1 相对 with respect to 1 part of the cement. Further, for comparison, a non-aqueous emulsion having no alkali-adhesive type was used instead of the present emulsion, and the same experiment was carried out. The results are summarized in Table 2-1. &lt;Use Material&gt; Emulsion/3: The present emulsion, solid component concentration 30%, ethyl acrylate·· -31 - (28) 1313673 methacrylic acid = 45: 55 ethylene/acetic acid ethyl ketone copolymer emulsion 70 And ethylene: vinyl acetate = 8 8 : 82 acrylic acid acrylate / acrylic acid copolymer emulsion 30 parts mixture emulsion 1T: the emulsion, solid component concentration 30%, styrene: acrylic acid 2-ethylhexyl Ester = 45: 55 styrene / acrylic acid 2 - ethyl hexahydrate copolymer emulsion [Table 4] Table 2-2 Experimental quotient furnace emulsion flow 値 water uncompressed strength Remarks No. Smoke (mm). Separation 7曰28曰2-2-1 200 -0.0 250 Not 1.5 4.7 Comparative Example 2-2-2 200 a 0.1 95 1.7 5.9 Example 2-2-3 200 a 0.2 90 Good 1.5 5.6 Example 2-2- 4 200 a 0.5 85 Excellent 1.4 5.3 Example 2-2-5 200 a 1.0 85 Excellent 1.2 5.2 Example 2-2-6 200 a 2.0 85 Excellent 1.1 4.9 Example 2-2-7 200 β 0.1 100 Available 1.2 5.0 Example 2-2-8 200 β 0.5 90 Good 0.8 4.4 Example 2-2-9 200 β 1.0 85 Excellent 0.6 4.2 Example 2-2-10 200 r 0.5 180 Can be 2.0 5.6 Example The emulsion is relative 1 thousand and cement converted to solid parts per (parts), compressive strength (N / mm2). Experimental Example 3 -1 -32- (29) 1313673 The amount of blast furnace fumes and water shown in Table 3_i was mixed with water in a mixer to prepare liquid A with respect to 100 parts of cement. Next, 5 parts of the hardening accelerator a was mixed with water to prepare a liquid b with respect to 1 part of the cement, and 0.5 part of the emulsion α and 5 parts of water, which were converted into a solid content, were mixed to prepare a liquid c. The mash, the mash, and the c solution were continuously introduced into the mixer and kneaded for 5 seconds to prepare the injection material, and the flow, the water non-separability, and the compression strength were measured. In addition, in order to compare and use bentonite instead of blast furnace smog, the same is true. The results are summarized in Table 3-1. &lt;Use materials&gt; Cement: ordinary Portland cement, commercial blast furnace smog: Chinese products, commercial products Si02 25%, 'Fe203 3 % 'Al2〇3 13%, CaO 19%, MgO 6%, Na20 1.3%, K2〇9%, S〇3 10%, S 0.3%, and MnO 0.2%, Brian 値21, 〇〇〇cm2/g 'Maximum particle size 30 μιη, average particle size 4 μιη ® emulsion α : the emulsion, the solid component concentration of 30%, ethyl acrylate: methacrylic acid = 4 5: 55 ethyl acrylate / methacrylic copolymer copolymer emulsion hardening accelerator a : 12CaO · 7ΑΙ2〇3 composed of calcium aluminate 'Glassization rate 95%, Brian 値 6,000 cm 2 / g aluminate, anhydrous gypsum, Brian 値 5,400 cm 2 / g of sulfate, an equal mixture of bentonite · Commercial products &lt;Measurement method -33- ( 30) 1313673 Flow: Inject the kneaded infusion material into a cylinder with an inner diameter of 80 mmx and a height of 80 mm. After 2 minutes, measure the degree of expansion after pulling out the cylinder. Water is not separable: According to the design of the non-separating concrete in the water of the Society of Civil Engineering The water separation test experiment of the attached book, the case where the water is completely turbid is regarded as excellent, and the water is slightly The case of turbidity is considered to be good, but the water is turbid, but it is considered to be practical, and the separation of materials and the turbidity of water are considered as impossible. #压缩强度:Measured according to JIS R52〇1 [Table 5] Table 3-1 Experiment No. Blast furnace smog water flow 値 (mm) Non-separable compression strength in water; (N/mm2) Remarks 7曰28日3-1 -1 0 0 135 Not 1.7 3.5 Comparative Example 3-1-2 30 100 105 5.2 7.9 Example 3-1-3 50 150 85 Excellent 4.5 6.7 Example 3-1-4 100 200 85 Excellent 4.0 6.3 Example 3 -1-5 300 250 85 Good 3.4 6.0 Example 3-1-6 500 300 85 2.9 5.7 Example 3-1-7 ※(10) 200 85 Good 1.2 2.3 Comparative blast furnace smog and water are 100 parts relative to cement (Parts), Experiment No. 3-1-7 ※ For the use of bentonite instead of blast furnace smog Example 3_2 In addition to 1 part of cement, 200 parts of blast furnace smog, and 180 parts of water to -34- (31) 1313673 mixer Mixing liquid A and mixing and mixing 1 part of hardening accelerator a with 10 parts of water to prepare liquid b, and the emulsion shown in Table 3-2 and the emulsion of 10 times the amount of water The mixed preparation of the C liquid was carried out in the same manner as the experiment. Further, for comparison, a non-nose, liquid sputum stomach 1 emulsion which does not have alkali-adhesiveness was used and was carried out in the same manner. The results are also reported in Table 3-2. Φ <Use material> Emulsion/3: The emulsion, solid component concentration 30%, ethyl acrylate: methacrylic acid = 4 5: 55 ethyl acrylate/methacrylic acid copolymer emulsion 70 parts, and ethylene: acetic acid Vinyl ester = 18: 82 ethylene / vinyl acetate copolymer emulsion 30 parts mixture emulsion r: the emulsion, solid component concentration 30%, styrene: 2-ethylhexyl acrylate = 45: 55 styrene /2-ethylhexyl acrylate copolymer emulsion-35- (32) 1313673 [Table 6] Table 3-2 Experimental water flow Unsqueezed strength in water (N/mm2) Remarks No. (mm) Separation 7曰28曰3-2-1 -0 245 Not 2.5 5.7 Comparative Example 3-2-2 a 0.1 90 2.7 6.9 Example 3-2-3 a 0.2 85 Good 2.5 6.6 Example 3-2-4 a 0.5 85 Excellent 2.4 6.3 Example 3-2-5 a 1.0 85 Excellent 2.2 6.2 Example 3-2-6 a 2.0 85 Excellent 2.1 5.9 Example 3-2-7 β 0.1 95 2.2.2.1 Example 3-2-8 β 0.5 85 good 1.8 5.4 Example 3-2-9 β 1.0 85 Excellent 1.6 5.2 Example 3-2-10 r 0.5 175 3.0 6.6 Example

