JP7303996B2 - Soil improvement material, improved soil, and method for producing improved soil - Google Patents

Soil improvement material, improved soil, and method for producing improved soil Download PDF

Info

Publication number
JP7303996B2
JP7303996B2 JP2019060442A JP2019060442A JP7303996B2 JP 7303996 B2 JP7303996 B2 JP 7303996B2 JP 2019060442 A JP2019060442 A JP 2019060442A JP 2019060442 A JP2019060442 A JP 2019060442A JP 7303996 B2 JP7303996 B2 JP 7303996B2
Authority
JP
Japan
Prior art keywords
soil
aluminate
mass
cement
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019060442A
Other languages
Japanese (ja)
Other versions
JP2020158660A (en
Inventor
貴宣 佐藤
雅彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2019060442A priority Critical patent/JP7303996B2/en
Publication of JP2020158660A publication Critical patent/JP2020158660A/en
Application granted granted Critical
Publication of JP7303996B2 publication Critical patent/JP7303996B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Description

本発明は、地盤改良材、改良土、及び、改良土の製造方法に関する。 TECHNICAL FIELD The present invention relates to a soil improvement material, improved soil, and a method for producing improved soil.

従来、道路、構造物等の基礎の強度が不足する場合などには、対象となる土(以下、「対象土」ともいう。)の強度を高めるために、セメントを含むセメント系水硬性材料が含有された地盤改良材と、対象土とを混合して、改良土が作製されている(例えば、特許文献1)。 Conventionally, when the strength of the foundations of roads, structures, etc. is insufficient, cement-based hydraulic materials containing cement are used to increase the strength of the target soil (hereinafter also referred to as "target soil"). Improving soil is prepared by mixing the contained soil improvement material and target soil (for example, Patent Document 1).

特開2006-057050号公報JP 2006-057050 A

前記地盤改良材は、硫酸塩を多く含んでいる。また、地盤改良材と水とを混合して混合物を作製すると水和反応によりエトリンガイトが生成される。
ここで、このエトリンガイトの生成過程では前記混合物は膨張するが、対象土と地盤改良材とを混合して改良土を作製する際には、対象土に間隙があるため、通常は、前記膨張は対象土の間隙により緩和され、改良地盤に変状は生じない。
しかし、対象土に地盤改良材が多く混合されたり、対象土と地盤改良材との混合が不十分で改良土中に地盤改良材が偏って多く含まれる部分が生じたりした場合などには、ごくまれに改良地盤に変状が生じ、改良土の膨張が収束するまで道路や構造物を設ける工事を進めることができず、工期が長くなってしまうことがある。
しかしながら、改良土の膨張が収束するまでの時間を短くすることはこれまで十分に検討がなされていない。
The soil improvement material contains a large amount of sulfate. Also, when a soil improvement material and water are mixed to prepare a mixture, ettringite is produced by a hydration reaction.
Here, the mixture expands in the process of producing ettringite, but when the target soil and soil improvement material are mixed to prepare improved soil, the target soil has gaps, so the expansion usually occurs. It is mitigated by the gaps in the target soil, and no deformation occurs in the improved ground.
However, if a large amount of soil improvement material is mixed in the target soil, or if the target soil and soil improvement material are not mixed sufficiently, there is a part where the soil improvement material is disproportionately contained in the improved soil, etc. In very rare cases, deformation occurs in the improved ground, and construction work to install roads and structures cannot proceed until the expansion of the improved soil subsides, resulting in a longer construction period.
However, shortening the time until the expansion of the improved soil converges has not been sufficiently studied.

そこで、本発明は、改良土の膨張が収束するまでの時間を短くし得る地盤改良材及び改良土の製造方法、並びに、改良土の膨張が収束するまでの時間が短い改良土を提供することを課題とする。 Therefore, the present invention provides a soil improvement material that can shorten the time until the expansion of the improved soil converges, a method for producing improved soil, and improved soil that has a short time until the expansion of the improved soil converges. is the subject.

本発明者が鋭意研究したところ、特定の化合物を含有する地盤改良材を用いれば、改良土の膨張収束時間を短くし得ることを見出し、本発明を想到するに至った。 As a result of intensive research, the inventors found that the expansion convergence time of improved soil can be shortened by using a soil improvement material containing a specific compound, and have arrived at the present invention.

すなわち、本発明に係る地盤改良材は、対象土と混合されて用いられ、セメント系水硬性材料を含有する地盤改良材であって、
アルミン酸塩を含有する。
That is, the soil improvement material according to the present invention is a soil improvement material that is used by being mixed with the target soil and contains a cement-based hydraulic material,
Contains aluminate.

ここで、本発明に係る地盤改良材の一態様では、前記アルミン酸塩が、アルミン酸カリウム及びアルミン酸ナトリウムの少なくとも一方を含有する。 Here, in one aspect of the soil improvement material according to the present invention, the aluminate contains at least one of potassium aluminate and sodium aluminate.

また、本発明に係る地盤改良材の他の態様では、前記アルミン酸塩が、アルミン酸カリウムを含有する。 Further, in another aspect of the soil improvement material according to the present invention, the aluminate contains potassium aluminate.

