WO2006051875A1 - Composition for ground-improving material, grouting material comprising the same, and method of using the same - Google Patents

Composition for ground-improving material, grouting material comprising the same, and method of using the same Download PDF

Info

Publication number
WO2006051875A1
WO2006051875A1 PCT/JP2005/020641 JP2005020641W WO2006051875A1 WO 2006051875 A1 WO2006051875 A1 WO 2006051875A1 JP 2005020641 W JP2005020641 W JP 2005020641W WO 2006051875 A1 WO2006051875 A1 WO 2006051875A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
parts
liquid
ground improvement
blast furnace
Prior art date
Application number
PCT/JP2005/020641
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Yamamoto
Katsuaki Iriuchijima
Minoru Morioka
Mitsuo Takahashi
Original Assignee
Denki Kagaku Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo Kabushiki Kaisha filed Critical Denki Kagaku Kogyo Kabushiki Kaisha
Priority to CN2005800379835A priority Critical patent/CN101052697B/en
Priority to JP2006544960A priority patent/JP4902356B2/en
Publication of WO2006051875A1 publication Critical patent/WO2006051875A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/06Calcium compounds, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/10Cements, e.g. Portland cement
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
    • C09K17/48Organic compounds mixed with inorganic active ingredients, e.g. polymerisation catalysts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00732Uses not provided for elsewhere in C04B2111/00 for soil stabilisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/70Grouts, e.g. injection mixtures for cables for prestressed concrete
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to an effective utilization method of a blast furnace fume, a composition for ground improvement material widely used in ground improvement work and water stoppage work in the civil engineering and construction industry, a method for preparing them, and a method for using them. Concerning the injection material.
  • blast furnace granulated slag, fly ash, silica fume, etc. have already been used in many effective ways.For example, they are mixed in Portland cement and used in JIS. Speak.
  • Blast furnace fume is a by-product generated in the manufacturing process of steel, and is dust that collects fumes that also generate blast furnace power when pig iron is obtained.
  • As an effective utilization method of blast furnace fume it has been proposed as an admixture used for a glass fiber reinforced cement composite (see Patent Document 1 and Patent Document 2).
  • alkali metals are contained in the components of the blast furnace fume. At present, there is concern about the reaction of alkali-aggregate reaction.
  • ground improvement materials are widely used for ground improvement work, water stoppage work, and the like.
  • Ground improvement works include soft ground, foundations for large special structures such as dams and power plants, curtain grouts for ground reinforcement, and injection of chemicals when applying underground structures such as tunnels, oil and LPG storage bases, etc. It is ground improvement work. Water stoppage is a place lower than the groundwater level
  • the ground improvement material is widely used in these constructions, and is a material used for the purpose of strengthening the ground by consolidation or dehydration of the ground.
  • the tunnel covering there may be a cavity in the back of the covering concrete during and after construction. If this cavity is left as it is, the ground surface will sink as the ground collapses into the cavity.
  • the cover concrete is deformed or destroyed, in particular, the tunnel collapses, the cover concrete is degraded due to the inflow of groundwater into the cavities, and the resulting lanes of the deteriorated concrete fragments There were problems such as falling to the road and freezing of the lane in winter due to water leakage from the crack.
  • Patent Document 3 Patent Document 5
  • Patent Document 6 Patent Document 6
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-47037
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-67477
  • Patent Document 3 Japanese Patent Laid-Open No. 10-237446
  • Patent Document 4 Japanese Patent Laid-Open No. 11-61123
  • Patent Document 5 Japanese Patent Laid-Open No. 10-238289
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2000-280231
  • Patent Document 7 Japanese Unexamined Patent Application Publication No. 2004-149685
  • the present invention is a ground improvement material that can be widely used in ground improvement work, water stoppage work, etc., and uses a blast furnace fume for which no effective utilization method has been found.
  • the gap filler such as backfilling material unnecessarily flows away to the distance, the gap filler does not flow out even if there is spring water, and it does not dilute and deteriorate the physical properties.
  • An object of the present invention is to provide a composition for a ground improvement material in which the dissolved water does not become a strong alkali, and (3) an injection material having a high permeability to the ground, which uses the composition for the ground improvement material. .
  • a composition for ground improvement material comprising blast furnace fume.
  • composition for ground improvement material according to the above (1) further comprising silica fume.
  • composition for ground improvement material according to (1) or (2) above comprising cement or calcium hydroxide having a maximum particle size of 40 ⁇ m.
  • Alkali-thickening polymer emulsion power A ground improvement material as described in (4) or (5) above, which is a polymer emulsion obtained by copolymerization of an unsaturated carboxylic acid and an ethylenically unsaturated compound. Composition.
  • composition for ground improvement material according to any one of (1) to (7) above, wherein the curing accelerator contains aluminate and Z or sulfate.
  • composition for ground improvement material according to any one of the above (1) to (9), having a%.
  • injection material comprising the composition for ground improvement material according to any one of (1) to (10) above
  • Liquid A containing cement, blast furnace fume, and water
  • Liquid B containing a curing accelerator and water
  • C containing an alkali-thickening polymer emulsion and water
  • the composition for ground improvement material containing blast furnace fume and the injection material using the same according to the present invention are excellent in permeability and durability, and can be widely used for ground improvement work and water stop work. In addition, it has a rapid viscosity increase, excellent strength development, inseparability in water, and has a low pH value compared to when water glass is used. It serves as a backfill material for cavities and voids in natural ground, a filler for shield segments, and a quick setting injection material for double-pipe single-phase or double-phase injection methods.
  • composition for ground improvement material and the injection material using the same according to the present invention rapidly increase the viscosity of cement milk, cement mortar, or concrete, such as a sealing material or primary injection material in a double-pipe double packer method. It is effective for applications that need to be raised. In addition, since it has excellent permeability to the ground, high injectability and excellent strength development, it is possible to inject into geological ground that was difficult to apply in the past.
  • the blast furnace fume used in the present invention is a by-product generated in the steel industry, and is dust collected from fumes that also generate blast furnace power when pig iron is obtained.
  • the blast furnace fume contains, as components, SiO force 0-30%, AlO force 10-15%, and CaO 15-25%.
  • the blast furnace fume preferably has a maximum particle size of 30 m and an average particle size of 3 to 5 ⁇ m.
  • the fineness of the blast furnace fume preferably has a brain specific surface area value (hereinafter referred to as a brain value) in the range of 15,000 to 25,000 cm 2 / g.
  • the blast furnace fume may be used as it is, or may be further pulverized and classified to be used as a fine powder.
  • the cement used in the present invention is not particularly limited, but preferred specific examples include various portland cements such as normal, early strength, super early strength, low heat, and moderate heat, and these portland cements.
  • various mixed cements mixed with blast furnace slag, fly ash, or silica, filler cement mixed with limestone powder or blast furnace slow-cooled slag fine powder, waste-use cement, so-called eco cement, and the like can be given.
  • One or more of these can be used in combination.
  • the cement concrete as used in the present invention is a general term for cement milk, mortar, or concrete.
  • the composition for ground improvement material of the present invention preferably contains silica fume as a component other than the blast furnace fume from the viewpoint of improving the permeability to the ground.
  • silica fume as a component other than the blast furnace fume from the viewpoint of improving the permeability to the ground.
  • acidic silica fume is preferred. It is also preferable to contain acidic silica fume and normal silica fume.
  • the acidic silica fume means that the pH of the supernatant liquid when the silica fume lg is put into pure lOOcc and stirred is 5 or less.
  • the fineness of silica fume is not particularly limited, it is usually preferred to have a BET specific surface area of about 2 to 200,000 m 2 / g.
  • the ground improvement material composition of the present invention is preferably used in combination with fine powder of cement or calcium carbonate as a component other than the blast furnace fume in order to further enhance the durability. Durability is hardened physical strength improved by ground improvement material. It is possible to evaluate by checking "water”.
  • composition for ground improvement material of the present invention is more widely used than the ground improvement material that has been widely used in the past, such as ground improvement material mainly composed of blast furnace slag fine powder. There is a feature that is excellent in durability.
  • the above-mentioned cement or calcium hydroxide hydroxide (hereinafter referred to as cements! /, U) has a maximum particle size of 40 ⁇ m and is substantially free of particles exceeding 40 / zm. preferable. Specifically, cements having a content ratio of particles exceeding 40 ⁇ m of 1% or less and a maximum particle size of 30 ⁇ m are more preferable.
  • the average particle size is preferably 10 m or less, more preferably 5 m or less. If the maximum particle size of cements exceeds 0 m, the permeability may deteriorate. In the present invention, the average particle diameter is measured by a laser diffraction particle size distribution measuring device.
  • the calcium hydroxide calcium hydroxide is not particularly limited, but can be obtained by hydrating quick lime, and commercially available products can be used.
  • cements may be finely powdered by a pulverizing operation, or a fine powder portion can be obtained by a classification operation.
  • the blending ratio of each material in the composition for ground improvement material of the present invention is not particularly limited, but 10 to 90 parts of silica fume is preferable in a total of 100 parts of blast furnace fume and silica fume. ⁇ 80 parts are more preferred. If the silica fume is less than 10 parts, the effect of improving the permeability may not be fully expected. Conversely, if the silica fume exceeds 90 parts, the strength development will not be sufficient, and the water to be released tends to become apparent.
  • the amount of water used is preferably 50 to 500 parts, more preferably 100 to 300 parts, with respect to 100 parts of the ground improvement material composition. If it is less than 50 parts, the permeability may not be sufficient, and if it exceeds 500 parts, it may be difficult to ensure durability.
  • the ground improvement material composition of the present invention contains a blast furnace fume, cement, and an alkali thickening polymer emulsion
  • the amount of the blast furnace fume used is the quality of the blast furnace fume. However, generally, it is preferably 30 to 500 parts force S, more preferably 50 to 300 parts per 100 parts of cement.
  • the amount is less than 30 parts, the viscosity may not increase, the fluidity may increase, or the inseparability in water may decrease. If the amount exceeds 500 parts, the viscosity becomes too high, and the composition for the ground improvement material is kneaded. Mixing may be difficult.
  • the alkali thickened polymer emulsion (hereinafter referred to as the present emulsion) used in the composition for improving ground according to the present invention is a polymer emulsion that is thickened by alkali.
  • Examples of the emulsion include various unsaturated carboxylic acids, ethylenically unsaturated compounds, copolymers of unsaturated carboxylic acids and ethylenically unsaturated compounds, and the like.
  • a polymer emulsion obtained by copolymerization of an unsaturated carboxylic acid and an ethylenically unsaturated compound is preferred in terms of exhibiting a more excellent effect.
  • Examples of the polymerization method of the unsaturated carboxylic acid and the ethylenically unsaturated compound include a method of copolymerization by a method such as emulsion polymerization, suspension polymerization, solution polymerization, or bulk polymerization.
  • Examples of the unsaturated carboxylic acids include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, citraconic acid, aconitic acid, and crotonic acid; maleic anhydride and citraconic anhydride And unsaturated carboxylic acid anhydrides such as monomethyl itaconate, monobutyl itaconate, and monoethyl ethyl maleate. Of these, alicyclic acid and Z or methacrylic acid are more preferred, and unsaturated carboxylic acid is preferred in terms of higher viscosity.
  • the ethylenically unsaturated compound is not particularly limited, but is preferably an acrylate monomer and / or a methacrylic acid ester monomer in terms of higher viscosity.
  • Acrylic acid esters include methyl acrylate, ethyl acetate, butyl acrylate, hexyl acrylate, cyclohexyl acrylate, octyl acrylate, hydroxyethyl acrylate, 2-ethyl hexyl acrylate, glycidyl Atari Rate and so on.
  • the methacrylic acid ester include methyl methacrylate, ethyl methacrylate, butyl methacrylate, hydroxyethyl methacrylate, glycidino methacrylate.
  • the amount of the present emulsion used is preferably 0.1 to 2 parts in terms of solid content with respect to 100 parts of cement, more preferably 0.2 to 1 part. If the amount is less than 1 part, the thickening effect is reduced, the fluidity is increased, and the inseparability in water may be reduced. If the amount exceeds 2 parts, the initial strength developability may be reduced.
  • composition composition for ground improvement material of the present invention can further use a curing accelerator. If curing of the ground improvement material composition is delayed, bleeding (floating water) which is a kind of material separation occurs, and voids are generated after curing, resulting in structural defects.
  • the curing accelerator used in the present invention accelerates the curing of the ground improvement material composition, reduces bleeding, suppresses void formation, and contributes to strength development.
  • Examples of the curing accelerator include sulfates such as lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate, aluminum sulfate, potassium alum, and iron sulfate; lithium carbonate, sodium carbonate, potassium carbonate, etc. Carbonate; lithium hydroxide, sodium hydroxide, magnesium hydroxide, aluminum hydroxide, potassium hydroxide, calcium hydroxide and other hydroxides; salt calcium, magnesium chloride, salt iron, etc.
  • sulfates such as lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate, aluminum sulfate, potassium alum, and iron sulfate
  • lithium carbonate sodium carbonate, potassium carbonate, etc.
  • Carbonate lithium hydroxide, sodium hydroxide, magnesium hydroxide, aluminum hydroxide, potassium hydroxide, calcium hydroxide and other hydroxides
  • aluminates such as lithium aluminate, sodium aluminate, potassium aluminate and calcium aluminate; Amines such as min; organic acid calcium such as calcium formate and calcium acetate Salt; silica sol, colloid such as alumina sol, and the like.
  • aluminate and sulfate which is preferred for aluminate and Z or sulfate, is more preferred in terms of excellent curing acceleration and strength development.
  • CA calcium aluminate (hereinafter, also referred to as CA) is preferable in terms of hardening acceleration and strength development.
  • CA is a general term for compounds containing CaO and Al 2 O as main components.
  • the main ingredients are CaO and AlO, which are obtained by mixing a raw material containing strong lucia and a raw material containing alumina, etc., and performing heat treatment such as firing in a kiln or melting in an electric furnace.
  • Crystalline calcium aluminates such as SO, and CaO and AlO as the main components
  • an amorphous 12C aO-7Al O composition is more preferable in terms of strength development.
  • the fineness of calcium aluminate is preferably 3,000 cm 2 / g or more in terms of brain value, more preferably 5,000 cm 2 / g or more. If it is less than 3,000 cm 2 / g, the initial strength development may be small.
  • calcium sulfate and Z or aluminum sulfate are preferable in terms of hardening acceleration and strength development.
  • examples of calcium sulfate include anhydrous gypsum, hemihydrate gypsum, and dihydrate gypsum. Of these, anhydrous gypsum is preferred in terms of curing acceleration and strength development.
  • the fineness of the sulfate is preferably 3,000 cm 2 / g or more, more preferably 5,000 cm 2 / g or more in terms of Blaine specific surface area. If it is less than 3,000 cm 2 / g, strength development may be small.
  • the amount of sulfate used is preferably 20 to 500%, more preferably 50 to 150 ⁇ per 100 ⁇ preferably Ri, 0 20 parts less than the initial strength development forces, may become fence, and more than 500 parts fluidity size no longer, water nondisjunction resistance is reduced, if the long-term strength development decreases is there.
  • the amount of curing accelerator used varies depending on the type and cannot be uniquely defined, but in general, 1 to 30 parts is preferable to 100 parts of cement. 2 to 20 parts Is more preferable. If the amount is less than 1 part, the fluidity increases, the inseparability in water decreases, and the strength development may decrease. If the amount exceeds 30 parts, the viscosity increases and the pumping distance may be shortened.
  • composition for ground improvement material comprising the cement of the present invention, aggregates such as sand and gravel, reduction It is also possible to use a liquid medicine and an antifreeze agent in combination.
  • the amount of water to be mixed with the cement in the present invention is not particularly limited, but is preferably 100 to 300 parts, more preferably 150 to 200 parts with respect to 100 parts of cement. If it is less than 100 parts, mixing of the soil improvement material composition containing cement may be difficult, and if it exceeds 300 parts, the fluidity increases and the inseparability in water S may decrease. is there.