本乳液爲相對於水泥1 〇〇份換算成固形成分之(份) 實施例3 - 3 將水泥1〇〇份、高爐煙霧200份、及水180份以混合 器混合調製A液,並將相對於水泥100份,換算成固形成 分0.5份之本乳液α與水5份混合調製c液。除了將相對 於水泥100份之表3-3所示的硬化促進劑、與其2倍量之 水、及延遲劑0.1份绲合調製Β液以外爲同實驗例34進 行。結果倂記於表3-3。 -36 - 、 (33) (33)1313673 &lt;使用材料&gt; 硬化促進劑b :硫酸鹽、硫酸鋁、市售品 硬化促進劑c :碳酸鹽、碳酸鈉、市售品 硬化促進劑d :氫氧化物、氫氧化鈣、市售品 硬化促進劑e :鋁酸鹽、鋁酸鈉、市售品 硬化促進劑f :膠體、矽溶膠、市售品 延遲劑:檸檬酸、市售品 [表7] 表3-3 實驗 硬化促 流動値 水中不 壓縮強度(N/mm2) 備註 No. 進劑 (mm) 分離性 7曰 28曰 3-3-1 - 0 85 優 1.4 5.3 比較例 3-3-2 a 1 85 優 1.9 5.5 實施例 3-3-3 a 2 85 優 2.0 5.8 實施例 3-3-4 a 3 85 優 2.2 6.0 實施例 3-3-5 a 10 85 優 2.6 6.5 實施例 3-3-6 a 20 85 優 2.8 6.7 實施例 3-3-7 a 30 85 優 3.5 6.9 實施例 3-3-8 b 5 85 優 2.0 6.1 實施例 3-3-9 c 5 85 優 1.8 5.7 實施例 3-3-10 d 5 85 優 1.7 5.8 實施例 3-3-11 e 5 85 優 1.9 6.0 實施例 3-3-12 f 5 85 優 1.6 5.6 實施例 硬化促進劑爲相對於水泥1 〇〇份之(份) •37- (34) 1313673 實施例4-1 相對於高爐煙霧100份’混合表4-1所示之CAS '石 膏、及驗性刺激材料’調製最大粒徑3 0 Am之灌注材料。 將調製之灌注材料10 〇份與水3 0 0份混合製作懸浮液。此 時,相對於高爐煙霧100份’混合分散劑1份’且相對於 cas與石膏之合計1 〇〇份,混合凝結調整劑1份,測定灌 φ 注材料之硬化時間、滲透長度、及壓縮強度。結果倂記於 表 4 -1。 &lt;使用材料&gt; 高爐煙霧:中國產、市售品Si〇2 25 %、、Fe203 3 %、 Al2〇3 13%、CaO 19%、MgO 6%、Na2〇 1·3%、K20 9%、 S〇3 10%、S 0.3%、及 MnO 0.2%、布萊恩値 21,000cm2/g 、最大粒徑爲3 0 μιη、平均粒徑爲4 μιη • CAS ( i ) :CaO45%、Al2O3 40%、及 Si0215%組成 之玻璃,玻璃化率95% CAS ( ii) : CaO 45%、A1203 2 8 %、及 S i O 2 2 7 % 組成 之玻璃,玻璃化率9 5 % 石膏:天然無水石膏 驗性刺激材料:消石灰、市售品 分散劑:萘磺酸甲醛縮合物鹽系 凝結調整劑:檸檬酸與碳酸鉀之重量比i : 3的混合 品 38- (35) 1313673 &lt;試驗方法&gt; 滲透長度:於直徑5公分x長度30公分之乙稀管中將 8號矽砂充塡至長度20公分’並投入200毫升灌注材料 ,於1日後,測定對於砂的滲透長度 硬化時間:即使將已裝入懸浮液的杯傾斜亦不會令懸 浮液流動爲止的時間 壓縮強度:根據ns R520 1測定,測定材齡1日和28 曰The emulsion is converted into a solid component (parts) relative to 1 part of the cement. Example 3 - 3 1 part of cement, 200 parts of blast furnace smog, and 180 parts of water are mixed in a mixer to prepare liquid A, and the relative In 100 parts of the cement, the emulsion α which is converted into a solid component of 0.5 part is mixed with 5 parts of water to prepare a liquid c. The same procedure as in Experimental Example 34 was carried out except that the hardening accelerator shown in Table 3-3 of 100 parts of the cement, the water twice as much as the amount of the retarding agent, and the retarder were added to prepare the mash. The results are summarized in Table 3-3. -36 - , (33) (33) 1313673 &lt;Use material&gt; Hardening accelerator b: Sulfate, aluminum sulfate, commercial product hardening accelerator c: Carbonate, sodium carbonate, commercial hardening accelerator d: Hydroxide, calcium hydroxide, commercially available hardening accelerator e: aluminate, sodium aluminate, commercial hardening accelerator f: colloid, bismuth sol, commercial retarder: citric acid, commercial product [ Table 7] Table 3-3 Experimental hardening promotes uncompressed strength in flowing water (N/mm2) Remarks No. Inlet (mm) Separation 7曰28曰3-3-1 - 0 85 Excellent 1.4 5.3 Comparative Example 3- 3-2 a 1 85 Excellent 1.9 5.5 Example 3-3-3 a 2 85 Excellent 2.0 5.8 Example 3-3-4 a 3 85 Excellent 2.2 6.0 Example 3-3-5 a 10 85 Excellent 2.6 6.5 Example 3-3-6 a 20 85 Excellent 2.8 6.7 Example 3-3-7 a 30 85 Excellent 3.5 6.9 Example 3-3-8 b 5 85 Excellent 2.0 6.1 Example 3-3-9 c 5 85 Excellent 1.8 5.7 Example 3-3-10 d 5 85 Excellent 1.7 5.8 Example 3-3-11 e 5 85 Excellent 1.9 6.0 Example 3-3-12 f 5 85 Excellent 1.6 5.6 Example Hardening accelerator is 1 with respect to cement 〇份(份) •37- (34) 1313673 Example 4-1 Relative to 100 parts of the furnace smoke 'CAS 4-1 of FIG mixing table' plaster, and test stimuli material 'maximum particle diameter of the potting material 3 0 Am. The prepared potting material was mixed with 10 parts of water and 300 parts of water to prepare a suspension. At this time, with respect to 100 parts of the blast furnace smoke, 1 part of the 'mixed dispersant' and 1 part of the total of cas and gypsum, 1 part of the coagulation adjusting agent is mixed, and the hardening time, the penetration length, and the compression of the φ injection material are measured. strength. The results are summarized in Table 4-1. &lt;Use Materials&gt; Blast Furnace Smoke: Chinese products, commercial products Si〇2 25%, Fe203 3 %, Al2〇3 13%, CaO 19%, MgO 6%, Na2〇1·3%, K20 9% , S〇3 10%, S 0.3%, and MnO 0.2%, Brian 値 21,000 cm 2 /g, maximum particle size of 30 μιη, average particle size of 4 μηη • CAS ( i ) : CaO 45%, Al 2 O 3 40 %, and Si0215% glass, glass transition rate 95% CAS ( ii) : CaO 45%, A1203 2 8 %, and S i O 2 2 7 % glass, glass transition rate 9 5 % Gypsum: natural anhydrous Gypsum test stimulating material: slaked lime, commercial dispersant: naphthalene sulfonic acid formaldehyde condensate salt condensation regulator: weight ratio of citric acid to potassium carbonate i: 3 mixture 38- (35) 1313673 &lt; test method &gt; Infiltration length: In the Ethylene tube with a diameter of 5 cm x 30 cm in length, the No. 8 niobium was filled to a length of 20 cm ' and a 200 ml infusion material was put in. After 1 day, the infiltration length hardening time for the sand was determined: Even if the cup filled with the suspension is tilted, the time will not cause the suspension to flow. The compressive strength is measured according to ns R520 1 and the measured age is 1 day and 28 曰.