さらに、本発明に係る地盤改良材の他の態様では、前記セメント系水硬性材料がSOを含有し、
前記SO100質量部に対して、前記アルミン酸塩が、アルミン酸イオン換算で2.3質量部以上含有されている。
Furthermore, in another aspect of the soil improvement material according to the present invention, the cement-based hydraulic material contains SO3 ,
The aluminate is contained in an amount of 2.3 parts by mass or more in terms of aluminate ions with respect to 100 parts by mass of SO 3 .

また、本発明に係る改良土は、対象土と、セメント系水硬性材料とを含有する、改良土であって、
アルミン酸塩を含有する。
Further, the improved soil according to the present invention is improved soil containing the target soil and a cement-based hydraulic material,
Contains aluminate.

さらに、本発明に係る改良土の製造方法は、対象土と、セメント系水硬性材料とが混合された改良土を作製する、改良土の製造方法であって、
前記改良土がアルミン酸塩を含有する。
Furthermore, the method for producing improved soil according to the present invention is a method for producing improved soil in which the target soil and a cement-based hydraulic material are mixed to prepare improved soil,
The improved soil contains an aluminate.

本発明によれば、改良土の膨張が収束するまでの時間を短くし得る。 ADVANTAGE OF THE INVENTION According to this invention, the time until expansion of improved soil converges can be shortened.

SOの量に対するアルミン酸イオン換算でのアルミン酸塩の量と、スラリーの膨張が収束するまでの時間(収束日数)との関係を示す図。FIG. 4 is a graph showing the relationship between the amount of aluminate in terms of aluminate ions with respect to the amount of SO 3 and the time until swelling of the slurry converges (days of convergence).

以下では、本発明の一実施形態について説明する。 An embodiment of the invention is described below.

本実施形態に係る地盤改良材は、対象土と混合されて用いられる。
また、本実施形態に係る地盤改良材は、セメント系水硬性材料と、アルミン酸塩とを含有する。
The soil improvement material according to this embodiment is used by being mixed with the target soil.
Further, the soil improvement material according to this embodiment contains a cement-based hydraulic material and an aluminate.

前記対象土は、水を含有する。 The target soil contains water.

前記セメント系水硬性材料は、セメントを含有する。
なお、セメント自体も石膏を含む。
前記セメント系水硬性材料は、前記セメントに含まれる石膏とは別の石膏を含有してもよい。
また、前記セメント系水硬性材料は、高炉スラグを含有してもよい。
前記セメント系水硬性材料は、SOを含有する。
前記セメント系水硬性材料は、SOを、好ましくは5.1~14.0質量%、より好ましくは7.2~11.3質量%含有する。
The cementitious hydraulic material contains cement.
Cement itself also contains gypsum.
The cementitious hydraulic material may contain gypsum other than the gypsum contained in the cement.
Moreover, the cement-based hydraulic material may contain blast furnace slag.
Said cementitious hydraulic material contains SO3 .
The cementitious hydraulic material preferably contains 5.1 to 14.0% by mass, more preferably 7.2 to 11.3% by mass of SO 3 .

前記セメントは、水硬性セメントである。
前記セメントとしては、例えば、普通、早強、超早強、白色、耐硫酸塩、中庸熱、低熱などの各種ポルトランドセメントが挙げられる。また、前記セメントとしては、例えば、該ポルトランドセメントに高炉スラグ、フライアッシュ、シリカ質混合材(ポゾラン)等を混合してなる混合セメント、アルミナセメントなどの特殊セメントなども挙げられる。
セメント系水硬性材料は、セメントを、好ましくは30~94質量%、より好ましくは30~60質量%含有する。
Said cement is a hydraulic cement.
Examples of the cement include various Portland cements such as normal, high-early strength, ultra-early-strength, white, sulfate-resistant, moderate heat, and low heat. Examples of the cement include mixed cement obtained by mixing Portland cement with blast furnace slag, fly ash, siliceous admixture (pozzolana), etc., and special cement such as alumina cement.
The cementitious hydraulic material preferably contains 30 to 94% by mass, more preferably 30 to 60% by mass of cement.

また、前記セメント系水硬性材料は、セメントに高炉スラグが含まれていることにより、高炉スラグを含有していてもよい。また、前記セメント系水硬性材料は、セメントの高炉スラグとは別の高炉スラグを含有してもよい。 Moreover, the cement-based hydraulic material may contain blast furnace slag by containing blast furnace slag in cement. In addition, the cement-based hydraulic material may contain blast furnace slag other than cement blast furnace slag.