  • the method of using the blast furnace fume, cement, and water is not particularly limited.
  • a method of mixing the liquid A prepared by mixing the liquid B containing the emulsion and water immediately before use is preferred because the viscosity can be increased rapidly. It is to be noted that mixing the present emulsion with water in advance to form a solution or suspension improves the mixing property and also favors the surface force of thickening.
  • the emulsion is preferably used by mixing with water.
  • the amount of water used is not particularly limited, but when using a curing accelerator that is preferably diluted with 5 to 20 times the solid content of the emulsion, it is 1 to 3 times. It is preferred to dilute to If the amount of water is less than this, the viscosity may increase and the mixing property may deteriorate, and if the amount of water increases, the dilution effect of the diluted water increases and the inseparability in water may deteriorate.
  • the remaining water can be mixed with cement and blast furnace fume, and the A liquid of the cement-blast furnace fume liquid and the B liquid of this emulsion can be pumped separately and combined and mixed at the nozzle tip.
  • a method using a mixing tube such as a Y-shaped tube, a method using a double tube, and the B liquid of this emulsion liquid in a shower form are used as a cement blast furnace fume liquid A.
  • a method of using an inlet piece in order to join and mix the liquid is also mentioned.
  • the composition for ground improvement material of the present invention contains a blast furnace fume, cement, the present emulsion, and a curing accelerator
  • the method of use is particularly limited as described above.
  • it contains liquid A containing blast furnace fume, cement and water, liquid containing curing accelerator and water (hereinafter referred to as curing accelerator liquid), this emulsion and water.
  • Method of mixing B liquid consisting of hardening accelerator liquid and C liquid of this emulsion liquid just before use Force It is preferable because the viscosity can be increased rapidly.
  • the mixing property is good and the surface force of thickening is also preferable.
  • the amount of water used is not particularly limited. However, in the case of this emulsion, in the case of a curing accelerator that is preferably diluted with 5 to 20 times the solid content of this emulsion, It is preferable to dilute with 1 to 3 times the water. If the amount of water is less than this, the viscosity may increase and the mixing property may decrease, and if the amount of water increases, the fluidity may increase and the inseparability in water may decrease.
  • the A liquid obtained by mixing blast furnace fume, cement, and water, and the B liquid obtained by mixing the curing accelerator liquid and the present emulsion liquid are separately pumped to obtain a nozzle. It is also possible to use by mixing and mixing at the tip.
  • three types of liquids, A liquid made of blast furnace fume, cement, and water, B liquid made of hardening accelerator liquid, and C liquid made of this emulsion liquid, are separately pumped and merged and mixed at the nozzle tip. It is more preferable to use them.
  • the curing accelerator may be cured within one hour after mixing with water, it is preferable to use a retardation agent in combination.
  • retarders include oxycarboxylic acids such as citrate, tartaric acid, darconic acid, and malic acid, or sodium salts and potassium salts thereof, boric acid, tripolyphosphate, pyrophosphate, and the like.
  • oxycarboxylic acid and Z or oxycarboxylate are preferable to quenic acid and Z or sodium citrate because they have a large delay effect.
  • the amount of retarder used is preferably 0.01 to 10 parts per 100 parts of cement, more preferably 0.05 to 5 parts. If the amount is less than 01 parts, the delay effect may be small, and if it exceeds 10 parts, the strength development may be small. [0047]
  • a method using a mixing tube such as a Y-shaped tube, a method using a triple tube, and an inlet piece are used to prepare B and B of the accelerator. Examples include a method in which the liquid C is mixed and mixed into a liquid A obtained by mixing cement, blast furnace fume, and water in the form of a shower.
  • the blast furnace fume used for the injection material using the composition for ground improvement material according to the present invention is a dust collecting dust collected from the blast furnace when the pig iron is obtained in the steel manufacturing process. It can be used as it is, and further, it can be pulverized and classified to be used as a fine powder. In the present invention, it is preferable to classify and use so that the maximum particle diameter is 20 ⁇ m or less so that high permeability to the ground can be obtained.
  • composition of CAS is that CaO content is 20-60%, AlO content is 20-70%, and SiO
  • SiO content of 10 to 20% is more preferable.
  • the short-term strength is smaller outside this range
  • CAS is made up of a predetermined amount of powerful Lucia raw materials such as limestone, alumina raw materials such as alumina, bauxite, feldspar, and clay, and silica raw materials such as keystone, keystone, quartz, and keystone. After blending, it is manufactured by firing in a rotary kiln or the like, or melting in an electric furnace or high-frequency furnace.
  • CAS includes crystalline compounds such as 2CaO'Al O -SiO and CaO 'Al O -2SiO.
  • the vitrification rate of CAS is as follows: CAS is heated at 1,000 ° C for 2 hours and then cooled at a rate of 5 ° CZ. Gradually cool, and determine the area S of the main peak of the crystalline mineral by powder X-ray diffractometry.
  • 50% or more is preferable. 80% or more is more preferable. 90% or more is more preferable. If it is less than 50%, the short-term strength may be small.
  • the amount of CAS used is preferably 1 to 50 parts, more preferably 5 to 30 parts per 100 parts of blast furnace fume. If the amount is less than 1 part, the short-term strength is small. If it exceeds 50 parts, the viscosity when the injection material is made into a suspension increases and the permeability to the ground may decrease.
  • the calcium aluminate used in the above-mentioned injection material of the present invention contributes mainly to the development of strength by the combined use with gypsum.
  • any of those exemplified above can be used as the CA contained in the composition composition for ground improvement material.
  • the CaO / Al 2 O molar ratio is 1 from the viewpoint of hardening time and strength development of the injected material.
  • 50% or more is preferable. 80% or more is more preferable. 90% or more is more preferable. If it is less than 50%, the short-term strength may be small.
  • the raw materials for producing CA are not particularly limited.
  • Examples of the CaO raw material include calcium carbonate such as limestone and shells, slaked lime, and quicklime.AlO raw materials include, for example, bauxite and Product called aluminum residue
  • aluminum powder is included.
  • the amount of CA used is preferably 1 to 50 parts, more preferably 5 to 30 parts per 100 parts of blast furnace fume. If it is less than 1 part, the short-term strength is small. If it exceeds 50 parts, the viscosity when the injection material is made into a suspension increases, and the permeability to the ground may decrease.
  • examples of the gypsum used in the injection material of the present invention include anhydrous gypsum, hemihydrate gypsum, and dihydrate gypsum.
  • natural gypsum, chemical gypsum such as phosphate byproduct gypsum, waste gypsum, hydrofluoric acid byproduct gypsum, or gypsum obtained by heat-treating these can be used. Of these, strength development is great! / Anhydrous gypsum is preferred.
  • the amount of gypsum used is preferably 1 to 50 parts and more preferably 5 to 30 parts per 100 parts of blast furnace fume. If less than 1 part, short-term strength is small. If it exceeds 50 parts, the permeability to the ground may be reduced.
  • the alkali stimulating material used in the above-mentioned injecting material of the present invention contributes to hardening and an increase in long-term strength when used in combination with a blast furnace fume.
  • alkali stimulant examples include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide, alkali metal carbonates such as sodium carbonate, potassium carbonate and lithium carbonate, and slaked lime. .
  • alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide
  • alkali metal carbonates such as sodium carbonate, potassium carbonate and lithium carbonate
  • slaked lime is preferred from the standpoints of curing by combining with blast furnace fume and increasing long-term strength.
  • the amount of the alkali stimulant used is more preferably 3 to 20 parts, preferably 1 to 50 parts per 100 parts of the blast furnace fume. If less than 1 part, long-term strength is small. If it exceeds 50 parts, the permeability to the ground may decrease.
  • the maximum particle size of the injection material in the present invention is preferably 20 ⁇ m, most preferably 15 ⁇ m, and most preferably 10 m or less. If it exceeds 20 / z m, injection into fine gaps may be difficult depending on the geology of the ground.
  • the method for adjusting the particle size of the injection material is not particularly limited, but each material is separately pulverized with a pulverizer such as a ball mill, and those having a size of 20 m or less are collected by classification and then mixed Alternatively, it is possible to use any of the methods in which each material is mixed and then pulverized and collected by classification to collect less than 20 / zm. However, if the materials are mixed and then pulverized and classified, the mixing ratio may change due to the density difference between the materials. Therefore, it is preferable to pulverize, classify and then mix each material separately. ,.
  • Condensation regulators include aluminates such as sodium aluminate and potassium aluminate, carbonates such as sodium carbonate and potassium carbonate, hydroxides such as sodium hydroxide and potassium hydroxide, aluminum sulfate, iron sulfate (111) And sulfates such as alum, silicates such as sodium and potassium silicates, phosphates such as sodium phosphate, calcium phosphate and magnesium phosphate, and boron such as lithium borate and sodium borate Examples thereof include inorganic salts such as acid salts, citrate, darconic acid, tartaric acid, malic acid or organic acids such as sodium salt, potassium salt and calcium salt thereof or metal salts thereof, and saccharides. One or two or more of these can be used in combination. Among these, it is preferable to use a carbonate and an organic acid in combination in order to secure a required curing time.
  • the amount of setting modifier used is not particularly limited because it is adjusted according to the setting time, but 0.1 to 10 parts per 100 parts of CAS or CA and gypsum in total. Favorable 0.
  • 5 to 5 parts are more preferable. If it is less than 1 part, it may be difficult to secure the curing time, and if it exceeds 10 parts, the curing time may be longer and the strength may be reduced.
  • dispersant examples include naphthalene sulfonic acid formalin condensate salt type, bamboo sulfonic acid type, melamine sulfonic acid formalin condensate salt type, polycarboxylate type, and polyether type dispersants.
  • the amount of dispersant used is 0.1 to 100 parts of the blast furnace fume.
  • More preferred is 3 parts. 0. If less than 1 part, permeability may be low, and if it exceeds 10 parts, strength may be low.
  • the amount of water in the case of using the injection material as a suspension is not particularly limited as long as the suspension can be pumped by a pump, but the total of blast furnace fume, CAS or CA, gypsum, and alkali stimulating material is 100. 100-1,000 ⁇ is preferred for ⁇ ⁇ , 200-500 ⁇ is preferred! If the amount is less than 100%, the viscosity of the suspension may be high and the permeability may be small. If the amount exceeds 1,000 parts, the strength may be small.
  • the mixing method and the injection method of the injection material are not particularly limited.
  • Single tube rod method, single tube strainer method, double tube single phase method, double tube double phase method, and double tube double packer Applicable to currently used construction methods such as construction methods.
  • a ground improvement material composition was prepared by blending the blast furnace fume and silica fume shown in Table 11 and added to 150 parts of the prepared ground improvement material composition. A material was prepared, and the permeability of the ground improvement material and the durability of the improved body after curing were confirmed.
  • Blast furnace fume Made in China, commercially available, SiO 25%, Fe O 3%, Al O 13%, CaO 1
  • Blast furnace slag fine powder Fine powder of granulated blast furnace slag, maximum particle size 5 m, average particle size 5 m
  • Water glass-based ground improvement material Commercial product, the main component is water glass, the secondary component is sodium carbonate Water: tap water
  • Penetration Fill a 5cm diameter x 30cm vinyl tube with No. 8 key sand to a height of 20cm, drill a hole of about 0.5mm in the bottom of the vinyl tube, and then apply 250cc of ground improvement material on the top surface. Measure the depth of penetration after 1 day
  • Durability The cured product obtained in the permeability test was observed until the age of 91 days, and the water to be removed was measured and evaluated. The water to be removed was measured by measuring the weight of the water that had been dropped in the bottom of the vinyl tube and the volume of the ground improvement material was 250cc.
  • Blast furnace fumes, silica fumes, ground granulated blast furnace slag, and water glass ground improvement materials are (part)
  • Cement A Commercially available fine powder cement, maximum particle size 40 ⁇ m, average particle size 5 ⁇ m
  • Cement B Commercially available calcium hydroxide, maximum particle size 40 ⁇ m, average particle size 5 ⁇ m
  • Liquid B was added to liquid A and kneaded for 5 seconds to prepare a kneaded product, and its flow, inseparability in water, and compressive strength were measured.
  • Emulsion ⁇ This emulsion, solid content concentration 30%, Ethyl acrylate: Methacrylic acid
  • Blast furnace fume A commercial product from China. SiO 25%, Fe O 3%, Al O 13%, CaO 1
  • Underwater inseparability Performed according to the underwater separation test in the Annex to the Guidelines for Design and Construction of Underwater Non-Isolated Concrete by the Japan Society of Civil Engineers, excellent when there is no water turbidity, good when there is little turbidity, good water Although it was turbid, it was acceptable when it was practical, and when material was separated and the turbidity of water was large.
  • a liquid A was prepared by mixing the amount of blast furnace fume and water shown in Table 3-1 with 100 parts of cement using a mixer. Next, 100 parts of cement is mixed with 5 parts of hardening accelerator a and 10 parts of water to prepare solution B, and 0.5 parts of this emulsion a and 5 parts of water in terms of solid content are mixed with C. A liquid was prepared.
  • Liquid A, Liquid B and Liquid C were continuously added to the mixer and mixed for 5 seconds to prepare an injection material, and then the flow, water inseparability, and compressive strength were measured. For comparison, the same procedure was performed using bentonite instead of blast furnace fumes. The results are also shown in Table 3-1.
  • Blast furnace fume China, commercially available, SiO 25%, Fe O 3%, Al O 13%, CaO 1
  • Underwater inseparability Performed according to the underwater separation test in the Annex to the Guidelines for Design and Construction of Underwater Non-Isolated Concrete by the Japan Society of Civil Engineers, excellent when there is no water turbidity, good when there is little turbidity, good water Although turbidity is present, it was acceptable when practical, and when material was separated and the turbidity of water was large.
  • This emulsion is used for solid fractionation of 100 parts of cement.
  • Curing accelerator b sulfate, aluminum sulfate, commercial product
  • Curing accelerator c carbonate, sodium carbonate, commercial product
  • Curing accelerator d Hydroxide, calcium hydroxide, commercial product
  • Curing accelerator e aluminate, sodium aluminate, commercial product
  • Curing accelerator f Colloid, silica sol, commercial product
  • Accelerator is 100 parts of cement (parts)
  • Blast furnace fume A commercial product from China. SiO 25%, Fe O 3%, Al O 13%, CaO 1
  • Gypsum Natural anhydrous gypsum
  • Alkali stimulant slaked lime, commercial product
  • Penetration length Filled a 5cm diameter X 30cm length vinyl tube with No. 8 silica sand to a length of 20cm, put 200ml of the injected material one day later, and measured the penetration length into the sand.
  • Curing time Time until the suspension does not flow even when the cup containing the suspension is tilted
  • Compressive strength Measured according to JIS R 5201, measured material age 1 day and 28 days
  • An injection material with a maximum particle size of 30 / zm was prepared by mixing 100 parts of blast furnace fume with CA, gypsum and alkali stimulating materials shown in Table 5-1.
  • a suspension was prepared by mixing 100 parts of the prepared injection material and 300 parts of water.
  • 1 part of the dispersant is mixed with 100 parts of the blast furnace fume
  • 1 part of the setting modifier is mixed with 100 parts of the total of CA and gypsum
  • the setting time and penetration length of the injected material are mixed.
  • the results are also shown in Table 5-1.
  • Blast furnace fume Made in China, commercially available, SiO 25%, Fe O 3%, Al O 13%, CaO 1
  • Gypsum Natural anhydrous gypsum
  • Alkali stimulant slaked lime, commercial product
  • Penetration length Filled a 5cm diameter X 30cm length vinyl tube with No. 8 silica sand to a length of 20cm, put 200ml of the injected material one day later, and measured the penetration length into the sand.
  • Curing time Time until the suspension does not flow even when the cup containing the suspension is tilted
  • Compressive strength Measured according to JIS R 5201, measured material age 1 day and 28 days
  • CA, gypsum, and alkali stimulant are for 100 parts of blast furnace fume (part)
  • Example 5-2 100 parts of blast furnace fume is mixed with 10 parts of CA, 10 parts of gypsum, and 5 parts of alkali stimulating material to prepare an injection material with the maximum particle size shown in Table 5-2. Then, the curing time, penetration length, and compressive strength were measured. The results are also shown in Table 5-2.
  • the composition for ground improvement material of the present invention has good permeability and excellent durability, it can be widely used for void filling materials such as backfilling materials in ground improvement work and waterproofing work.
  • the injection material using the composition for ground improvement material of the present invention is superior in permeability to the ground, high injectability, and excellent in strength development. Can be injected into the ground, and blast furnace fume, an industrial byproduct, can be used effectively

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

A composition for a ground-improving material which is extensively utilizable in ground improvement works, cutoff works, etc. and is excellent in penetrativity and durability; and a grouting material which comprises the composition and is highly penetrative into the ground. The composition for ground-improving materials is characterized by containing a blast-furnace fume. Desirably, it contains silica fume and further contains cement or calcium hydroxide. Preferably, it contains cement and an alkali-thickenable polymer emulsion.

Description

明 細 書  Specification
地盤改良材用組成物、それを用いた注入材及びその使用方法 技術分野  Ground improvement material composition, injection material using the same, and method of using the same
[0001] 本発明は、高炉フュームの有効利用方法並びに土木'建築業界における地盤改良 工事や止水工事等で広く用いられる地盤改良材用組成物、それらの調製方法、及 びそれらを用 、てなる注入材に関する。  [0001] The present invention relates to an effective utilization method of a blast furnace fume, a composition for ground improvement material widely used in ground improvement work and water stoppage work in the civil engineering and construction industry, a method for preparing them, and a method for using them. Concerning the injection material.
背景技術  Background art
[0002] 近年、環境問題が大きくクローズアップされており、特に、産業副産物の有効利用 について、様々な試みがなされている。それらの中で、高炉水砕スラグ、フライアツシ ュ、又はシリカフュームなどは、既に多くの有効利用方法が確立されており、例えば、 ポルトランドセメントに多量に混合されて使用され、 JISにも制定されて ヽる。  [0002] In recent years, environmental problems have been greatly highlighted, and in particular, various attempts have been made for effective use of industrial by-products. Among them, blast furnace granulated slag, fly ash, silica fume, etc. have already been used in many effective ways.For example, they are mixed in Portland cement and used in JIS. Speak.
し力しながら、未だに有効利用法が確立されていない産業副産物も多く見受けられ 、その利用方法を確立することが循環型社会の構築に向けて強く求められている。 そのひとつに、高炉フュームが挙げられる。  However, there are many industrial by-products for which effective usage has not yet been established, and the establishment of such usage is strongly required to build a recycling-oriented society. One of them is blast furnace fume.
[0003] 高炉フュームは、鉄鋼の製造過程で発生する副産物であり、銑鉄を得る際に高炉 力も発生するヒュームを集塵したダストである。高炉フュームの有効利用法としては、 これまでに、ガラス繊維補強セメント複合体に用いる混和材として提案されている(特 許文献 1、特許文献 2参照)。しかし、高炉フュームの成分中にはアルカリ金属が含ま れており、現状ではアルカリ骨材反応の懸念力 コンクリートへの使用は難しぐその 利用方法の確立が望まれて 、た。  [0003] Blast furnace fume is a by-product generated in the manufacturing process of steel, and is dust that collects fumes that also generate blast furnace power when pig iron is obtained. As an effective utilization method of blast furnace fume, it has been proposed as an admixture used for a glass fiber reinforced cement composite (see Patent Document 1 and Patent Document 2). However, alkali metals are contained in the components of the blast furnace fume. At present, there is concern about the reaction of alkali-aggregate reaction.
[0004] 一方、地盤改良材は、地盤改良工事や止水工事等に広く用いられている。  [0004] On the other hand, ground improvement materials are widely used for ground improvement work, water stoppage work, and the like.
地盤改良工事とは、軟弱地盤をはじめ、ダムや発電所等の大型特殊構造物の基礎 地盤補強のカーテングラウトや、トンネル、石油や LPG備蓄基地等の地中構造物施 ェ時の薬液注入による地盤改良工事である。止水工事とは、地下水位より低い場所 Ground improvement works include soft ground, foundations for large special structures such as dams and power plants, curtain grouts for ground reinforcement, and injection of chemicals when applying underground structures such as tunnels, oil and LPG storage bases, etc. It is ground improvement work. Water stoppage is a place lower than the groundwater level
、海底下、及び帯水地盤における地下構造物の掘削工事の際に発生する湧水を注 入材を注入することにより防 、だり、地盤の水密性を上げるために地盤改良材を注入 する工事である。また、これらの他にも、排水性の悪い地盤や液状ィ匕地盤等における 一般住宅やマンションの地盤改良や上下水道等のインフラ整備における地盤の崩落 防止工事等がある。 Construction of injecting ground improvement material in order to prevent the spring water generated during the excavation work of underground structures under the seabed and under the aquifer ground by injecting the injection material, and to improve the water tightness of the ground It is. In addition to these, the ground in poor drainage and liquid soil There are ground collapse prevention work in the improvement of the grounds of general houses and condominiums and infrastructure development such as water supply and sewerage.
地盤改良材は、これらの工事に広く使用されているものであり、地盤を固結させたり 、圧密脱水することにより地盤の強化等を図る目的で使用する材料をいう。  The ground improvement material is widely used in these constructions, and is a material used for the purpose of strengthening the ground by consolidation or dehydration of the ground.
[0005] 次に、上記の地盤改良材並びにそれを用いた工事について、具体例を挙げ説明 する。  [0005] Next, the above ground improvement material and construction using the same will be described with specific examples.
例えば、トンネルの覆ェにおいて、施工時や施工後に、覆ェコンクリート背面に空 洞が発生する場合がある。この空洞をそのまま放置すると、空洞部への地山の崩落 に伴い、地表面が沈下する。地山の崩落が激しい場合には、覆ェコンクリートの変形 や破壊、特に、トンネルの崩落が発生したり、空洞への地下水の流入による覆ェコン クリートの劣化、及びそれに伴う劣化コンクリート片の走行車線への落下や、クラック 部からの漏水による冬季に走行車線が凍結するなどの問題があった。  For example, in the tunnel covering, there may be a cavity in the back of the covering concrete during and after construction. If this cavity is left as it is, the ground surface will sink as the ground collapses into the cavity. When the ground collapses severely, the cover concrete is deformed or destroyed, in particular, the tunnel collapses, the cover concrete is degraded due to the inflow of groundwater into the cavities, and the resulting lanes of the deteriorated concrete fragments There were problems such as falling to the road and freezing of the lane in winter due to water leakage from the crack.
[0006] また、近年、施工件数が増加して 、るトンネル補修工事の中に、覆ェコンクリート背 面の空洞に注入材を充填し、トンネルの安定ィ匕を図る裏込め注入工法がある。ここで 使用される注入材を裏込め材と言い、従来、セメント ベントナイトが一般的に用いら れてきた。しかし、流動性が大きすぎ、裏込め材が遠方まで不必要に逸流したり、湧 水があると裏込め材が流出したり、希釈されて物性が低下したりするなどの問題があ つた o [0006] In recent years, as the number of construction works has increased, there is a backfilling method for filling tunnels to fill the cavities on the back of the concrete and to improve the stability of the tunnel. The injection material used here is called a backfill material, and cement bentonite has been generally used. However, there is a problem that the fluidity is too large and the backfilling material unnecessarily flows far away, and if there is spring water, the backfilling material flows out or is diluted and the physical properties deteriorate.
[0007] そこで、セメントとベントナイトの主材に、高吸水性榭脂を添加して、その粘度を大き くする方法や、水ガラスを添加して硬化促進する方法が提案された (特許文献 3、特 許文献 4参照)。  [0007] Therefore, a method has been proposed in which a superabsorbent resin is added to the main material of cement and bentonite to increase the viscosity, and a method of adding water glass to accelerate hardening (Patent Document 3). , See Patent Document 4).
[0008] し力しながら、いずれの方法も粘度が上昇するまでに時間を必要とする上、高吸水 性榭脂を添加する方法は高吸水性榭脂自体が高価である。また、初めから注入材に 投入して練混ぜると、主材の粘度が高くなるため、圧送距離を短くせざるを得ず、注 入箇所が限定されるという問題があった。  [0008] However, each method requires time until the viscosity increases, and the method of adding a highly water-absorbent resin is expensive. In addition, when the mixture is first introduced into the injection material and kneaded, the viscosity of the main material increases, so the pumping distance has to be shortened, and the injection point is limited.
[0009] 一方、水ガラスを添加する方法は、水ガラスの pHが 13以上と強アルカリであるため 、作業が相当制限される、硬化体からの溶出水が環境に負荷を与える、及び硬化体 の長期強度が低下するなどの問題があった。 [0010] また、最近では裏込め材の持つ問題を解決する方法として、セメント ベントナイト やセメント一石炭灰 (フライアッシュ)の主材に、可塑ィ匕材としてポリマーを添加するこ とにより瞬時に可塑ィ匕して、水中不分離性や安全性を改善したものが提案されているOn the other hand, in the method of adding water glass, since the pH of the water glass is a strong alkali having a pH of 13 or more, the work is considerably limited, and the elution water from the cured body gives an environmental load, and the cured body There was a problem such as a decrease in long-term strength. [0010] Further, recently, as a method for solving the problems of backfill materials, plastics are instantly added by adding a polymer as a plasticizer to the main material of cement bentonite or cement-coal ash (fly ash). And improved water inseparability and safety have been proposed
(特許文献 3、特許文献 5、及び特許文献 6参照)。 (See Patent Document 3, Patent Document 5, and Patent Document 6.)
[0011] 一方、地盤の補強や止水効果を得るため、セメントを用いた注入材が用いられてい る(特許文献 7参照)。し力しながら、地質が、細砂、シルト、あるいは粘土の場合には 地盤への浸透性力 、さぐ注入が困難になるなどの問題があった。 [0011] On the other hand, in order to obtain ground reinforcement and a water stop effect, an injection material using cement is used (see Patent Document 7). However, when the geology is fine sand, silt, or clay, there are problems such as permeability to the ground and difficulty in pouring.
[0012] 特許文献 1 :特開 2002-47037号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2002-47037
特許文献 2:特開 2004-67477号公報  Patent Document 2: Japanese Patent Laid-Open No. 2004-67477
特許文献 3:特開平 10- 237446号公報  Patent Document 3: Japanese Patent Laid-Open No. 10-237446
特許文献 4:特開平 11-61123号公報  Patent Document 4: Japanese Patent Laid-Open No. 11-61123
特許文献 5:特開平 10-238289号公報  Patent Document 5: Japanese Patent Laid-Open No. 10-238289
特許文献 6:特開 2000- 280231号公報  Patent Document 6: Japanese Unexamined Patent Publication No. 2000-280231
特許文献 7:特開 2004- 149685号公報  Patent Document 7: Japanese Unexamined Patent Application Publication No. 2004-149685
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] 本発明は、地盤改良工事や止水工事等おいて広範に利用可能な地盤改良材であ つて、特に有効利用法が見出されていない高炉フュームを用い、(1)浸透性や耐久 性に優れる地盤改良材用組成物、(2)ベントナイトや高吸水性榭脂を使用した注入 材より長距離圧送性に優れ、また、可塑化材添加後は速やかに増粘し、例えば、裏 込め材等の空隙充填材が遠方まで不必要に逸流したり、湧水があっても空隙充填材 が流出したり、希釈されて物性が低下したりすることなぐさらに、水ガラスのように溶 出水が強アルカリとならない地盤改良材用組成物、及び (3)それらの地盤改良材用 組成物を用いてなる、地盤への高 、浸透性を有する注入材を提供することを目的と する。 [0013] The present invention is a ground improvement material that can be widely used in ground improvement work, water stoppage work, etc., and uses a blast furnace fume for which no effective utilization method has been found. The composition for ground improvement material with excellent durability, (2) Long-distance pumpability is superior to the injection material using bentonite and high water-absorbent resin, and the viscosity increases rapidly after the plasticizer is added. The gap filler such as backfilling material unnecessarily flows away to the distance, the gap filler does not flow out even if there is spring water, and it does not dilute and deteriorate the physical properties. An object of the present invention is to provide a composition for a ground improvement material in which the dissolved water does not become a strong alkali, and (3) an injection material having a high permeability to the ground, which uses the composition for the ground improvement material. .
課題を解決するための手段  Means for solving the problem
[0014] 本発明者は、鋭意研究を重ねた結果、高炉フュームを含有してなる新規な地盤改 良材用組成物が上記課題を良好に達成し得ることを見出し、本発明を完成するに至 つた。なお、本明細書における「部」ゃ「%」は、特に規定しない限り質量基準で示す 即ち、本発明は下記を要旨とするものである。 [0014] As a result of extensive research, the present inventors have found that a novel ground improvement material composition containing a blast furnace fume can achieve the above-mentioned problems satisfactorily, and has completed the present invention. I got it. Note that “parts” and “%” in this specification are based on mass unless otherwise specified. That is, the gist of the present invention is as follows.
(1)高炉フュームを含有してなることを特徴とする地盤改良材用組成物。  (1) A composition for ground improvement material comprising blast furnace fume.
(2)更に、シリカフュームを含有してなる上記(1)に記載の地盤改良材用組成物。 (2) The composition for ground improvement material according to the above (1), further comprising silica fume.
(3)最大粒径 40 μ mの、セメント若しくは水酸ィ匕カルシウムを含有してなる上記(1) 又は(2)に記載の地盤改良材用組成物。 (3) The composition for ground improvement material according to (1) or (2) above, comprising cement or calcium hydroxide having a maximum particle size of 40 μm.
(4)セメント、及びアルカリ増粘型ポリマーェマルジヨンを含有してなる上記(1)に記 載の地盤改良材用組成物。  (4) The ground improvement material composition as described in (1) above, comprising cement and an alkali thickening polymer emulsion.
(5)高炉フュームカ セメント 100部に対して、 30〜500部である上記 (4)に記載の 地盤改良材用組成物。  (5) The ground improvement material composition as described in (4) above, which is 30 to 500 parts per 100 parts of blast furnace fume cement.
(6)アルカリ増粘型ポリマーェマルジヨン力 不飽和カルボン酸類とエチレン性不飽 和化合物との共重合により得られるポリマーェマルジヨンである上記 (4)又は(5)に 記載の地盤改良材用組成物。  (6) Alkali-thickening polymer emulsion power A ground improvement material as described in (4) or (5) above, which is a polymer emulsion obtained by copolymerization of an unsaturated carboxylic acid and an ethylenically unsaturated compound. Composition.
(7)さらに、硬化促進剤を含有してなる上記(1)〜(6)の 、ずれか 1項に記載の地盤 改良材用組成物。  (7) The ground improvement material composition according to any one of (1) to (6), further comprising a curing accelerator.
(8)硬化促進剤が、アルミン酸塩及び Z又は硫酸塩を含有する上記(1)〜(7)の 、 ずれか 1項に記載の地盤改良材用組成物。  (8) The composition for ground improvement material according to any one of (1) to (7) above, wherein the curing accelerator contains aluminate and Z or sulfate.
(9)高炉フューム力 最大粒径 30 μ mを有する上記(1)〜(8)の 、ずれか 1項に記 載の地盤改良材用組成物  (9) Blast furnace fume force The composition for ground improvement material as set forth in any one of (1) to (8) above, having a maximum particle size of 30 μm
(10)高炉フュームカ SiO力 0〜30%、 Al O力 10〜15%、及び CaOが 15〜25  (10) Blast Furnace Fumuka SiO force 0-30%, Al O force 10-15%, and CaO 15-25
2 2 3  2 2 3
%を有する上記(1)〜(9)の 、ずれか 1項に記載の地盤改良材用組成物。  The composition for ground improvement material according to any one of the above (1) to (9), having a%.
(11)上記(1)〜(10)のいずれか 1項に記載の地盤改良材用組成物からなる注入材  (11) The injection material comprising the composition for ground improvement material according to any one of (1) to (10) above
(12)アルミン酸カルシウム又はアルミノケィ酸カルシウム、石膏、及びアルカリ刺激材 を含有してなる上記(11)に記載の注入材 (12) The injection material according to (11) above, comprising calcium aluminate or calcium aluminokeate, gypsum, and an alkali stimulant
(13)高炉フューム 100部に対して、アルミン酸カルシウム又はアルミノケィ酸カルシ ゥム 1〜15部、石膏 1〜50部、及びアルカリ刺激材 1〜50部を含有してなる上記(11 )又は(12)に記載の注入材。 (13) The above-mentioned (11) containing 1 to 15 parts of calcium aluminate or calcium aluminosilicate, 1 to 50 parts of gypsum, and 1 to 50 parts of an alkali stimulant for 100 parts of blast furnace fume (11 ) Or the injection material according to (12).
(14)最大粒子径が 20 m以下である上記(11)〜(13)のいずれか 1項に記載の注 入材。  (14) The injected material according to any one of (11) to (13) above, wherein the maximum particle size is 20 m or less.
(15)セメント、高炉フューム、及び水を含有してなる A液、並びにアルカリ増粘型ポリ マーェマルジヨンと水を含有してなる B液を、夫々予め調製し、使用直前に A液と B液 を混合する上記 (4)〜(10)の 、ずれか 1項に記載の地盤改良材用組成物の使用方 法。  (15) Prepare liquid A containing cement, blast furnace fume, and water, and liquid B containing alkali-thickened polymer emulsion and water, and prepare liquid A and liquid B immediately before use. The method of using the composition for ground improvement material according to any one of the above (4) to (10), which is mixed.
(16)セメント、高炉フューム、及び水を含有してなる A液、並びに硬化促進剤とアル カリ増粘型ポリマーェマルジヨンと水を含有してなる B液を、夫々予め調製し、使用直 前に A液と B液を混合する上記 (4)〜(10)の 、ずれか 1項に記載の地盤改良材用 組成物の使用方法。  (16) Liquid A containing cement, blast furnace fume, and water, and liquid B containing a curing accelerator, an alkali-thickening polymer emulsion and water, were prepared in advance and reused. The method for using the ground improvement material composition according to any one of (4) to (10) above, wherein the liquid A and the liquid B are mixed before.
(17)セメント、高炉フューム、及び水を含有してなる A液、硬化促進剤と水とを含有し てなる B液、並びにアルカリ増粘型ポリマーェマルジヨンと水とを含有してなる C液を、 夫々予め調製し、使用直前に A液、 B液及び C液を混合する上記 (4)〜( 10)のいず れカ 1項に記載の地盤改良材用組成物の使用方法。  (17) Liquid A containing cement, blast furnace fume, and water, Liquid B containing a curing accelerator and water, and C containing an alkali-thickening polymer emulsion and water A method for using the composition for ground improvement material according to any one of (4) to (10) above, wherein the solutions are prepared in advance, and the solutions A, B and C are mixed immediately before use.
発明の効果 The invention's effect
本発明による、高炉フュームを含有する地盤改良材用組成物及びそれを用いた注 入材は、浸透性や耐久性に優れるため、地盤改良工事や止水工事等、広範に利用 することが可能であり、また、急激な粘度上昇を示し、強度発現性に優れ、水中不分 離性を有し、 pHの値が水ガラスを用いた場合に比べて低 、と 、う特性を持っため、 地山の空洞や空隙部分の裏込め材、シールドセグメントの充填材、また、二重管単 相又は複相の注入工法での瞬結性注入材となる。  The composition for ground improvement material containing blast furnace fume and the injection material using the same according to the present invention are excellent in permeability and durability, and can be widely used for ground improvement work and water stop work. In addition, it has a rapid viscosity increase, excellent strength development, inseparability in water, and has a low pH value compared to when water glass is used. It serves as a backfill material for cavities and voids in natural ground, a filler for shield segments, and a quick setting injection material for double-pipe single-phase or double-phase injection methods.
さらに、本発明による、地盤改良材用組成物及びそれを用いた注入材は、二重管 ダブルパッカー工法でのシール材ゃ一次注入材等、セメントミルク、セメントモルタル 、又はコンクリートの粘度を急激に上昇させる必要がある用途に有効である。更にま た、地盤への浸透性に優れ、注入性が高ぐ強度発現性に優れるなどの効果を奏す るため、従来適用が困難だった地質の地盤への注入が可能となる。  Furthermore, the composition for ground improvement material and the injection material using the same according to the present invention rapidly increase the viscosity of cement milk, cement mortar, or concrete, such as a sealing material or primary injection material in a double-pipe double packer method. It is effective for applications that need to be raised. In addition, since it has excellent permeability to the ground, high injectability and excellent strength development, it is possible to inject into geological ground that was difficult to apply in the past.
発明を実施するための最良の形態 [0016] 本発明で使用する高炉フュームとは、鉄鋼業界で発生する副産物であり、銑鉄を得 る際に高炉力も発生するヒュームを集塵したダストである。本発明では、高炉フューム は、成分として、 SiO力 0〜30%、 Al O力 l0〜15%、及び CaOが 15〜25%を BEST MODE FOR CARRYING OUT THE INVENTION [0016] The blast furnace fume used in the present invention is a by-product generated in the steel industry, and is dust collected from fumes that also generate blast furnace power when pig iron is obtained. In the present invention, the blast furnace fume contains, as components, SiO force 0-30%, AlO force 10-15%, and CaO 15-25%.
2 2 3  2 2 3
有するのが好ましい。その他の成分としては、 Fe O力^〜 5%、 MgOが 3〜9%、 N  It is preferable to have. Other ingredients include Fe O force ^ ~ 5%, MgO 3 ~ 9%, N
2 3  twenty three
a Oが 0. 5〜2%、 K Oが 5〜12%、 SO力 〜 12%、 Sは 0. 5%以下、及び MnO a O 0.5-2%, K O 5-12%, SO power -12%, S 0.5% or less, and MnO
2 2 3 2 2 3
が 0. 1〜0. 5%を有することが好ましい。また、高炉フュームは、最大粒径は 30 m 、平均粒径は 3〜5 μ mであるのが好適である。また、高炉フュームの粉末度は、ブレ ーン比表面積値(以下、ブレーン値という)が 15,000〜25,000cm2/gの範囲にある ものが好ましい。高炉フュームは、そのまま用いてもよいし、さらに粉砕や分級を行い 、微粉末ィ匕して用いてもよい。 Preferably 0.1 to 0.5%. The blast furnace fume preferably has a maximum particle size of 30 m and an average particle size of 3 to 5 μm. The fineness of the blast furnace fume preferably has a brain specific surface area value (hereinafter referred to as a brain value) in the range of 15,000 to 25,000 cm 2 / g. The blast furnace fume may be used as it is, or may be further pulverized and classified to be used as a fine powder.
[0017] 本発明で使用するセメントは特に限定されるものではないが、好ましい具体例として は、例えば、普通、早強、超早強、低熱、及び中庸熱等の各種ポルトランドセメント、 これらポルトランドセメントに、高炉スラグ、フライアッシュ、又はシリカを混合した各種 混合セメント、また、石灰石粉末や高炉徐冷スラグ微粉末を混合したフィラーセメント 、廃棄物利用型セメント、いわゆる、ェコセメントなどが挙げられる。これらのうちの一 種又は二種以上が併用可能である。また、本発明でいうセメントコンクリートとは、セメ ントミルク、モルタル、又はコンクリートを総称するものである。  [0017] The cement used in the present invention is not particularly limited, but preferred specific examples include various portland cements such as normal, early strength, super early strength, low heat, and moderate heat, and these portland cements. In addition, various mixed cements mixed with blast furnace slag, fly ash, or silica, filler cement mixed with limestone powder or blast furnace slow-cooled slag fine powder, waste-use cement, so-called eco cement, and the like can be given. One or more of these can be used in combination. The cement concrete as used in the present invention is a general term for cement milk, mortar, or concrete.
[0018] 本発明の地盤改良材用組成物では、高炉フューム以外の成分として、地盤への浸 透性を向上させる面から、シリカフュームを含有することが好ましい。なかでも、酸性 シリカフュームの使用が好ましい。また、酸性シリカフュームと通常のシリカフュームを 含有することも好ましい。  [0018] The composition for ground improvement material of the present invention preferably contains silica fume as a component other than the blast furnace fume from the viewpoint of improving the permeability to the ground. Of these, the use of acidic silica fume is preferred. It is also preferable to contain acidic silica fume and normal silica fume.
ここで、酸性シリカフュームとは、シリカフューム lgを純粋 lOOccに入れて攪拌した 時の上澄み液の pHが 5以下の酸性を示すものである。  Here, the acidic silica fume means that the pH of the supernatant liquid when the silica fume lg is put into pure lOOcc and stirred is 5 or less.
シリカフュームの粉末度は特に限定されるものではないが、通常、 BET比表面積で 2〜20万 m2/g程度が好ま U、。 Although the fineness of silica fume is not particularly limited, it is usually preferred to have a BET specific surface area of about 2 to 200,000 m 2 / g.
[0019] また、本発明の地盤改良材用組成物は、高炉フューム以外の成分として、耐久性 をさらに高めるためにセメント又は酸ィ匕カルシウムの微粉末を併用することが好ましい 。耐久性は、地盤改良材によって改良した硬化体力 滲み出る水、いわゆる"離しよう 水"を確認することによって評価することが可能である。 [0019] The ground improvement material composition of the present invention is preferably used in combination with fine powder of cement or calcium carbonate as a component other than the blast furnace fume in order to further enhance the durability. Durability is hardened physical strength improved by ground improvement material. It is possible to evaluate by checking "water".
本発明の上記の地盤改良材用組成物は、従来より広範に利用されている水ガラス 系の地盤改良材ゃ高炉スラグ微粉末を主体とする地盤改良材と比べて、この離しよう 水の発生が少なぐ耐久性に優れる特徴がある。  The above-mentioned composition for ground improvement material of the present invention is more widely used than the ground improvement material that has been widely used in the past, such as ground improvement material mainly composed of blast furnace slag fine powder. There is a feature that is excellent in durability.
[0020] 上記のセメント又は水酸ィ匕カルシウム(以下、セメント類と!/、う)は、最大粒径が 40 μ mであり、 40 /z mを超える粒子を実質的に含まないセメント類が好ましい。具体的に は、 40 μ mを超える粒子の含有率が 1%以下のセメント類であり、最大粒径は 30 μ mであることがより好ましい。また、平均粒径は 10 m以下が好ましぐ 5 m以下が より好ましい。セメント類の最大粒径力 0 mを超えると浸透性が悪くなる場合がある 。なお、本発明で平均粒径とは、レーザー回折式粒度分布測定装置により測定され たものである。  [0020] The above-mentioned cement or calcium hydroxide hydroxide (hereinafter referred to as cements! /, U) has a maximum particle size of 40 μm and is substantially free of particles exceeding 40 / zm. preferable. Specifically, cements having a content ratio of particles exceeding 40 μm of 1% or less and a maximum particle size of 30 μm are more preferable. The average particle size is preferably 10 m or less, more preferably 5 m or less. If the maximum particle size of cements exceeds 0 m, the permeability may deteriorate. In the present invention, the average particle diameter is measured by a laser diffraction particle size distribution measuring device.
[0021] 上記の水酸ィ匕カルシウムは、特に限定されるものではないが、生石灰を水和させて 得ることができ、市販のものが利用可能である。  [0021] The calcium hydroxide calcium hydroxide is not particularly limited, but can be obtained by hydrating quick lime, and commercially available products can be used.
[0022] さらに、これらセメント類は、粉砕操作によって微粉末ィ匕してもよいし、微粉末部分を 分級操作によって得ることも可能である。  Furthermore, these cements may be finely powdered by a pulverizing operation, or a fine powder portion can be obtained by a classification operation.
[0023] 本発明の上記地盤改良材用組成物における各材料の配合割合は特に限定される ものではないが、高炉フュームとシリカフュームの合計 100部中、シリカフュームは 10 〜90部が好ましぐ 20〜80部がより好ましい。シリカフュームが 10部未満では浸透 性の向上効果が充分に望めない場合があり、逆に、シリカフュームが 90部を超えると 強度発現性が充分でなくなったり、離しよう水が顕在化する傾向にある。  [0023] The blending ratio of each material in the composition for ground improvement material of the present invention is not particularly limited, but 10 to 90 parts of silica fume is preferable in a total of 100 parts of blast furnace fume and silica fume. ~ 80 parts are more preferred. If the silica fume is less than 10 parts, the effect of improving the permeability may not be fully expected. Conversely, if the silica fume exceeds 90 parts, the strength development will not be sufficient, and the water to be released tends to become apparent.
また、高炉フュームとセメント類の合計 100部中、セメント類は 1〜50部が好ましぐ 3〜30部がより好ましい。セメント類の配合割合が、 1部未満では初期の強度発現性 を良好とする効果が望めない場合があり、 50部を超えると浸透性が悪くなる傾向があ る。  Of the total 100 parts of blast furnace fume and cement, 1 to 50 parts of cement is preferred and 3 to 30 parts is more preferred. If the blending ratio of the cement is less than 1 part, the effect of improving the initial strength may not be expected, and if it exceeds 50 parts, the permeability tends to deteriorate.
[0024] 本発明の上記地盤改良材用組成物を用いる場合、使用する水は、地盤改良材用 組成物 100部に対して、 50〜500部が好ましぐ 100〜300部がより好ましい。 50部 未満では浸透性が充分でない場合があり、 500部を超えると耐久性の確保が困難と なる場合がある。 [0025] また、本発明の地盤改良材用組成物が、高炉フューム、セメント及びアルカリ増粘 型ポリマーェマルジヨンを含有してなる場合、使用する高炉フュームの使用量は、高 炉フュームの品質により変わるため一義的に規定することはできないが、一般的には 、セメント 100部に対して、 30〜500部力 S好ましく、 50〜300部がより好ましい。 30部 未満では粘度が上昇しない場合や、流動性が大きくなつたり、水中不分離性が小さく なったりする場合があり、 500部を超えると粘性が高くなりすぎ、地盤改良材用組成 物の練混ぜが困難になる場合がある。 [0024] When the above ground improvement material composition of the present invention is used, the amount of water used is preferably 50 to 500 parts, more preferably 100 to 300 parts, with respect to 100 parts of the ground improvement material composition. If it is less than 50 parts, the permeability may not be sufficient, and if it exceeds 500 parts, it may be difficult to ensure durability. [0025] When the ground improvement material composition of the present invention contains a blast furnace fume, cement, and an alkali thickening polymer emulsion, the amount of the blast furnace fume used is the quality of the blast furnace fume. However, generally, it is preferably 30 to 500 parts force S, more preferably 50 to 300 parts per 100 parts of cement. If the amount is less than 30 parts, the viscosity may not increase, the fluidity may increase, or the inseparability in water may decrease.If the amount exceeds 500 parts, the viscosity becomes too high, and the composition for the ground improvement material is kneaded. Mixing may be difficult.
[0026] 上記本発明の地盤改良材用組成物で使用するアルカリ増粘型ポリマーェマルジョ ン(以下、本ェマルジヨンという)は、アルカリにより増粘するポリマーェマルジヨンをい  [0026] The alkali thickened polymer emulsion (hereinafter referred to as the present emulsion) used in the composition for improving ground according to the present invention is a polymer emulsion that is thickened by alkali.
[0027] 本ェマルジヨンとしては、例えば、不飽和カルボン酸類、エチレン性不飽和化合物 、不飽和カルボン酸類とエチレン性不飽和化合物の共重合物等、種々挙げられる。 より優れた効果を示す面で、不飽和カルボン酸類とエチレン性不飽和化合物の共重 合により得られるポリマーェマルジヨンが好ましい。 [0027] Examples of the emulsion include various unsaturated carboxylic acids, ethylenically unsaturated compounds, copolymers of unsaturated carboxylic acids and ethylenically unsaturated compounds, and the like. A polymer emulsion obtained by copolymerization of an unsaturated carboxylic acid and an ethylenically unsaturated compound is preferred in terms of exhibiting a more excellent effect.
不飽和カルボン酸類とエチレン性不飽和化合物の重合方法としては、乳化重合、 懸濁重合、溶液重合、又は塊状重合等の方法により、共重合する方法等が挙げられ る。  Examples of the polymerization method of the unsaturated carboxylic acid and the ethylenically unsaturated compound include a method of copolymerization by a method such as emulsion polymerization, suspension polymerization, solution polymerization, or bulk polymerization.
[0028] 上記不飽和カルボン酸類としては、アクリル酸、メタクリル酸、ィタコン酸、マレイン酸 、フマル酸、シトラコン酸、アコニット酸、クロトン酸等の不飽和カルボン酸;無水マレイ ン酸ゃ無水シトラコン酸等の不飽和カルボン酸無水物;ィタコン酸モノメチル、イタコ ン酸モノブチル、及びマレイン酸モノェチルなどの不飽和カルボン酸エステルが挙げ られる。これらの中で、より増粘性に優れる面で不飽和カルボン酸が好ましぐアタリ ル酸及び Z又はメタクリル酸がより好まし 、。  [0028] Examples of the unsaturated carboxylic acids include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, citraconic acid, aconitic acid, and crotonic acid; maleic anhydride and citraconic anhydride And unsaturated carboxylic acid anhydrides such as monomethyl itaconate, monobutyl itaconate, and monoethyl ethyl maleate. Of these, alicyclic acid and Z or methacrylic acid are more preferred, and unsaturated carboxylic acid is preferred in terms of higher viscosity.
[0029] 上記エチレン性不飽和化合物としては特に限定されるものではないが、より増粘性 に優れる面でアクリル酸エステルモノマー及び/又はメタクリル酸エステルモノマー が好ましい。アクリル酸エステルとしては、メチルアタリレート、ェチルアタリレート、ブ チルアタリレート、へキシルアタリレート、シクロへキシルアタリレート、ォクチルアタリレ ート、ヒドロキシェチルアタリレート、 2—ェチルへキシルアタリレート、グリシジルアタリ レートなどが挙げられる。メタクリル酸エステルとしては、メチルメタタリレート、ェチルメ タクリレート、ブチルメタタリレート、ヒドロキシェチルメタタリレート、グリシジノレメタクリレ ートなどが挙げられる。 [0029] The ethylenically unsaturated compound is not particularly limited, but is preferably an acrylate monomer and / or a methacrylic acid ester monomer in terms of higher viscosity. Acrylic acid esters include methyl acrylate, ethyl acetate, butyl acrylate, hexyl acrylate, cyclohexyl acrylate, octyl acrylate, hydroxyethyl acrylate, 2-ethyl hexyl acrylate, glycidyl Atari Rate and so on. Examples of the methacrylic acid ester include methyl methacrylate, ethyl methacrylate, butyl methacrylate, hydroxyethyl methacrylate, glycidino methacrylate.
[0030] 本ェマルジヨンの不飽和カルボン酸類とエチレン性不飽和化合物の共重合比は、 より増粘性に優れる面で、不飽和カルボン酸類:エチレン性不飽和化合物 = 20 : 1〜 1 : 20が好ましぐ 5 : 1〜1 : 5がより好ましい。この範囲外では良好なアルカリ増粘性 が得られない場合がある。  [0030] The copolymerization ratio of unsaturated carboxylic acids and ethylenically unsaturated compounds of this emulsion is preferably unsaturated carboxylic acids: ethylenically unsaturated compounds = 20: 1 to 1:20 in terms of more excellent viscosity. More preferred is 5: 1 to 1: 5. Outside this range, good alkali thickening may not be obtained.
[0031] 本ェマルジヨンの使用量は、セメント 100部に対して、固形分換算で 0. 1〜2部が 好ましぐ 0. 2〜1部がより好ましい。 0. 1部未満では増粘効果が少なくなり、流動性 が大きくなり、水中不分離性が小さくなる場合があり、 2部を超えると初期強度発現性 力 、さくなる場合がある。  [0031] The amount of the present emulsion used is preferably 0.1 to 2 parts in terms of solid content with respect to 100 parts of cement, more preferably 0.2 to 1 part. If the amount is less than 1 part, the thickening effect is reduced, the fluidity is increased, and the inseparability in water may be reduced. If the amount exceeds 2 parts, the initial strength developability may be reduced.
[0032] 本発明の地盤改良材用組成物組成物は、さらに硬化促進剤を使用することができ る。地盤改良材用組成物の硬化が遅れると、材料分離の一種であるブリーディング( 浮き水)が起こり、硬化後に空隙が生成して構造的な欠陥となる。  [0032] The composition composition for ground improvement material of the present invention can further use a curing accelerator. If curing of the ground improvement material composition is delayed, bleeding (floating water) which is a kind of material separation occurs, and voids are generated after curing, resulting in structural defects.
本発明で使用する硬化促進剤は、地盤改良材用組成物の硬化を促進してブリー デイングを低減し、空隙の生成を抑制するとともに、強度発現性に寄与する。  The curing accelerator used in the present invention accelerates the curing of the ground improvement material composition, reduces bleeding, suppresses void formation, and contributes to strength development.
[0033] 硬化促進剤としては、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシゥ ム、硫酸カルシウム、硫酸アルミニウム、カリウム明礬、硫酸鉄等の硫酸塩;炭酸リチ ゥム、炭酸ナトリウム、炭酸カリウムなどの炭酸塩;水酸化リチウム、水酸ィ匕ナトリウム、 水酸化マグネシウム、水酸化アルミニウム、水酸化カリウム、水酸化カルシウムなどの 水酸ィ匕物;塩ィ匕カルシウム、塩化マグネシウム、塩ィ匕鉄等の塩ィ匕物;アルミン酸リチウ ム、アルミン酸ナトリウム、アルミン酸カリウム、アルミン酸カルシウムなどのアルミン酸 塩;ケィ酸リチウム、ケィ酸ナトリウム、ケィ酸カリウムなどのケィ酸塩;ジエタノールアミ ンゃトリエタノールァミンなどのアミン類;ギ酸カルシウムや酢酸カルシウムなどの有機 酸のカルシウム塩;シリカゾルゃアルミナゾルなどのコロイドなどが挙げられる。これら の一種又は二種以上を併用することも可能である。これらの中では、硬化促進と強度 発現性に優れる面で、アルミン酸塩及び Z又は硫酸塩が好ましぐアルミン酸塩と硫 酸塩を併用したものがより好ましい。 [0034] アルミン酸塩の中では、硬化促進と強度発現性の面でアルミン酸カルシウム(以下 、 CAともいう)が好ましい。 CAは、 CaOと Al Oを主成分とする化合物を総称するも [0033] Examples of the curing accelerator include sulfates such as lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate, aluminum sulfate, potassium alum, and iron sulfate; lithium carbonate, sodium carbonate, potassium carbonate, etc. Carbonate; lithium hydroxide, sodium hydroxide, magnesium hydroxide, aluminum hydroxide, potassium hydroxide, calcium hydroxide and other hydroxides; salt calcium, magnesium chloride, salt iron, etc. Salts; aluminates such as lithium aluminate, sodium aluminate, potassium aluminate and calcium aluminate; Amines such as min; organic acid calcium such as calcium formate and calcium acetate Salt; silica sol, colloid such as alumina sol, and the like. One or more of these can be used in combination. Among these, a combination of aluminate and sulfate, which is preferred for aluminate and Z or sulfate, is more preferred in terms of excellent curing acceleration and strength development. [0034] Among the aluminates, calcium aluminate (hereinafter, also referred to as CA) is preferable in terms of hardening acceleration and strength development. CA is a general term for compounds containing CaO and Al 2 O as main components.
2 3  twenty three
のであり、例えば、力ルシアを含む原料と、アルミナを含む原料等とを混合して、キル ンでの焼成や電気炉での溶融等の熱処理をして得られる、 CaOと Al Oを主成分と  For example, the main ingredients are CaO and AlO, which are obtained by mixing a raw material containing strong lucia and a raw material containing alumina, etc., and performing heat treatment such as firing in a kiln or melting in an electric furnace. When
2 3  twenty three
する化合物を総称するものである。具体例としては、 Ca02Al O、 CaO -Al O、 1  This is a general term for the compounds. Specific examples include Ca02Al O, CaO 2 -Al O, 1
2 3 2 3 2 3 2 3
2CaO - 7Al O、 HCaO - 7Al O -CaF、 3CaO-Al O、及び 3CaO' 3Al O -Ca 2CaO-7AlO, HCaO-7AlO-CaF, 3CaO-AlO, and 3CaO'3AlO-Ca
2 3 2 3 2 2 3 2 3 2 3 2 3 2 2 3 2 3
SOなどで表される結晶性のアルミン酸カルシウム類や、 CaOと Al Oを主成分とすCrystalline calcium aluminates such as SO, and CaO and AlO as the main components
4 2 3 る非晶質の化合物が挙げられる。これらの中では、強度発現性の面で非晶質の 12C aO - 7Al O組成のものがより好ましい。 4 2 3 amorphous compounds. Among these, an amorphous 12C aO-7Al O composition is more preferable in terms of strength development.
2 3  twenty three
アルミン酸カルシウムの粉末度は、ブレーン値で 3,000cm2/g以上が好ましぐ 5,0 00cm2/g以上がより好ま 、。 3,000cm2/g未満では初期強度発現性が小さ 、場合 がある。 The fineness of calcium aluminate is preferably 3,000 cm 2 / g or more in terms of brain value, more preferably 5,000 cm 2 / g or more. If it is less than 3,000 cm 2 / g, the initial strength development may be small.
[0035] 硫酸塩の中では、硬化促進と強度発現性の面で硫酸カルシウム及び Z又は硫酸 アルミニウムが好ましい。硫酸カルシウムとしては、無水石膏、半水石膏、又は二水石 膏等が挙げられる。これらの中では、硬化促進と強度発現性の面で、無水石膏が好 ましい。  [0035] Among the sulfates, calcium sulfate and Z or aluminum sulfate are preferable in terms of hardening acceleration and strength development. Examples of calcium sulfate include anhydrous gypsum, hemihydrate gypsum, and dihydrate gypsum. Of these, anhydrous gypsum is preferred in terms of curing acceleration and strength development.
硫酸塩の粉末度は、ブレーン比表面積で 3,000cm2/g以上が好ましぐ 5,000cm2 /g以上がより好ま 、。 3,000cm2/g未満では強度発現性が小さ 、場合がある。 The fineness of the sulfate is preferably 3,000 cm 2 / g or more, more preferably 5,000 cm 2 / g or more in terms of Blaine specific surface area. If it is less than 3,000 cm 2 / g, strength development may be small.
[0036] 硬化促進剤として,アルミン酸塩と硫酸塩を併用した場合、硫酸塩の使用量は、ァ ノレミン酸塩 100咅に対して、 20〜500咅力好ましく、 50〜150咅カ^ょり好まし 、0 20 部未満では初期強度発現性力 、さくなる場合があり、 500部を超えると流動性が大き くなり、水中不分離性が小さくなり、長期強度発現性が小さくなる場合がある。 [0036] When a combination of aluminate and sulfate is used as a curing accelerator, the amount of sulfate used is preferably 20 to 500%, more preferably 50 to 150 咅 per 100 咅preferably Ri, 0 20 parts less than the initial strength development forces, may become fence, and more than 500 parts fluidity size no longer, water nondisjunction resistance is reduced, if the long-term strength development decreases is there.
[0037] 硬化促進剤の使用量はその種類によって異なるため一義的に規定することはでき ないが、一般的には、セメント 100部に対して、 1〜30部が好ましぐ 2〜20部がより 好ましい。 1部未満では流動性が大きくなり、水中不分離性が小さくなり、強度発現性 が小さくなる場合があり、 30部を超えると粘度が高くなり、圧送距離が短くなる場合が ある。  [0037] The amount of curing accelerator used varies depending on the type and cannot be uniquely defined, but in general, 1 to 30 parts is preferable to 100 parts of cement. 2 to 20 parts Is more preferable. If the amount is less than 1 part, the fluidity increases, the inseparability in water decreases, and the strength development may decrease. If the amount exceeds 30 parts, the viscosity increases and the pumping distance may be shortened.
[0038] 本発明のセメントを含有してなる地盤改良材用組成物に、砂や砂利等の骨材、減 水剤、及び防凍剤等を併用することも可能である。 [0038] The composition for ground improvement material comprising the cement of the present invention, aggregates such as sand and gravel, reduction It is also possible to use a liquid medicine and an antifreeze agent in combination.
[0039] 本発明でセメントと混合する水の量は特に限定されるものではないが、セメント 100 部に対して、 100〜300部が好ましぐ 150〜200部がより好ましい。 100部未満で はセメントを含有してなる地盤改良材用組成物の練混ぜが困難になる場合があり、 3 00部を超えると流動性が大きくなり、水中不分離性力 S小さくなる場合がある。  [0039] The amount of water to be mixed with the cement in the present invention is not particularly limited, but is preferably 100 to 300 parts, more preferably 150 to 200 parts with respect to 100 parts of cement. If it is less than 100 parts, mixing of the soil improvement material composition containing cement may be difficult, and if it exceeds 300 parts, the fluidity increases and the inseparability in water S may decrease. is there.
[0040] 本発明の地盤改良材用組成物が、高炉フューム、セメント、及び本ェマルジヨンを 含有してなる場合、その使用方法は特に限定されるものではないが、高炉フューム、 セメント、及び水とを混合してなる A液と、本ェマルジヨンと水とを含有してなる B液とを 、使用直前に混合する使用方法が、粘度を急激に上昇させることができるため好まし い方法である。なお、本ェマルジヨンをあらかじめ水と混合して溶液又は懸濁液とす ることは、混合性が良好となり、増粘性の面力も好ましい。  [0040] When the composition for ground improvement material of the present invention contains blast furnace fume, cement, and the present emulsion, the method of using the blast furnace fume, cement, and water is not particularly limited. A method of mixing the liquid A prepared by mixing the liquid B containing the emulsion and water immediately before use is preferred because the viscosity can be increased rapidly. It is to be noted that mixing the present emulsion with water in advance to form a solution or suspension improves the mixing property and also favors the surface force of thickening.
[0041] 本ェマルジヨンは、水と混合して使用することが好ましい。その場合の水の使用量 は特に限定されるものではないが、本ェマルジヨンの固形分の 5〜20倍の水で希釈 することが好ましぐ硬化促進剤を使用する場合は、 1〜3倍に希釈することが好まし い。水の量力 Sこれより少ないと粘性が高くなり混合性が悪くなる場合があり、水の量が 多くなると、その希釈水の希釈効果が多くなり、水中不分離性が悪くなる場合がある。 残りの水は、セメントと高炉フュームに混合し、セメント一高炉フューム液の A液と、 本ェマルジヨンの B液を別々に圧送し、ノズル先端で合流混合しながら使用すること も可能である。特に、セメント一高炉フューム液の A液、本ェマルジヨンと水とを混合し て 2倍量にした本ェマルジヨン液の B液を別々に圧送し、ノズル先端で合流混合しな 力 使用することがより好ましい。  [0041] The emulsion is preferably used by mixing with water. In this case, the amount of water used is not particularly limited, but when using a curing accelerator that is preferably diluted with 5 to 20 times the solid content of the emulsion, it is 1 to 3 times. It is preferred to dilute to If the amount of water is less than this, the viscosity may increase and the mixing property may deteriorate, and if the amount of water increases, the dilution effect of the diluted water increases and the inseparability in water may deteriorate. The remaining water can be mixed with cement and blast furnace fume, and the A liquid of the cement-blast furnace fume liquid and the B liquid of this emulsion can be pumped separately and combined and mixed at the nozzle tip. In particular, it is better to use the force without mixing and mixing at the tip of the nozzle separately by pumping separately the B liquid of this emulsion liquid that has been doubled by mixing A liquid of cement blast furnace fume liquid and this emulsion and water. preferable.
[0042] 上記の合流混合の方法としては、 Y字管等の混合管を使用する方法、二重管を使 用する方法、及び本ェマルジヨン液の B液をシャワー状にセメント 高炉フューム液 の A液に合流混合させるためにインレットピースを使用する方法等が挙げられる。 また、より均一に混合するため、合流混合後の管中にスパイラル状のミキサーをセッ トし、さらに混合する方法も挙げられる。  [0042] As the above-mentioned method of merging and mixing, a method using a mixing tube such as a Y-shaped tube, a method using a double tube, and the B liquid of this emulsion liquid in a shower form are used as a cement blast furnace fume liquid A. For example, a method of using an inlet piece in order to join and mix the liquid. Moreover, in order to mix more uniformly, the method of setting the spiral mixer in the pipe | tube after merging mixing and mixing further is also mentioned.
[0043] 本発明の地盤改良材用組成物が、高炉フューム、セメント、本ェマルジヨン、及び 硬化促進剤を含有してなる場合、その使用方法は、上記同様に特に限定されるもの ではないが、高炉フューム、セメント、及び水とを混合してなる A液と、硬化促進剤と 水を含有してなる液 (以下、硬化促進剤液という)と、本ェマルジヨンと水を含有してな る液 (以下、本ェマルジヨン液という)とを混合してなる B液とを、使用直前に混合する ことにより、あるいは、高炉フューム、セメント、及び水とを混合してなる A液と、硬化促 進剤液からなる B液と、本ェマルジヨン液力 なる C液とを、使用直前に混合する方法 力 粘度を急激に上昇させることができるため好ま U、方法である。 [0043] When the composition for ground improvement material of the present invention contains a blast furnace fume, cement, the present emulsion, and a curing accelerator, the method of use is particularly limited as described above. However, it contains liquid A containing blast furnace fume, cement and water, liquid containing curing accelerator and water (hereinafter referred to as curing accelerator liquid), this emulsion and water. Liquid B mixed with the liquid (hereinafter referred to as the present emulsion liquid) immediately before use, or mixed with blast furnace fume, cement, and water A liquid, Method of mixing B liquid consisting of hardening accelerator liquid and C liquid of this emulsion liquid just before use Force It is preferable because the viscosity can be increased rapidly.
[0044] 本ェマルジヨンと硬化促進剤をあらカゝじめ水と混合して溶液又は懸濁液とすること は、混合性が良好となり、増粘性の面力も好ましい。その場合の水の使用量は特に 限定されるものではないが、本ェマルジヨンの場合は、本ェマルジヨンの固形分の 5 〜20倍の水で希釈することが好ましぐ硬化促進剤の場合は、その 1〜3倍の水で希 釈することが好ましい。水の量力これより少なくなると、粘度が高くなつて混合性が小 さくなる場合があり、水の量が多くなると、流動性が大きくなつて水中不分離性が小さ くなる場合がある。 [0044] When the emulsion and the curing accelerator are mixed with water in advance to form a solution or suspension, the mixing property is good and the surface force of thickening is also preferable. In this case, the amount of water used is not particularly limited. However, in the case of this emulsion, in the case of a curing accelerator that is preferably diluted with 5 to 20 times the solid content of this emulsion, It is preferable to dilute with 1 to 3 times the water. If the amount of water is less than this, the viscosity may increase and the mixing property may decrease, and if the amount of water increases, the fluidity may increase and the inseparability in water may decrease.
[0045] 本発明にお 、て、高炉フューム、セメント、及び水を混合してなる A液と、硬化促進 剤液と本ェマルジヨン液とを混合してなる B液とを別々に圧送し、ノズル先端で合流 混合させて使用することも可能である。特に、高炉フューム、セメント、及び水を混合 してなる A液、硬化促進剤液からなる B液、及び本ェマルジヨン液力 なる C液の三種 類の液を別々に圧送し、ノズル先端で合流混合させて使用することがより好ましい。  [0045] In the present invention, the A liquid obtained by mixing blast furnace fume, cement, and water, and the B liquid obtained by mixing the curing accelerator liquid and the present emulsion liquid are separately pumped to obtain a nozzle. It is also possible to use by mixing and mixing at the tip. In particular, three types of liquids, A liquid made of blast furnace fume, cement, and water, B liquid made of hardening accelerator liquid, and C liquid made of this emulsion liquid, are separately pumped and merged and mixed at the nozzle tip. It is more preferable to use them.
[0046] また、硬化促進剤は、水と混合してから 1時間以内に硬化する場合があるため、遅 延剤を併用することが好ましい。遅延剤としては、クェン酸、酒石酸、ダルコン酸、及 びリンゴ酸等のォキシカルボン酸又はそれらのナトリウム塩やカリウム塩、ホウ酸、トリ ポリリン酸塩、並びに、ピロリン酸塩等が挙げられ、これらの一種又は二種以上を併 用することが可能である。これらの中では遅延効果が大きい面で、ォキシカルボン酸 及び Z又はォキシカルボン酸塩が好ましぐクェン酸及び Z又はクェン酸ナトリウム 力 り好ましい。  [0046] Further, since the curing accelerator may be cured within one hour after mixing with water, it is preferable to use a retardation agent in combination. Examples of retarders include oxycarboxylic acids such as citrate, tartaric acid, darconic acid, and malic acid, or sodium salts and potassium salts thereof, boric acid, tripolyphosphate, pyrophosphate, and the like. One type or two or more types can be used in combination. Among these, oxycarboxylic acid and Z or oxycarboxylate are preferable to quenic acid and Z or sodium citrate because they have a large delay effect.
遅延剤の使用量は、セメント 100部に対して、 0. 01〜10部が好ましぐ 0. 05〜5 部がより好ましい。 0. 01部未満では遅延効果が小さい場合があり、 10部を超えると 強度発現性が小さくなる場合がある。 [0047] 上記の合流混合の方法としては、 Y字管等の混合管を使用する方法、三重管を使 用する方法、及びインレットピースを使用して、硬化促進剤液の B液と本ェマルジヨン 液の C液を、それぞれシャワー状に、セメント、高炉フューム及び水を混合してなる A 液に合流混合させる方法等が挙げられる。 The amount of retarder used is preferably 0.01 to 10 parts per 100 parts of cement, more preferably 0.05 to 5 parts. If the amount is less than 01 parts, the delay effect may be small, and if it exceeds 10 parts, the strength development may be small. [0047] As the method of merging and mixing described above, a method using a mixing tube such as a Y-shaped tube, a method using a triple tube, and an inlet piece are used to prepare B and B of the accelerator. Examples include a method in which the liquid C is mixed and mixed into a liquid A obtained by mixing cement, blast furnace fume, and water in the form of a shower.
また、より均一に混合するため、合流混合後の管中にスパイラル状のミキサーをセッ トし、さらに混合する方法も挙げられる。  Moreover, in order to mix more uniformly, the method of setting the spiral mixer in the pipe | tube after merging mixing and mixing further is also mentioned.
[0048] 本発明の地盤改良材用組成物を用いてなる注入材に使用する高炉フュームは、鉄 鋼の製造過程において、銑鉄を得る際に高炉カゝら発生するヒュームを集塵したダスト を、そのまま使用することも可能であり、さらに、粉砕や分級を行い、微粉末化して使 用することも可能である。本発明では地盤への高い浸透性が得られるように、最大粒 子直径が 20 μ m以下となるように分級して使用することが好ま 、。  [0048] The blast furnace fume used for the injection material using the composition for ground improvement material according to the present invention is a dust collecting dust collected from the blast furnace when the pig iron is obtained in the steel manufacturing process. It can be used as it is, and further, it can be pulverized and classified to be used as a fine powder. In the present invention, it is preferable to classify and use so that the maximum particle diameter is 20 μm or less so that high permeability to the ground can be obtained.
[0049] 本発明の高炉フューム、アルミン酸カルシウム又はアルミノケィ酸カルシウム、石膏 、及びアルカリ刺激材を含有する地盤改良材用組成物を用いてなる注入材にお!ヽて 、使用するアルミノケィ酸カルシウム(以下、 CASという)は、 CaO、 Al O、及び SiO  [0049] An injection material using the ground improvement material composition containing the blast furnace fume, calcium aluminate or calcium aluminosilicate, gypsum, and alkali stimulating material of the present invention! On the other hand, the calcium aluminosilicate used (hereinafter referred to as CAS) is CaO, Al 2 O, and SiO 2
2 3 2 を含有するものであり、石膏との併用により,主として短期強度の発現に寄与するもの である。  It contains 2 3 2 and contributes mainly to the development of short-term strength when used in combination with gypsum.
CASの組成は、 CaO含有率が 20〜60%、 Al O含有率が 20〜70%、及び SiO  The composition of CAS is that CaO content is 20-60%, AlO content is 20-70%, and SiO
2 3 2 含有率が 5〜30%が好ましぐ CaO含有率 30〜55%、 Al O含有率 30〜60%、及  2 3 2 5 to 30% content is preferred CaO content 30 to 55%, Al O content 30 to 60%, and
2 3  twenty three
び SiO含有率 10〜20%がより好ましい。この範囲外では短期強度が小さくなる場合 And SiO content of 10 to 20% is more preferable. When the short-term strength is smaller outside this range
2 2
がある。  There is.
[0050] CASは、石灰石等の力ルシア原料、アルミナ、ボーキサイト、長石、及び粘土等の アルミナ原料、並びに、ケィ石、ケィ砂、石英、及びケィ藻土等のシリカ原料等を所定 の割合で配合した後、ロータリーキルンなどで焼成、又は電気炉や高周波炉等で溶 融することにより製造される。  [0050] CAS is made up of a predetermined amount of powerful Lucia raw materials such as limestone, alumina raw materials such as alumina, bauxite, feldspar, and clay, and silica raw materials such as keystone, keystone, quartz, and keystone. After blending, it is manufactured by firing in a rotary kiln or the like, or melting in an electric furnace or high-frequency furnace.
[0051] CASとしては、 2CaO'Al O - SiOや CaO 'Al O - 2SiOなどの結晶性化合物を  [0051] CAS includes crystalline compounds such as 2CaO'Al O -SiO and CaO 'Al O -2SiO.
2 3 2 2 3 2  2 3 2 2 3 2
使用することも可能であるが、短期強度が大きい面で、溶融物を急冷して得られるガ ラス質のものが好ましい。  Although it is possible to use it, a glassy material obtained by quenching the melt in terms of high short-term strength is preferred.
CASのガラス化率は、 CASを 1, 000°Cで 2時間加熱後、 5°CZ分の冷却速度で 徐冷し、粉末 X線回折法により結晶鉱物のメインピークの面積 Sを求め、 CASの結 The vitrification rate of CAS is as follows: CAS is heated at 1,000 ° C for 2 hours and then cooled at a rate of 5 ° CZ. Gradually cool, and determine the area S of the main peak of the crystalline mineral by powder X-ray diffractometry.
0  0
晶のメインピーク Sから、 X(%) = 100 X (1— szs )として求められる。短期強度の  From the main peak S of the crystal, it is obtained as X (%) = 100 X (1—szs). Short-term strength
0  0
面から 50%以上が好ましぐ 80%以上がより好ましぐ 90%以上がさらに好ましい。 5 0%未満では短期強度が小さ ヽ場合がある。  From the aspect, 50% or more is preferable. 80% or more is more preferable. 90% or more is more preferable. If it is less than 50%, the short-term strength may be small.
[0052] CASの使用量は、高炉フューム 100部に対して、 1〜50部が好ましぐ 5〜30部が より好ましい。 1部未満では短期強度が小さぐ 50部を超えると注入材を懸濁液とした ときの粘度が大きくなり、地盤への浸透性が低下する場合がある。  [0052] The amount of CAS used is preferably 1 to 50 parts, more preferably 5 to 30 parts per 100 parts of blast furnace fume. If the amount is less than 1 part, the short-term strength is small. If it exceeds 50 parts, the viscosity when the injection material is made into a suspension increases and the permeability to the ground may decrease.
[0053] また、本発明の上記注入材にお 、て使用するアルミン酸カルシウムは、石膏との併 用により主として強度発現に寄与するものである。具体例としては、地盤改良材用組 成物組成物に含有される CAとして、先に例示したものがいずれも使用可能である。 これらの中で、注入材の硬化時間や強度発現性の面から、 CaO/Al Oモル比が 1  [0053] In addition, the calcium aluminate used in the above-mentioned injection material of the present invention contributes mainly to the development of strength by the combined use with gypsum. As specific examples, any of those exemplified above can be used as the CA contained in the composition composition for ground improvement material. Among these, the CaO / Al 2 O molar ratio is 1 from the viewpoint of hardening time and strength development of the injected material.
2 3  twenty three
〜2にある非晶質のものを選定することが好ましい。  It is preferable to select an amorphous material in ˜2.
[0054] CAのガラス化率は、上記した CASの場合と全く同様に、 X(%) = 100 X (l— SZ S )として求められる。但し、 S、 Sは、 CASの場合と同様に求められる。短期強度の[0054] The vitrification rate of CA is determined as X (%) = 100 X (l-SZ S), exactly as in the case of CAS described above. However, S and S are obtained in the same way as CAS. Short-term strength
0 0 0 0
面から 50%以上が好ましぐ 80%以上がより好ましぐ 90%以上がさらに好ましい。 5 0%未満では短期強度が小さ ヽ場合がある。  From the aspect, 50% or more is preferable. 80% or more is more preferable. 90% or more is more preferable. If it is less than 50%, the short-term strength may be small.
[0055] CAは、 CaO原料と Al O原料等をロータリーキルンや電気炉によって熱処理する [0055] CA heat-treats CaO raw materials and Al O raw materials with a rotary kiln or electric furnace
2 3  twenty three
などの方法で得られる。 CAを製造する際の原料は特に限定されるものではなぐ例 えば、 CaO原料としては、石灰石や貝殻等の炭酸カルシウム、消石灰、及び生石灰 等が挙げられ、 Al O原料としては、例えば、ボーキサイトやアルミ残灰と呼ばれる産  It is obtained by the method. The raw materials for producing CA are not particularly limited. Examples of the CaO raw material include calcium carbonate such as limestone and shells, slaked lime, and quicklime.AlO raw materials include, for example, bauxite and Product called aluminum residue
2 3  twenty three
業副産物のほか、アルミ粉等が挙げられる。  In addition to industrial by-products, aluminum powder is included.
[0056] CAの使用量は、高炉フューム 100部に対して、 1〜50部が好ましぐ 5〜30部がよ り好ましい。 1部未満では短期強度が小さぐ 50部を超えると注入材を懸濁液としたと きの粘度が大きくなり、地盤への浸透性が低下する場合がある。  [0056] The amount of CA used is preferably 1 to 50 parts, more preferably 5 to 30 parts per 100 parts of blast furnace fume. If it is less than 1 part, the short-term strength is small. If it exceeds 50 parts, the viscosity when the injection material is made into a suspension increases, and the permeability to the ground may decrease.
[0057] 更に、本発明の上記注入材において使用する石膏は、無水石膏、半水石膏、二水 石膏が挙げられる。さらに天然石膏や、リン酸副生石膏、排脱石膏、フッ酸副生石膏 等の化学石膏、又はこれらを熱処理して得られる石膏等使用できる。これらの中で強 度発現性が大き!/、面で無水石膏が好ま 、。 石膏の使用量は、高炉フューム 100部に対して、 1〜50部が好ましぐ 5〜30部が より好ましい。 1部未満では短期強度が小さぐ 50部を超えると地盤への浸透性が低 下する場合がある。 [0057] Further, examples of the gypsum used in the injection material of the present invention include anhydrous gypsum, hemihydrate gypsum, and dihydrate gypsum. Furthermore, natural gypsum, chemical gypsum such as phosphate byproduct gypsum, waste gypsum, hydrofluoric acid byproduct gypsum, or gypsum obtained by heat-treating these can be used. Of these, strength development is great! / Anhydrous gypsum is preferred. The amount of gypsum used is preferably 1 to 50 parts and more preferably 5 to 30 parts per 100 parts of blast furnace fume. If less than 1 part, short-term strength is small. If it exceeds 50 parts, the permeability to the ground may be reduced.
[0058] また更に、本発明の上記注入材において使用するアルカリ刺激材は、高炉フュー ムとの併用により、硬化、長期強度の増大に寄与する。  [0058] Furthermore, the alkali stimulating material used in the above-mentioned injecting material of the present invention contributes to hardening and an increase in long-term strength when used in combination with a blast furnace fume.
アルカリ刺激材としては、水酸化ナトリウム、水酸ィ匕カリウム、水酸化リチウムなどの アルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸リチウムなどのアルカリ金 属炭酸塩、並びに、消石灰等が挙げられる。特に限定されるものではないが、その中 でも高炉フュームとの併用による硬化、長期強度の増大の面から消石灰が好まし 、。 アルカリ刺激材の使用量は、高炉フューム 100部に対して、 1〜50部が好ましぐ 3 〜20部がより好ましい。 1部未満では長期強度が小さぐ 50部を超えると地盤への浸 透性が低下する場合がある。  Examples of the alkali stimulant include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide, alkali metal carbonates such as sodium carbonate, potassium carbonate and lithium carbonate, and slaked lime. . Although it is not particularly limited, slaked lime is preferred from the standpoints of curing by combining with blast furnace fume and increasing long-term strength. The amount of the alkali stimulant used is more preferably 3 to 20 parts, preferably 1 to 50 parts per 100 parts of the blast furnace fume. If less than 1 part, long-term strength is small. If it exceeds 50 parts, the permeability to the ground may decrease.
[0059] 本発明における注入材の最大粒径は 20 μ mが好ましぐ 15 μ mがより好ましぐ 10 m以下が最も好ましい。 20 /z mを超えると、地盤の地質によっては微細な間隙へ の注入が困難になる場合がある。  [0059] The maximum particle size of the injection material in the present invention is preferably 20 μm, most preferably 15 μm, and most preferably 10 m or less. If it exceeds 20 / z m, injection into fine gaps may be difficult depending on the geology of the ground.
[0060] 注入材の粒度の調製方法は特に制限されるものではな 、が、各材料を別々にボー ルミルなどの粉砕機で粉砕し、分級により 20 m以下のものを集め、その後混合する 力 又は各材料を混合した後に粉砕し、分級により 20 /z m以下のものを集める方法 のいずれも使用可能である。しカゝしながら、各材料を混合した後に粉砕し、分級する と、各材料の密度差により混合比が変わる恐れがあるため、各材料を別々に粉砕し、 分級しその後混合することが好ま 、。  [0060] The method for adjusting the particle size of the injection material is not particularly limited, but each material is separately pulverized with a pulverizer such as a ball mill, and those having a size of 20 m or less are collected by classification and then mixed Alternatively, it is possible to use any of the methods in which each material is mixed and then pulverized and collected by classification to collect less than 20 / zm. However, if the materials are mixed and then pulverized and classified, the mixing ratio may change due to the density difference between the materials. Therefore, it is preferable to pulverize, classify and then mix each material separately. ,.
[0061] さらに本発明では、所要の硬化時間が得られるように調整するために、凝結調整剤 を併用することは好ましい。  [0061] Furthermore, in the present invention, it is preferable to use a coagulation modifier in order to adjust the required curing time to be obtained.
凝結調整剤としては、アルミン酸ナトリウムやアルミン酸カリウムなどのアルミン酸塩 、炭酸ナトリウムや炭酸カリウムなどの炭酸塩、水酸化ナトリウムや水酸化カリウムなど の水酸化物、硫酸アルミニウム、硫酸鉄 (111)、及びミヨゥバンなどの硫酸塩、ケィ酸ナ トリウムやケィ酸カリウムなどのケィ酸塩、リン酸ナトリウム、リン酸カルシウム、及びリン 酸マグネシウムなどのリン酸塩、並びに、ホウ酸リチウムやホウ酸ナトリウムなどのホウ 酸塩等の無機塩類、クェン酸、ダルコン酸、酒石酸、及びリンゴ酸又はこれらのナトリ ゥム塩、カリウム塩、及びカルシウム塩等の有機酸又はその金属塩類、並びに、糖類 等が挙げられる。これらのうちの一種又は二種以上を併用することが可能である。こ れらの中では所要の硬化時間を確保する上で、炭酸塩と有機酸類を併用することが 好ましい。 Condensation regulators include aluminates such as sodium aluminate and potassium aluminate, carbonates such as sodium carbonate and potassium carbonate, hydroxides such as sodium hydroxide and potassium hydroxide, aluminum sulfate, iron sulfate (111) And sulfates such as alum, silicates such as sodium and potassium silicates, phosphates such as sodium phosphate, calcium phosphate and magnesium phosphate, and boron such as lithium borate and sodium borate Examples thereof include inorganic salts such as acid salts, citrate, darconic acid, tartaric acid, malic acid or organic acids such as sodium salt, potassium salt and calcium salt thereof or metal salts thereof, and saccharides. One or two or more of these can be used in combination. Among these, it is preferable to use a carbonate and an organic acid in combination in order to secure a required curing time.
[0062] 凝結調整剤の使用量は、硬化時間に応じて調整するため特に限定されるものでは ないが、 CAS、又は CAと石膏との合計 100部に対して、 0. 1〜10部が好ましぐ 0. [0062] The amount of setting modifier used is not particularly limited because it is adjusted according to the setting time, but 0.1 to 10 parts per 100 parts of CAS or CA and gypsum in total. Favorable 0.
5〜5部がより好ましい。 0. 1部未満では硬化時間を確保しにくい場合があり、 10部 を超えると硬化時間が長くなり、強度が小さくなる場合がある。 5 to 5 parts are more preferable. If it is less than 1 part, it may be difficult to secure the curing time, and if it exceeds 10 parts, the curing time may be longer and the strength may be reduced.
[0063] 地盤中への浸透性を向上させるために、本発明では、さらに分散剤を使用すること が好ましい。 [0063] In order to improve the permeability into the ground, it is preferable to further use a dispersant in the present invention.
分散剤としては、ナフタレンスルホン酸ホルマリン縮合物塩系、リグ-ンスルホン酸 系、メラミンスルホン酸ホルマリン縮合物塩系、ポリカルボン酸塩系、及びポリエーテ ル系の分散剤が挙げられる。  Examples of the dispersant include naphthalene sulfonic acid formalin condensate salt type, ligne sulfonic acid type, melamine sulfonic acid formalin condensate salt type, polycarboxylate type, and polyether type dispersants.
分散剤の使用量は、高炉フューム 100部に対して、 0. 1〜: L0部が好ましぐ 0. 5〜 The amount of dispersant used is 0.1 to 100 parts of the blast furnace fume.
3部がより好ましい。 0. 1部未満では浸透性が小さい場合があり、 10部を超えると強 度が小さくなる場合がある。 More preferred is 3 parts. 0. If less than 1 part, permeability may be low, and if it exceeds 10 parts, strength may be low.
[0064] 注入材を懸濁液とする場合の水量は、ポンプで懸濁液を圧送できれば特に限定さ れるものではないが、高炉フューム、 CAS又は CA、石膏、及びアルカリ刺激材の合 計 100咅に対して、 100〜1,000咅カ^好まし<、 200〜500咅カより好まし!/、。 100咅 未満では懸濁液の粘度が高くなつて浸透性が小さい場合があり、 1,000部を超えると 強度が小さくなる場合がある。 [0064] The amount of water in the case of using the injection material as a suspension is not particularly limited as long as the suspension can be pumped by a pump, but the total of blast furnace fume, CAS or CA, gypsum, and alkali stimulating material is 100. 100-1,000 咅 is preferred for 咅 <, 200-500 咅 is preferred! If the amount is less than 100%, the viscosity of the suspension may be high and the permeability may be small. If the amount exceeds 1,000 parts, the strength may be small.
[0065] 注入材の練混ぜ方法や注入方法は特に限定されるものではなぐ単管ロッド工法、 単管ストレーナ工法、二重管単相工法、二重管複相工法、及び二重管ダブルパッカ 一工法等、現在使用されている工法に適用可能である。 [0065] The mixing method and the injection method of the injection material are not particularly limited. Single tube rod method, single tube strainer method, double tube single phase method, double tube double phase method, and double tube double packer Applicable to currently used construction methods such as construction methods.
実施例  Example
[0066] 以下、実施例により本発明を詳細に説明するが、本発明はそれらに限定して解釈さ れるものではない。 [0067] 実施例 1 1 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not construed as being limited thereto. [0067] Example 1 1
表 1 1に示す高炉フュームとシリカフュームを配合して地盤改良材用組成物を調 製し、調製した地盤改良材用組成物 100部に対して、水 150部を加えて攪拌し、地 盤改良材を調製し、その地盤改良材の浸透性と、硬化後の改良体の耐久性につい て確認を行った。  A ground improvement material composition was prepared by blending the blast furnace fume and silica fume shown in Table 11 and added to 150 parts of the prepared ground improvement material composition. A material was prepared, and the permeability of the ground improvement material and the durability of the improved body after curing were confirmed.
なお、比較のために、本発明の地盤改良材用組成物の代わりに、高炉スラグ微粉 末や水ガラス系地盤改良材を使用した場合についても同様の実験を行った。結果を 表 1 1に併記する。  For comparison, the same experiment was also performed when blast furnace slag fine powder or water glass ground improvement material was used instead of the ground improvement material composition of the present invention. The results are also shown in Table 11.
[0068] <使用材料 > [0068] <Materials used>
高炉フューム:中国産、市販品、 SiO 25%、 Fe O 3%、 Al O 13%、 CaO 1  Blast furnace fume: Made in China, commercially available, SiO 25%, Fe O 3%, Al O 13%, CaO 1
2 2 3 2 3  2 2 3 2 3
9%、MgO 6%、Na O 1. 3%、K O 9%、 SO 10%、 S 0. 3%、及び MnO  9%, MgO 6%, Na 2 O 1.3%, K 2 O 9%, SO 10%, S 0.3%, and MnO
2 2 3  2 2 3
0. 20/0、ブレーン値 21,000cm2/g、最大粒径 ίま 30 μ m、平均粒径 ίま 4 μ m シリカフューム:市販品、酸性のシリカフューム、平均粒径 0. 1 m、ブレーン値 15万0.2 0/0, Blaine 21,000cm 2 / g, a maximum particle size ί or 30 mu m, an average particle diameter ί or 4 mu m silica fume: commercially available acidic silica fume, the average particle diameter of 0. 1 m, Blaine Value 150,000
2 / 2 /
cm /g  cm / g
高炉スラグ微粉末:市販の高炉水砕スラグの微粉末、最大粒径 5 m、平均粒径 5 m  Blast furnace slag fine powder: Fine powder of granulated blast furnace slag, maximum particle size 5 m, average particle size 5 m
水ガラス系地盤改良材:市販品、主成分は水ガラス、副成分は炭酸ナトリウム 水 :水道水  Water glass-based ground improvement material: Commercial product, the main component is water glass, the secondary component is sodium carbonate Water: tap water
[0069] <測定方法 > [0069] <Measurement method>
浸透性:直径 5cm X高さ 30cmのビニールチューブに、 8号ケィ砂を高さ 20cmまで充 填し、ビニールチューブの底面に 0. 5mm程度の孔をあけた後、地盤改良材 250ccを 上面力 投入し、 1日後に浸透深さを測定  Penetration: Fill a 5cm diameter x 30cm vinyl tube with No. 8 key sand to a height of 20cm, drill a hole of about 0.5mm in the bottom of the vinyl tube, and then apply 250cc of ground improvement material on the top surface. Measure the depth of penetration after 1 day
耐久性:浸透性試験で得られた硬化体を材齢 91日まで観察し、離しよう水を測定して 評価した。離しよう水は、ビニールチューブの底面にあけた孔力 流れ落ちた水の重 さを測定し、地盤改良材 250ccに対する体積%で示した。  Durability: The cured product obtained in the permeability test was observed until the age of 91 days, and the water to be removed was measured and evaluated. The water to be removed was measured by measuring the weight of the water that had been dropped in the bottom of the vinyl tube and the volume of the ground improvement material was 250cc.
[0070] [表 1] 表 1一 1 [0070] [Table 1] Table 1 1 1
Figure imgf000019_0001
Figure imgf000019_0001
高炉フューム、 シリカフユ一ム、 高炉水砕スラグ微粉末、 及び水ガラス系地盤改良材は (部)  Blast furnace fumes, silica fumes, ground granulated blast furnace slag, and water glass ground improvement materials are (part)
[0071] 実施例 1 2 [0071] Example 1 2
表 1—2に示す高炉フューム、シリカフューム、及びセメント類を用いたこと以外は実 験例 1— 1と同様に行った。結果を表 1— 2に併記する。  Experiments were conducted in the same manner as in Experiment 1-1 except that the blast furnace fume, silica fume, and cements shown in Table 1-2 were used. The results are also shown in Table 1-2.
[0072] <使用材料 >  [0072] <Materials used>
セメント類 A:市販品の微粉セメント、最大粒径 40 μ m、平均粒径 5 μ m  Cement A: Commercially available fine powder cement, maximum particle size 40 μm, average particle size 5 μm
セメント類 B:市販の水酸化カルシウム、最大粒径 40 μ m、平均粒径 5 μ m  Cement B: Commercially available calcium hydroxide, maximum particle size 40 μm, average particle size 5 μm
[0073] [表 2] 表 1 — 2 [0073] [Table 2] Table 1-2
Figure imgf000020_0001
Figure imgf000020_0001
高炉フューム、 シリカフューム、 及びセメント類は (部)  Blast furnace fume, silica fume, and cement are (part)
[0074] 実験例 2— 1 [0074] Experimental Example 2-1
セメント 100部に対して、表 2—1に示す量の高炉フュームと水とをミキサーで混練し て A液を調製した。次に、セメント 100部に対して、固形分換算で 0. 5部のェマルジョ ンひと水 5部を混合して B液を調製した。  The blast furnace fume of the amount shown in Table 2-1 and water were kneaded with a mixer to 100 parts of cement to prepare solution A. Next, with respect to 100 parts of cement, 5 parts of emulsion human water of 0.5 parts in terms of solid content was mixed to prepare B liquid.
A液に B液を投入し、 5秒間混練し、混練物を調製し、そのフロー、水中不分離性、 及び圧縮強度を測定した。  Liquid B was added to liquid A and kneaded for 5 seconds to prepare a kneaded product, and its flow, inseparability in water, and compressive strength were measured.
なお、比較のため、高炉フュームの代わりにベントナイトを用いて同様な実験を行つ た。結果を表 2— 1に併記する。  For comparison, the same experiment was conducted using bentonite instead of blast furnace fume. The results are also shown in Table 2-1.
[0075] <使用材料〉 セメント :普通ポルトランドセメント、市販品 [0075] <Materials used> Cement: Ordinary Portland cement, commercial product
ェマルジヨン α:本ェマルジヨン、固形分濃度 30%、ェチルアタリレート:メタクリル酸 Emulsion α: This emulsion, solid content concentration 30%, Ethyl acrylate: Methacrylic acid
=45: 55のェチルアタリレート Ζメタクリル酸共重合ポリマーェマルジヨン = 45: 55 ethyl acetates リ Methacrylic acid copolymer polymer emulsion
高炉フューム:中国産、市販品。 SiO 25%、 Fe O 3%、 Al O 13%、 CaO 1  Blast furnace fume: A commercial product from China. SiO 25%, Fe O 3%, Al O 13%, CaO 1
2 2 3 2 3  2 2 3 2 3
9%、MgO 6%、Na O 1. 3%、K O 9%、 SO 10%、 S 0. 3%、及び MnO 0  9%, MgO 6%, Na 2 O 1.3%, K 2 O 9%, SO 10%, S 0.3%, and MnO 0
2 2 3  2 2 3
. 2%、ブレーン値 21,000cm2/g、最大粒径は 30 μ m、平均粒径は 4 μ m ベントナイト:巿販品 2%, Brain value 21,000cm 2 / g, Maximum particle size 30 μm, Average particle size 4 μm Bentonite: commercial products
[0076] <測定方法 > [0076] <Measurement method>
フロー :内径 80mm X高さ 80mmのシリンダーに混練物を入れ、シリンダーを引き抜 V、た後の広がりを 2分後に測定  Flow: Put the kneaded material into a cylinder with an inner diameter of 80mm x height of 80mm, then pull out the cylinder V, and measure the spread after 2 minutes
水中不分離性:土木学会の水中不分離コンクリート設計施工指針付属書の水中分 離度試験に準じて実施、水の濁りが全くない場合を優、水の濁りがわずかにある場合 を良、水の濁りはあるが実用可能の場合を可、及び材料が分離し、水の濁りが大の 場合を不可とした。  Underwater inseparability: Performed according to the underwater separation test in the Annex to the Guidelines for Design and Construction of Underwater Non-Isolated Concrete by the Japan Society of Civil Engineers, excellent when there is no water turbidity, good when there is little turbidity, good water Although it was turbid, it was acceptable when it was practical, and when material was separated and the turbidity of water was large.
圧縮強度 : JIS R 5201に準じて測定  Compressive strength: Measured according to JIS R 5201
[0077] [表 3] [0077] [Table 3]
表 2 — 1  Table 2 — 1
Figure imgf000021_0001
Figure imgf000021_0001
咼炉フユ一ムと水はセメント 100部に対する (部) 、 圧縮強さは  Furnace fumes and water for 100 parts of cement (parts), compressive strength is
(N/腿2)、 実験 No. 2-1-7の * 1は高炉フユ一ムの代わりにベントナイト を使用 [0078] セメント 100部、高炉フューム 200部、及び水 180部をミキサーで混練して A液を調 製し、セメント 100部に対して、表 2— 2に示すェマルジヨンと、ェマルジヨンの 10倍量 の水とを混合して B液を調製したこと以外は実験例 2—1と同様に行った。 (N / thigh 2 ), Experiment No. 2-1-7 * 1 uses bentonite instead of blast furnace fumes [0078] 100 parts of cement, 200 parts of blast furnace fume, and 180 parts of water were kneaded with a mixer to prepare solution A. Emulsion shown in Table 2-2 and 10 times the amount of emeraldion with respect to 100 parts of cement The same procedure as in Experimental Example 2-1 was conducted except that liquid B was prepared by mixing with water.
なお、比較のため、本ェマルジヨンの代わりにアルカリ増粘性を有さない非本エマ ルジョンを用いて同様な実験を行った。結果を表 2— 2に併記する。  For comparison, a similar experiment was conducted using a non-emulsion having no alkali thickening instead of this emulsion. The results are also shown in Table 2-2.
[0079] <使用材料 >  [0079] <Materials used>
ェマルジヨン j8:本ェマルジヨン、固形分濃度 30%、ェチルアタリレート:メタクリル酸 =45: 55のエチレン Z酢酸ビュル共重合ポリマーェマルジヨン 70部と、エチレン:酢 酸ビュル = 18 : 82のェチルアタリレート Zアクリル酸共重合ポリマーェマルジヨン 30 部の混合物  Emulsion j8: This Emulsion, solid content concentration 30%, Ethyl acrylate: Methacrylic acid = 45: Ethylene Z acetate butyl copolymer 70 parts, Ethylene: Butyl acetate = 18:82 Ethyl Atalylate Z acrylic acid copolymer polymer emulsion 30 parts mixture
ェマルジヨン γ:本ェマルジヨン、固形分濃度 30%、スチレン: 2-ェチルへキシルァク リレート =45: 55のスチレン Ζ2-ェチルへキシルアタリレート共重合ポリマーェマル ジョン  Emulsion γ: This emulsion, solid concentration 30%, Styrene: 2-Ethylhexyl acrylate = 45: 55 Styrene Ζ 2-Ethylhexyl acrylate copolymer copolymer Emulsion
[0080] [表 4] [0080] [Table 4]
表 2— 2  Table 2— 2
Figure imgf000022_0001
Figure imgf000022_0001
本ェマルジョ ンはセメ ント 100部に対する固形分換算 の(部)、 圧縮強さは(N/mm2) [0081] 実験例 3— 1 This emulsion is (parts) in terms of solid content with respect to 100 parts of the cement, and the compressive strength is (N / mm 2 ). [0081] Experimental Example 3-1
セメント 100部に対して、表 3—1に示す量の高炉フュームと水をミキサーで練混ぜ て A液を調製した。次に、セメント 100部に対して、硬化促進剤 a5部と水 10部を混合 して B液を調製し、固形分換算で 0. 5部の本ェマルジヨン aと水 5部を混合して C液 を調製した。  A liquid A was prepared by mixing the amount of blast furnace fume and water shown in Table 3-1 with 100 parts of cement using a mixer. Next, 100 parts of cement is mixed with 5 parts of hardening accelerator a and 10 parts of water to prepare solution B, and 0.5 parts of this emulsion a and 5 parts of water in terms of solid content are mixed with C. A liquid was prepared.
A液、 B液、及び C液をミキサーに続けて投入して 5秒間練混ぜて注入材を調製し た後、フロー、水中不分離性、及び圧縮強度を測定した。なお、比較のため、高炉フ ユームの代わりにベントナイトを用いて同様に行った。結果を表 3— 1に併記する。  Liquid A, Liquid B and Liquid C were continuously added to the mixer and mixed for 5 seconds to prepare an injection material, and then the flow, water inseparability, and compressive strength were measured. For comparison, the same procedure was performed using bentonite instead of blast furnace fumes. The results are also shown in Table 3-1.
[0082] <使用材料 > [0082] <Materials used>
セメント :普通ポルトランドセメント、市販品  Cement: Ordinary Portland cement, commercial product
高炉フューム:中国産、市販品、 SiO 25%、 Fe O 3%、 Al O 13%、 CaO 1  Blast furnace fume: China, commercially available, SiO 25%, Fe O 3%, Al O 13%, CaO 1
2 2 3 2 3  2 2 3 2 3
9%、MgO 6%、Na O 1. 3%、K O 9%、 SO 10%、 S 0. 3%、及び MnO  9%, MgO 6%, Na 2 O 1.3%, K 2 O 9%, SO 10%, S 0.3%, and MnO
2 2 3  2 2 3
0. 20/0、ブレーン値 21 ,000cm2/g、最大粒径 ίま 30 μ m、平均粒径 ίま 4 μ m ェマルジヨン α:本ェマルジヨン、固形分濃度 30%、ェチルアタリレート:メタクリル酸 =45: 55のェチルアタリレート Ζメタクリル酸共重合ポリマーェマルジヨン 0.2 0/0, Blaine 21, 000cm 2 / g, a maximum particle size ί or 30 mu m, an average particle diameter ί or 4 mu m Emarujiyon alpha: the Emarujiyon, solid concentration of 30% E chill Atari rate: Methacrylic acid = 45: 55 ethyl acrylate. Ζ Methacrylic acid copolymer polymer emulsion
硬化促進剤& : 12じ&0 ' 7八1 Ο組成のアルミン酸カルシウム、ガラス化率 95%、ブレ  Curing accelerator &: 12 pcs & 0 '7 8 1 Ο Calcium aluminate composition, vitrification rate 95%, blurring
2 3  twenty three
ーン値 6,000cm2/gのアルミン酸塩と、無水石膏、ブレーン値 5,400cm2/gの硫酸 塩の等量混合物 Equal mixture of aluminate with a 6,000 cm 2 / g and an anhydrous gypsum and sulfate with a brane value of 5,400 cm 2 / g
ベントナイト:巿販品  Bentonite: General merchandise
[0083] <測定方法 > [0083] <Measurement method>
フロー :内径 80mm X高さ 80mmのシリンダーに練混ぜ後の注入材を入れ、シリン ダーを引き抜いた後の広がりを 2分後に測定  Flow: Measure the spread after pulling out the cylinder after 2 minutes of pouring the injected material into a cylinder with an inner diameter of 80mm and height of 80mm.
水中不分離性:土木学会の水中不分離コンクリート設計施工指針付属書の水中分 離度試験に準じて実施、水の濁りが全くない場合を優、水の濁りがわずかにある場合 を良、水の濁りはあるが、実用可能の場合を可、材料が分離し、水の濁りが大の場合 を不可とした。  Underwater inseparability: Performed according to the underwater separation test in the Annex to the Guidelines for Design and Construction of Underwater Non-Isolated Concrete by the Japan Society of Civil Engineers, excellent when there is no water turbidity, good when there is little turbidity, good water Although turbidity is present, it was acceptable when practical, and when material was separated and the turbidity of water was large.
圧縮強度 : JIS R 5201に準じて測定  Compressive strength: Measured according to JIS R 5201
[0084] [表 5] 表 3— 1 [0084] [Table 5] Table 3— 1
Figure imgf000024_0001
Figure imgf000024_0001
高炉フューム と水はセメント 100部に対する (部)、 実験 No.  Blast furnace fume and water for 100 parts of cement (part), Experiment No.
3- 1- 7の※は髙炉フュームの代わりにベントナイ トを使用  3- 1-7 * uses bentonite instead of furnace fume
[0085] 実施例 3— 2 [0085] Example 3-2
セメント 100部、高炉フューム 200部、及び水 180部をミキサーで練混ぜて A液を調 製し、セメント 100部に対して、硬化促進剤 a5部と水 10部を混合して B液を調製し、 表 3— 2に示すェマルジヨンと、ェマルジョンの 10倍量の水とを混合して C液を調製し たこと以外は実験例 3—1と同様に行った。  Mix 100 parts of cement, 200 parts of blast furnace fume and 180 parts of water with a mixer to prepare liquid A, and prepare 100 parts of cement by mixing 5 parts of hardening accelerator a and 10 parts of water. The same procedure as in Experimental Example 3-1 was conducted, except that the emulsion C shown in Table 3-2 and 10 times the amount of emulsion were mixed to prepare solution C.
なお、比較のため、本ェマルジヨンの代わりにアルカリ増粘性を有さない非本エマ ルジョンを用いて同様に行った。結果を表 3— 2に併記する。  For comparison, the same procedure was performed using a non-emulsion having no alkali thickening instead of this emulsion. The results are also shown in Table 3-2.
[0086] <使用材料 >  [0086] <Materials used>
ェマルジヨン j8:本ェマルジヨン、固形分濃度 30%、ェチルアタリレート:メタクリル酸 =45: 55のェチルアタリレート Zメタクリル酸共重合ポリマーェマルジヨン 70部と、ェ チレン:酢酸ビュル = 18: 82のエチレン Z酢酸ビュル共重合ポリマーェマルジヨン 3 0部の混合物  Emulsion Y8: This Emulsion, solid content concentration 30%, Ethyl Attalate: Methacrylic acid = 45: 55 Ethyl Attalate Z methacrylic acid copolymer polymer Emulsion 70 parts, Ethylene: Bull acetate = 18: 82 Ethylene Z Acetate Bull Copolymer Emulsion 3 0 parts mixture
ェマルジヨン γ:本ェマルジヨン、固形分濃度 30%、スチレン: 2—ェチルへキシルァ タリレート =45: 55のスチレン Ζ2—ェチルへキシルアタリレート共重合ポリマーエマ ルジョン  Emulsion γ: This emulsion, solid concentration 30%, Styrene: 2-Ethylhexyl acrylate = 45: 55 Styrene Ζ 2-Ethyl hexyl acrylate copolymer copolymer emulsion
[0087] [表 6] 表 3— 2 実験 エマノレ フ口 水中不 圧縮強度(N/ram2) [0087] [Table 6] Table 3-2 Experiment Emanole port Underwater incompressible strength (N / ram 2 )
備 考  Remarks
No. ジ 3 ン (m一値 No. 3 (m single value
m) 分離性 7 曰 2 8 曰  m) Separability 7 曰 2 8 曰
3- 2 - 1 ― 0 245 不可 2.5 5.7 比較例  3- 2-1 ― 0 245 No 2.5 5.7 Comparison example
3- 2 - 2 a 0 1 90 可 2.7 6.9 実施例  3- 2-2 a 0 1 90 Possible 2.7 6.9 Example
3- 2- 3 a 0. 2 85 良 2.5 6.6 実施例  3- 2- 3 a 0. 2 85 Good 2.5 6.6 Examples
3- 2 - 4 a 0 5 85 優 2.4 6.3 実施例  3- 2-4 a 0 5 85 Excellent 2.4 6.3 Examples
3- 2 - 5 a 1 0 85 優 2.2 6.2 実施例  3- 2-5 a 1 0 85 Excellent 2.2 6.2 Example
3- -2- 6 a 2 0 85 優 2.1 5.9 実施例  3--2-6 a 2 0 85 Excellent 2.1 5.9 Examples
3- -2 - 7 β 0 1 95 可 2.2 6.0 実施例  3- -2-7 β 0 1 95 Yes 2.2 6.0 Examples
3- ■2- 8 β 0 5 85 良 1.8 5.4 実施例  3- ■ 2-8 β 0 5 85 Good 1.8 5.4 Example
3- 2- 9 β 1 0 85 優 1.6 5.2 実施例  3- 2- 9 β 1 0 85 Excellent 1.6 5.2 Examples
3- -2-10 Ύ 0 5 175 可 3.0 6.6 比較例  3--2-10 Ύ 0 5 175 Yes 3.0 6.6 Comparative example
本ェマルジョンはセメント 100部に対する固形分換  This emulsion is used for solid fractionation of 100 parts of cement.
算の (部)  (Part)
[0088] 実施例 3— 3 [0088] Example 3-3
セメント 100部、高炉フューム 200部、及び水 180部をミキサーで練混ぜて A液を調 製し、セメント 100部に対して、固形分換算で 0.5部の本ェマルジヨンひと水 5部を混 合して C液を調製した。セメント 100部に対して表 3— 3に示す硬化促進剤と、その 2 倍量の水、及び遅延剤 0.1部を混合して B液を調製したこと以外は実験例 3— 1と同 様に行った。結果を表 3— 3に併記する。  Mix 100 parts of cement, 200 parts of blast furnace fume, and 180 parts of water with a mixer to prepare liquid A, and mix 100 parts of cement with 5 parts of this emulsion water that is 0.5 parts in terms of solid content. C liquid was prepared. As in Experimental Example 3-1, except that 100 parts of cement was mixed with hardening accelerator shown in Table 3-3, twice its amount of water, and 0.1 part of retarder to prepare B liquid. went. The results are also shown in Table 3-3.
[0089] <使用材料 > [0089] <Materials used>
硬化促進剤 b:硫酸塩、硫酸アルミニウム、市販品  Curing accelerator b: sulfate, aluminum sulfate, commercial product
硬化促進剤 c:炭酸塩、炭酸ナトリウム、市販品  Curing accelerator c: carbonate, sodium carbonate, commercial product
硬化促進剤 d:水酸化物、水酸化カルシウム、市販品  Curing accelerator d: Hydroxide, calcium hydroxide, commercial product
硬化促進剤 e:アルミン酸塩、アルミン酸ナトリウム、市販品  Curing accelerator e: aluminate, sodium aluminate, commercial product
硬化促進剤 f:コロイド、シリカゾル、市販品  Curing accelerator f: Colloid, silica sol, commercial product
遅延剤 :クェン酸、市販品 [0090] [表 7] Retardant : Chenic acid, commercial product [0090] [Table 7]
表 3— 3  Table 3— 3
実験 硬化 フ口 水中不 圧縮強度(N/mm2) Experiment Hardening Mouth Underwater incompressible strength (N / mm 2 )
一値 備 考  Price Remarks
No. 促進剤 (mm) 分離性 7 曰 2 8 0  No. Accelerator (mm) Separability 7 曰 2 8 0
3- -3 - 1 ― 0 85 優 1.4 5 3 比較例  3- -3-1 ― 0 85 Excellent 1.4 5 3 Comparative example
3- -3- 2 a 1 85 優 1.9 5 5 実施例  3- -3- 2 a 1 85 Excellent 1.9 5 5 Example
3- -3 - 3 a 2 85 2.0 5 8 実施例  3- -3-3 a 2 85 2.0 5 8 Example
3- -3 - 4 3 85 優 2.2 6 0 実施例  3- -3-4 3 85 Excellent 2.2 6 0 Example
3- -3 - 5 a 10 85 優 2.6 6.5 実施例  3- -3-5 a 10 85 Excellent 2.6 6.5 Example
3- -3- 6 a 20 85 優 2.8 6 7 実施例  3- -3- 6 a 20 85 Excellent 2.8 6 7 Example
3- -3- 7 30 85 優 3.5 6 9 実施例  3--3- 7 30 85 Excellent 3.5 6 9 Example
3- -3 - 8 b 5 85 優 2.0 6 1 実施例  3- -3-8 b 5 85 Excellent 2.0 6 1 Example
3- -3 - 9 c 5 85 優 1.8 5 7 実施例  3- -3-9 c 5 85 Excellent 1.8 5 7 Example
3- -3-10 d 5 85 優 1.7 5 8 実施例  3--3-10 d 5 85 Excellent 1.7 5 8 Example
3- -3-11 e 5 85 優 1.9 6 0 実施例  3--3-11 e 5 85 Excellent 1.9 6 0 Example
3- -3-12 f 5 85 優 1.6 5 6 実施例  3--3-12 f 5 85 Excellent 1.6 5 6 Example
硬化促進剤はセメント 100部に対する (部)  Accelerator is 100 parts of cement (parts)
[0091] 実施例 4 1 [0091] Example 4 1
高炉フューム 100部に対して、表 4—1に示す CAS、石膏、及びアルカリ刺激材を 混合し、最大粒径 30 /zmの注入材を調製した。調製した注入材 100部と水 300部と を混合して懸濁液を作製した。このとき、高炉フューム 100部に対して、分散剤 1部を 混合し、 CASと石膏の合計 100部に対して、凝結調整剤を 1部混合し、注入材の硬 化時間、浸透長さ、及び圧縮強度を測定した。結果を表 4 1に併記する。  For 100 parts of blast furnace fume, CAS, gypsum and alkali stimulating materials shown in Table 4-1 were mixed to prepare an injection material with a maximum particle size of 30 / zm. A suspension was prepared by mixing 100 parts of the prepared injection material and 300 parts of water. At this time, 1 part of the dispersant is mixed with 100 parts of the blast furnace fume, and 1 part of the setting modifier is mixed with 100 parts of CAS and gypsum, and the hardening time, penetration length, And the compressive strength was measured. The results are also shown in Table 41.
[0092] <使用材料 >  [0092] <Materials used>
高炉フューム:中国産、市販品。 SiO 25%、 Fe O 3%、 Al O 13%、 CaO 1  Blast furnace fume: A commercial product from China. SiO 25%, Fe O 3%, Al O 13%, CaO 1
2 2 3 2 3  2 2 3 2 3
9%、MgO 6%、Na O 1. 3%、K O 9%、 SO 10%、 S 0. 3%、及び MnO  9%, MgO 6%, Na 2 O 1.3%, K 2 O 9%, SO 10%, S 0.3%, and MnO
2 2 3  2 2 3
0. 20/0、ブレーン値 21,000cm2/g、最大粒径 ίま 30 μ m、平均粒径 ίま 4 μ m CASィ : Ca0 45%、A1 0 40%、及び SiO 15%の組成のガラス、ガラス化率 0.2 0/0, Blaine 21,000cm 2 / g, a maximum particle size ί or 30 mu m, an average particle diameter ί or 4 mu m CASi: Glass with a composition of Ca0 45%, A1 0 40%, and SiO 15%, vitrification rate
2 3 2  2 3 2
95%  95%
CAS : CaO 45%、A1 0 28%、及び SiO 27%の組成のガラス、ガラス化率  CAS: Glass with a composition of CaO 45%, A1 0 28%, and SiO 27%, vitrification rate
2 3 2  2 3 2
95%  95%
石膏 :天然無水石膏  Gypsum: Natural anhydrous gypsum
アルカリ刺激材:消石灰、市販品  Alkali stimulant: slaked lime, commercial product
分散剤 :ナフタレンスルホン酸ホルマリン縮合物塩系  Dispersant: Naphthalenesulfonic acid formalin condensate salt system
凝結調整剤:クェン酸と炭酸カリウムの重量比 1: 3の混合品  Setting agent: Mixture of 1: 3 weight ratio of citrate and potassium carbonate
[0093] <試験方法 >  [0093] <Test method>
浸透長さ :直径 5cm X長さ 30cmのビニールチューブに 8号珪砂を長さ 20cmになる ように充填し、注入材を 200ml投入して 1日後、砂への浸透長さを測定  Penetration length: Filled a 5cm diameter X 30cm length vinyl tube with No. 8 silica sand to a length of 20cm, put 200ml of the injected material one day later, and measured the penetration length into the sand.
硬化時間 :懸濁液を入れたカップを傾けても懸濁液が流れなくなるまでの時間 圧縮強度 : JIS R 5201に準じて測定、測定材齢 1日と 28日  Curing time: Time until the suspension does not flow even when the cup containing the suspension is tilted Compressive strength: Measured according to JIS R 5201, measured material age 1 day and 28 days
[0094] [表 8] [0094] [Table 8]
表 4一 1 Table 4
Figure imgf000028_0001
Figure imgf000028_0001
C A S、 石育、 及びアルカ リ刺激材は高炉フューム 100部に対する (部) 実施例 4— 2  C A S, stone growth, and alkaline stimulants are (parts) for 100 parts of blast furnace fume Example 4-2
高炉フューム 100部に対して、 CASィを 10部、石膏 10部、及びアルカリ刺激材 5 部を混合し、表 4— 2に示す最大粒径の注入材を調製し、実験例 4—1と同様にして 硬化時間、浸透長さ、及び圧縮強度を測定した。結果を表 4 2に併記する。 [0096] [表 9] For 100 parts of blast furnace fume, 10 parts of CASi, 10 parts of gypsum, and 5 parts of alkali stimulating material were mixed to prepare an injection material with the maximum particle size shown in Table 4-2. Similarly, the curing time, penetration length and compressive strength were measured. The results are also shown in Table 42. [0096] [Table 9]
表 4— 2  Table 4-2
Figure imgf000029_0001
Figure imgf000029_0001
[0097] 実施例 5— 1 [0097] Example 5-1
高炉フューム 100部に対して、表 5— 1に示す CA、石膏、及びアルカリ刺激材を混 合し、最大粒径 30 /z mの注入材を調製した。調製した注入材 100部と水 300部とを 混合して懸濁液を作製した。このとき、高炉フューム 100部に対して、分散剤 1部を混 合し、 CAと石膏の合計 100部に対して、凝結調整剤を 1部混合し、注入材の硬化時 間、浸透長さ、及び圧縮強度を測定した。結果を表 5—1に併記する。  An injection material with a maximum particle size of 30 / zm was prepared by mixing 100 parts of blast furnace fume with CA, gypsum and alkali stimulating materials shown in Table 5-1. A suspension was prepared by mixing 100 parts of the prepared injection material and 300 parts of water. At this time, 1 part of the dispersant is mixed with 100 parts of the blast furnace fume, 1 part of the setting modifier is mixed with 100 parts of the total of CA and gypsum, and the setting time and penetration length of the injected material are mixed. And the compressive strength was measured. The results are also shown in Table 5-1.
[0098] <使用材料 >  [0098] <Materials used>
高炉フューム:中国産、市販品、 SiO 25%、 Fe O 3%、 Al O 13%、 CaO 1  Blast furnace fume: Made in China, commercially available, SiO 25%, Fe O 3%, Al O 13%, CaO 1
2 2 3 2 3  2 2 3 2 3
9%、MgO 6%、Na O 1. 3%、K O 9%、 SO 10%、 S 0. 3%、及び MnO  9%, MgO 6%, Na 2 O 1.3%, K 2 O 9%, SO 10%, S 0.3%, and MnO
2 2 3  2 2 3
0. 20/0、ブレーン値 21,000cm2/g、最大粒径 ίま 30 μ m、平均粒径 ίま 4 μ m CAィ :非晶質 12CaO' 7Al O、ガラス化率 95% 0.2 0/0, Blaine 21,000cm 2 / g, a maximum particle size ί or 30 mu m, an average particle diameter ί or 4 mu m CA I: amorphous 12CaO '7Al O, vitrification ratio of 95%
2 3  twenty three
CAP :結晶質 CaO ' Al O、ガラス化率 20%  CAP: crystalline CaO'AlO, vitrification rate 20%
2 3  twenty three
石膏 :天然無水石膏  Gypsum: Natural anhydrous gypsum
アルカリ刺激材:消石灰、市販品  Alkali stimulant: slaked lime, commercial product
分散剤 :ナフタレンスルホン酸ホルマリン縮合物塩系  Dispersant: Naphthalenesulfonic acid formalin condensate salt system
凝結調整剤:クェン酸と炭酸カリウムの重量比 1: 3の混合品  Setting agent: Mixture of 1: 3 weight ratio of citrate and potassium carbonate
[0099] <試験方法 > [0099] <Test method>
浸透長さ :直径 5cm X長さ 30cmのビニールチューブに 8号珪砂を長さ 20cmになる ように充填し、注入材を 200ml投入して 1日後、砂への浸透長さを測定 硬化時間 :懸濁液を入れたカップを傾けても懸濁液が流れなくなるまでの時間 圧縮強度 : JIS R 5201に準じて測定、測定材齢 1日と 28日 Penetration length: Filled a 5cm diameter X 30cm length vinyl tube with No. 8 silica sand to a length of 20cm, put 200ml of the injected material one day later, and measured the penetration length into the sand. Curing time: Time until the suspension does not flow even when the cup containing the suspension is tilted Compressive strength: Measured according to JIS R 5201, measured material age 1 day and 28 days
[表 10] [Table 10]
表 5— 1  Table 5— 1
Figure imgf000030_0001
Figure imgf000030_0001
C A、 石膏、 及びアルカリ刺激材は高炉フューム 100部に対する (部) 実施例 5— 2 高炉フューム 100部に対して、 CAを 10部、石膏 10部、及びアルカリ刺激材 5部を 混合し、表 5— 2に示す最大粒径の注入材を調製し、実験例 5—1と同様にして硬化 時間、浸透長さ、及び圧縮強度を測定した。結果を表 5— 2に併記する。 CA, gypsum, and alkali stimulant are for 100 parts of blast furnace fume (part) Example 5-2 100 parts of blast furnace fume is mixed with 10 parts of CA, 10 parts of gypsum, and 5 parts of alkali stimulating material to prepare an injection material with the maximum particle size shown in Table 5-2. Then, the curing time, penetration length, and compressive strength were measured. The results are also shown in Table 5-2.
[0102] [表 11] [0102] [Table 11]
表 5— 2  Table 5-2
Figure imgf000031_0001
Figure imgf000031_0001
産業上の利用可能性  Industrial applicability
[0103] 本発明の地盤改良材用組成物は、浸透性が良好で、耐久性にも優れるため、地盤 改良工事や止水工事における、裏込め材等の空隙充填材等、広範に利用でき、ま た、本発明の、地盤改良材用組成物を用いてなる注入材は、地盤への浸透性に優 れ、注入性が高ぐ強度発現性に優れるため、従来適用が困難だった地質の地盤へ の注入が可能であり、産業副産物である高炉フュームの有効利用を図ることができる  [0103] Since the composition for ground improvement material of the present invention has good permeability and excellent durability, it can be widely used for void filling materials such as backfilling materials in ground improvement work and waterproofing work. In addition, the injection material using the composition for ground improvement material of the present invention is superior in permeability to the ground, high injectability, and excellent in strength development. Can be injected into the ground, and blast furnace fume, an industrial byproduct, can be used effectively
なお、 2004年 11月 11日〖こ出願された日本特許出願 2004— 327140号、 2004 年 12月 21曰に出願された曰本特許出願 2004— 369240号、 2005年 1月 31曰に 出願された日本特許出願 2005— 022895号、 2005年 1月 31日に出願された日本 特許出願 2005— 022896号及び 2005年 2月 9日に出願された日本特許出願 200 5— 032719号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用 し、本発明の明細書の開示として、取り入れるものである。 In addition, Japanese patent application 2004-327140 filed on November 11, 2004, Japanese patent application 2004-369240 filed on December 21, 2004, filed January 31, 2005 Japanese Patent Application No. 2005-022895, Japanese Patent Application No. 2005-0222896 filed on January 31, 2005 and Japanese Patent Application No. 2005-032719 filed on Feb. 9, 2005 The entire contents of the scope, drawings, and abstract are hereby incorporated by reference as the disclosure of the specification of the present invention.

Claims

請求の範囲  The scope of the claims
[I] 高炉フュームを含有してなることを特徴とする地盤改良材用組成物。  [I] A composition for ground improvement material comprising blast furnace fume.
[2] さらに、シリカフュームを含有する請求項 1に記載の地盤改良材用組成物。  [2] The composition for ground improvement material according to claim 1, further comprising silica fume.
[3] 最大粒径 40 μ mの、セメント若しくは水酸ィ匕カルシウムを含有する請求項 1又は 2 に記載の地盤改良材用組成物。  [3] The composition for ground improvement material according to claim 1 or 2, containing cement or calcium hydroxide having a maximum particle size of 40 μm.
[4] セメント、及びアルカリ増粘型ポリマーェマルジヨンを含有してなる請求項 1又は 2に 記載の地盤改良材用組成物。 [4] The composition for ground improvement material according to claim 1 or 2, comprising cement and an alkali thickening polymer emulsion.
[5] 高炉フューム力 セメント 100質量部に対して、 30〜500質量部である請求項 3又 は 4に記載の地盤改良材用組成物。 [5] The composition for ground improvement material according to claim 3 or 4, wherein the blast furnace fume force is 30 to 500 parts by mass with respect to 100 parts by mass of cement.
[6] アルカリ増粘型ポリマーェマルジヨン力 不飽和カルボン酸類とエチレン性不飽和 化合物との共重合により得られるポリマーェマルジヨンである請求項 4又は 5に記載 の地盤改良材用組成物。 [6] The composition for ground improvement material according to claim 4 or 5, which is a polymer emulsion obtained by copolymerization of an unsaturated carboxylic acid and an ethylenically unsaturated compound.
[7] さらに、硬化促進剤を含有してなる請求項 1〜6のいずれか 1項に記載の地盤改良 材用組成物。 [7] The composition for ground improvement material according to any one of claims 1 to 6, further comprising a curing accelerator.
[8] 硬化促進剤が、アルミン酸塩及び Z又は硫酸塩を含有する請求項 7に記載の地盤 改良材用組成物。  [8] The composition for ground improvement material according to claim 7, wherein the curing accelerator contains aluminate and Z or sulfate.
[9] 高炉フューム力 最大粒径 30 mを有する請求項 1〜8のいずれか 1項に記載の 地盤改良材用組成物。  [9] The ground improvement material composition according to any one of claims 1 to 8, wherein the blast furnace fume force has a maximum particle size of 30 m.
[10] 高炉フューム力 SiOが 20〜30%、 Al O力 10〜15%、及び CaOが 15〜25%  [10] Blast furnace fume force SiO is 20-30%, Al O force is 10-15%, and CaO is 15-25%
2 2 3  2 2 3
を有する請求項 1〜9のいずれか 1項に記載の地盤改良材用組成物。  The composition for ground improvement material of any one of Claims 1-9 which has these.
[II] 請求項 1〜10のいずれか 1項に記載の地盤改良材用組成物を用いてなる注入材。  [II] An injection material using the composition for ground improvement material according to any one of claims 1 to 10.
[12] アルミン酸カルシウム又はアルミノケィ酸カルシウム、石膏、及びアルカリ刺激材を 含有してなる請求項 11に記載の注入材 [12] The injection material according to claim 11, comprising calcium aluminate or calcium aluminokeate, gypsum, and an alkali stimulant.
[13] 高炉フューム 100質量部に対して、アルミン酸カルシウム又はアルミノケィ酸カルシ ゥム 1〜15質量部、石膏 1〜50質量部、及びアルカリ刺激材 1〜50質量部を含有し てなる請求項 11又は 12に記載の注入材。 [13] The claim, comprising 1 to 15 parts by mass of calcium aluminate or calcium aluminoate, 1 to 50 parts by mass of gypsum, and 1 to 50 parts by mass of an alkali stimulant with respect to 100 parts by mass of the blast furnace fume. The injection material according to 11 or 12.
[14] 最大粒子径が 20 m以下である請求項 11〜13のいずれか 1項に記載の注入材。 [14] The injection material according to any one of [11] to [13], wherein the maximum particle size is 20 m or less.
[15] セメント、高炉フューム及び水を含有してなる A液と、アルカリ増粘型ポリマーェマル ジョンと水を含有してなる B液とを、それぞれ、予め調製し、使用直前に A液と B液とを 混合する請求項 4〜10のいずれかに記載の地盤改良材用組成物の使用方法。 [15] Liquid A containing cement, blast furnace fume and water, and alkali thickened polymer emulsion Use of the composition for ground improvement materials in any one of Claims 4-10 which prepares the B liquid containing John and water, respectively, and mixes A liquid and B liquid just before use. Method.
[16] セメント、高炉フューム及び水を含有してなる A液と、硬化促進剤とアルカリ増粘型 ポリマーェマルジヨンと水とを含有してなる B液を、それぞれ、予め調製し、使用直前 に A液と B液を混合する請求項 4〜: LOのいずれか 1項に記載の地盤改良材用組成 物の使用方法。 [16] Liquid A containing cement, blast furnace fume and water, and liquid B containing a curing accelerator, an alkali-thickening polymer emulsion and water, were prepared in advance and immediately before use. The method for using the ground improvement material composition according to any one of claims 4 to 4, wherein the A liquid and the B liquid are mixed together.
[17] セメント、高炉フューム、及び水を含有してなる A液と、硬化促進剤と水とを含有して なる B液と、アルカリ増粘型ポリマーェマルジヨンと水とを含有してなる C液を、それぞ れ、予め調製し、使用直前に A液、 B液及び C液を混合する請求項 4〜: LOのいずれ かに記載の地盤改良材用組成物の使用方法。  [17] Liquid A containing cement, blast furnace fume, and water, Liquid B containing a curing accelerator and water, Alkali thickening polymer emulsion and water The method for using the composition for ground improvement material according to any one of claims 4 to: LO, wherein liquid C is prepared in advance, and liquid A, liquid B and liquid C are mixed immediately before use.
PCT/JP2005/020641 2004-11-11 2005-11-10 Composition for ground-improving material, grouting material comprising the same, and method of using the same WO2006051875A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2005800379835A CN101052697B (en) 2004-11-11 2005-11-10 Composition for ground-improving material, grouting material comprising the same, and method of using the same
JP2006544960A JP4902356B2 (en) 2004-11-11 2005-11-10 Composition for ground improvement material, injection material using the same, and method of using the same

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2004-327140 2004-11-11
JP2004327140 2004-11-11
JP2004369240 2004-12-21
JP2004-369240 2004-12-21
JP2005-022896 2005-01-31
JP2005022895 2005-01-31
JP2005-022895 2005-01-31
JP2005022896 2005-01-31
JP2005032719 2005-02-09
JP2005-032719 2005-02-09

Publications (1)

Publication Number Publication Date
WO2006051875A1 true WO2006051875A1 (en) 2006-05-18

Family

ID=36336551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020641 WO2006051875A1 (en) 2004-11-11 2005-11-10 Composition for ground-improving material, grouting material comprising the same, and method of using the same

Country Status (5)

Country Link
JP (1) JP4902356B2 (en)
KR (1) KR100869467B1 (en)
CN (1) CN101052697B (en)
TW (1) TW200640821A (en)
WO (1) WO2006051875A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120892A (en) * 2006-11-10 2008-05-29 Denki Kagaku Kogyo Kk Grouting material and method for grouting construction using the same
JP2008169055A (en) * 2007-01-09 2008-07-24 Denki Kagaku Kogyo Kk Cement composition, grouting material using the same and use thereof
JP2009155610A (en) * 2007-12-28 2009-07-16 Denki Kagaku Kogyo Kk Grouting material and grouting technique
CN102199028A (en) * 2010-10-15 2011-09-28 河南理工大学 Rapid hardening early strength grouting material prepared with flue gas desulfurized gypsum and preparation method thereof
CN101486556B (en) * 2009-03-05 2012-01-04 安徽省皖北煤电集团有限责任公司含山恒泰非金属材料分公司 Ointment pumping filler material for mine roadway support and preparation
CN102321459A (en) * 2011-06-10 2012-01-18 天津中油渤星工程科技有限公司 Oil well cement chlorine-free coagulation accelerating early strength agent
EP2586846A1 (en) * 2010-06-25 2013-05-01 Denki Kagaku Kogyo Kabushiki Kaisha Injection material, process for production of injection material, and injection method
CN103803820A (en) * 2013-12-19 2014-05-21 柳州正菱集团有限公司 Thermal insulation cement
JP2015040272A (en) * 2013-08-23 2015-03-02 電気化学工業株式会社 Injection method
US9102870B1 (en) 2011-12-05 2015-08-11 Entact, Llc Additives for soil, soil compositions and methods of making
JP2019089895A (en) * 2017-11-13 2019-06-13 デンカ株式会社 Soil modifier and soil modification method
JP2020158660A (en) * 2019-03-27 2020-10-01 住友大阪セメント株式会社 Ground improvement material, improved soil, and method for producing improved soil
KR102619095B1 (en) * 2023-07-12 2023-12-29 주식회사 피오씨 Eco-friendly Grout revealing early high-strength

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027891A1 (en) * 2009-09-07 2011-03-10 電気化学工業株式会社 Hydraulic cement composition for injection into soil, and method for improvement in soil using same
KR101051968B1 (en) 2011-01-27 2011-07-26 (주)제이엔티아이엔씨 Deep soil mixing method using eco-friendly soil grouting material
CN103833260B (en) * 2014-03-10 2015-10-21 甘肃智通科技工程检测咨询有限公司 Environment-friendly high-efficiency grouting agent
CN103951360B (en) * 2014-03-31 2016-01-13 安徽固维特材料科技有限公司 Mineral metal products exploitation tail ore pulp solidifying agent and application art thereof
TWI557293B (en) * 2014-09-19 2016-11-11 Da Di Liang Environmental Service Co Ltd Application of Washable Blast Furnace Slag in Making Farm Ditch Pavement
JP6818271B2 (en) * 2016-09-06 2021-01-20 株式会社大林組 Water-stopping method for water-stopping liquid mixing injection system, water-stopping liquid mixing injection plug and cement-based composition structure
KR101774529B1 (en) * 2016-09-29 2017-09-05 (주)대한하이텍건설 A Composition for Reinforcing Soft Ground and Restoring Depressed structures including Urethane and Cement for Solidifying Ground and Construction Methods Using Thereof
KR101764665B1 (en) * 2017-01-23 2017-08-04 (주)대한하이텍건설 A Composition for Reinforcing Soft Ground and Restoring Depressed structures including Clay and Construction Methods Using Thereof
KR101764664B1 (en) * 2017-01-23 2017-08-04 (주)대한하이텍건설 A Composition for Reinforcing Soft Ground and Restoring Depressed structures including Urethane and Clay for Solidifying Ground and Construction Methods Using Thereof
CN109626912B (en) * 2019-01-28 2021-09-14 广东工业大学 Underground engineering concrete for shield construction and preparation method and application thereof
KR102125347B1 (en) * 2019-10-15 2020-06-22 안민정 Polymer concrete composition and construction method for road pavement thereof
KR102147251B1 (en) * 2020-04-06 2020-08-24 주식회사 에스티 Method for manufacturing grout injection material, grout injection material produced thereby and construction method
TWI759748B (en) * 2020-05-28 2022-04-01 永覲工業股份有限公司 Geological improvement agent excited by high basicity steel slag and blast furnace cement for geological improvement
KR102211957B1 (en) * 2020-09-24 2021-02-04 주식회사 위드엠텍 Thixotropical Grout Composition and Grouting Method Using the Same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623051A (en) * 1985-06-27 1987-01-09 新日本製鐵株式会社 Manufacture of road bed material
JPS6366283A (en) * 1986-09-08 1988-03-24 Shinji Sakuma Foundation improving material comprising dust of electric furnace as raw material
JPS63273689A (en) * 1987-05-01 1988-11-10 Tokyo Electric Power Co Inc:The Impregnation of grout
JPH04221116A (en) * 1990-12-21 1992-08-11 Nishimatsu Constr Co Ltd Grouting engineering method
JP2002047037A (en) * 2000-07-31 2002-02-12 Kashiwagi Kosan:Kk Additive for glass fiber reinforced cement compound
JP2004067477A (en) * 2002-08-09 2004-03-04 Shinichi Numata Admixture for glass fiber reinforced cement composite
JP2005035877A (en) * 2003-06-27 2005-02-10 Shinichi Numata Acid resistant concrete

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160895A (en) * 1988-12-15 1990-06-20 Tetsugen:Kk Foundation conditioner
JP2003013060A (en) * 2001-06-29 2003-01-15 Mitsubishi Materials Corp Cement-based setting material for improving seawater- resistant ground

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623051A (en) * 1985-06-27 1987-01-09 新日本製鐵株式会社 Manufacture of road bed material
JPS6366283A (en) * 1986-09-08 1988-03-24 Shinji Sakuma Foundation improving material comprising dust of electric furnace as raw material
JPS63273689A (en) * 1987-05-01 1988-11-10 Tokyo Electric Power Co Inc:The Impregnation of grout
JPH04221116A (en) * 1990-12-21 1992-08-11 Nishimatsu Constr Co Ltd Grouting engineering method
JP2002047037A (en) * 2000-07-31 2002-02-12 Kashiwagi Kosan:Kk Additive for glass fiber reinforced cement compound
JP2004067477A (en) * 2002-08-09 2004-03-04 Shinichi Numata Admixture for glass fiber reinforced cement composite
JP2005035877A (en) * 2003-06-27 2005-02-10 Shinichi Numata Acid resistant concrete

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120892A (en) * 2006-11-10 2008-05-29 Denki Kagaku Kogyo Kk Grouting material and method for grouting construction using the same
JP2008169055A (en) * 2007-01-09 2008-07-24 Denki Kagaku Kogyo Kk Cement composition, grouting material using the same and use thereof
JP2009155610A (en) * 2007-12-28 2009-07-16 Denki Kagaku Kogyo Kk Grouting material and grouting technique
CN101486556B (en) * 2009-03-05 2012-01-04 安徽省皖北煤电集团有限责任公司含山恒泰非金属材料分公司 Ointment pumping filler material for mine roadway support and preparation
EP2586846A4 (en) * 2010-06-25 2013-10-30 Denki Kagaku Kogyo Kk Injection material, process for production of injection material, and injection method
EP2586846A1 (en) * 2010-06-25 2013-05-01 Denki Kagaku Kogyo Kabushiki Kaisha Injection material, process for production of injection material, and injection method
CN102199028B (en) * 2010-10-15 2013-06-05 河南理工大学 Rapid hardening early strength grouting material prepared with flue gas desulfurized gypsum and preparation method thereof
CN102199028A (en) * 2010-10-15 2011-09-28 河南理工大学 Rapid hardening early strength grouting material prepared with flue gas desulfurized gypsum and preparation method thereof
CN102321459A (en) * 2011-06-10 2012-01-18 天津中油渤星工程科技有限公司 Oil well cement chlorine-free coagulation accelerating early strength agent
CN102321459B (en) * 2011-06-10 2013-12-04 天津中油渤星工程科技有限公司 Oil well cement chlorine-free coagulation accelerating early strength agent
US9102870B1 (en) 2011-12-05 2015-08-11 Entact, Llc Additives for soil, soil compositions and methods of making
JP2015040272A (en) * 2013-08-23 2015-03-02 電気化学工業株式会社 Injection method
CN103803820A (en) * 2013-12-19 2014-05-21 柳州正菱集团有限公司 Thermal insulation cement
CN103803820B (en) * 2013-12-19 2016-02-03 柳州正菱鹿寨水泥有限公司 A kind of insulating cement
JP2019089895A (en) * 2017-11-13 2019-06-13 デンカ株式会社 Soil modifier and soil modification method
JP6993185B2 (en) 2017-11-13 2022-02-04 デンカ株式会社 Soil reforming material and soil reforming method
JP2020158660A (en) * 2019-03-27 2020-10-01 住友大阪セメント株式会社 Ground improvement material, improved soil, and method for producing improved soil
JP7303996B2 (en) 2019-03-27 2023-07-06 住友大阪セメント株式会社 Soil improvement material, improved soil, and method for producing improved soil
KR102619095B1 (en) * 2023-07-12 2023-12-29 주식회사 피오씨 Eco-friendly Grout revealing early high-strength

Also Published As

Publication number Publication date
JP4902356B2 (en) 2012-03-21
TWI313673B (en) 2009-08-21
KR100869467B1 (en) 2008-11-19
TW200640821A (en) 2006-12-01
KR20070083874A (en) 2007-08-24
CN101052697B (en) 2010-10-06
CN101052697A (en) 2007-10-10
JPWO2006051875A1 (en) 2008-05-29

Similar Documents

Publication Publication Date Title
JP4902356B2 (en) Composition for ground improvement material, injection material using the same, and method of using the same
JP4981457B2 (en) Cement composition, injection material using the same, and method of using the same
JP5591483B2 (en) Injection method
CN112500056A (en) Superfine solid waste base grouting material and preparation method thereof
JP5442944B2 (en) Injection material and injection method
JP5941299B2 (en) Spraying material and spraying method using the same
JP4786918B2 (en) Cement composition and method of use thereof
JP7085050B1 (en) Cement admixture, hard mortar concrete material, hard mortar concrete composition, and hardened material
JP4107825B2 (en) Slug injection slurry
JP2023049719A (en) Anchor fixing material, anchor fixing composition, and cured body
JP4841958B2 (en) Cement composition, injection material using the same, and method of using the same
JPH10168452A (en) Water glass based suspension grout and method for grouting and solidifying ground by using it
JP5687869B2 (en) Injection material and injection method
JP5689224B2 (en) Injection material and injection method
JP3498880B2 (en) Hydraulic injection material and injection method
JP2002088364A (en) Grouting material having lowered elution of hexavalent chromium
JP5809525B2 (en) Method for producing cement composition
KR100979180B1 (en) Composition of rapid setting micro cement
FI126073B (en) AQUATIC SUSPENSION OF INORGANIC PARTICLES, PROCEDURES FOR PREPARING SUSPENSION AND USE OF SUSPENSION
JP4080416B2 (en) Ground injection agent and ground injection method
JP5646841B2 (en) Injection material and injection method
JP4498768B2 (en) Cement composition, cavity filler, and method of using the same
JP4420799B2 (en) Cement composition, cavity filler, and method of using the same
JPH09165576A (en) Slag-based high-strength grouting agent
JP2023028443A (en) Soil improvement material, cement milk and soil improvement method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006544960

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077009830

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580037983.5

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 05806287

Country of ref document: EP

Kind code of ref document: A1