-39- (36)1313673-39- (36)1313673

[表8] 表4-1 實驗 CAS 石膏 鹼刺激 硬化時 滲透長 壓縮強度(N/mm2) 備註 No. 材料 間(分) 度(cm) 7曰 28曰 4-1-1 i 1 10 5 85 12 0.1 1.3 實施例 4-1-2 i 5 10 5 65 12 0.1 1.5 實施例 4-1-3 i 10 10 5 35 12 0.2 2.1 實施例 4-1-4 i 20 10 5 32 11 0.2 2.5 實施例 4-1-5 i 30 10 5 30 10 0.3 2.8 實施例 4-1-6 i 50 10 5 28 9 0.5 3.2 實施例 4-1-7 ii 10 10 5 40 12 0.2 1.9 實施例 4-1-8 i 10 1 5 32 12 0.1 1.0 實施例 4-1-9 i 10 5 5 34 12 0.2 1.6 實施例 4-1-10 i 10 20 5 45 12 0.3 3.1 實施例 4-1-11 i 10 30 5 55 11 0.4 3.3 實施例 4-1-12 i 10 50 5 75 10 0.5 3.5 實施例 4-1-13 i 10 10 1 100 12 0.1 0.5 實施例 4-1-14 i 10 10 3 40 12 0.2 1.2 實施例 4-1-15 i 10 10 10 32 12 0.5 2.6 實施例 4-1-16 i 10 10 20 30 12 0.5 3.2 實施例 4-1-17 i 10 10 30 28 10 0.6 3.4 實施例 4-1-18 i 10 10 50 25 8 0.7 3.8 實施例 4-1-19 i 20 20 10 30 10 0.8 4.0 實施例 CAS、石膏、及鹼刺激材料爲相對於高爐煙霧1 00份 之(份) -40- (37) 1313673 實施例4-2 相對於高爐煙霧100份,將CAS i 10份、石膏10份 、及鹼性刺激材料5份,調製表4-2所示之最大粒徑的灌 注材料,同實驗例4- 1處理測定硬化時間、滲透長度、 及壓縮強度。結果倂記於表4-2。 [表9] 表4-2 實驗 No. 最大粒 徑(μιη) 硬化時 間(分) 滲透長 度(cm) 壓縮強度(N/mm2) 備註 7曰 28曰 4-2-1 30 35 12 0.2 2.1 實施例 4-2-2 20 2 1 15 0.3 2.5 實施例 4-2-3 15 15 18 0.4 2.8 實施例 4-2-4 10 6 20 0.4 3.2 實施例 實施例5 - 1 相對於高爐煙霧1〇〇份,將表5-1所示之CA、石膏 、及鹼性刺激材料混合,調製最大粒徑30 μπχ的灌注材料 。將已調製之灌注材料1〇〇份與水300份混合製作懸浮液 。此時,相對於高爐煙霧1 〇〇份、混合分散劑1份,相對 於C Α與石膏之合計100份,混合凝結調整劑1份,測定 灌注材料的硬化時間、滲透長度、及壓縮強度。結果倂記 於表5 - 1。 -41 - (38) 1313673 &lt;使用材料&gt; 高爐煙霧:中國產、市售品Si02 25%、、Fe203 3 % '[Table 8] Table 4-1 Experimental CAS Long-term compressive strength (N/mm2) during gypsum alkali stimulation hardening Remark No. Inter-material (minutes) Degree (cm) 7曰28曰4-1-1 i 1 10 5 85 12 0.1 1.3 Example 4-1-2 i 5 10 5 65 12 0.1 1.5 Example 4-1-3 i 10 10 5 35 12 0.2 2.1 Example 4-1-4 i 20 10 5 32 11 0.2 2.5 Example 4-1-5 i 30 10 5 30 10 0.3 2.8 Example 4-1-6 i 50 10 5 28 9 0.5 3.2 Example 4-1-7 ii 10 10 5 40 12 0.2 1.9 Example 4-1-8 i 10 1 5 32 12 0.1 1.0 Example 4-1-9 i 10 5 5 34 12 0.2 1.6 Example 4-1-10 i 10 20 5 45 12 0.3 3.1 Example 4-1-11 i 10 30 5 55 11 0.4 3.3 Example 4-1-12 i 10 50 5 75 10 0.5 3.5 Example 4-1-13 i 10 10 1 100 12 0.1 0.5 Example 4-1-14 i 10 10 3 40 12 0.2 1.2 Example 4-1-15 i 10 10 10 32 12 0.5 2.6 Example 4-1-16 i 10 10 20 30 12 0.5 3.2 Example 4-1-17 i 10 10 30 28 10 0.6 3.4 Example 4-1-18 i 10 10 50 25 8 0.7 3.8 Examples 4-1-19 i 20 20 10 30 10 0.8 4.0 Example CAS, gypsum, and alkali stimulating materials are 10,000 parts relative to blast furnace smog ( ) -40- (37) 1313673 Example 4-2 10 parts of CAS i, 10 parts of gypsum, and 5 parts of basic stimulating material were prepared for 100 parts of blast furnace smoke, and the maximum particle diameter shown in Table 4-2 was prepared. The infusion material was treated as in Experimental Example 4-1 