前記高炉スラグとしては、高炉水砕スラグ等が挙げられる。
すなわち、セメントの高炉スラグとしては、高炉水砕スラグ等が挙げられ、また、セメントの高炉スラグとは別の高炉スラグとしては、高炉水砕スラグの微粉末等が挙げられる。
高炉水砕スラグの微粉末としては、JIS A 6206:2013の“高炉スラグ微粉末”が好ましく、すなわち、比表面積が2,750cm/g以上10,000cm/g未満のものが好ましい。なお、比表面積は、JIS R 5201:2015の比表面積試験に従って測定することができる。
前記セメント系水硬性材料における高炉スラグの含有割合(セメントの高炉スラグと、セメントの高炉スラグとは別の高炉スラグとの合計の含有割合)は、好ましくは0~60質量%、より好ましくは25~51質量%である。
また、高炉スラグは、本実施形態に係る地盤改良材に実質的に含まれなくてもよい。
Examples of the blast furnace slag include granulated blast furnace slag.
That is, examples of granulated blast furnace slag for cement include granulated blast furnace slag, and examples of granulated blast furnace slag other than granulated blast furnace slag for cement include fine powder of granulated blast furnace slag.
As the fine powder of granulated blast furnace slag, JIS A 6206:2013 "granulated blast furnace slag" is preferred, that is, the specific surface area is preferably 2,750 cm 2 /g or more and less than 10,000 cm 2 /g. The specific surface area can be measured according to the specific surface area test of JIS R 5201:2015.
The content ratio of blast furnace slag in the cement-based hydraulic material (the total content ratio of cement blast furnace slag and blast furnace slag other than cement blast furnace slag) is preferably 0 to 60% by mass, more preferably 25%. ~51% by mass.
Further, blast furnace slag may not be substantially contained in the soil improvement material according to the present embodiment.

前記石膏としては、無水石膏(CaSO4 )、半水石膏(CaSO4 ・0.5H2 O)、二水石膏(CaSO4 ・2H2 O)等が挙げられる。
すなわち、セメントの石膏としては、無水石膏(CaSO4 )、半水石膏(CaSO4 ・0.5H2 O)、二水石膏(CaSO4 ・2H2 O)等が挙げられ、また、セメントの石膏とは別の石膏としては、無水石膏(CaSO4 )、半水石膏(CaSO4 ・0.5H2 O)、二水石膏(CaSO4 ・2H2 O)等が挙げられる。
前記セメント系水硬性材料における石膏の含有割合(セメントの石膏と、セメントの石膏とは別の石膏との合計の含有割合)は、好ましくは7.4質量%以上、より好ましくは12.6~25.6質量%、さらにより好ましくは16.2~25.6質量%である。
Examples of the gypsum include anhydrous gypsum (CaSO 4 ), hemihydrate gypsum (CaSO 4 .0.5H 2 O), and dihydrate gypsum (CaSO 4 .2H 2 O).
Examples of cement gypsum include anhydrous gypsum (CaSO 4 ), hemihydrate gypsum (CaSO 4 .0.5H 2 O), and dihydrate gypsum (CaSO 4 .2H 2 O). Examples of gypsum other than gypsum include anhydrous gypsum (CaSO 4 ), hemihydrate gypsum (CaSO 4 .0.5H 2 O), and dihydrate gypsum (CaSO 4 .2H 2 O).
The content of gypsum in the cement-based hydraulic material (the total content of cement gypsum and gypsum other than cement gypsum) is preferably 7.4% by mass or more, more preferably 12.6 to 25.6% by weight, more preferably 16.2 to 25.6% by weight.

前記アルミン酸塩としては、アルミン酸カリウム、アルミン酸ナトリウム、アルミン酸リチウム等が挙げられる。
前記アルミン酸塩は、アルミン酸カリウム及びアルミン酸ナトリウムの少なくとも一方を含有することが好ましい。
また、アルミン酸カリウムは、劇物に指定されておらず、取り扱いがしやすいので、前記アルミン酸塩は、アルミン酸カリウムを含有することが特に好ましい。
なお、本実施形態に係る地盤改良材は、アルミン酸塩の水和物が含まれていることにより、アルミン酸を含有していてもよい。
アルミン酸塩の水和物としては、例えば、アルミン酸カリウム・3水和物などが挙げられる。
Examples of the aluminate include potassium aluminate, sodium aluminate, and lithium aluminate.
The aluminate preferably contains at least one of potassium aluminate and sodium aluminate.
Moreover, potassium aluminate is not designated as a deleterious substance and is easy to handle, so it is particularly preferable that the aluminate contains potassium aluminate.
In addition, the soil improvement material according to the present embodiment may contain aluminate by containing a hydrate of aluminate.
Examples of hydrates of aluminates include potassium aluminate trihydrate.

本実施形態に係る地盤改良材は、前記SO100質量部に対して、前記アルミン酸塩を、アルミン酸イオン換算で、好ましくは2.3質量部以上、より好ましくは2.3~90質量部、さらにより好ましくは2.3~50質量部含有する。 In the soil improvement material according to the present embodiment, the aluminate is preferably 2.3 parts by mass or more, more preferably 2.3 to 90 parts by mass, in terms of aluminate ions, with respect to 100 parts by mass of SO 3 parts, more preferably 2.3 to 50 parts by mass.

なお、本実施形態に係る地盤改良材は、対象土への添加前に全ての成分が混合された状態になっている必要はなく、成分ごとに対象土に添加されてもよい。 In addition, the soil improvement material according to the present embodiment does not need to be in a state in which all components are mixed before addition to the target soil, and may be added to the target soil for each component.

本実施形態に係る改良土は、対象土と、セメント系水硬性材料とを含有する。また、本実施形態に係る改良土は、アルミン酸塩を含有する。 The improved soil according to this embodiment contains target soil and a cement-based hydraulic material. Further, the improved soil according to the present embodiment contains an aluminate.