to determine the hardening time, the penetration length, and the compressive strength. The results are summarized in Table 4-2. [Table 9] Table 4-2 Experiment No. Maximum particle size (μιη) Hardening time (minutes) Permeation length (cm) Compressive strength (N/mm2) Remarks 7曰28曰4-2-1 30 35 12 0.2 2.1 Implementation Example 4-2-2 20 2 1 15 0.3 2.5 Example 4-2-3 15 15 18 0.4 2.8 Example 4-2-4 10 6 20 0.4 3.2 Example Example 5 - 1 Relative to blast furnace smoke 1〇〇 The CA, gypsum, and alkaline stimulating materials shown in Table 5-1 were mixed to prepare a perfusion material having a maximum particle size of 30 μπχ. A suspension was prepared by mixing 1 part of the prepared potting material with 300 parts of water. At this time, 1 part of the blast furnace smog and 1 part of the dispersing agent were mixed, and 100 parts of the total of C Α and gypsum were mixed, and 1 part of the coagulation adjusting agent was mixed, and the hardening time, the penetration length, and the compressive strength of the infusion material were measured. The results are summarized in Table 5-1. -41 - (38) 1313673 &lt;Use materials&gt; Blast furnace smoke: Chinese products, commercial products Si02 25%, Fe203 3 % '

Al2〇3 13%、CaO 19%、MgO 6%、Na2〇 l·3%、κ2〇 9%、 S03 10%、s 〇_3%、及 MnO 0.2%' 布萊恩値 21,000cm2/g 、最大粒徑爲30 μπι、平均粒徑爲4 μιη C A i :非晶質1 2 C a Ο · 7 A12 Ο 3、玻璃化率9 5 % CA Η :結晶質CaO · Α1203、玻璃化率20% φ 石膏:天然無水石膏 鹼刺激材料:消石灰、市售品 分散劑:萘磺酸甲醛縮合物鹽系 凝結調整劑:檸檬酸與碳酸鉀之重量比1: 3的混合 品 &lt;試驗方法&gt; 滲透長度:於直徑5公分X長度30公分之乙烯管中將 φ 8號矽砂充塡至長度20公分,投入200毫升灌注材料’ 1 曰後測定對於砂的滲透長度 硬化時間:即使將已裝入懸浮液的杯傾斜亦不會令懸 浮液流動爲止的時間 壓縮強度:根據JIS R5 201測定’測定材齡1日和28 曰 -42- (39)1313673 im ι〇]Al2〇3 13%, CaO 19%, MgO 6%, Na2〇l·3%, κ2〇9%, S03 10%, s 〇_3%, and MnO 0.2%' Brian 値 21,000cm2/g, The maximum particle size is 30 μπι, the average particle size is 4 μιη CA i : amorphous 1 2 C a Ο · 7 A12 Ο 3. The glass transition rate is 9 5 % CA Η : crystalline CaO · Α 1203, glass transition rate 20% Φ gypsum: natural anhydrite gypsum alkali stimulating material: slaked lime, commercial dispersant: naphthalene sulfonic acid formaldehyde condensate salt condensation regulator: a mixture of citric acid and potassium carbonate in a weight ratio of 1: 3 &lt;Test method&gt; Permeation length: Fill the φ 8 矽 sand to a length of 20 cm in a vinyl tube with a diameter of 5 cm X length and 30 cm. After injecting 200 ml of the infusion material ' 1 曰, measure the penetration length for the sand. Hardening time: even if it will be installed Time to compress the cup into the suspension without causing the suspension to flow: measured according to JIS R5 201 'measured age 1 and 28 曰-42- (39) 1313673 im ι〇]

表5-1 實驗 CA 石膏 鹼性刺 硬化時 滲透長 壓縮強度(N/mm2) 備註 No. 激材料 間(分) 度(cm) 1曰 28曰 5-1-1 i 1 10 5 75 12 0.05 1.0 實施例 5-1-2 i 5 10 5 55 12 0.08 1.2 實施例 5-1-3 i 10 10 5 25 12 0.1 1.8 實施例 5-1-4 1 20 10 5 22 11 0.15 2.3 實施例 5-1-5 i 30 10 5 20 10 0.2 2.5 實施例 5-1-6 i 50 10 5 18 9 0.4 3.0 實施例 5-1-7 ii 10 10 5 90 13 0.05 0.8 實施例 5-1-8 , 10 1 5 22 12 0.04 0.8 實施例 5-1-9 i 10 5 5 24 12 0.07 1.4 實施例 5-1-10 i 10 20 5 35 12 0.2 2.8 實施例 5-1-11 i 10 30 5 45 11 0.3 3.0 實施例 5-1-12 i 10 50 5 65 10 0.4 3.2 實施例 5-1-13 i 10 10 1 90 12 0.06 0.3 實施例 5-1-14 i 10 10 3 30 12 0.08 1.0 實施例 5-1-15 i 10 10 10 22 12 0.3 2.4 實施例 5-1-16 i 10 10 20 20 12 0.4 3.0 實施例 5-1-17 i 10 10 30 18 10 0.5 3.2 實施例 5-1-18 i 10 10 50 15 8 0.6 3.6 實施例 5-1-19 i 20 20 10 20 10 0.7 3.8 實施例 cA、石膏、及鹼性刺激材料爲相對於高爐煙霧1 00份 之(份) -43- (40) 1313673 實施例5-2 相對於高爐煙霧i 00份,混合C A 1 0份、石膏1 0份、 及鹼性刺激材料5份,調製表5_2所示之最大粒徑的灌注 材料’同實驗例5-1處理測定硬化時間、滲透長度、及壓 縮強度。結果併記表5 - 2。 [表 11] • 表 5 - 2_____ 實驗 No. 最大粒 徑(μηι) 硬化時 間(分) 滲透長 度(cm) 壓縮強虔 ;(N/mm2) 備註 ,1曰 28曰 5-2-1 30 25 12 0.1 1.8 實施例 5-2-2 20 15 15 0.2 2.0 實施例 5-2-3 15 3 18 0.3 2.3 實施例 5-2-4 10 2 20 0.3 2.5 實施例 •[產業上之可利用性] 本發明之改良地盤用材料組成物,因滲透性爲良好, 且耐久性亦優良,故可於改良地盤工程和止水工程中之裹 入材料等的空隙充塡材等中廣泛利用,又,本發明之使用 改良地盤用材料組成物所構成的灌注材料,由於對於地盤 的滲透性優良,灌注性高,且強度表現性優良,故可對先 前難以應用之地質地盤灌注,可有效利用產業副產物之高 爐煙霧。 另外,於2004年1 1月1 1日所申請之日本專利申請 -44 - (41) 1313673 2004-327140 號 2004- 369240 號 2005- 022895 號 2005-022896 號 2005-032719 號 全部內容於此處 、倂入。 、2004年12月21日申請之日本專利申請 、2005年1月31日申請之日本專利申請 、2005年1月31日申請之日本專利申請 泛2005年2月9日申請之日本專利申請 之說明書、申請專利範圍、圖面及摘要之 引用,並且以本發明之說明書之揭示型式Table 5-1 Long-term compressive strength (N/mm2) of experimental CA gypsum alkaline thorn hardening Remarks No. Between the materials (minutes) Degree (cm) 1曰28曰5-1-1 i 1 10 5 75 12 0.05 1.0 Example 5-1-2 i 5 10 5 55 12 0.08 1.2 Example 5-1-3 i 10 10 5 25 12 0.1 1.8 Example 5-1-4 1 20 10 5 22 11 0.15 2.3 Example 5 - 1-5 i 30 10 5 20 10 0.2 2.5 Example 5-1-6 i 50 10 5 18 9 0.4 3.0 Example 5-1-7 ii 10 10 5 90 13 0.05 0.8 Examples 5-1-8, 10 1 5 22 12 0.04 0.8 Example 5-1-9 i 10 5 5 24 12 0.07 1.4 Example 5-1-10 i 10 20 5 35 12 0.2 2.8 Example 5-1-11 i 10 30 5 45 11 0.3 3.0 Examples 5-1-12 i 10 50 5 65 10 0.4 3.2 Examples 5-1-13 i 10 10 1 90 12 0.06 0.3 Examples 5-1-14 i 10 10 3 30 12 0.08 1.0 Example 5 - 1-15 i 10 10 10 22 12 0.3 2.4 Examples 5-1-16 i 10 10 20 20 12 0.4 3.0 Examples 5-1-17 i 10 10 30 18 10 0.5 3.2 Examples 5-1-18 i 10 10 50 15 8 0.6 3.6 Examples 5-1-19 i 20 20 10 20 10 0.7 3.8 Example cA, gypsum, and alkaline stimulating material are 10,000 parts relative to blast furnace smog (Part) -43- (40) 1313673 Example 5-2 Compared with 00 parts of blast furnace smoke, mix 10 parts of CA, 10 parts of gypsum, and 5 parts of alkaline stimulating material to prepare the largest particle shown in Table 5_2 The perfusion material of the diameter was treated in the same manner as in Experimental Example 5-1 to determine the hardening time, the penetration length, and the compressive strength. The results are also recorded in Table 5-2. [Table 11] • Table 5 - 2_____ Experiment No. Maximum particle size (μηι) Hardening time (minutes) Permeation length (cm) Compressive force; (N/mm2) Remarks, 1曰28曰5-2-1 30 25 12 0.1 1.8 Example 5-2-2 20 15 15 0.2 2.0 Example 5-2-3 15 3 18 0.3 2.3 Example 5-2-4 10 2 20 0.3 2.5 Example • [Industrial Applicability] The material composition for improved flooring of the present invention is excellent in permeability and excellent in durability, and can be widely used in void filling materials such as wrapping materials for improving the construction site and the water stopping project, and The perfusion material composed of the material composition for improving the ground plate of the present invention has excellent permeability to the ground plate, high perfusion property, and excellent strength expression, so that the geological ground plate which has been difficult to apply can be infused, and the industrial deputy can be effectively utilized. Blast furnace smog of the product. In addition, Japanese Patent Application No. -44 - (41) 1313673 2004-327140, No. 2004-369240, No. 2005-022895, No. 2005-022896, No. 2005-032719, filed on Jan. 1, 2004, Break in. Japanese Patent Application filed on Dec. 21, 2004, and Japanese Patent Application, filed on Jan. 31, 2005, , the scope of application for patents, drawings and abstracts, and the disclosure of the specification of the present invention