言い換えれば、本実施形態に係る改良土は、対象土と、本実施形態に係る地盤改良材とを含有する。 In other words, the improved soil according to this embodiment contains the target soil and the soil improvement material according to this embodiment.

さらに、本実施形態に係る改良土は、対象土の水とは別の水を更に含有してもよい。また、本実施形態に係る改良土は、対象土の水とは別の水を含有しなくてもよく、言い換えれば、水として、対象土の水のみを含有してもよい。 Furthermore, the improved soil according to the present embodiment may further contain water other than the water of the target soil. Further, the improved soil according to the present embodiment may not contain water other than the water of the target soil, in other words, it may contain only the water of the target soil as water.

本実施形態に係る改良土は、湿潤状態の対象土1m当たりのセメント系水硬性材料の量が、好ましくは100~1100kg/m、より好ましくは400~1100kg/mである。
また、本実施形態に係る改良土は、乾燥状態の対象土100質量部に対して、セメント系水硬性材料を、好ましくは4.7~118質量部、より好ましくは18.8~118質量部含有する。
さらに、本実施形態に係る改良土は、前記セメント系水硬性材料100質量部に対して、対象土の水とは別の水を、好ましくは45~300質量部、より好ましくは60~130質量部含有する。
また、本実施形態に係る改良土は、セメント系水硬性材料100質量部に対して、水を(対象土の水、及び、対象土の水とは別に加える水の合計で)、好ましくは19~960質量部、より好ましくは19~295質量部含有する。
また、本実施形態に係る改良土は、対象土の水とは別の水を含有する場合、セメント系水硬性材料100質量部に対して、水を(対象土の水、及び、対象土の水とは別に加える水の合計で)、好ましくは60~960質量部、より好ましくは75~295質量部含有する。
さらに、本実施形態に係る改良土は、水として、対象土の水のみを含有する場合、セメント系水硬性材料100質量部に対して、水(対象土の水)を、好ましくは19~654質量部、より好ましくは19~163質量部含有する。
In the improved soil according to the present embodiment, the amount of cementitious hydraulic material per 1 m 3 of wet target soil is preferably 100 to 1100 kg/m 3 , more preferably 400 to 1100 kg/m 3 .
In addition, the improved soil according to the present embodiment preferably contains 4.7 to 118 parts by mass, more preferably 18.8 to 118 parts by mass of a cement-based hydraulic material with respect to 100 parts by mass of the target soil in a dry state. contains.
Furthermore, the improved soil according to the present embodiment preferably contains 45 to 300 parts by mass, more preferably 60 to 130 parts by mass of water different from the water of the target soil with respect to 100 parts by mass of the cement-based hydraulic material. contains part.
In addition, the improved soil according to the present embodiment contains water (total of the water of the target soil and the water added separately from the water of the target soil), preferably 19 parts per 100 parts by mass of the cement-based hydraulic material. It contains up to 960 parts by mass, more preferably 19 to 295 parts by mass.
Further, when the improved soil according to the present embodiment contains water different from the water of the target soil, water (water of the target soil and water of the target soil) is added to 100 parts by mass of the cement-based hydraulic material water added separately), preferably 60 to 960 parts by mass, more preferably 75 to 295 parts by mass.
Furthermore, when the improved soil according to the present embodiment contains only the water of the target soil as water, water (water of the target soil) is preferably 19 to 654 parts per 100 parts by mass of the cement-based hydraulic material. parts by mass, more preferably 19 to 163 parts by mass.

本実施形態に係る改良土の製造方法では、対象土と、セメント系水硬性材料とが混合された改良土を作製する。また、前記改良土は、アルミン酸塩を含有する。 In the method for producing improved soil according to the present embodiment, improved soil is prepared by mixing target soil and a cement-based hydraulic material. Further, the improved soil contains an aluminate.

言い換えれば、本実施形態に係る改良土の製造方法では、対象土と、本実施形態に係る地盤改良材とが混合された改良土を作製する。 In other words, in the method for producing improved soil according to the present embodiment, improved soil is prepared by mixing the target soil and the soil improvement material according to the present embodiment.

本実施形態に係る改良土の製造方法では、改良土を構成する成分をどのような順序で混ぜてもよい。
例えば、本実施形態に係る改良土の製造方法では、本実施形態に係る地盤改良材を構成する成分と、水とを混合してスラリーを作製し、該スラリーと対象土とを混合することにより、改良土を作製してもよい。
また、本実施形態に係る改良土の製造方法では、前記スラリーを経ずに、本実施形態に係る地盤改良材を構成する成分と、水と、対象土とを混合することにより、改良土を作製してもよい。
さらに、本実施形態に係る改良土の製造方法では、対象土の水とは別の水を用いずに、本実施形態に係る地盤改良材を構成する成分と、対象土とを混合することにより、改良土を作製してもよい。
また、本実施形態に係る改良土の製造方法では、本実施形態に係る地盤改良材が、対象土への添加前に全ての成分が混合された状態になっている必要はなく、本実施形態に係る地盤改良材の成分ごとに対象土に添加されてもよい。
In the method for producing improved soil according to this embodiment, the components constituting the improved soil may be mixed in any order.
For example, in the method for producing improved soil according to the present embodiment, the ingredients constituting the soil improvement material according to the present embodiment and water are mixed to prepare a slurry, and the slurry and the target soil are mixed. , you may prepare improved soil.
Further, in the method for producing improved soil according to the present embodiment, the components constituting the soil improvement material according to the present embodiment, water, and the target soil are mixed without passing through the slurry, thereby improving the soil. may be made.
Furthermore, in the method for producing improved soil according to the present embodiment, without using water different from the water of the target soil, by mixing the components constituting the soil improvement material according to the present embodiment and the target soil , you may prepare improved soil.
Further, in the method for producing improved soil according to the present embodiment, the soil improvement material according to the present embodiment does not need to be in a state in which all components are mixed before addition to the target soil, and the present embodiment It may be added to the target soil for each component of the soil improvement material according to.

なお、本発明に係る地盤改良材、改良土、及び、改良土の製造方法は、上記実施形態に限定されるものではない。また、本発明に係る地盤改良材、改良土、及び、改良土の製造方法は、上記した作用効果によって限定されるものでもない。さらに、本発明に係る地盤改良材、改良土、及び、改良土の製造方法は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 In addition, the soil improvement material, improved soil, and method for producing improved soil according to the present invention are not limited to the above embodiments. In addition, the soil improvement material, improved soil, and improved soil production method according to the present invention are not limited by the above-described effects. Further, the soil improvement material, improved soil, and improved soil production method according to the present invention can be modified in various ways without departing from the scope of the present invention.

次に、実施例および比較例を挙げて本発明についてさらに具体的に説明する。 EXAMPLES Next, the present invention will be described more specifically with reference to examples and comparative examples.

<セメント系水硬性材料>
セメント系水硬性材料としては、下記表1、2のセメント系水硬性材料を作製した。
なお、セメント系水硬性材料におけるSOの含有割合(単に「SOの含有割合」ともいう。)を下記表1、2に示す。
<Cement-based hydraulic material>
As cement-based hydraulic materials, cement-based hydraulic materials shown in Tables 1 and 2 below were produced.
Tables 1 and 2 below show the content of SO 3 in the cementitious hydraulic material (also referred to simply as the "content of SO 3 ").

Figure 0007303996000001
Figure 0007303996000001

Figure 0007303996000002
Figure 0007303996000002

<添加剤>
添加剤としては、以下の添加剤を用いた。
・アルミン酸ナトリウム
・アルミン酸カリウム3水和物
・水酸化アルミニウム
<Additive>
As additives, the following additives were used.
・Sodium aluminate ・Potassium aluminate trihydrate ・Aluminum hydroxide

(実施例1)
セメント系水硬性材料としての表1のセメント系水硬性材料Cと、添加剤としてのアルミン酸ナトリウムとを混合して地盤改良材を作製し、該地盤改良材と水とを混合してスラリーを得た。
なお、水は、セメント系水硬性材料100質量部に対して60質量部とした。
また、アルミン酸ナトリウムは、SO100質量部に対して、アルミン酸イオン換算で13.4質量部とした。
(Example 1)
A cement-based hydraulic material C in Table 1 as a cement-based hydraulic material and sodium aluminate as an additive are mixed to prepare a soil improvement material, and the soil improvement material and water are mixed to form a slurry. Obtained.
The amount of water was 60 parts by mass with respect to 100 parts by mass of the cement-based hydraulic material.
Also, sodium aluminate was 13.4 parts by mass in terms of aluminate ions with respect to 100 parts by mass of SO 3 .

(実施例2)
添加剤としてアルミン酸カリウム・3水和物を用いたこと以外は、実施例1と同様にして、地盤改良材を得、そして、スラリーを得た。
(Example 2)
A soil improvement material was obtained in the same manner as in Example 1, except that potassium aluminate trihydrate was used as an additive, and a slurry was obtained.

(実施例3)
セメント系水硬性材料としての表2のセメント系水硬性材料Iを用い、アルミン酸ナトリウムの量を、SO100質量部に対してアルミン酸イオン換算で14.4質量部としたこと以外は、実施例1と同様にして、地盤改良材を得、そして、スラリーを得た。
(Example 3)
Except that the cement-based hydraulic material I in Table 2 was used as the cement-based hydraulic material, and the amount of sodium aluminate was set to 14.4 parts by mass in terms of aluminate ion per 100 parts by mass of SO 3 , A soil improvement material was obtained in the same manner as in Example 1, and a slurry was obtained.

(実施例4~10)
セメント系水硬性材料の種類、及び、アルミン酸塩の量を下記表5に示すものにしたこと以外は、実施例1と同様にして、地盤改良材を得、そして、スラリーを得た。
なお、「アルミン酸塩の量」とは、「SO100質量部に対する、アルミン酸イオン換算でのアルミン酸塩の量(質量部)」を意味する。
(Examples 4-10)
A soil improvement material was obtained in the same manner as in Example 1, except that the type of cementitious hydraulic material and the amount of aluminate were as shown in Table 5 below, and a slurry was obtained.
The "amount of aluminate" means "the amount of aluminate (parts by mass) in terms of aluminate ions with respect to 100 parts by mass of SO3" .

(実施例11~13)
アルミン酸ナトリウムの量を下記表6に示す割合にしたこと以外は、実施例1と同様にして、地盤改良材を得、そして、スラリーを得た。
(Examples 11-13)
A soil improvement material was obtained in the same manner as in Example 1, except that the amount of sodium aluminate was set to the ratio shown in Table 6 below, and a slurry was obtained.

(比較例1)
添加剤として水酸化アルミニウムを用いたこと以外は、実施例1と同様にして、地盤改良材を得、そして、スラリーを得た。
なお、添加剤の量については、SOの量に対する、アルミニウム換算での添加剤の量が実施例1と同じとなるようにした。
(Comparative example 1)
A soil improvement material was obtained in the same manner as in Example 1 except that aluminum hydroxide was used as an additive, and a slurry was obtained.
As for the amount of the additive, the amount of the additive in terms of aluminum was the same as in Example 1 with respect to the amount of SO 3 .

(比較例2)
添加剤を用いなかったこと以外は、実施例1と同様にして、地盤改良材を得、そして、スラリーを得た。
(Comparative example 2)
A soil improvement material was obtained in the same manner as in Example 1 except that no additive was used, and a slurry was obtained.

(比較例3)
添加剤を用いなかったこと以外は、実施例3と同様にして、地盤改良材を得、そして、スラリーを得た。
(Comparative Example 3)
A soil improvement material was obtained in the same manner as in Example 3 except that no additive was used, and a slurry was obtained.

<膨張変化試験>
実施例及び比較例のスラリーを型枠に打設し、打設後24時間で脱型し、直方体の供試体(寸法:40mm×40mm×160mm(最長部分))を得た。
そして、供試体を20℃の水の中で養生した。また、水中養生直前を基準(材齢0日)とし、水中養生を開始してから10日までは約1日おきに、14日後からは約7日おきに、最長部分の長さ変化を膨張変化の指標として測定した。
最長部分の長さ変化は、JIS A1129-3:2010「モルタル及びコンクリートの長さ変化測定方法‐第3部:ダイヤルゲージ方法」に準じて測定した。
また、長さ変化率に関し、前回(1回前)に測定した長さ変化率との比較において、長さ変化率の1日当たりの増加量が、0.01%/日以下になった場合に、前回の測定時における材齢を収束日数(膨張が収束するまでの日数)とした。
すなわち、N回目の測定時における、長さ変化率の1日当たりの増加量は、下記式(1)で求め、この増加量が0.01%/日以下になった場合に、(N-1)回目の測定時における材齢を収束日数とした。
N回目の測定時における、長さ変化率の1日当たりの増加量(%/日) = (N回目に測定した長さ変化率(%) - (N-1)回目に測定した長さ変化率(%))/(N回目の測定時における材齢(日) - (N-1)回目の測定時における材齢(日))・・・(1)
収束日数について、実施例1、2及び比較例1、2の結果を下記表3に、実施例3及び比較例3の結果を下記表4に、実施例1、4~10の結果を表5に、実施例1、11~13及び比較例1の結果を表6に、実施例1、2、4~12の結果を図1に示す。
<Expansion change test>
The slurries of Examples and Comparative Examples were placed in a formwork and demolded 24 hours after placement to obtain a rectangular parallelepiped specimen (dimensions: 40 mm x 40 mm x 160 mm (longest part)).
Then, the specimen was aged in water at 20°C. In addition, the time immediately before the underwater curing is taken as the standard (age 0 days), and the change in the length of the longest part is expanded every 10 days from the start of the underwater curing, and every 7 days from the 14th day. measured as an index of change.
The change in length of the longest portion was measured according to JIS A1129-3:2010 "Method for measuring change in length of mortar and concrete-Part 3: Dial gauge method".
In addition, regarding the length change rate, in comparison with the length change rate measured last time (one time before), when the increase in the length change rate per day is 0.01% / day or less , the material age at the time of the previous measurement was taken as the convergence days (the number of days until the expansion converges).
That is, the amount of increase per day in the length change rate at the time of the Nth measurement is obtained by the following formula (1), and when this amount of increase is 0.01%/day or less, (N-1 ) The age at the time of the second measurement was taken as the convergence days.
Increase in length change rate per day (%/day) at the Nth measurement = (Length change rate (%) measured at the Nth time - Length change rate measured at the (N-1)th time (%)) / (Age (days) at the time of Nth measurement - Age (days) at the time of (N-1)th measurement) (1)
Regarding the convergence days, the results of Examples 1 and 2 and Comparative Examples 1 and 2 are shown in Table 3 below, the results of Example 3 and Comparative Example 3 are shown in Table 4 below, and the results of Examples 1 and 4 to 10 are shown in Table 5. The results of Examples 1, 11 to 13 and Comparative Example 1 are shown in Table 6, and the results of Examples 1, 2, 4 to 12 are shown in FIG.

Figure 0007303996000003
Figure 0007303996000003

Figure 0007303996000004
Figure 0007303996000004

Figure 0007303996000005
Figure 0007303996000005

表3、4に示すように、早強ポルドランドセメントを含むセメント系水硬性材料のみからなる比較例2、普通ポルドランドセメントを含むセメント系水硬性材料のみからなる比較例3の地盤改良材を用いた場合で、42日後まで膨張が継続していた。
このことから、セメント系水硬性材料と水との反応(水和反応)による生成物であるエトリンガイトが、改良土の膨張の要因と考えられる。
As shown in Tables 3 and 4, the soil improvement materials of Comparative Example 2 consisting only of a cementitious hydraulic material containing early-strength Portland cement and Comparative Example 3 consisting only of a cementitious hydraulic material containing ordinary Portland cement were used. When used, the swelling continued until after 42 days.
This suggests that ettringite, which is a product of the reaction (hydration reaction) between the cementitious hydraulic material and water, is the cause of the expansion of the improved soil.

表3に示すように、実施例1、2の地盤改良材を用いた場合では、添加剤として水酸化アルミニウムを用いた比較例1の地盤改良材、添加剤を用いなかった比較例2の地盤改良材を用いた場合に比べて、収束日数が短かった。
また、表4に示すように、実施例3の地盤改良材を用いた場合では、添加剤を用いなかった比較例3の地盤改良材を用いた場合に比べて、収束日数が短かった。
また、表5に示すように、実施例1~3と異なるセメント系水硬性材料を用いた実施例4~10の地盤改良材を用いた場合でも、収束日数は短かった。
以上の結果から、エトリンガイトの生成反応が改良土の膨張の要因となっており、反応性に富むアルミニウム塩であるアルミン酸塩が存在すると、早期にエトリンガイトの生成反応が終結して、改良土の膨張が収束するまでの時間を短くすることができると考えられる。
したがって、本発明によれば、改良土の膨張が収束するまでの時間を短くし得ることがわかる。
As shown in Table 3, when the soil improvement materials of Examples 1 and 2 were used, the soil improvement material of Comparative Example 1 using aluminum hydroxide as an additive, the ground of Comparative Example 2 using no additive The convergence days were shorter than when the improved material was used.
Further, as shown in Table 4, when the soil improvement material of Example 3 was used, the convergence days were shorter than when the soil improvement material of Comparative Example 3 that did not use the additive was used.
Further, as shown in Table 5, even when the ground improvement materials of Examples 4 to 10 using cement-based hydraulic materials different from those of Examples 1 to 3 were used, the convergence days were short.
Based on the above results, the formation reaction of ettringite is the cause of the expansion of the improved soil, and the presence of aluminate, which is an aluminum salt with high reactivity, terminates the formation reaction of ettringite at an early stage, resulting in the expansion of the improved soil. It is thought that the time until expansion converges can be shortened.
Therefore, according to the present invention, it can be seen that the time until the expansion of the improved soil converges can be shortened.

Figure 0007303996000006
Figure 0007303996000006

表6、図1に示すように、SOに対するアルミン酸イオン換算での前記アルミン酸塩の量が多いほど、収束日数が短かった。
このことから、SOに対するアルミン酸イオン換算での前記アルミン酸塩の量が多いほど、改良土の膨張が収束するまでの時間を短くし得ることがわかる。
As shown in Table 6 and FIG. 1, the larger the amount of aluminate in terms of aluminate ions with respect to SO 3 , the shorter the convergence days.
From this, it can be seen that the larger the amount of aluminate in terms of aluminate ions with respect to SO 3 , the shorter the time until the expansion of the improved soil converges.

Claims (4)

対象土と混合されて用いられ、セメント系水硬性材料を含有する地盤改良材であって、
アルミン酸塩を含有し、
前記セメント系水硬性材料がSOを7.91質量%以上11.3質量%以下含有し、
前記SO100質量部に対して、前記アルミン酸塩が、アルミン酸イオン換算で8.9質量部以上含有され
前記アルミン酸塩が、アルミン酸カリウム及びアルミン酸ナトリウムの少なくとも一方を含有する、地盤改良材。
A ground improvement material containing a cement-based hydraulic material that is used by being mixed with the target soil,
containing an aluminate,
The cement-based hydraulic material contains 7.91% by mass or more and 11.3% by mass or less of SO3 ,
8.9 parts by mass or more of the aluminate is contained in terms of aluminate ions with respect to 100 parts by mass of the SO 3 ,
A soil improvement material , wherein the aluminate contains at least one of potassium aluminate and sodium aluminate .
前記アルミン酸塩が、アルミン酸カリウムを含有する、請求項1に記載の地盤改良材。 The soil improvement material according to claim 1, wherein the aluminate contains potassium aluminate. 対象土と、セメント系水硬性材料とを含有する、改良土であって、
アルミン酸塩を含有し、
前記セメント系水硬性材料がSOを7.91質量%以上11.3質量%以下含有し、
前記SO100質量部に対して、前記アルミン酸塩が、アルミン酸イオン換算で8.9質量部以上含有され
前記アルミン酸塩が、アルミン酸カリウム及びアルミン酸ナトリウムの少なくとも一方を含有する、改良土。
Improving soil containing target soil and a cementitious hydraulic material,
containing an aluminate,
The cement-based hydraulic material contains 7.91% by mass or more and 11.3% by mass or less of SO3 ,
8.9 parts by mass or more of the aluminate is contained in terms of aluminate ions with respect to 100 parts by mass of the SO 3 ,
Improved soil , wherein the aluminate contains at least one of potassium aluminate and sodium aluminate .
対象土と、セメント系水硬性材料とが混合された改良土を作製する、改良土の製造方法であって、
前記改良土がアルミン酸塩を含有し、
前記セメント系水硬性材料がSOを7.91質量%以上11.3質量%以下含有し、
前記SO100質量部に対して、前記アルミン酸塩が、アルミン酸イオン換算で8.9質量部以上含有され
前記アルミン酸塩が、アルミン酸カリウム及びアルミン酸ナトリウムの少なくとも一方を含有する、改良土の製造方法。
A method for producing improved soil, wherein improved soil is prepared by mixing target soil and a cement-based hydraulic material,
The improved soil contains an aluminate,
The cement-based hydraulic material contains 7.91% by mass or more and 11.3% by mass or less of SO3 ,
8.9 parts by mass or more of the aluminate is contained in terms of aluminate ions with respect to 100 parts by mass of the SO 3 ,
A method for producing improved soil , wherein the aluminate contains at least one of potassium aluminate and sodium aluminate .
JP2019060442A 2019-03-27 2019-03-27 Soil improvement material, improved soil, and method for producing improved soil Active JP7303996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019060442A JP7303996B2 (en) 2019-03-27 2019-03-27 Soil improvement material, improved soil, and method for producing improved soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019060442A JP7303996B2 (en) 2019-03-27 2019-03-27 Soil improvement material, improved soil, and method for producing improved soil

Publications (2)

Publication Number Publication Date
JP2020158660A JP2020158660A (en) 2020-10-01
JP7303996B2 true JP7303996B2 (en) 2023-07-06

Family

ID=72641933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019060442A Active JP7303996B2 (en) 2019-03-27 2019-03-27 Soil improvement material, improved soil, and method for producing improved soil

Country Status (1)

Country Link
JP (1) JP7303996B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006051875A1 (en) 2004-11-11 2006-05-18 Denki Kagaku Kogyo Kabushiki Kaisha Composition for ground-improving material, grouting material comprising the same, and method of using the same
JP2015229684A (en) 2014-06-03 2015-12-21 株式会社菱晃 Hardening material, hardening material liquid, agent for soil property stabilization, production method of the agent and ground stabilization method
JP2017008249A (en) 2015-06-24 2017-01-12 宇部興産株式会社 Sol improver and soil improvement method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0940950A (en) * 1995-07-28 1997-02-10 Kyokado Eng Co Ltd Method for stabilizing soft ground
JP2981850B2 (en) * 1996-08-07 1999-11-22 強化土エンジニヤリング株式会社 Chemical for ground injection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006051875A1 (en) 2004-11-11 2006-05-18 Denki Kagaku Kogyo Kabushiki Kaisha Composition for ground-improving material, grouting material comprising the same, and method of using the same
JP2015229684A (en) 2014-06-03 2015-12-21 株式会社菱晃 Hardening material, hardening material liquid, agent for soil property stabilization, production method of the agent and ground stabilization method
JP2017008249A (en) 2015-06-24 2017-01-12 宇部興産株式会社 Sol improver and soil improvement method

Also Published As

Publication number Publication date
JP2020158660A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
US8366825B2 (en) Rapid binder compositions containing a calcium salt for concrete components and structures
US4357166A (en) Method and composition for controlling volume change in fast setting, fluid impermeable cementitious systems
JPH1121160A (en) Ultra high speed hardening nonshrinkable grout material
US20140144350A1 (en) Hydraulic binder
US9994484B2 (en) Fast setting portland cement compositions with alkali metal citrates and phosphates with high early-age compressive strength and reduced shrinkage
KR100403831B1 (en) Crack retardant mixture made from flyash and its application to concrete
KR100667631B1 (en) Concrete additive and concrete composition for reinforcing early strength
JPH066499B2 (en) Quick setting agent for cement
JP7303996B2 (en) Soil improvement material, improved soil, and method for producing improved soil
JP5061704B2 (en) Method for constructing concrete admixture, hydraulic binder, concrete and concrete structure
US6447597B1 (en) Hydrated calcium aluminate based expansive admixture
JP2003277111A (en) Hardening accelerator and cement composition
JP2017031037A (en) Anti-washout underwater concrete composition and cured body thereof
JPH072553A (en) Cement clinker and its production
JP2015189628A (en) Method of producing crack-reduced cement product and crack-reduced cement product
JP2021119115A (en) Quick-hardening polymer cement composition and quick-hardening polymer cement mortar
JP7083637B2 (en) Concrete and its manufacturing method
JP5863296B2 (en) Method for producing ultra-high-strength cement-based hardened body
JPH04238847A (en) Hydraulic cement
JP2004210551A (en) Expansive clinker mineral and expansive composition containing the same
JP2007176744A (en) Quick hardening admixture
JPH0859319A (en) Cement admixture and cement composition
JPH0567578B2 (en)
JP2020093940A (en) Cement admixture, and concrete using the same
JP2020158661A (en) Ground improvement material, improved soil, and method for producing improved soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230608

R150 Certificate of patent or registration of utility model

Ref document number: 7303996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150