\ -45 -\ -45 -

Claims (1)

1313673 十、申請專利範圍 第94 1 39648號專利申請案 中文申請專利範圍修正本 民國98年5月19日修正 〗· 一種改良地盤用材料組成物,其特徵爲含有具有 Si02 爲 20 〜30%、Al2〇3 爲 1 0〜1 5%、及 CaO 爲 1 5〜25% 之 高爐煙霧。 2 .如申請專利範圍第1項之改良地盤用材料組成物 ,其爲進〜步含有砂灰(silicafume)。 3 ·如申請專利範圍第1或2項之改良地盤用材料組 成物’其爲含有最大粒徑40 μπι之水泥或氫氧化鈣。 4.如申請專利範圍第1或2項之改良地盤用材料組 成物’其爲含有水泥、及鹼性增黏型聚合物乳液所成者。 5 ·如申請專利範圍第3項之改良地盤用材料組成物 ’其中高爐煙霧爲相對於水泥100質量份,爲30~5 00質 量份者。 6.如申請專利範圍第4項之改良地盤用材料組成物 ,其中鹼性增黏型聚合物乳液,爲經由不飽和羧酸類與乙 烯性不飽和化合物之共聚所得的聚合物乳液。 7 ·如申請專利範圍第1或2項之改良地盤用材料組 成物,其爲進一步含有硬化促進劑所成者。 8 .如申請專利範圍第7項之改良地盤用材料組成物 ,其中硬化促進劑爲有鋁酸鹽及/或硫酸鹽。 9.如申請專利範圍第1或2項之改良地盤用材料組 1313673 成物’其中高爐煙霧爲具有最大粒徑30 μιη。 1〇· —種灌注材料,其特徵爲使用如申請專利範圍第 1 ~9項中任一項之改良地盤用材料組成物所構成。 11.如申請專利範圍第1 0項之灌注材料,其爲含有 鋁酸鈣或鋁矽酸鈣、石膏、及鹼性刺激材料所構成。 1 2 ·如申請專利範圍第1 〇或1 1項之灌注材料,其爲 相對於高爐煙霧100質量份,含有鋁酸鈣或鋁矽酸鈣1〜15 質量份、石膏1〜5 0質量份、及鹼性刺激材料1〜5 0質量份 所構成者。 1 3 ,如申請專利範圍第1 0或1 1項之灌注材料,其中 最大粒徑爲20 μηι以下。 1 4 . 一種如申請專利範圍第4~9項中任一項之改良地 盤用材料組成物的使用方法,其特徵爲將含有水泥、高爐 煙霧及水所構成的Α液與含有鹼性增黏型聚合物乳液和水 所構成的B液,分別預先調製,並且於使用前立即混合A 液與B液。 1 5 . —種如申請專利範圍第4〜9項中任一項之改良地 盤用材料組成物的使用方法,其特徵爲將含有水泥、高爐 煙霧及水所構成的A液與含有硬化促進劑和鹼性增黏型聚 合物乳液和水所構成的B液’分別預先調製,並且於使用 前立即混合A液與B液。 1 6 . —種如申請專利範圍第4~9項中任一項之改良地 盤用材料組成物的使用方法’其特徵爲將含有水泥、高爐 煙霧 '及水所構成的A液與含有硬化促進劑和水所構成的 -2- ⑧ 1313673 B液與含有鹼性增黏型聚合物乳液和水所構成的C液,分 別預先調製,並且於使用前立即混合A液、B液及C液。 -3-1313673 X. Patent Application No. 94 1 39648 Patent Application Revision of Chinese Patent Application Revision Amendment of the Republic of China on May 19, 1998 · A material composition for improved site, characterized by having a SiO 2 of 20 to 30%, Al2〇3 is 10 0 to 1 5%, and CaO is 1 5 to 25% of blast furnace fumes. 2. The material composition for an improved construction site according to the first aspect of the patent application, which comprises a silica fume. 3. The material composition for improved flooring of claim 1 or 2 is a cement or calcium hydroxide having a maximum particle size of 40 μm. 4. The material composition for improved flooring of the invention of claim 1 or 2 which is a cement-containing and alkali-bonded polymer emulsion. 5 · The material composition for the improved site of the third paragraph of the patent application' wherein the blast furnace smoke is 30 to 500 mass parts relative to 100 parts by mass of the cement. 6. The material composition for improved flooring of claim 4, wherein the basic tackifying polymer emulsion is a polymer emulsion obtained by copolymerization of an unsaturated carboxylic acid and an ethylenically unsaturated compound. 7. The material composition for improved flooring of the first or second aspect of the patent application, which further comprises a hardening accelerator. 8. The material composition for an improved site of claim 7, wherein the hardening accelerator is an aluminate and/or a sulfate. 9. The improved material group 1313673 of claim 1 or 2 wherein the blast furnace smoke has a maximum particle size of 30 μm. A perfusion material characterized by using a material composition for an improved construction site according to any one of claims 1 to 9. 11. A perfusion material according to claim 10, which comprises calcium aluminate or calcium aluminosilicate, gypsum, and a basic stimulating material. 1 2 · If the infusion material of the first or third aspect of the patent application is 100 parts by mass relative to the blast furnace smog, it contains 1 to 15 parts by mass of calcium aluminate or calcium aluminosilicate, and 1 to 50 parts by mass of gypsum. And the alkaline stimulating material is composed of 1 to 50 parts by mass. 1 3 , such as the infusion material of the patent application scope No. 10 or item 11, wherein the maximum particle size is 20 μηι or less. A method for using a material composition for an improved construction site according to any one of claims 4 to 9, which is characterized in that the sputum composed of cement, blast furnace smoke and water is alkali-cured. The liquid B composed of the polymer emulsion and water was separately prepared in advance, and the liquid A and the liquid B were mixed immediately before use. A method for using a material composition for an improved construction site according to any one of claims 4 to 9, which is characterized in that a liquid A containing cement, blast furnace smoke and water and a hardening accelerator are contained. The liquid B composed of the alkaline tackifying polymer emulsion and water was separately prepared in advance, and the liquid A and the liquid B were mixed immediately before use. The invention relates to a method for using a material composition for improving a ground plate according to any one of claims 4 to 9 which is characterized in that a liquid A containing cement, blast furnace smog and water is contained and contains hardening promotion. The liquid of -2- 8 1313673 B composed of the agent and water and the liquid C composed of the alkaline thickening type polymer emulsion and water were separately prepared in advance, and the liquid A, liquid B and liquid C were mixed immediately before use. -3-
TW094139648A 2004-11-11 2005-11-11 Composition for ground-improving material, grouting material comprising the same, and method of using the same TW200640821A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2004327140 2004-11-11
JP2004369240 2004-12-21
JP2005022895 2005-01-31
JP2005022896 2005-01-31
JP2005032719 2005-02-09

Publications (2)

Publication Number Publication Date
TW200640821A TW200640821A (en) 2006-12-01
TWI313673B true TWI313673B (en) 2009-08-21

Family

ID=36336551

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094139648A TW200640821A (en) 2004-11-11 2005-11-11 Composition for ground-improving material, grouting material comprising the same, and method of using the same

Country Status (5)

Country Link
JP (1) JP4902356B2 (en)
KR (1) KR100869467B1 (en)
CN (1) CN101052697B (en)
TW (1) TW200640821A (en)
WO (1) WO2006051875A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5189274B2 (en) * 2006-11-10 2013-04-24 電気化学工業株式会社 Ground injection material and ground injection method using the same
JP4981457B2 (en) * 2007-01-09 2012-07-18 電気化学工業株式会社 Cement composition, injection material using the same, and method of using the same
JP5620045B2 (en) * 2007-12-28 2014-11-05 電気化学工業株式会社 Injection material and injection method
CN101486556B (en) * 2009-03-05 2012-01-04 安徽省皖北煤电集团有限责任公司含山恒泰非金属材料分公司 Ointment pumping filler material for mine roadway support and preparation
JP2011026572A (en) * 2009-07-01 2011-02-10 Denki Kagaku Kogyo Kk Grouting material and grouting workpiece
SG179011A1 (en) * 2009-09-07 2012-04-27 Denki Kagaku Kogyo Kk Hydraulic cement composition for soil injection, and soil improvement method using the same
CN102199028B (en) * 2010-10-15 2013-06-05 河南理工大学 Rapid hardening early strength grouting material prepared with flue gas desulfurized gypsum and preparation method thereof
KR101051968B1 (en) 2011-01-27 2011-07-26 (주)제이엔티아이엔씨 Deep soil mixing method using eco-friendly soil grouting material
CN102321459B (en) * 2011-06-10 2013-12-04 天津中油渤星工程科技有限公司 Oil well cement chlorine-free coagulation accelerating early strength agent
US9102870B1 (en) 2011-12-05 2015-08-11 Entact, Llc Additives for soil, soil compositions and methods of making
JP6159195B2 (en) * 2013-08-23 2017-07-05 デンカ株式会社 Injection method
CN103803820B (en) * 2013-12-19 2016-02-03 柳州正菱鹿寨水泥有限公司 A kind of insulating cement
CN103833260B (en) * 2014-03-10 2015-10-21 甘肃智通科技工程检测咨询有限公司 Environment-friendly high-efficiency grouting agent
CN103951360B (en) * 2014-03-31 2016-01-13 安徽固维特材料科技有限公司 Mineral metal products exploitation tail ore pulp solidifying agent and application art thereof
TWI557293B (en) * 2014-09-19 2016-11-11 Da Di Liang Environmental Service Co Ltd Application of Washable Blast Furnace Slag in Making Farm Ditch Pavement
JP6818271B2 (en) * 2016-09-06 2021-01-20 株式会社大林組 Water-stopping method for water-stopping liquid mixing injection system, water-stopping liquid mixing injection plug and cement-based composition structure
KR101774529B1 (en) * 2016-09-29 2017-09-05 (주)대한하이텍건설 A Composition for Reinforcing Soft Ground and Restoring Depressed structures including Urethane and Cement for Solidifying Ground and Construction Methods Using Thereof
KR101764665B1 (en) * 2017-01-23 2017-08-04 (주)대한하이텍건설 A Composition for Reinforcing Soft Ground and Restoring Depressed structures including Clay and Construction Methods Using Thereof
KR101764664B1 (en) * 2017-01-23 2017-08-04 (주)대한하이텍건설 A Composition for Reinforcing Soft Ground and Restoring Depressed structures including Urethane and Clay for Solidifying Ground and Construction Methods Using Thereof
JP6993185B2 (en) * 2017-11-13 2022-02-04 デンカ株式会社 Soil reforming material and soil reforming method
CN109626912B (en) * 2019-01-28 2021-09-14 广东工业大学 Underground engineering concrete for shield construction and preparation method and application thereof
JP7303996B2 (en) * 2019-03-27 2023-07-06 住友大阪セメント株式会社 Soil improvement material, improved soil, and method for producing improved soil
KR102125347B1 (en) * 2019-10-15 2020-06-22 안민정 Polymer concrete composition and construction method for road pavement thereof
KR102147251B1 (en) * 2020-04-06 2020-08-24 주식회사 에스티 Method for manufacturing grout injection material, grout injection material produced thereby and construction method
TWI759748B (en) * 2020-05-28 2022-04-01 永覲工業股份有限公司 Geological improvement agent excited by high basicity steel slag and blast furnace cement for geological improvement
KR102211957B1 (en) * 2020-09-24 2021-02-04 주식회사 위드엠텍 Thixotropical Grout Composition and Grouting Method Using the Same
KR102619095B1 (en) * 2023-07-12 2023-12-29 주식회사 피오씨 Eco-friendly Grout revealing early high-strength

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623051A (en) * 1985-06-27 1987-01-09 新日本製鐵株式会社 Manufacture of road bed material
JPS6366283A (en) * 1986-09-08 1988-03-24 Shinji Sakuma Foundation improving material comprising dust of electric furnace as raw material
JPS63273689A (en) * 1987-05-01 1988-11-10 Tokyo Electric Power Co Inc:The Impregnation of grout
JPH02160895A (en) * 1988-12-15 1990-06-20 Tetsugen:Kk Foundation conditioner
JPH04221116A (en) * 1990-12-21 1992-08-11 Nishimatsu Constr Co Ltd Grouting engineering method
JP4405056B2 (en) * 2000-07-31 2010-01-27 株式会社柏木興産 Admixtures used in glass fiber reinforced cement composites.
JP2003013060A (en) * 2001-06-29 2003-01-15 Mitsubishi Materials Corp Cement-based setting material for improving seawater- resistant ground
JP2004067477A (en) * 2002-08-09 2004-03-04 Shinichi Numata Admixture for glass fiber reinforced cement composite
JP3953469B2 (en) * 2003-06-27 2007-08-08 晉一 沼田 Acid resistant concrete

Also Published As

Publication number Publication date
KR100869467B1 (en) 2008-11-19
CN101052697A (en) 2007-10-10
JP4902356B2 (en) 2012-03-21
WO2006051875A1 (en) 2006-05-18
TW200640821A (en) 2006-12-01
KR20070083874A (en) 2007-08-24
CN101052697B (en) 2010-10-06
JPWO2006051875A1 (en) 2008-05-29

Similar Documents

Publication Publication Date Title
TWI313673B (en)
CN102126840B (en) Low-temperature concrete early strength agent
KR101809485B1 (en) Ultra rapid harding,high early strength waterproof and mothproof mortar composition
CN112127830B (en) Well cementation method for improving well cementation quality by controlling hydration heat of cement slurry
KR101617067B1 (en) Exterior insulation mortar for cold weather and construction method of exterior insulation system using the same
CN102910852B (en) Coagulant for super sulfate cement
CN106278063A (en) Green environmental-protection building mortar and production method thereof
CN102363575A (en) Waste chamotte brick regeneration and utilization method, and concrete doped with waste chamotte brick powder
CN106380140A (en) Impermeable frost-resistant concrete
CN105036656A (en) Capillary crystalline type plugging material and use method thereof
CN108218338A (en) It is a kind of to utilize dry-mixed ordinary mortar material of discarded concrete production and preparation method thereof
CN112960958A (en) Sealing slurry for winter assembly type construction and preparation method thereof
CN114213094A (en) Regenerated ceramic powder geopolymer repair mortar and preparation method thereof
CN110317034B (en) Semi-hydrated phosphogypsum-based filling material and preparation method and application thereof
JP4786918B2 (en) Cement composition and method of use thereof
CN102850015B (en) Silica fume surface course repair material
CN102206072A (en) Novel formula design for blast furnace slag-based thermal-insulation dry powder
JP4841958B2 (en) Cement composition, injection material using the same, and method of using the same
CN109455996A (en) A kind of danger external wall insulation grouting and reinforcing mortar
JP3775754B2 (en) Noro reducing material, centrifugal force molded body using the same, and method for producing the same
CN215975567U (en) Phosphogypsum microsphere aggregate for cement mortar
JP5783702B2 (en) Spraying material and spraying method using the same
CN104086148A (en) Bottom plastering gypsum powder
JP2012006782A (en) Spray material and spray construction method using the same
CN102173731A (en) Cement-base special-type grouting material

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees