JPWO2006051875A1 - Composition for ground improvement material, injection material using the same, and method of using the same - Google Patents

Composition for ground improvement material, injection material using the same, and method of using the same Download PDF

Info

Publication number
JPWO2006051875A1
JPWO2006051875A1 JP2006544960A JP2006544960A JPWO2006051875A1 JP WO2006051875 A1 JPWO2006051875 A1 JP WO2006051875A1 JP 2006544960 A JP2006544960 A JP 2006544960A JP 2006544960 A JP2006544960 A JP 2006544960A JP WO2006051875 A1 JPWO2006051875 A1 JP WO2006051875A1
Authority
JP
Japan
Prior art keywords
ground improvement
parts
composition
liquid
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006544960A
Other languages
Japanese (ja)
Other versions
JP4902356B2 (en
Inventor
山本 賢司
賢司 山本
入内島 克明
克明 入内島
盛岡 実
実 盛岡
高橋 光男
光男 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2006544960A priority Critical patent/JP4902356B2/en
Publication of JPWO2006051875A1 publication Critical patent/JPWO2006051875A1/en
Application granted granted Critical
Publication of JP4902356B2 publication Critical patent/JP4902356B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/06Calcium compounds, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/10Cements, e.g. Portland cement
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
    • C09K17/48Organic compounds mixed with inorganic active ingredients, e.g. polymerisation catalysts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00732Uses not provided for elsewhere in C04B2111/00 for soil stabilisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/70Grouts, e.g. injection mixtures for cables for prestressed concrete
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

地盤改良工事や止水工事等おいて広範に利用可能な地盤改良材であって、浸透性や耐久性に優れる地盤改良材用組成物、及び該地盤改良材用組成物を用いた、地盤への高い浸透性を有する注入材を提供する。高炉フュームを含有してなることを特徴とする地盤改良材用組成物であり、好ましくは、シリカフューム、さらに、セメント若しくは水酸化カルシウムを含有し、さらに好ましくは、セメント、及びアルカリ増粘型ポリマーエマルジョンを含有してなる地盤改良材用組成物にある。さらに、該地盤改良材用組成物を含有する注入材、及び該地盤改良材用組成物の使用方法にある。A ground improvement material that can be widely used in ground improvement work, water stoppage work, etc., and has excellent permeability and durability, and to the ground using the ground improvement material composition An injection material having high permeability is provided. A ground improvement material composition comprising a blast furnace fume, preferably containing silica fume and further containing cement or calcium hydroxide, more preferably cement and an alkali thickening polymer emulsion. It is in the composition for ground improvement materials containing this. Furthermore, it exists in the usage method of the injection material containing this composition for ground improvement materials, and this composition for ground improvement materials.

Description

本発明は、高炉フュームの有効利用方法並びに土木・建築業界における地盤改良工事や止水工事等で広く用いられる地盤改良材用組成物、それらの調製方法、及びそれらを用いてなる注入材に関する。   The present invention relates to an effective utilization method of a blast furnace fume, a composition for ground improvement material widely used in ground improvement work and water stoppage work in the civil engineering and construction industry, a preparation method thereof, and an injection material using them.

近年、環境問題が大きくクローズアップされており、特に、産業副産物の有効利用について、様々な試みがなされている。それらの中で、高炉水砕スラグ、フライアッシュ、又はシリカフュームなどは、既に多くの有効利用方法が確立されており、例えば、ポルトランドセメントに多量に混合されて使用され、JISにも制定されている。
しかしながら、未だに有効利用法が確立されていない産業副産物も多く見受けられ、その利用方法を確立することが循環型社会の構築に向けて強く求められている。
そのひとつに、高炉フュームが挙げられる。
In recent years, environmental problems have been greatly highlighted, and various attempts have been made to make effective use of industrial byproducts. Among them, blast furnace granulated slag, fly ash, or silica fume has already been used in many effective ways, for example, mixed with Portland cement and used in JIS. .
However, there are many industrial by-products for which effective usage has not yet been established, and establishment of the usage is strongly demanded for the establishment of a recycling society.
One of them is blast furnace fume.

高炉フュームは、鉄鋼の製造過程で発生する副産物であり、銑鉄を得る際に高炉から発生するヒュームを集塵したダストである。高炉フュームの有効利用法としては、これまでに、ガラス繊維補強セメント複合体に用いる混和材として提案されている(特許文献1、特許文献2参照)。しかし、高炉フュームの成分中にはアルカリ金属が含まれており、現状ではアルカリ骨材反応の懸念からコンクリートへの使用は難しく、その利用方法の確立が望まれていた。   Blast furnace fume is a by-product generated in the manufacturing process of steel, and is dust that collects fumes generated from the blast furnace when pig iron is obtained. As an effective utilization method of a blast furnace fume, it has been proposed as an admixture used for a glass fiber reinforced cement composite (see Patent Document 1 and Patent Document 2). However, alkali metal is contained in the components of the blast furnace fume, and at present, it is difficult to use it for concrete due to concerns about alkali-aggregate reaction, and establishment of its utilization method has been desired.

一方、地盤改良材は、地盤改良工事や止水工事等に広く用いられている。
地盤改良工事とは、軟弱地盤をはじめ、ダムや発電所等の大型特殊構造物の基礎地盤補強のカーテングラウトや、トンネル、石油やLPG備蓄基地等の地中構造物施工時の薬液注入による地盤改良工事である。止水工事とは、地下水位より低い場所、海底下、及び帯水地盤における地下構造物の掘削工事の際に発生する湧水を注入材を注入することにより防いだり、地盤の水密性を上げるために地盤改良材を注入する工事である。また、これらの他にも、排水性の悪い地盤や液状化地盤等における一般住宅やマンションの地盤改良や上下水道等のインフラ整備における地盤の崩落防止工事等がある。
地盤改良材は、これらの工事に広く使用されているものであり、地盤を固結させたり、圧密脱水することにより地盤の強化等を図る目的で使用する材料をいう。
On the other hand, ground improvement materials are widely used for ground improvement work, water stoppage work, and the like.
Ground improvement works include soft ground, curtain grout for reinforcement of foundations for large special structures such as dams and power plants, and ground by injection of chemicals during construction of underground structures such as tunnels, oil and LPG storage bases, etc. It is an improvement work. Water stoppage works to prevent the spring water generated during excavation work of underground structures below the groundwater level, under the seabed, and in the aquifer ground by injecting injection material, and to increase the water tightness of the ground. For this purpose, ground improvement materials are injected. In addition to these, there are ground improvement of ordinary houses and condominiums in poorly drained ground and liquefied ground, and ground collapse prevention work in infrastructure development such as water supply and sewerage.
The ground improvement material is widely used in these constructions, and means a material used for the purpose of strengthening the ground by consolidation of the ground or consolidation dehydration.

次に、上記の地盤改良材並びにそれを用いた工事について、具体例を挙げ説明する。
例えば、トンネルの覆工において、施工時や施工後に、覆工コンクリート背面に空洞が発生する場合がある。この空洞をそのまま放置すると、空洞部への地山の崩落に伴い、地表面が沈下する。地山の崩落が激しい場合には、覆工コンクリートの変形や破壊、特に、トンネルの崩落が発生したり、空洞への地下水の流入による覆工コンクリートの劣化、及びそれに伴う劣化コンクリート片の走行車線への落下や、クラック部からの漏水による冬季に走行車線が凍結するなどの問題があった。
Next, the above ground improvement material and the construction using the same will be described with specific examples.
For example, in tunnel lining, a cavity may occur on the back of the lining concrete during or after construction. If this cavity is left as it is, the ground surface will sink as the ground collapses into the cavity. When ground collapse is severe, deformation and destruction of lining concrete, especially tunnel collapse, deterioration of lining concrete due to inflow of groundwater into the cavity, and accompanying lanes of degraded concrete fragments There were problems such as falling to the road and freezing of the lane in winter due to water leakage from the crack.

また、近年、施工件数が増加しているトンネル補修工事の中に、覆工コンクリート背面の空洞に注入材を充填し、トンネルの安定化を図る裏込め注入工法がある。ここで使用される注入材を裏込め材と言い、従来、セメント−ベントナイトが一般的に用いられてきた。しかし、流動性が大きすぎ、裏込め材が遠方まで不必要に逸流したり、湧水があると裏込め材が流出したり、希釈されて物性が低下したりするなどの問題があった。   In recent years, tunnel repair works, where the number of construction works has been increasing, include a backfill injection method that fills the cavity behind the lining concrete with an injection material to stabilize the tunnel. The injecting material used here is called a backfilling material, and conventionally, cement-bentonite has been generally used. However, there is a problem that the fluidity is too large and the backfilling material unnecessarily flows far away, and if there is spring water, the backfilling material flows out or is diluted to deteriorate the physical properties.

そこで、セメントとベントナイトの主材に、高吸水性樹脂を添加して、その粘度を大きくする方法や、水ガラスを添加して硬化促進する方法が提案された(特許文献3、特許文献4参照)。   Therefore, a method of increasing the viscosity by adding a superabsorbent resin to the main material of cement and bentonite and a method of promoting hardening by adding water glass have been proposed (see Patent Documents 3 and 4). ).

しかしながら、いずれの方法も粘度が上昇するまでに時間を必要とする上、高吸水性樹脂を添加する方法は高吸水性樹脂自体が高価である。また、初めから注入材に投入して練混ぜると、主材の粘度が高くなるため、圧送距離を短くせざるを得ず、注入箇所が限定されるという問題があった。   However, both methods require time until the viscosity increases, and the method of adding a superabsorbent resin is expensive. In addition, when the mixture is first introduced into the injection material and kneaded, the viscosity of the main material increases, so that the pumping distance has to be shortened and the injection location is limited.

一方、水ガラスを添加する方法は、水ガラスのpHが13以上と強アルカリであるため、作業が相当制限される、硬化体からの溶出水が環境に負荷を与える、及び硬化体の長期強度が低下するなどの問題があった。   On the other hand, in the method of adding water glass, since the pH of the water glass is strong alkali with a pH of 13 or more, the work is considerably limited, the elution water from the cured body has an impact on the environment, and the long-term strength of the cured body There were problems such as lowering.

また、最近では裏込め材の持つ問題を解決する方法として、セメント−ベントナイトやセメント−石炭灰(フライアッシュ)の主材に、可塑化材としてポリマーを添加することにより瞬時に可塑化して、水中不分離性や安全性を改善したものが提案されている(特許文献3、特許文献5、及び特許文献6参照)。   Recently, as a method of solving the problems of backfill materials, plastics are instantly plasticized by adding polymers as plasticizers to the main materials of cement-bentonite and cement-coal ash (fly ash). The thing which improved the inseparability and safety | security is proposed (refer patent document 3, patent document 5, and patent document 6).

一方、地盤の補強や止水効果を得るため、セメントを用いた注入材が用いられている(特許文献7参照)。しかしながら、地質が、細砂、シルト、あるいは粘土の場合には地盤への浸透性が小さく、注入が困難になるなどの問題があった。   On the other hand, in order to obtain ground reinforcement and a water stop effect, an injection material using cement is used (see Patent Document 7). However, when the geology is fine sand, silt, or clay, there are problems such as low permeability to the ground and difficulty in pouring.

特開2002-47037号公報Japanese Patent Laid-Open No. 2002-47037 特開2004-67477号公報JP 2004-67477 A 特開平10-237446号公報JP-A-10-237446 特開平11-61123号公報Japanese Patent Laid-Open No. 11-61123 特開平10-238289号公報JP-A-10-238289 特開2000-280231号公報JP 2000-280231 A 特開2004-149685号公報Japanese Patent Application Laid-Open No. 2004-149585

本発明は、地盤改良工事や止水工事等おいて広範に利用可能な地盤改良材であって、特に有効利用法が見出されていない高炉フュームを用い、(1)浸透性や耐久性に優れる地盤改良材用組成物、(2)ベントナイトや高吸水性樹脂を使用した注入材より長距離圧送性に優れ、また、可塑化材添加後は速やかに増粘し、例えば、裏込め材等の空隙充填材が遠方まで不必要に逸流したり、湧水があっても空隙充填材が流出したり、希釈されて物性が低下したりすることなく、さらに、水ガラスのように溶出水が強アルカリとならない地盤改良材用組成物、及び(3)それらの地盤改良材用組成物を用いてなる、地盤への高い浸透性を有する注入材を提供することを目的とする。   The present invention is a ground improvement material that can be widely used in ground improvement work, water stoppage work, etc., and uses a blast furnace fume for which no effective utilization method has been found. (1) Improves permeability and durability. Excellent composition for ground improvement materials, (2) Excellent long-distance pumpability compared to injection materials using bentonite and high water-absorbent resin, and thickens quickly after addition of plasticizer, such as backfilling materials The gap filler does not flow unnecessarily far away, and even if there is spring water, the gap filler does not flow out, or it is diluted and the physical properties are not degraded. An object of the present invention is to provide a composition for a ground improvement material which does not become a strong alkali, and (3) an injection material having a high permeability to the ground, which uses the composition for a ground improvement material.

本発明者は、鋭意研究を重ねた結果、高炉フュームを含有してなる新規な地盤改良材用組成物が上記課題を良好に達成し得ることを見出し、本発明を完成するに至った。なお、本明細書における「部」や「%」は、特に規定しない限り質量基準で示す。
即ち、本発明は下記を要旨とするものである。
(1)高炉フュームを含有してなることを特徴とする地盤改良材用組成物。
(2)更に、シリカフュームを含有してなる上記(1)に記載の地盤改良材用組成物。
(3)最大粒径40μmの、セメント若しくは水酸化カルシウムを含有してなる上記(1)又は(2)に記載の地盤改良材用組成物。
(4)セメント、及びアルカリ増粘型ポリマーエマルジョンを含有してなる上記(1)に記載の地盤改良材用組成物。
(5)高炉フュームが、セメント100部に対して、30〜500部である上記(4)に記載の地盤改良材用組成物。
(6)アルカリ増粘型ポリマーエマルジョンが、不飽和カルボン酸類とエチレン性不飽和化合物との共重合により得られるポリマーエマルジョンである上記(4)又は(5)に記載の地盤改良材用組成物。
(7)さらに、硬化促進剤を含有してなる上記(1)〜(6)のいずれか1項に記載の地盤改良材用組成物。
(8)硬化促進剤が、アルミン酸塩及び/又は硫酸塩を含有する上記(1)〜(7)のいずれか1項に記載の地盤改良材用組成物。
(9)高炉フュームが、最大粒径30μmを有する上記(1)〜(8)のいずれか1項に記載の地盤改良材用組成物
(10)高炉フュームが、SiOが20〜30%、Alが10〜15%、及びCaOが15〜25%を有する上記(1)〜(9)のいずれか1項に記載の地盤改良材用組成物。
(11)上記(1)〜(10)のいずれか1項に記載の地盤改良材用組成物からなる注入材。
(12)アルミン酸カルシウム又はアルミノケイ酸カルシウム、石膏、及びアルカリ刺激材を含有してなる上記(11)に記載の注入材
(13)高炉フューム100部に対して、アルミン酸カルシウム又はアルミノケイ酸カルシウム1〜15部、石膏1〜50部、及びアルカリ刺激材1〜50部を含有してなる上記(11)又は(12)に記載の注入材。
(14)最大粒子径が20μm以下である上記(11)〜(13)のいずれか1項に記載の注入材。
(15)セメント、高炉フューム、及び水を含有してなるA液、並びにアルカリ増粘型ポリマーエマルジョンと水を含有してなるB液を、夫々予め調製し、使用直前にA液とB液を混合する上記(4)〜(10)のいずれか1項に記載の地盤改良材用組成物の使用方法。
(16)セメント、高炉フューム、及び水を含有してなるA液、並びに硬化促進剤とアルカリ増粘型ポリマーエマルジョンと水を含有してなるB液を、夫々予め調製し、使用直前にA液とB液を混合する上記(4)〜(10)のいずれか1項に記載の地盤改良材用組成物の使用方法。
(17)セメント、高炉フューム、及び水を含有してなるA液、硬化促進剤と水とを含有してなるB液、並びにアルカリ増粘型ポリマーエマルジョンと水とを含有してなるC液を、夫々予め調製し、使用直前にA液、B液及びC液を混合する上記(4)〜(10)のいずれか1項に記載の地盤改良材用組成物の使用方法。
As a result of intensive studies, the present inventor has found that a novel ground improvement material composition containing a blast furnace fume can achieve the above-mentioned problems satisfactorily and has completed the present invention. In the present specification, “parts” and “%” are based on mass unless otherwise specified.
That is, the present invention has the following gist.
(1) A composition for ground improvement material, comprising a blast furnace fume.
(2) The composition for ground improvement material according to (1), further comprising silica fume.
(3) The composition for ground improvement material according to (1) or (2) above, comprising cement or calcium hydroxide having a maximum particle size of 40 μm.
(4) The composition for ground improvement material according to (1) above, comprising cement and an alkali thickening polymer emulsion.
(5) The composition for ground improvement material as described in said (4) whose blast furnace fume is 30-500 parts with respect to 100 parts of cement.
(6) The ground improvement material composition according to (4) or (5), wherein the alkali-thickening polymer emulsion is a polymer emulsion obtained by copolymerization of an unsaturated carboxylic acid and an ethylenically unsaturated compound.
(7) The composition for ground improvement material according to any one of (1) to (6), further comprising a curing accelerator.
(8) The composition for ground improvement material according to any one of (1) to (7), wherein the curing accelerator contains an aluminate and / or a sulfate.
(9) The ground improvement material composition (10) according to any one of (1) to (8), wherein the blast furnace fume has a maximum particle size of 30 μm, and the blast furnace fume has a SiO 2 content of 20 to 30%, The composition for ground improvement material according to any one of the above (1) to (9), wherein Al 2 O 3 is 10 to 15% and CaO is 15 to 25%.
(11) An injection material comprising the composition for ground improvement material according to any one of (1) to (10) above.
(12) Calcium aluminate or calcium aluminosilicate with respect to 100 parts of blast furnace fume according to (11) above, comprising calcium aluminate or calcium aluminosilicate, gypsum, and an alkali stimulant 1 The injection material according to the above (11) or (12), which comprises ˜15 parts, 1 to 50 parts of gypsum, and 1 to 50 parts of the alkali stimulating material.
(14) The injection material according to any one of (11) to (13), wherein the maximum particle size is 20 μm or less.
(15) Liquid A containing cement, blast furnace fume, and water, and liquid B containing an alkali-thickened polymer emulsion and water are prepared in advance, and liquids A and B are prepared immediately before use. The usage method of the composition for ground improvement materials of any one of said (4)-(10) to mix.
(16) Liquid A containing cement, blast furnace fume, and water, and liquid B containing a curing accelerator, an alkali-thickening polymer emulsion, and water are prepared in advance, and liquid A immediately before use. The use method of the composition for ground improvement materials of any one of said (4)-(10) which mixes B and B liquid.
(17) A liquid containing cement, blast furnace fume and water, B liquid containing a curing accelerator and water, and C liquid containing an alkali thickening polymer emulsion and water. The method for using the composition for ground improvement material according to any one of (4) to (10), wherein the preparation is prepared in advance, and the liquid A, liquid B and liquid C are mixed immediately before use.

本発明による、高炉フュームを含有する地盤改良材用組成物及びそれを用いた注入材は、浸透性や耐久性に優れるため、地盤改良工事や止水工事等、広範に利用することが可能であり、また、急激な粘度上昇を示し、強度発現性に優れ、水中不分離性を有し、pHの値が水ガラスを用いた場合に比べて低いという特性を持つため、地山の空洞や空隙部分の裏込め材、シールドセグメントの充填材、また、二重管単相又は複相の注入工法での瞬結性注入材となる。
さらに、本発明による、地盤改良材用組成物及びそれを用いた注入材は、二重管ダブルパッカー工法でのシール材や一次注入材等、セメントミルク、セメントモルタル、又はコンクリートの粘度を急激に上昇させる必要がある用途に有効である。更にまた、地盤への浸透性に優れ、注入性が高く、強度発現性に優れるなどの効果を奏するため、従来適用が困難だった地質の地盤への注入が可能となる。
The composition for ground improvement material containing blast furnace fume and the injection material using the same according to the present invention are excellent in permeability and durability, and can be widely used for ground improvement work, water stop work, etc. In addition, since it has a characteristic that it shows a sudden increase in viscosity, is excellent in strength development, has inseparability in water, and has a pH value lower than that in the case of using water glass, It serves as a backfilling material for the void portion, a filler for the shield segment, and a quick setting injection material in a double-pipe single-phase or double-phase injection method.
Furthermore, the composition for ground improvement material and the injection material using the same according to the present invention rapidly increase the viscosity of cement milk, cement mortar, or concrete, such as a sealing material or a primary injection material in a double pipe double packer method. It is effective for applications that need to be raised. Furthermore, since it has excellent permeability to the ground, high injectability, and excellent strength development, it is possible to inject into the ground of geology that has been difficult to apply conventionally.

本発明で使用する高炉フュームとは、鉄鋼業界で発生する副産物であり、銑鉄を得る際に高炉から発生するヒュームを集塵したダストである。本発明では、高炉フュームは、成分として、SiOが20〜30%、Alが10〜15%、及びCaOが15〜25%を有するのが好ましい。その他の成分としては、Feが1〜5%、MgOが3〜9%、NaOが0.5〜2%、KOが5〜12%、SOが5〜12%、Sは0.5%以下、及びMnOが0.1〜0.5%を有することが好ましい。また、高炉フュームは、最大粒径は30μm、平均粒径は3〜5μmであるのが好適である。また、高炉フュームの粉末度は、ブレーン比表面積値(以下、ブレーン値という)が15,000〜25,000cm/gの範囲にあるものが好ましい。高炉フュームは、そのまま用いてもよいし、さらに粉砕や分級を行い、微粉末化して用いてもよい。The blast furnace fume used in the present invention is a by-product generated in the steel industry, and is dust collected from fumes generated from the blast furnace when pig iron is obtained. In the present invention, the blast furnace fume preferably has 20 to 30% of SiO 2 , 10 to 15% of Al 2 O 3 and 15 to 25% of CaO as components. As other components, Fe 2 O 3 is 1 to 5%, MgO is 3 to 9%, Na 2 O is 0.5 to 2%, K 2 O is 5 to 12%, and SO 3 is 5 to 12%. , S is preferably 0.5% or less, and MnO is preferably 0.1 to 0.5%. The blast furnace fume preferably has a maximum particle size of 30 μm and an average particle size of 3 to 5 μm. The fineness of the blast furnace fume preferably has a Blaine specific surface area value (hereinafter referred to as a Blaine value) in the range of 15,000 to 25,000 cm 2 / g. The blast furnace fume may be used as it is, or may be further pulverized and classified to be used as a fine powder.

本発明で使用するセメントは特に限定されるものではないが、好ましい具体例としては、例えば、普通、早強、超早強、低熱、及び中庸熱等の各種ポルトランドセメント、これらポルトランドセメントに、高炉スラグ、フライアッシュ、又はシリカを混合した各種混合セメント、また、石灰石粉末や高炉徐冷スラグ微粉末を混合したフィラーセメント、廃棄物利用型セメント、いわゆる、エコセメントなどが挙げられる。これらのうちの一種又は二種以上が併用可能である。また、本発明でいうセメントコンクリートとは、セメントミルク、モルタル、又はコンクリートを総称するものである。   The cement used in the present invention is not particularly limited, but preferred specific examples include various portland cements such as normal, early strength, super early strength, low heat, and moderate heat, and these portland cements include blast furnaces. Various mixed cements mixed with slag, fly ash, or silica, filler cement mixed with limestone powder or blast furnace slow-cooled slag fine powder, waste-use type cement, so-called eco-cement, and the like. One or more of these can be used in combination. The cement concrete as used in the present invention is a generic term for cement milk, mortar, or concrete.

本発明の地盤改良材用組成物では、高炉フューム以外の成分として、地盤への浸透性を向上させる面から、シリカフュームを含有することが好ましい。なかでも、酸性シリカフュームの使用が好ましい。また、酸性シリカフュームと通常のシリカフュームを含有することも好ましい。
ここで、酸性シリカフュームとは、シリカフューム1gを純粋100ccに入れて攪拌した時の上澄み液のpHが5以下の酸性を示すものである。
シリカフュームの粉末度は特に限定されるものではないが、通常、BET比表面積で2〜20万m2/g程度が好ましい。
In the composition for ground improvement material of this invention, it is preferable to contain a silica fume as a component other than a blast furnace fume from the surface which improves the permeability to the ground. Of these, the use of acidic silica fume is preferred. It is also preferable to contain acidic silica fume and ordinary silica fume.
Here, acidic silica fume indicates acidity in which the pH of the supernatant liquid is 5 or less when 1 g of silica fume is put in 100 cc of pure and stirred.
Although the fineness of silica fume is not particularly limited, it is usually preferably about 2 to 200,000 m 2 / g in terms of BET specific surface area.

また、本発明の地盤改良材用組成物は、高炉フューム以外の成分として、耐久性をさらに高めるためにセメント又は酸化カルシウムの微粉末を併用することが好ましい。耐久性は、地盤改良材によって改良した硬化体から滲み出る水、いわゆる“離しょう水”を確認することによって評価することが可能である。
本発明の上記の地盤改良材用組成物は、従来より広範に利用されている水ガラス系の地盤改良材や高炉スラグ微粉末を主体とする地盤改良材と比べて、この離しょう水の発生が少なく、耐久性に優れる特徴がある。
Moreover, it is preferable that the composition for ground improvement materials of this invention uses a cement or a calcium oxide fine powder together as components other than a blast furnace fume in order to further improve durability. Durability can be evaluated by confirming water that exudes from the cured body improved by the ground improvement material, so-called “separation water”.
The above-mentioned composition for ground improvement material of the present invention is more widely used than conventional groundwater improvement materials and ground improvement materials mainly composed of blast furnace slag fine powder. There are few features and excellent durability.

上記のセメント又は水酸化カルシウム(以下、セメント類という)は、最大粒径が40μmであり、40μmを超える粒子を実質的に含まないセメント類が好ましい。具体的には、40μmを超える粒子の含有率が1%以下のセメント類であり、最大粒径は30μmであることがより好ましい。また、平均粒径は10μm以下が好ましく、5μm以下がより好ましい。セメント類の最大粒径が40μmを超えると浸透性が悪くなる場合がある。なお、本発明で平均粒径とは、レーザー回折式粒度分布測定装置により測定されたものである。   The cement or calcium hydroxide (hereinafter referred to as “cements”) preferably has a maximum particle size of 40 μm and does not substantially contain particles exceeding 40 μm. Specifically, it is a cement having a content ratio of particles exceeding 40 μm of 1% or less, and the maximum particle size is more preferably 30 μm. Further, the average particle size is preferably 10 μm or less, and more preferably 5 μm or less. If the maximum particle size of the cement exceeds 40 μm, the permeability may deteriorate. In the present invention, the average particle diameter is measured by a laser diffraction particle size distribution measuring device.

上記の水酸化カルシウムは、特に限定されるものではないが、生石灰を水和させて得ることができ、市販のものが利用可能である。   The calcium hydroxide is not particularly limited, but can be obtained by hydrating quick lime, and commercially available products can be used.

さらに、これらセメント類は、粉砕操作によって微粉末化してもよいし、微粉末部分を分級操作によって得ることも可能である。   Furthermore, these cements may be pulverized by a pulverization operation, or a fine powder portion can be obtained by a classification operation.

本発明の上記地盤改良材用組成物における各材料の配合割合は特に限定されるものではないが、高炉フュームとシリカフュームの合計100部中、シリカフュームは10〜90部が好ましく、20〜80部がより好ましい。シリカフュームが10部未満では浸透性の向上効果が充分に望めない場合があり、逆に、シリカフュームが90部を超えると強度発現性が充分でなくなったり、離しょう水が顕在化する傾向にある。
また、高炉フュームとセメント類の合計100部中、セメント類は1〜50部が好ましく、3〜30部がより好ましい。セメント類の配合割合が、1部未満では初期の強度発現性を良好とする効果が望めない場合があり、50部を超えると浸透性が悪くなる傾向がある。
The blending ratio of each material in the above ground improvement material composition of the present invention is not particularly limited, but silica fume is preferably 10 to 90 parts, and preferably 20 to 80 parts, out of a total of 100 parts of blast furnace fume and silica fume. More preferred. If the silica fume is less than 10 parts, there may be a case where the effect of improving the permeability cannot be fully expected. Conversely, if the silica fume exceeds 90 parts, the strength development becomes insufficient or the separating water tends to become apparent.
Further, in 100 parts in total of the blast furnace fume and the cement, the cement is preferably 1 to 50 parts, more preferably 3 to 30 parts. If the blending ratio of cement is less than 1 part, the effect of improving the initial strength development may not be expected, and if it exceeds 50 parts, the permeability tends to deteriorate.

本発明の上記地盤改良材用組成物を用いる場合、使用する水は、地盤改良材用組成物100部に対して、50〜500部が好ましく、100〜300部がより好ましい。50部未満では浸透性が充分でない場合があり、500部を超えると耐久性の確保が困難となる場合がある。   When using the said ground improvement material composition of this invention, 50-500 parts are preferable with respect to 100 parts of compositions for ground improvement materials, and 100-300 parts are more preferable. If it is less than 50 parts, the permeability may not be sufficient, and if it exceeds 500 parts, it may be difficult to ensure durability.

また、本発明の地盤改良材用組成物が、高炉フューム、セメント及びアルカリ増粘型ポリマーエマルジョンを含有してなる場合、使用する高炉フュームの使用量は、高炉フュームの品質により変わるため一義的に規定することはできないが、一般的には、セメント100部に対して、30〜500部が好ましく、50〜300部がより好ましい。30部未満では粘度が上昇しない場合や、流動性が大きくなったり、水中不分離性が小さくなったりする場合があり、500部を超えると粘性が高くなりすぎ、地盤改良材用組成物の練混ぜが困難になる場合がある。   Moreover, when the composition for ground improvement material of this invention contains a blast furnace fume, cement, and an alkali thickening type polymer emulsion, since the usage-amount of the blast furnace fume to be used changes with the quality of a blast furnace fume, it is uniquely. Although it cannot be specified, generally 30 to 500 parts are preferable and 50 to 300 parts are more preferable with respect to 100 parts of cement. If the amount is less than 30 parts, the viscosity may not increase, the fluidity may increase, or the inseparability in water may decrease. If the amount exceeds 500 parts, the viscosity becomes too high, and the ground improvement material composition is kneaded. Mixing may be difficult.

上記本発明の地盤改良材用組成物で使用するアルカリ増粘型ポリマーエマルジョン(以下、本エマルジョンという)は、アルカリにより増粘するポリマーエマルジョンをいう。   The alkali thickening polymer emulsion (hereinafter referred to as the present emulsion) used in the ground improvement material composition of the present invention refers to a polymer emulsion thickened by alkali.

本エマルジョンとしては、例えば、不飽和カルボン酸類、エチレン性不飽和化合物、不飽和カルボン酸類とエチレン性不飽和化合物の共重合物等、種々挙げられる。より優れた効果を示す面で、不飽和カルボン酸類とエチレン性不飽和化合物の共重合により得られるポリマーエマルジョンが好ましい。
不飽和カルボン酸類とエチレン性不飽和化合物の重合方法としては、乳化重合、懸濁重合、溶液重合、又は塊状重合等の方法により、共重合する方法等が挙げられる。
Examples of the emulsion include various unsaturated carboxylic acids, ethylenically unsaturated compounds, copolymers of unsaturated carboxylic acids and ethylenically unsaturated compounds, and the like. A polymer emulsion obtained by copolymerization of an unsaturated carboxylic acid and an ethylenically unsaturated compound is preferable in terms of exhibiting a more excellent effect.
Examples of the polymerization method of the unsaturated carboxylic acid and the ethylenically unsaturated compound include a method of copolymerization by a method such as emulsion polymerization, suspension polymerization, solution polymerization, or bulk polymerization.

上記不飽和カルボン酸類としては、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、シトラコン酸、アコニット酸、クロトン酸等の不飽和カルボン酸;無水マレイン酸や無水シトラコン酸等の不飽和カルボン酸無水物;イタコン酸モノメチル、イタコン酸モノブチル、及びマレイン酸モノエチルなどの不飽和カルボン酸エステルが挙げられる。これらの中で、より増粘性に優れる面で不飽和カルボン酸が好ましく、アクリル酸及び/又はメタクリル酸がより好ましい。   Examples of the unsaturated carboxylic acids include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, citraconic acid, aconitic acid, and crotonic acid; unsaturated carboxylic acids such as maleic anhydride and citraconic anhydride Acid anhydrides; unsaturated carboxylic acid esters such as monomethyl itaconate, monobutyl itaconate, and monoethyl maleate. Among these, unsaturated carboxylic acid is preferable in terms of more excellent viscosity, and acrylic acid and / or methacrylic acid is more preferable.

上記エチレン性不飽和化合物としては特に限定されるものではないが、より増粘性に優れる面でアクリル酸エステルモノマー及び/又はメタクリル酸エステルモノマーが好ましい。アクリル酸エステルとしては、メチルアクリレート、エチルアクリレート、ブチルアクリレート、ヘキシルアクリレート、シクロヘキシルアクリレート、オクチルアクリレート、ヒドロキシエチルアクリレート、2−エチルヘキシルアクリレート、グリシジルアクリレートなどが挙げられる。メタクリル酸エステルとしては、メチルメタクリレート、エチルメタクリレート、ブチルメタクリレート、ヒドロキシエチルメタクリレート、グリシジルメタクリレートなどが挙げられる。   Although it does not specifically limit as said ethylenically unsaturated compound, An acrylic ester monomer and / or a methacrylic ester monomer are preferable at the surface which is more excellent in a viscosity. Examples of the acrylic ester include methyl acrylate, ethyl acrylate, butyl acrylate, hexyl acrylate, cyclohexyl acrylate, octyl acrylate, hydroxyethyl acrylate, 2-ethylhexyl acrylate, and glycidyl acrylate. Examples of the methacrylic acid ester include methyl methacrylate, ethyl methacrylate, butyl methacrylate, hydroxyethyl methacrylate, and glycidyl methacrylate.

本エマルジョンの不飽和カルボン酸類とエチレン性不飽和化合物の共重合比は、より増粘性に優れる面で、不飽和カルボン酸類:エチレン性不飽和化合物=20:1〜1:20が好ましく、5:1〜1:5がより好ましい。この範囲外では良好なアルカリ増粘性が得られない場合がある。   The copolymerization ratio of the unsaturated carboxylic acid and the ethylenically unsaturated compound in the emulsion is preferably unsaturated carboxylic acid: ethylenically unsaturated compound = 20: 1 to 1:20 in terms of more excellent viscosity. 1-1: 5 is more preferable. Outside this range, good alkali thickening may not be obtained.

本エマルジョンの使用量は、セメント100部に対して、固形分換算で0.1〜2部が好ましく、0.2〜1部がより好ましい。0.1部未満では増粘効果が少なくなり、流動性が大きくなり、水中不分離性が小さくなる場合があり、2部を超えると初期強度発現性が小さくなる場合がある。   The amount of the emulsion used is preferably 0.1 to 2 parts, more preferably 0.2 to 1 part in terms of solid content with respect to 100 parts of cement. If it is less than 0.1 part, the thickening effect is reduced, the fluidity is increased, and the inseparability in water may be reduced. If it exceeds 2 parts, the initial strength development may be reduced.

本発明の地盤改良材用組成物組成物は、さらに硬化促進剤を使用することができる。地盤改良材用組成物の硬化が遅れると、材料分離の一種であるブリーディング(浮き水)が起こり、硬化後に空隙が生成して構造的な欠陥となる。
本発明で使用する硬化促進剤は、地盤改良材用組成物の硬化を促進してブリーディングを低減し、空隙の生成を抑制するとともに、強度発現性に寄与する。
The composition composition for ground improvement material of this invention can use a hardening accelerator further. When curing of the ground improvement material composition is delayed, bleeding (floating water), which is a kind of material separation, occurs, and voids are generated after curing, resulting in structural defects.
The hardening accelerator used by this invention accelerates | stimulates hardening of the composition for ground improvement materials, reduces bleeding, suppresses the production | generation of a space | gap, and contributes to strength expression.

硬化促進剤としては、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム、カリウム明礬、硫酸鉄等の硫酸塩;炭酸リチウム、炭酸ナトリウム、炭酸カリウムなどの炭酸塩;水酸化リチウム、水酸化ナトリウム、水酸化マグネシウム、水酸化アルミニウム、水酸化カリウム、水酸化カルシウムなどの水酸化物;塩化カルシウム、塩化マグネシウム、塩化鉄等の塩化物;アルミン酸リチウム、アルミン酸ナトリウム、アルミン酸カリウム、アルミン酸カルシウムなどのアルミン酸塩;ケイ酸リチウム、ケイ酸ナトリウム、ケイ酸カリウムなどのケイ酸塩;ジエタノールアミンやトリエタノールアミンなどのアミン類;ギ酸カルシウムや酢酸カルシウムなどの有機酸のカルシウム塩;シリカゾルやアルミナゾルなどのコロイドなどが挙げられる。これらの一種又は二種以上を併用することも可能である。これらの中では、硬化促進と強度発現性に優れる面で、アルミン酸塩及び/又は硫酸塩が好ましく、アルミン酸塩と硫酸塩を併用したものがより好ましい。   Examples of curing accelerators include sulfates such as lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate, aluminum sulfate, potassium alum and iron sulfate; carbonates such as lithium carbonate, sodium carbonate and potassium carbonate; lithium hydroxide , Hydroxides such as sodium hydroxide, magnesium hydroxide, aluminum hydroxide, potassium hydroxide, calcium hydroxide; chlorides such as calcium chloride, magnesium chloride, iron chloride; lithium aluminate, sodium aluminate, potassium aluminate Aluminates such as calcium aluminate; silicates such as lithium silicate, sodium silicate and potassium silicate; amines such as diethanolamine and triethanolamine; calcium salts of organic acids such as calcium formate and calcium acetate; Silazo Such as colloid, such as alumina sol and the like. One or two or more of these may be used in combination. Among these, aluminate and / or sulfate are preferable in terms of excellent curing acceleration and strength development, and a combination of aluminate and sulfate is more preferable.

アルミン酸塩の中では、硬化促進と強度発現性の面でアルミン酸カルシウム(以下、CAともいう)が好ましい。CAは、CaOとAlを主成分とする化合物を総称するものであり、例えば、カルシアを含む原料と、アルミナを含む原料等とを混合して、キルンでの焼成や電気炉での溶融等の熱処理をして得られる、CaOとAlを主成分とする化合物を総称するものである。具体例としては、CaO・2Al、CaO・Al、12CaO・7Al、11CaO・7Al・CaF、3CaO・Al、及び3CaO・3Al・CaSOなどで表される結晶性のアルミン酸カルシウム類や、CaOとAlを主成分とする非晶質の化合物が挙げられる。これらの中では、強度発現性の面で非晶質の12CaO・7Al組成のものがより好ましい。
アルミン酸カルシウムの粉末度は、ブレーン値で3,000cm/g以上が好ましく、5,000cm/g以上がより好ましい。3,000cm/g未満では初期強度発現性が小さい場合がある。
Among the aluminates, calcium aluminate (hereinafter also referred to as CA) is preferable in terms of curing acceleration and strength development. CA is a generic term for compounds mainly composed of CaO and Al 2 O 3. For example, CA is mixed with a raw material containing calcia and a raw material containing alumina, and then calcined in a kiln or in an electric furnace. This is a general term for compounds mainly composed of CaO and Al 2 O 3 obtained by heat treatment such as melting. Specific examples, CaO · 2Al 2 O 3, CaO · Al 2 O 3, 12CaO · 7Al 2 O 3, 11CaO · 7Al 2 O 3 · CaF 2, 3CaO · Al 2 O 3, and 3CaO · 3Al 2 O 3 -Crystalline calcium aluminates represented by CaSO 4 or the like, and amorphous compounds mainly composed of CaO and Al 2 O 3 are included. Among these, an amorphous 12CaO · 7Al 2 O 3 composition is more preferable in terms of strength development.
Fineness of calcium aluminate is preferably 3,000 cm 2 / g or more in Blaine value, 5,000 cm 2 / g or more is more preferable. If it is less than 3,000 cm 2 / g, the initial strength development may be small.

硫酸塩の中では、硬化促進と強度発現性の面で硫酸カルシウム及び/又は硫酸アルミニウムが好ましい。硫酸カルシウムとしては、無水石膏、半水石膏、又は二水石膏等が挙げられる。これらの中では、硬化促進と強度発現性の面で、無水石膏が好ましい。
硫酸塩の粉末度は、ブレーン比表面積で3,000cm/g以上が好ましく、5,000cm/g以上がより好ましい。3,000cm/g未満では強度発現性が小さい場合がある。
Among the sulfates, calcium sulfate and / or aluminum sulfate are preferable in terms of curing acceleration and strength development. Examples of calcium sulfate include anhydrous gypsum, hemihydrate gypsum, and dihydrate gypsum. Among these, anhydrous gypsum is preferable in terms of curing acceleration and strength development.
Fineness of sulfate is preferably 3,000 cm 2 / g or more in Blaine specific surface area, 5,000 cm 2 / g or more is more preferable. If it is less than 3,000 cm 2 / g, strength development may be small.

硬化促進剤として,アルミン酸塩と硫酸塩を併用した場合、硫酸塩の使用量は、アルミン酸塩100部に対して、20〜500部が好ましく、50〜150部がより好ましい。20部未満では初期強度発現性が小さくなる場合があり、500部を超えると流動性が大きくなり、水中不分離性が小さくなり、長期強度発現性が小さくなる場合がある。   When an aluminate and a sulfate are used in combination as a curing accelerator, the amount of sulfate used is preferably 20 to 500 parts, more preferably 50 to 150 parts, relative to 100 parts of the aluminate. If it is less than 20 parts, the initial strength development may be small, and if it exceeds 500 parts, the fluidity increases, the inseparability in water decreases, and the long-term strength development may decrease.

硬化促進剤の使用量はその種類によって異なるため一義的に規定することはできないが、一般的には、セメント100部に対して、1〜30部が好ましく、2〜20部がより好ましい。1部未満では流動性が大きくなり、水中不分離性が小さくなり、強度発現性が小さくなる場合があり、30部を超えると粘度が高くなり、圧送距離が短くなる場合がある。   Since the amount of the curing accelerator used varies depending on the type, it cannot be uniquely defined, but in general, 1 to 30 parts is preferable and 2 to 20 parts is more preferable with respect to 100 parts of cement. If the amount is less than 1 part, the fluidity increases, the inseparability in water decreases, and the strength developability may decrease. If the amount exceeds 30 parts, the viscosity increases and the pumping distance may decrease.

本発明のセメントを含有してなる地盤改良材用組成物に、砂や砂利等の骨材、減水剤、及び防凍剤等を併用することも可能である。   It is also possible to use an aggregate such as sand and gravel, a water reducing agent, a defrosting agent, and the like in combination with the ground improvement material composition containing the cement of the present invention.

本発明でセメントと混合する水の量は特に限定されるものではないが、セメント100部に対して、100〜300部が好ましく、150〜200部がより好ましい。100部未満ではセメントを含有してなる地盤改良材用組成物の練混ぜが困難になる場合があり、300部を超えると流動性が大きくなり、水中不分離性が小さくなる場合がある。   The amount of water mixed with the cement in the present invention is not particularly limited, but is preferably 100 to 300 parts, more preferably 150 to 200 parts, with respect to 100 parts of cement. If it is less than 100 parts, it may be difficult to knead the composition for ground improvement material containing cement, and if it exceeds 300 parts, the fluidity may increase and the inseparability in water may decrease.

本発明の地盤改良材用組成物が、高炉フューム、セメント、及び本エマルジョンを含有してなる場合、その使用方法は特に限定されるものではないが、高炉フューム、セメント、及び水とを混合してなるA液と、本エマルジョンと水とを含有してなるB液とを、使用直前に混合する使用方法が、粘度を急激に上昇させることができるため好ましい方法である。なお、本エマルジョンをあらかじめ水と混合して溶液又は懸濁液とすることは、混合性が良好となり、増粘性の面から好ましい。   When the composition for ground improvement material of the present invention contains blast furnace fume, cement, and the present emulsion, the method of use is not particularly limited, but blast furnace fume, cement, and water are mixed. The use method in which the liquid A and the liquid B containing the emulsion and water are mixed immediately before use is a preferable method because the viscosity can be rapidly increased. In addition, mixing this emulsion with water in advance to form a solution or suspension is preferable from the standpoint of increasing the viscosity and improving the viscosity.

本エマルジョンは、水と混合して使用することが好ましい。その場合の水の使用量は特に限定されるものではないが、本エマルジョンの固形分の5〜20倍の水で希釈することが好ましく、硬化促進剤を使用する場合は、1〜3倍に希釈することが好ましい。水の量がこれより少ないと粘性が高くなり混合性が悪くなる場合があり、水の量が多くなると、その希釈水の希釈効果が多くなり、水中不分離性が悪くなる場合がある。
残りの水は、セメントと高炉フュームに混合し、セメント−高炉フューム液のA液と、本エマルジョンのB液を別々に圧送し、ノズル先端で合流混合しながら使用することも可能である。特に、セメント−高炉フューム液のA液、本エマルジョンと水とを混合して2倍量にした本エマルジョン液のB液を別々に圧送し、ノズル先端で合流混合しながら使用することがより好ましい。
The emulsion is preferably used by mixing with water. The amount of water used in that case is not particularly limited, but it is preferably diluted with 5 to 20 times the solid content of the emulsion, and when using a curing accelerator, it is 1 to 3 times. It is preferred to dilute. If the amount of water is less than this, the viscosity may increase and the mixing property may deteriorate, and if the amount of water increases, the dilution effect of the diluted water increases and the inseparability in water may deteriorate.
The remaining water is mixed with cement and blast furnace fume, and the liquid A of the cement-blast furnace fume liquid and the liquid B of the emulsion are separately pumped and used while being mixed and mixed at the nozzle tip. In particular, it is more preferable to use the cement-blast furnace fume liquid A, the emulsion B and the emulsion B, which have been mixed twice, and separately pumped, and combined and mixed at the nozzle tip. .

上記の合流混合の方法としては、Y字管等の混合管を使用する方法、二重管を使用する方法、及び本エマルジョン液のB液をシャワー状にセメント−高炉フューム液のA液に合流混合させるためにインレットピースを使用する方法等が挙げられる。
また、より均一に混合するため、合流混合後の管中にスパイラル状のミキサーをセットし、さらに混合する方法も挙げられる。
As a method of the above merging and mixing, a method using a mixing tube such as a Y-shaped tube, a method using a double tube, and the B liquid of this emulsion liquid are merged into a cement-blast furnace fume A liquid in a shower form. For example, a method of using an inlet piece for mixing.
Moreover, in order to mix more uniformly, the method of setting a spiral mixer in the pipe | tube after merging mixing, and also mixing is mentioned.

本発明の地盤改良材用組成物が、高炉フューム、セメント、本エマルジョン、及び硬化促進剤を含有してなる場合、その使用方法は、上記同様に特に限定されるものではないが、高炉フューム、セメント、及び水とを混合してなるA液と、硬化促進剤と水を含有してなる液(以下、硬化促進剤液という)と、本エマルジョンと水を含有してなる液(以下、本エマルジョン液という)とを混合してなるB液とを、使用直前に混合することにより、あるいは、高炉フューム、セメント、及び水とを混合してなるA液と、硬化促進剤液からなるB液と、本エマルジョン液からなるC液とを、使用直前に混合する方法が、粘度を急激に上昇させることができるため好ましい方法である。   When the composition for ground improvement material of the present invention contains a blast furnace fume, cement, the present emulsion, and a hardening accelerator, its use method is not particularly limited as described above, A liquid obtained by mixing cement and water, a liquid containing a hardening accelerator and water (hereinafter referred to as a hardening accelerator liquid), a liquid containing the emulsion and water (hereinafter referred to as the present liquid). B liquid formed by mixing B liquid obtained by mixing with emulsion liquid) immediately before use, or B liquid formed by mixing blast furnace fume, cement, and water, and curing accelerator liquid And the method of mixing the C liquid comprising the emulsion liquid immediately before use is a preferable method because the viscosity can be rapidly increased.

本エマルジョンと硬化促進剤をあらかじめ水と混合して溶液又は懸濁液とすることは、混合性が良好となり、増粘性の面から好ましい。その場合の水の使用量は特に限定されるものではないが、本エマルジョンの場合は、本エマルジョンの固形分の5〜20倍の水で希釈することが好ましく、硬化促進剤の場合は、その1〜3倍の水で希釈することが好ましい。水の量がこれより少なくなると、粘度が高くなって混合性が小さくなる場合があり、水の量が多くなると、流動性が大きくなって水中不分離性が小さくなる場合がある。   Mixing the emulsion and the curing accelerator with water in advance to form a solution or suspension is preferable from the viewpoint of increasing the viscosity and improving the viscosity. The amount of water used in that case is not particularly limited, but in the case of this emulsion, it is preferable to dilute with 5 to 20 times the solid content of this emulsion, and in the case of a curing accelerator, It is preferable to dilute with 1 to 3 times the water. When the amount of water is less than this, the viscosity may be increased and the mixing property may be reduced, and when the amount of water is increased, the fluidity may be increased and the inseparability in water may be reduced.

本発明において、高炉フューム、セメント、及び水を混合してなるA液と、硬化促進剤液と本エマルジョン液とを混合してなるB液とを別々に圧送し、ノズル先端で合流混合させて使用することも可能である。特に、高炉フューム、セメント、及び水を混合してなるA液、硬化促進剤液からなるB液、及び本エマルジョン液からなるC液の三種類の液を別々に圧送し、ノズル先端で合流混合させて使用することがより好ましい。   In the present invention, A liquid formed by mixing blast furnace fume, cement, and water and B liquid formed by mixing the curing accelerator liquid and the emulsion liquid are separately pumped and merged and mixed at the nozzle tip. It is also possible to use it. In particular, three types of liquids, A liquid made by mixing blast furnace fume, cement, and water, B liquid made from hardening accelerator liquid, and C liquid made from this emulsion liquid, are separately pumped and mixed at the nozzle tip. It is more preferable to use them.

また、硬化促進剤は、水と混合してから1時間以内に硬化する場合があるため、遅延剤を併用することが好ましい。遅延剤としては、クエン酸、酒石酸、グルコン酸、及びリンゴ酸等のオキシカルボン酸又はそれらのナトリウム塩やカリウム塩、ホウ酸、トリポリリン酸塩、並びに、ピロリン酸塩等が挙げられ、これらの一種又は二種以上を併用することが可能である。これらの中では遅延効果が大きい面で、オキシカルボン酸及び/又はオキシカルボン酸塩が好ましく、クエン酸及び/又はクエン酸ナトリウムがより好ましい。
遅延剤の使用量は、セメント100部に対して、0.01〜10部が好ましく、0.05〜5部がより好ましい。0.01部未満では遅延効果が小さい場合があり、10部を超えると強度発現性が小さくなる場合がある。
Moreover, since a hardening accelerator may harden | cure within 1 hour after mixing with water, it is preferable to use a retarder together. Examples of the retarder include oxycarboxylic acids such as citric acid, tartaric acid, gluconic acid, and malic acid, or their sodium salts and potassium salts, boric acid, tripolyphosphate, pyrophosphate, and the like. Or it is possible to use 2 or more types together. Among these, oxycarboxylic acid and / or oxycarboxylate are preferable, and citric acid and / or sodium citrate are more preferable in terms of a large delay effect.
The amount of retarder used is preferably 0.01 to 10 parts, more preferably 0.05 to 5 parts, per 100 parts of cement. If it is less than 0.01 part, the delay effect may be small, and if it exceeds 10 parts, strength development may be small.

上記の合流混合の方法としては、Y字管等の混合管を使用する方法、三重管を使用する方法、及びインレットピースを使用して、硬化促進剤液のB液と本エマルジョン液のC液を、それぞれシャワー状に、セメント、高炉フューム及び水を混合してなるA液に合流混合させる方法等が挙げられる。
また、より均一に混合するため、合流混合後の管中にスパイラル状のミキサーをセットし、さらに混合する方法も挙げられる。
As the method of merging and mixing, a method of using a mixing tube such as a Y-shaped tube, a method of using a triple tube, and an inlet piece, a curing accelerator liquid B and a liquid C of this emulsion And the like, in a shower form, and a method in which the mixture is mixed into a liquid A obtained by mixing cement, blast furnace fume, and water.
Moreover, in order to mix more uniformly, the method of setting a spiral mixer in the pipe | tube after merging mixing, and also mixing is mentioned.

本発明の地盤改良材用組成物を用いてなる注入材に使用する高炉フュームは、鉄鋼の製造過程において、銑鉄を得る際に高炉から発生するヒュームを集塵したダストを、そのまま使用することも可能であり、さらに、粉砕や分級を行い、微粉末化して使用することも可能である。本発明では地盤への高い浸透性が得られるように、最大粒子直径が20μm以下となるように分級して使用することが好ましい。   The blast furnace fume used for the injection material using the composition for ground improvement material according to the present invention may be used as it is in the production process of steel, dust collected from fumes generated from the blast furnace when obtaining pig iron. It is also possible to pulverize and classify and use it after pulverizing. In the present invention, it is preferable to classify and use so that the maximum particle diameter is 20 μm or less so that high permeability to the ground can be obtained.

本発明の高炉フューム、アルミン酸カルシウム又はアルミノケイ酸カルシウム、石膏、及びアルカリ刺激材を含有する地盤改良材用組成物を用いてなる注入材において、使用するアルミノケイ酸カルシウム(以下、CASという)は、CaO、Al、及びSiOを含有するものであり、石膏との併用により,主として短期強度の発現に寄与するものである。
CASの組成は、CaO含有率が20〜60%、Al含有率が20〜70%、及びSiO含有率が5〜30%が好ましく、CaO含有率30〜55%、Al含有率30〜60%、及びSiO含有率10〜20%がより好ましい。この範囲外では短期強度が小さくなる場合がある。
In the injection material using the ground improvement material composition containing the blast furnace fume, calcium aluminate or calcium aluminosilicate, gypsum, and the alkali stimulating material of the present invention, calcium aluminosilicate (hereinafter referred to as CAS) is used. It contains CaO, Al 2 O 3 , and SiO 2 , and contributes mainly to the expression of short-term strength by the combined use with gypsum.
The composition of CAS is preferably 20 to 60% for CaO, 20 to 70% for Al 2 O 3 , and 5 to 30% for SiO 2, 30 to 55% for CaO, and Al 2 O. 3 A content of 30 to 60% and a SiO 2 content of 10 to 20% are more preferable. Outside this range, the short-term strength may be small.

CASは、石灰石等のカルシア原料、アルミナ、ボーキサイト、長石、及び粘土等のアルミナ原料、並びに、ケイ石、ケイ砂、石英、及びケイ藻土等のシリカ原料等を所定の割合で配合した後、ロータリーキルンなどで焼成、又は電気炉や高周波炉等で溶融することにより製造される。   CAS, after blending calcia raw materials such as limestone, alumina raw materials such as alumina, bauxite, feldspar, and clay, and silica raw materials such as quartzite, quartz sand, quartz, and diatomaceous earth in a predetermined ratio, Manufactured by firing in a rotary kiln or the like or melting in an electric furnace or high-frequency furnace.

CASとしては、2CaO・Al・SiOやCaO・Al・2SiOなどの結晶性化合物を使用することも可能であるが、短期強度が大きい面で、溶融物を急冷して得られるガラス質のものが好ましい。
CASのガラス化率は、CASを1,000℃で2時間加熱後、5℃/分の冷却速度で徐冷し、粉末X線回折法により結晶鉱物のメインピークの面積S0を求め、CASの結晶のメインピークSから、X(%)=100×(1−S/S0)として求められる。短期強度の面から50%以上が好ましく、80%以上がより好ましく、90%以上がさらに好ましい。50%未満では短期強度が小さい場合がある。
As CAS, crystalline compounds such as 2CaO · Al 2 O 3 · SiO 2 and CaO · Al 2 O 3 · 2SiO 2 can be used, but the melt is rapidly cooled in terms of high short-term strength. The glassy thing obtained by these is preferable.
The vitrification rate of CAS is as follows: CAS is heated at 1,000 ° C. for 2 hours, then slowly cooled at a cooling rate of 5 ° C./min, and the area S 0 of the main peak of the crystalline mineral is determined by powder X-ray diffraction method. X (%) = 100 × (1−S / S 0 ). From the viewpoint of short-term strength, 50% or more is preferable, 80% or more is more preferable, and 90% or more is more preferable. If it is less than 50%, the short-term strength may be small.

CASの使用量は、高炉フューム100部に対して、1〜50部が好ましく、5〜30部がより好ましい。1部未満では短期強度が小さく、50部を超えると注入材を懸濁液としたときの粘度が大きくなり、地盤への浸透性が低下する場合がある。   The amount of CAS used is preferably 1-50 parts, more preferably 5-30 parts, per 100 parts of blast furnace fume. If the amount is less than 1 part, the short-term strength is small, and if it exceeds 50 parts, the viscosity when the injection material is made into a suspension increases, and the permeability to the ground may decrease.

また、本発明の上記注入材において使用するアルミン酸カルシウムは、石膏との併用により主として強度発現に寄与するものである。具体例としては、地盤改良材用組成物組成物に含有されるCAとして、先に例示したものがいずれも使用可能である。これらの中で、注入材の硬化時間や強度発現性の面から、CaO/Alモル比が1〜2にある非晶質のものを選定することが好ましい。Further, the calcium aluminate used in the above-mentioned injection material of the present invention mainly contributes to strength development by the combined use with gypsum. As a specific example, any of those exemplified above can be used as the CA contained in the composition composition for ground improvement material. Among these, it is preferable to select an amorphous material having a CaO / Al 2 O 3 molar ratio of 1 to 2 from the viewpoint of curing time and strength development of the injection material.

CAのガラス化率は、上記したCASの場合と全く同様に、X(%)=100×(1−S/S0)として求められる。但し、S、S0は、CASの場合と同様に求められる。短期強度の面から50%以上が好ましく、80%以上がより好ましく、90%以上がさらに好ましい。50%未満では短期強度が小さい場合がある。The vitrification rate of CA is obtained as X (%) = 100 × (1−S / S 0 ), just as in the case of CAS described above. However, S and S 0 are obtained in the same manner as in CAS. From the viewpoint of short-term strength, 50% or more is preferable, 80% or more is more preferable, and 90% or more is more preferable. If it is less than 50%, the short-term strength may be small.

CAは、CaO原料とAl原料等をロータリーキルンや電気炉によって熱処理するなどの方法で得られる。CAを製造する際の原料は特に限定されるものではなく、例えば、CaO原料としては、石灰石や貝殻等の炭酸カルシウム、消石灰、及び生石灰等が挙げられ、Al原料としては、例えば、ボーキサイトやアルミ残灰と呼ばれる産業副産物のほか、アルミ粉等が挙げられる。CA is obtained by a method of heat-treating a CaO raw material and an Al 2 O 3 raw material with a rotary kiln or an electric furnace. The raw material for producing CA is not particularly limited, and examples of the CaO raw material include calcium carbonate such as limestone and shells, slaked lime, and quick lime. Examples of the Al 2 O 3 raw material include: In addition to industrial by-products called bauxite and aluminum residue, aluminum powder and the like can be mentioned.

CAの使用量は、高炉フューム100部に対して、1〜50部が好ましく、5〜30部がより好ましい。1部未満では短期強度が小さく、50部を超えると注入材を懸濁液としたときの粘度が大きくなり、地盤への浸透性が低下する場合がある。   The amount of CA used is preferably 1 to 50 parts, more preferably 5 to 30 parts, per 100 parts of blast furnace fume. If the amount is less than 1 part, the short-term strength is small, and if it exceeds 50 parts, the viscosity when the injection material is made into a suspension increases, and the permeability to the ground may decrease.

更に、本発明の上記注入材において使用する石膏は、無水石膏、半水石膏、二水石膏が挙げられる。さらに天然石膏や、リン酸副生石膏、排脱石膏、フッ酸副生石膏等の化学石膏、又はこれらを熱処理して得られる石膏等使用できる。これらの中で強度発現性が大きい面で無水石膏が好ましい。
石膏の使用量は、高炉フューム100部に対して、1〜50部が好ましく、5〜30部がより好ましい。1部未満では短期強度が小さく、50部を超えると地盤への浸透性が低下する場合がある。
Furthermore, examples of the gypsum used in the injection material of the present invention include anhydrous gypsum, hemihydrate gypsum, and dihydrate gypsum. Further, natural gypsum, chemical gypsum such as phosphoric acid byproduct gypsum, waste gypsum, hydrofluoric acid byproduct gypsum, or gypsum obtained by heat-treating these can be used. Among these, anhydrous gypsum is preferable in terms of high strength development.
The amount of gypsum used is preferably 1 to 50 parts, more preferably 5 to 30 parts, per 100 parts of blast furnace fume. If it is less than 1 part, the short-term strength is small, and if it exceeds 50 parts, the permeability to the ground may be lowered.

また更に、本発明の上記注入材において使用するアルカリ刺激材は、高炉フュームとの併用により、硬化、長期強度の増大に寄与する。
アルカリ刺激材としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸リチウムなどのアルカリ金属炭酸塩、並びに、消石灰等が挙げられる。特に限定されるものではないが、その中でも高炉フュームとの併用による硬化、長期強度の増大の面から消石灰が好ましい。
アルカリ刺激材の使用量は、高炉フューム100部に対して、1〜50部が好ましく、3〜20部がより好ましい。1部未満では長期強度が小さく、50部を超えると地盤への浸透性が低下する場合がある。
Furthermore, the alkali stimulating material used in the above-mentioned injection material of the present invention contributes to an increase in curing and long-term strength when used in combination with a blast furnace fume.
Examples of the alkali stimulating material include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide, alkali metal carbonates such as sodium carbonate, potassium carbonate and lithium carbonate, and slaked lime. Although not particularly limited, slaked lime is preferred from the viewpoints of curing by using in combination with a blast furnace fume and increasing long-term strength.
The amount of the alkali stimulant used is preferably 1 to 50 parts, more preferably 3 to 20 parts, per 100 parts of the blast furnace fume. If it is less than 1 part, long-term intensity | strength is small, and if it exceeds 50 parts, the permeability to the ground may fall.

本発明における注入材の最大粒径は20μmが好ましく、15μmがより好ましく、10μm以下が最も好ましい。20μmを超えると、地盤の地質によっては微細な間隙への注入が困難になる場合がある。   The maximum particle size of the injection material in the present invention is preferably 20 μm, more preferably 15 μm, and most preferably 10 μm or less. If it exceeds 20 μm, injection into fine gaps may be difficult depending on the geology of the ground.

注入材の粒度の調製方法は特に制限されるものではないが、各材料を別々にボールミルなどの粉砕機で粉砕し、分級により20μm以下のものを集め、その後混合するか、又は各材料を混合した後に粉砕し、分級により20μm以下のものを集める方法のいずれも使用可能である。しかしながら、各材料を混合した後に粉砕し、分級すると、各材料の密度差により混合比が変わる恐れがあるため、各材料を別々に粉砕し、分級しその後混合することが好ましい。   The method for adjusting the particle size of the injection material is not particularly limited, but each material is separately pulverized by a pulverizer such as a ball mill, and those having a size of 20 μm or less are collected by classification and then mixed, or each material is mixed. Any of the methods of pulverizing and collecting 20 μm or less by classification can be used. However, if each material is mixed and then pulverized and classified, the mixing ratio may change due to the difference in density of each material. Therefore, it is preferable to pulverize, classify, and then mix each material separately.

さらに本発明では、所要の硬化時間が得られるように調整するために、凝結調整剤を併用することは好ましい。
凝結調整剤としては、アルミン酸ナトリウムやアルミン酸カリウムなどのアルミン酸塩、炭酸ナトリウムや炭酸カリウムなどの炭酸塩、水酸化ナトリウムや水酸化カリウムなどの水酸化物、硫酸アルミニウム、硫酸鉄(III)、及びミョウバンなどの硫酸塩、ケイ酸ナトリウムやケイ酸カリウムなどのケイ酸塩、リン酸ナトリウム、リン酸カルシウム、及びリン酸マグネシウムなどのリン酸塩、並びに、ホウ酸リチウムやホウ酸ナトリウムなどのホウ酸塩等の無機塩類、クエン酸、グルコン酸、酒石酸、及びリンゴ酸又はこれらのナトリウム塩、カリウム塩、及びカルシウム塩等の有機酸又はその金属塩類、並びに、糖類等が挙げられる。これらのうちの一種又は二種以上を併用することが可能である。これらの中では所要の硬化時間を確保する上で、炭酸塩と有機酸類を併用することが好ましい。
Further, in the present invention, it is preferable to use a coagulation adjusting agent in order to adjust the required curing time.
Condensation regulators include aluminates such as sodium aluminate and potassium aluminate, carbonates such as sodium carbonate and potassium carbonate, hydroxides such as sodium hydroxide and potassium hydroxide, aluminum sulfate, iron sulfate (III) And sulfates such as alum, silicates such as sodium silicate and potassium silicate, phosphates such as sodium phosphate, calcium phosphate, and magnesium phosphate, and boric acid such as lithium borate and sodium borate Examples thereof include inorganic salts such as salts, citric acid, gluconic acid, tartaric acid, malic acid, organic acids such as sodium salts, potassium salts, and calcium salts thereof, or metal salts thereof, and saccharides. One or two or more of these can be used in combination. Among these, it is preferable to use a carbonate and an organic acid in combination in order to secure a required curing time.

凝結調整剤の使用量は、硬化時間に応じて調整するため特に限定されるものではないが、CAS、又はCAと石膏との合計100部に対して、0.1〜10部が好ましく、0.5〜5部がより好ましい。0.1部未満では硬化時間を確保しにくい場合があり、10部を超えると硬化時間が長くなり、強度が小さくなる場合がある。   The amount of the setting modifier is not particularly limited because it is adjusted according to the curing time, but is preferably 0.1 to 10 parts with respect to 100 parts of CAS or CA and gypsum in total. More preferred is 5 to 5 parts. If it is less than 0.1 part, it may be difficult to ensure the curing time, and if it exceeds 10 parts, the curing time may be long and the strength may be small.

地盤中への浸透性を向上させるために、本発明では、さらに分散剤を使用することが好ましい。
分散剤としては、ナフタレンスルホン酸ホルマリン縮合物塩系、リグニンスルホン酸系、メラミンスルホン酸ホルマリン縮合物塩系、ポリカルボン酸塩系、及びポリエーテル系の分散剤が挙げられる。
分散剤の使用量は、高炉フューム100部に対して、0.1〜10部が好ましく、0.5〜3部がより好ましい。0.1部未満では浸透性が小さい場合があり、10部を超えると強度が小さくなる場合がある。
In order to improve the permeability into the ground, it is preferable to use a dispersant in the present invention.
Examples of the dispersant include naphthalene sulfonic acid formalin condensate salt type, lignin sulfonic acid type, melamine sulfonic acid formalin condensate salt type, polycarboxylate type, and polyether type dispersant.
0.1-10 parts are preferable with respect to 100 parts of blast furnace fumes, and, as for the usage-amount of a dispersing agent, 0.5-3 parts are more preferable. If it is less than 0.1 part, the permeability may be small, and if it exceeds 10 parts, the strength may be small.

注入材を懸濁液とする場合の水量は、ポンプで懸濁液を圧送できれば特に限定されるものではないが、高炉フューム、CAS又はCA、石膏、及びアルカリ刺激材の合計100部に対して、100〜1,000部が好ましく、200〜500部がより好ましい。100部未満では懸濁液の粘度が高くなって浸透性が小さい場合があり、1,000部を超えると強度が小さくなる場合がある。   The amount of water in the case of using the injection material as a suspension is not particularly limited as long as the suspension can be pumped with a pump, but for a total of 100 parts of blast furnace fume, CAS or CA, gypsum, and alkali stimulating material. 100 to 1,000 parts are preferred, and 200 to 500 parts are more preferred. If it is less than 100 parts, the viscosity of the suspension becomes high and the permeability may be small, and if it exceeds 1,000 parts, the strength may be small.

注入材の練混ぜ方法や注入方法は特に限定されるものではなく、単管ロッド工法、単管ストレーナ工法、二重管単相工法、二重管複相工法、及び二重管ダブルパッカー工法等、現在使用されている工法に適用可能である。   The mixing method and injection method of the injection material are not particularly limited. Single pipe rod method, single pipe strainer method, double pipe single phase method, double pipe double phase method, double pipe double packer method, etc. It can be applied to the currently used construction method.

以下、実施例により本発明を詳細に説明するが、本発明はそれらに限定して解釈されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is limited to them and is not interpreted.

実施例1−1
表1−1に示す高炉フュームとシリカフュームを配合して地盤改良材用組成物を調製し、調製した地盤改良材用組成物100部に対して、水150部を加えて攪拌し、地盤改良材を調製し、その地盤改良材の浸透性と、硬化後の改良体の耐久性について確認を行った。
なお、比較のために、本発明の地盤改良材用組成物の代わりに、高炉スラグ微粉末や水ガラス系地盤改良材を使用した場合についても同様の実験を行った。結果を表1−1に併記する。
Example 1-1
A ground improvement material composition is prepared by blending the blast furnace fume and silica fume shown in Table 1-1, and 150 parts of water is added to 100 parts of the prepared ground improvement material composition, and the ground improvement material is stirred. Was prepared, and the permeability of the ground improvement material and the durability of the improved body after curing were confirmed.
For comparison, a similar experiment was also performed when blast furnace slag fine powder or water glass-based ground improvement material was used instead of the ground improvement material composition of the present invention. The results are also shown in Table 1-1.

<使用材料>
高炉フューム:中国産、市販品、SiO 25%、Fe 3%、Al 13%、CaO 19%、MgO 6%、NaO 1.3%、KO 9%、SO 10%、S 0.3%、及びMnO 0.2%、ブレーン値21,000cm/g、最大粒径は30μm、平均粒径は4μm
シリカフューム:市販品、酸性のシリカフューム、平均粒径0.1μm、ブレーン値15万cm/g
高炉スラグ微粉末:市販の高炉水砕スラグの微粉末、最大粒径5μm、平均粒径5μm
水ガラス系地盤改良材:市販品、主成分は水ガラス、副成分は炭酸ナトリウム
水 :水道水
<Materials used>
Blast furnace fume: Made in China, commercially available, SiO 2 25%, Fe 2 O 3 3%, Al 2 O 3 13%, CaO 19%, MgO 6%, Na 2 O 1.3%, K 2 O 9%, SO 3 10%, S 0.3%, and MnO 0.2%, Blaine value 21,000 cm 2 / g, maximum particle size 30 μm, average particle size 4 μm
Silica fume: Commercially available product, acidic silica fume, average particle size of 0.1 μm, Blaine value of 150,000 cm 2 / g
Blast furnace slag fine powder: fine powder of granulated blast furnace slag, maximum particle size 5 μm, average particle size 5 μm
Water glass-based ground improvement material: Commercial products, the main component is water glass, the accessory component is sodium carbonate water: tap water

<測定方法>
浸透性:直径5cm×高さ30cmのビニールチューブに、8号ケイ砂を高さ20cmまで充填し、ビニールチューブの底面に0.5mm程度の孔をあけた後、地盤改良材250ccを上面から投入し、1日後に浸透深さを測定
耐久性:浸透性試験で得られた硬化体を材齢91日まで観察し、離しょう水を測定して評価した。離しょう水は、ビニールチューブの底面にあけた孔から流れ落ちた水の重さを測定し、地盤改良材250ccに対する体積%で示した。
<Measurement method>
Penetration: Filling a vinyl tube with a diameter of 5cm x 30cm in height with No. 8 silica sand to a height of 20cm, drilling a hole of about 0.5mm in the bottom of the vinyl tube, and then adding 250cc of ground improvement material from the top. Then, the penetration depth was measured after 1 day. Durability: The cured product obtained in the penetration test was observed until the material age of 91 days, and the soaking water was measured and evaluated. The amount of water that flowed down from the hole made in the bottom surface of the vinyl tube was measured as the separating water, and it was expressed in volume% with respect to 250 cc of the ground improvement material.

Figure 2006051875
Figure 2006051875

実施例1−2
表1−2に示す高炉フューム、シリカフューム、及びセメント類を用いたこと以外は実験例1−1と同様に行った。結果を表1−2に併記する。
Example 1-2
It carried out similarly to Experimental example 1-1 except having used the blast furnace fume shown in Table 1-2, silica fume, and cements. The results are also shown in Table 1-2.

<使用材料>
セメント類A:市販品の微粉セメント、最大粒径40μm、平均粒径5μm
セメント類B:市販の水酸化カルシウム、最大粒径40μm、平均粒径5μm
<Materials used>
Cement A: Commercially available fine powder cement, maximum particle size 40 μm, average particle size 5 μm
Cement B: Commercially available calcium hydroxide, maximum particle size 40 μm, average particle size 5 μm

Figure 2006051875
Figure 2006051875

実験例2−1
セメント100部に対して、表2−1に示す量の高炉フュームと水とをミキサーで混練してA液を調製した。次に、セメント100部に対して、固形分換算で0.5部のエマルジョンαと水5部を混合してB液を調製した。
A液にB液を投入し、5秒間混練し、混練物を調製し、そのフロー、水中不分離性、及び圧縮強度を測定した。
なお、比較のため、高炉フュームの代わりにベントナイトを用いて同様な実験を行った。結果を表2−1に併記する。
Experimental Example 2-1
A liquid A was prepared by kneading the amount of blast furnace fume and water shown in Table 2-1 with 100 parts of cement using a mixer. Next, with respect to 100 parts of cement, 0.5 part of emulsion α and 5 parts of water in terms of solid content were mixed to prepare B liquid.
The B liquid was added to the A liquid and kneaded for 5 seconds to prepare a kneaded product, and its flow, underwater inseparability, and compressive strength were measured.
For comparison, a similar experiment was conducted using bentonite instead of blast furnace fume. The results are also shown in Table 2-1.

<使用材料>
セメント :普通ポルトランドセメント、市販品
エマルジョンα:本エマルジョン、固形分濃度30%、エチルアクリレート:メタクリル酸=45:55のエチルアクリレート/メタクリル酸共重合ポリマーエマルジョン
高炉フューム:中国産、市販品。SiO 25%、Fe 3%、Al 13%、CaO 19%、MgO 6%、NaO 1.3%、KO 9%、SO10%、S 0.3%、及びMnO 0.2%、ブレーン値21,000cm/g、最大粒径は30μm、平均粒径は4μm
ベントナイト:市販品
<Materials used>
Cement: normal Portland cement, commercial product emulsion α: the present emulsion, solid content concentration 30%, ethyl acrylate: methacrylic acid = 45: 55 ethyl acrylate / methacrylic acid copolymer emulsion blast furnace fume: Chinese commercial product. SiO 2 25%, Fe 2 O 3 3%, Al 2 O 3 13%, CaO 19%, MgO 6%, Na 2 O 1.3%, K 2 O 9%, SO 3 10%, S 0.3 %, And MnO 0.2%, Blaine value 21,000 cm 2 / g, maximum particle size 30 μm, average particle size 4 μm
Bentonite: Commercial product

<測定方法>
フロー :内径80mm×高さ80mmのシリンダーに混練物を入れ、シリンダーを引き抜いた後の広がりを2分後に測定
水中不分離性:土木学会の水中不分離コンクリート設計施工指針付属書の水中分離度試験に準じて実施、水の濁りが全くない場合を優、水の濁りがわずかにある場合を良、水の濁りはあるが実用可能の場合を可、及び材料が分離し、水の濁りが大の場合を不可とした。
圧縮強度 :JIS R 5201に準じて測定
<Measurement method>
Flow: Put the kneaded material into a cylinder with an inner diameter of 80mm x height of 80mm, and measure the spread after pulling out the cylinder after 2 minutes. Underwater inseparability: Underwater separability test in the appendix to the Guidelines for Design and Construction of Underwater Non-Isolated Concrete Performed according to the above, excellent when there is no turbidity of water, good when there is slight turbidity of water, acceptable when there is turbidity of water but is practical, and the material is separated and the turbidity of water is large In the case of.
Compressive strength: Measured according to JIS R 5201

Figure 2006051875
Figure 2006051875

セメント100部、高炉フューム200部、及び水180部をミキサーで混練してA液を調製し、セメント100部に対して、表2−2に示すエマルジョンと、エマルジョンの10倍量の水とを混合してB液を調製したこと以外は実験例2−1と同様に行った。
なお、比較のため、本エマルジョンの代わりにアルカリ増粘性を有さない非本エマルジョンを用いて同様な実験を行った。結果を表2−2に併記する。
100 parts of cement, 200 parts of blast furnace fume, and 180 parts of water are kneaded with a mixer to prepare solution A. The emulsion shown in Table 2-2 and 10 times the amount of water of the emulsion are added to 100 parts of cement. It carried out similarly to Experimental example 2-1, except having mixed and preparing B liquid.
For comparison, a similar experiment was conducted using a non-emulsion having no alkali thickening instead of the present emulsion. The results are also shown in Table 2-2.

<使用材料>
エマルジョンβ:本エマルジョン、固形分濃度30%、エチルアクリレート:メタクリル酸=45:55のエチレン/酢酸ビニル共重合ポリマーエマルジョン70部と、エチレン:酢酸ビニル=18:82のエチルアクリレート/アクリル酸共重合ポリマーエマルジョン30部の混合物
エマルジョンγ:本エマルジョン、固形分濃度30%、スチレン:2-エチルヘキシルアクリレート=45:55のスチレン/2-エチルヘキシルアクリレート共重合ポリマーエマルジョン
<Materials used>
Emulsion β: this emulsion, solid content concentration 30%, ethyl acrylate: methacrylic acid = 45: 55 ethylene / vinyl acetate copolymer emulsion 70 parts, ethylene: vinyl acetate = 18: 82 ethyl acrylate / acrylic acid copolymer Polymer emulsion 30 parts of mixture emulsion γ: this emulsion, solid content concentration 30%, styrene: 2-ethylhexyl acrylate = 45: 55 styrene / 2-ethylhexyl acrylate copolymer polymer emulsion

Figure 2006051875
Figure 2006051875

実験例3−1
セメント100部に対して、表3−1に示す量の高炉フュームと水をミキサーで練混ぜてA液を調製した。次に、セメント100部に対して、硬化促進剤a5部と水10部を混合してB液を調製し、固形分換算で0.5部の本エマルジョンαと水5部を混合してC液を調製した。
A液、B液、及びC液をミキサーに続けて投入して5秒間練混ぜて注入材を調製した後、フロー、水中不分離性、及び圧縮強度を測定した。なお、比較のため、高炉フュームの代わりにベントナイトを用いて同様に行った。結果を表3−1に併記する。
Experimental example 3-1
With respect to 100 parts of cement, the blast furnace fume of the quantity shown in Table 3-1 and water were mixed with the mixer, and A liquid was prepared. Next, with respect to 100 parts of cement, 5 parts of hardening accelerator a and 10 parts of water are mixed to prepare a liquid B, 0.5 parts of this emulsion α and 5 parts of water in terms of solid content are mixed to obtain C. A liquid was prepared.
Liquid A, liquid B and liquid C were continuously added to the mixer and mixed for 5 seconds to prepare an injection material, and then the flow, water inseparability, and compressive strength were measured. For comparison, the same procedure was performed using bentonite instead of blast furnace fume. The results are also shown in Table 3-1.

<使用材料>
セメント :普通ポルトランドセメント、市販品
高炉フューム:中国産、市販品、SiO 25%、Fe 3%、Al 13%、CaO 19%、MgO 6%、NaO 1.3%、KO 9%、SO 10%、S 0.3%、及びMnO 0.2%、ブレーン値21,000cm/g、最大粒径は30μm、平均粒径は4μm
エマルジョンα:本エマルジョン、固形分濃度30%、エチルアクリレート:メタクリル酸=45:55のエチルアクリレート/メタクリル酸共重合ポリマーエマルジョン
硬化促進剤a:12CaO・7Al組成のアルミン酸カルシウム、ガラス化率95%、ブレーン値6,000cm/gのアルミン酸塩と、無水石膏、ブレーン値5,400cm/gの硫酸塩の等量混合物
ベントナイト:市販品
<Materials used>
Cement: Ordinary Portland cement, commercial blast furnace fume: Made in China, commercially available, SiO 2 25%, Fe 2 O 3 3%, Al 2 O 3 13%, CaO 19%, MgO 6%, Na 2 O 1.3 %, K 2 O 9%, SO 3 10%, S 0.3%, and MnO 0.2%, Blaine value 21,000 cm 2 / g, maximum particle size 30 μm, average particle size 4 μm
Emulsion α: This emulsion, solid content concentration 30%, ethyl acrylate: methacrylic acid = 45: 55 ethyl acrylate / methacrylic acid copolymer emulsion curing accelerator a: calcium aluminate with 12CaO · 7Al 2 O 3 composition, vitrification Bentonite: commercial mixture of aluminate with a rate of 95% and a brane value of 6,000 cm 2 / g and an equivalent of sulfate with anhydrous gypsum and a brane value of 5,400 cm 2 / g

<測定方法>
フロー :内径80mm×高さ80mmのシリンダーに練混ぜ後の注入材を入れ、シリンダーを引き抜いた後の広がりを2分後に測定
水中不分離性:土木学会の水中不分離コンクリート設計施工指針付属書の水中分離度試験に準じて実施、水の濁りが全くない場合を優、水の濁りがわずかにある場合を良、水の濁りはあるが、実用可能の場合を可、材料が分離し、水の濁りが大の場合を不可とした。
圧縮強度 :JIS R 5201に準じて測定
<Measurement method>
Flow: Put the injected material after mixing in a cylinder with an inner diameter of 80mm x height of 80mm, and measure the spread after pulling out the cylinder after 2 minutes. Underwater inseparability: Performed according to water separation test, excellent when there is no water turbidity, good when water is slightly turbid, water turbidity is possible but practical when possible, material is separated and water When the turbidity of the water was large, it was made impossible.
Compressive strength: Measured according to JIS R 5201

Figure 2006051875
Figure 2006051875

実施例3−2
セメント100部、高炉フューム200部、及び水180部をミキサーで練混ぜてA液を調製し、セメント100部に対して、硬化促進剤a5部と水10部を混合してB液を調製し、表3−2に示すエマルジョンと、エマルジョンの10倍量の水とを混合してC液を調製したこと以外は実験例3−1と同様に行った。
なお、比較のため、本エマルジョンの代わりにアルカリ増粘性を有さない非本エマルジョンを用いて同様に行った。結果を表3−2に併記する。
Example 3-2
100 parts of cement, 200 parts of blast furnace fume, and 180 parts of water are mixed with a mixer to prepare A liquid, and 100 parts of cement is mixed with 5 parts of hardening accelerator a and 10 parts of water to prepare B liquid. The same procedure as in Experimental Example 3-1 was conducted except that the emulsion shown in Table 3-2 and 10 times the amount of water of the emulsion were mixed to prepare solution C.
For comparison, the same procedure was performed using a non-emulsion having no alkali thickening instead of the present emulsion. The results are also shown in Table 3-2.

<使用材料>
エマルジョンβ:本エマルジョン、固形分濃度30%、エチルアクリレート:メタクリル酸=45:55のエチルアクリレート/メタクリル酸共重合ポリマーエマルジョン70部と、エチレン:酢酸ビニル=18:82のエチレン/酢酸ビニル共重合ポリマーエマルジョン30部の混合物
エマルジョンγ:本エマルジョン、固形分濃度30%、スチレン:2−エチルヘキシルアクリレート=45:55のスチレン/2−エチルヘキシルアクリレート共重合ポリマーエマルジョン
<Materials used>
Emulsion β: This emulsion, solid content concentration 30%, ethyl acrylate: methacrylic acid = 45: 55 ethyl acrylate / methacrylic acid copolymer emulsion 70 parts, ethylene: vinyl acetate = 18: 82 ethylene / vinyl acetate copolymer Polymer emulsion 30 parts of mixture emulsion γ: this emulsion, solid content concentration 30%, styrene: 2-ethylhexyl acrylate = 45: 55 styrene / 2-ethylhexyl acrylate copolymer polymer emulsion

Figure 2006051875
Figure 2006051875

実施例3−3
セメント100部、高炉フューム200部、及び水180部をミキサーで練混ぜてA液を調製し、セメント100部に対して、固形分換算で0.5部の本エマルジョンαと水5部を混合してC液を調製した。セメント100部に対して表3−3に示す硬化促進剤と、その2倍量の水、及び遅延剤0.1部を混合してB液を調製したこと以外は実験例3−1と同様に行った。結果を表3−3に併記する。
Example 3-3
Mix 100 parts of cement, 200 parts of blast furnace fume, and 180 parts of water with a mixer to prepare solution A, and mix 100 parts of cement with 0.5 part of this emulsion α and 5 parts of water in terms of solid content. Thus, liquid C was prepared. Similar to Experimental Example 3-1, except that the hardening accelerator shown in Table 3-3, 100% of cement, twice the amount of water, and 0.1 part of retarder were mixed to prepare solution B. Went to. The results are also shown in Table 3-3.

<使用材料>
硬化促進剤b:硫酸塩、硫酸アルミニウム、市販品
硬化促進剤c:炭酸塩、炭酸ナトリウム、市販品
硬化促進剤d:水酸化物、水酸化カルシウム、市販品
硬化促進剤e:アルミン酸塩、アルミン酸ナトリウム、市販品
硬化促進剤f:コロイド、シリカゾル、市販品
遅延剤 :クエン酸、市販品
<Materials used>
Curing accelerator b: sulfate, aluminum sulfate, commercial product curing accelerator c: carbonate, sodium carbonate, commercial product curing accelerator d: hydroxide, calcium hydroxide, commercial product curing accelerator e: aluminate, Sodium aluminate, commercial curing accelerator f: colloid, silica sol, commercial product retarder: citric acid, commercial product

Figure 2006051875
Figure 2006051875

実施例4−1
高炉フューム100部に対して、表4−1に示すCAS、石膏、及びアルカリ刺激材を混合し、最大粒径30μmの注入材を調製した。調製した注入材100部と水300部とを混合して懸濁液を作製した。このとき、高炉フューム100部に対して、分散剤1部を混合し、CASと石膏の合計100部に対して、凝結調整剤を1部混合し、注入材の硬化時間、浸透長さ、及び圧縮強度を測定した。結果を表4−1に併記する。
Example 4-1
CAS, gypsum, and alkali stimulating material shown in Table 4-1 were mixed with 100 parts of blast furnace fume to prepare an injection material having a maximum particle size of 30 μm. A suspension was prepared by mixing 100 parts of the prepared injection material and 300 parts of water. At this time, 1 part of the dispersant is mixed with 100 parts of the blast furnace fume, 1 part of the setting modifier is mixed with 100 parts of CAS and gypsum, and the setting time, penetration length, and The compressive strength was measured. The results are also shown in Table 4-1.

<使用材料>
高炉フューム:中国産、市販品。SiO 25%、Fe 3%、Al 13%、CaO 19%、MgO 6%、NaO 1.3%、KO 9%、SO 10%、S 0.3%、及びMnO 0.2%、ブレーン値21,000cm/g、最大粒径は30μm、平均粒径は4μm
CASイ :CaO 45%、Al 40%、及びSiO 15%の組成のガラス、ガラス化率95%
CASロ :CaO 45%、Al 28%、及びSiO 27%の組成のガラス、ガラス化率95%
石膏 :天然無水石膏
アルカリ刺激材:消石灰、市販品
分散剤 :ナフタレンスルホン酸ホルマリン縮合物塩系
凝結調整剤:クエン酸と炭酸カリウムの重量比1:3の混合品
<Materials used>
Blast furnace fume: A commercial product from China. SiO 2 25%, Fe 2 O 3 3%, Al 2 O 3 13%, CaO 19%, MgO 6%, Na 2 O 1.3%, K 2 O 9%, SO 3 10%, S 0.3 %, And MnO 0.2%, Blaine value 21,000 cm 2 / g, maximum particle size 30 μm, average particle size 4 μm
CAS A: Glass with a composition of 45% CaO, 40% Al 2 O 3 and 15% SiO 2 , 95% vitrification rate
CAS: Glass with a composition of 45% CaO, 28% Al 2 O 3 and 27% SiO 2 , 95% vitrification rate
Gypsum: natural anhydrous gypsum alkali stimulant: slaked lime, commercial product dispersant: naphthalene sulfonic acid formalin condensate salt-based coagulation regulator: mixture of citric acid and potassium carbonate in a weight ratio of 1: 3

<試験方法>
浸透長さ :直径5cm×長さ30cmのビニールチューブに8号珪砂を長さ20cmになるように充填し、注入材を200ml投入して1日後、砂への浸透長さを測定
硬化時間 :懸濁液を入れたカップを傾けても懸濁液が流れなくなるまでの時間
圧縮強度 :JIS R 5201に準じて測定、測定材齢1日と28日
<Test method>
Penetration length: Filled a 5 cm diameter x 30 cm vinyl tube with No. 8 silica sand to a length of 20 cm, put 200 ml of injection material one day later, and measured the penetration length into the sand Curing time: Suspension Time compressive strength until suspension no longer flows even if the cup containing the turbid liquid is tilted: measured according to JIS R 5201, measured material age 1 day and 28 days

Figure 2006051875
Figure 2006051875

実施例4−2
高炉フューム100部に対して、CASイを10部、石膏10部、及びアルカリ刺激材5部を混合し、表4−2に示す最大粒径の注入材を調製し、実験例4−1と同様にして硬化時間、浸透長さ、及び圧縮強度を測定した。結果を表4−2に併記する。
Example 4-2
100 parts of blast furnace fume is mixed with 10 parts of CAS, 10 parts of gypsum, and 5 parts of alkali stimulating material to prepare an injection material having the maximum particle size shown in Table 4-2. Similarly, the curing time, penetration length, and compressive strength were measured. The results are also shown in Table 4-2.

Figure 2006051875
Figure 2006051875

実施例5−1
高炉フューム100部に対して、表5−1に示すCA、石膏、及びアルカリ刺激材を混合し、最大粒径30μmの注入材を調製した。調製した注入材100部と水300部とを混合して懸濁液を作製した。このとき、高炉フューム100部に対して、分散剤1部を混合し、CAと石膏の合計100部に対して、凝結調整剤を1部混合し、注入材の硬化時間、浸透長さ、及び圧縮強度を測定した。結果を表5−1に併記する。
Example 5-1
For 100 parts of blast furnace fume, CA shown in Table 5-1, gypsum, and an alkali stimulating material were mixed to prepare an injection material having a maximum particle size of 30 μm. A suspension was prepared by mixing 100 parts of the prepared injection material and 300 parts of water. At this time, 1 part of the dispersant is mixed with 100 parts of the blast furnace fume, 1 part of the setting modifier is mixed with 100 parts of the total of CA and gypsum, and the setting time, penetration length, and The compressive strength was measured. The results are also shown in Table 5-1.

<使用材料>
高炉フューム:中国産、市販品、SiO 25%、Fe 3%、Al 13%、CaO 19%、MgO 6%、NaO 1.3%、KO 9%、SO 10%、S 0.3%、及びMnO 0.2%、ブレーン値21,000cm/g、最大粒径は30μm、平均粒径は4μm
CAイ :非晶質12CaO・7Al、ガラス化率95%
CAロ :結晶質CaO・Al、ガラス化率20%
石膏 :天然無水石膏
アルカリ刺激材:消石灰、市販品
分散剤 :ナフタレンスルホン酸ホルマリン縮合物塩系
凝結調整剤:クエン酸と炭酸カリウムの重量比1:3の混合品
<Materials used>
Blast furnace fume: Made in China, commercially available, SiO 2 25%, Fe 2 O 3 3%, Al 2 O 3 13%, CaO 19%, MgO 6%, Na 2 O 1.3%, K 2 O 9%, SO 3 10%, S 0.3%, and MnO 0.2%, Blaine value 21,000 cm 2 / g, maximum particle size 30 μm, average particle size 4 μm
CA B: Amorphous 12CaO · 7Al 2 O 3 , vitrification rate 95%
CA: crystalline CaO.Al 2 O 3 , vitrification rate 20%
Gypsum: natural anhydrous gypsum alkali stimulant: slaked lime, commercial product dispersant: naphthalene sulfonic acid formalin condensate salt-based coagulation regulator: mixture of citric acid and potassium carbonate in a weight ratio of 1: 3

<試験方法>
浸透長さ :直径5cm×長さ30cmのビニールチューブに8号珪砂を長さ20cmになるように充填し、注入材を200ml投入して1日後、砂への浸透長さを測定
硬化時間 :懸濁液を入れたカップを傾けても懸濁液が流れなくなるまでの時間
圧縮強度 :JIS R 5201に準じて測定、測定材齢1日と28日
<Test method>
Penetration length: Filled vinyl tube of diameter 5cm x length 30cm with No. 8 silica sand to a length of 20cm, put 200ml of injection material one day later, measured the penetration length into the sand Curing time: Suspension Time compressive strength until the suspension no longer flows even if the cup containing the turbid liquid is tilted: Measured according to JIS R 5201, measured material age 1 day and 28 days

Figure 2006051875
Figure 2006051875

実施例5−2
高炉フューム100部に対して、CAを10部、石膏10部、及びアルカリ刺激材5部を混合し、表5−2に示す最大粒径の注入材を調製し、実験例5−1と同様にして硬化時間、浸透長さ、及び圧縮強度を測定した。結果を表5−2に併記する。
Example 5-2
100 parts of blast furnace fume is mixed with 10 parts of CA, 10 parts of gypsum, and 5 parts of an alkali stimulating material to prepare an injection material having the maximum particle size shown in Table 5-2. The curing time, penetration length, and compressive strength were measured. The results are also shown in Table 5-2.

Figure 2006051875
Figure 2006051875

本発明の地盤改良材用組成物は、浸透性が良好で、耐久性にも優れるため、地盤改良工事や止水工事における、裏込め材等の空隙充填材等、広範に利用でき、また、本発明の、地盤改良材用組成物を用いてなる注入材は、地盤への浸透性に優れ、注入性が高く、強度発現性に優れるため、従来適用が困難だった地質の地盤への注入が可能であり、産業副産物である高炉フュームの有効利用を図ることができる。

なお、2004年11月11日に出願された日本特許出願2004−327140号、2004年12月21日に出願された日本特許出願2004−369240号、2005年1月31日に出願された日本特許出願2005−022895号、2005年1月31日に出願された日本特許出願2005−022896号及び2005年2月9日に出願された日本特許出願2005−032719号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
Since the composition for ground improvement material of the present invention has good permeability and excellent durability, it can be widely used such as void filling materials such as backfilling materials in ground improvement work and water stop work, The injection material using the composition for ground improvement material of the present invention is excellent in permeability to the ground, high injectability, and excellent in strength development. It is possible to effectively use the blast furnace fume that is an industrial by-product.

Note that Japanese Patent Application No. 2004-327140 filed on November 11, 2004, Japanese Patent Application No. 2004-369240 filed on December 21, 2004, Japanese Patent Application filed on January 31, 2005. Application No. 2005-022895, Japanese Patent Application No. 2005-022896 filed on January 31, 2005, and Japanese Patent Application No. 2005-032719 filed on Feb. 9, 2005, claims, The entire contents of the drawings and abstract are hereby incorporated by reference as the disclosure of the specification of the present invention.

Claims (17)

高炉フュームを含有してなることを特徴とする地盤改良材用組成物。   A ground improvement material composition comprising a blast furnace fume. さらに、シリカフュームを含有する請求項1に記載の地盤改良材用組成物。   Furthermore, the composition for ground improvement materials of Claim 1 containing a silica fume. 最大粒径40μmの、セメント若しくは水酸化カルシウムを含有する請求項1又は2に記載の地盤改良材用組成物。   The composition for ground improvement material according to claim 1 or 2, comprising cement or calcium hydroxide having a maximum particle size of 40 µm. セメント、及びアルカリ増粘型ポリマーエマルジョンを含有してなる請求項1又は2に記載の地盤改良材用組成物。   The composition for ground improvement material according to claim 1 or 2, comprising cement and an alkali thickening polymer emulsion. 高炉フュームが、セメント100質量部に対して、30〜500質量部である請求項3又は4に記載の地盤改良材用組成物。   The ground improvement material composition according to claim 3 or 4, wherein the blast furnace fume is 30 to 500 parts by mass with respect to 100 parts by mass of cement. アルカリ増粘型ポリマーエマルジョンが、不飽和カルボン酸類とエチレン性不飽和化合物との共重合により得られるポリマーエマルジョンである請求項4又は5に記載の地盤改良材用組成物。   The composition for ground improvement material according to claim 4 or 5, wherein the alkali thickening polymer emulsion is a polymer emulsion obtained by copolymerization of an unsaturated carboxylic acid and an ethylenically unsaturated compound. さらに、硬化促進剤を含有してなる請求項1〜6のいずれか1項に記載の地盤改良材用組成物。   Furthermore, the composition for ground improvement materials of any one of Claims 1-6 formed by containing a hardening accelerator. 硬化促進剤が、アルミン酸塩及び/又は硫酸塩を含有する請求項7に記載の地盤改良材用組成物。   The composition for ground improvement material according to claim 7, wherein the curing accelerator contains an aluminate and / or a sulfate. 高炉フュームが、最大粒径30μmを有する請求項1〜8のいずれか1項に記載の地盤改良材用組成物。   The ground improvement material composition according to any one of claims 1 to 8, wherein the blast furnace fume has a maximum particle size of 30 µm. 高炉フュームが、SiOが20〜30%、Alが10〜15%、及びCaOが15〜25%を有する請求項1〜9のいずれか1項に記載の地盤改良材用組成物。Blast fumes, SiO 2 is 20 to 30% Al 2 O 3 is 10-15%, and CaO is soil improvement material composition according to any one of claims 1 to 9 having a 15-25% . 請求項1〜10のいずれか1項に記載の地盤改良材用組成物を用いてなる注入材。   The injection material which uses the composition for ground improvement materials of any one of Claims 1-10. アルミン酸カルシウム又はアルミノケイ酸カルシウム、石膏、及びアルカリ刺激材を含有してなる請求項11に記載の注入材   The injection material according to claim 11, comprising calcium aluminate or calcium aluminosilicate, gypsum, and an alkali stimulant. 高炉フューム100質量部に対して、アルミン酸カルシウム又はアルミノケイ酸カルシウム1〜15質量部、石膏1〜50質量部、及びアルカリ刺激材1〜50質量部を含有してなる請求項11又は12に記載の注入材。   13 or 12 containing 1 to 15 parts by mass of calcium aluminate or calcium aluminosilicate, 1 to 50 parts by mass of gypsum, and 1 to 50 parts by mass of an alkali stimulant for 100 parts by mass of blast furnace fume. Injection material. 最大粒子径が20μm以下である請求項11〜13のいずれか1項に記載の注入材。   The injection material according to any one of claims 11 to 13, wherein the maximum particle diameter is 20 µm or less. セメント、高炉フューム及び水を含有してなるA液と、アルカリ増粘型ポリマーエマルジョンと水を含有してなるB液とを、それぞれ、予め調製し、使用直前にA液とB液とを混合する請求項4〜10のいずれかに記載の地盤改良材用組成物の使用方法。   Liquid A containing cement, blast furnace fume and water, and liquid B containing an alkali thickening polymer emulsion and water are prepared in advance, and liquid A and liquid B are mixed immediately before use. The usage method of the composition for ground improvement materials in any one of Claims 4-10 to do. セメント、高炉フューム及び水を含有してなるA液と、硬化促進剤とアルカリ増粘型ポリマーエマルジョンと水とを含有してなるB液を、それぞれ、予め調製し、使用直前にA液とB液を混合する請求項4〜10のいずれか1項に記載の地盤改良材用組成物の使用方法。   Liquid A containing cement, blast furnace fume and water, and liquid B containing a curing accelerator, an alkali thickening polymer emulsion, and water were prepared in advance, respectively, and liquids A and B immediately before use. The usage method of the composition for ground improvement materials of any one of Claims 4-10 which mixes a liquid. セメント、高炉フューム、及び水を含有してなるA液と、硬化促進剤と水とを含有してなるB液と、アルカリ増粘型ポリマーエマルジョンと水とを含有してなるC液を、それぞれ、予め調製し、使用直前にA液、B液及びC液を混合する請求項4〜10のいずれかに記載の地盤改良材用組成物の使用方法。   A liquid containing cement, blast furnace fume, and water, B liquid containing a curing accelerator and water, and C liquid containing an alkali thickening polymer emulsion and water, respectively. The method for using the ground improvement material composition according to any one of claims 4 to 10, which is prepared in advance and mixed with the liquid A, liquid B and liquid C immediately before use.
JP2006544960A 2004-11-11 2005-11-10 Composition for ground improvement material, injection material using the same, and method of using the same Active JP4902356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006544960A JP4902356B2 (en) 2004-11-11 2005-11-10 Composition for ground improvement material, injection material using the same, and method of using the same

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2004327140 2004-11-11
JP2004327140 2004-11-11
JP2004369240 2004-12-21
JP2004369240 2004-12-21
JP2005022895 2005-01-31
JP2005022896 2005-01-31
JP2005022895 2005-01-31
JP2005022896 2005-01-31
JP2005032719 2005-02-09
JP2005032719 2005-02-09
PCT/JP2005/020641 WO2006051875A1 (en) 2004-11-11 2005-11-10 Composition for ground-improving material, grouting material comprising the same, and method of using the same
JP2006544960A JP4902356B2 (en) 2004-11-11 2005-11-10 Composition for ground improvement material, injection material using the same, and method of using the same

Publications (2)

Publication Number Publication Date
JPWO2006051875A1 true JPWO2006051875A1 (en) 2008-05-29
JP4902356B2 JP4902356B2 (en) 2012-03-21

Family

ID=36336551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006544960A Active JP4902356B2 (en) 2004-11-11 2005-11-10 Composition for ground improvement material, injection material using the same, and method of using the same

Country Status (5)

Country Link
JP (1) JP4902356B2 (en)
KR (1) KR100869467B1 (en)
CN (1) CN101052697B (en)
TW (1) TW200640821A (en)
WO (1) WO2006051875A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5189274B2 (en) * 2006-11-10 2013-04-24 電気化学工業株式会社 Ground injection material and ground injection method using the same
JP4981457B2 (en) * 2007-01-09 2012-07-18 電気化学工業株式会社 Cement composition, injection material using the same, and method of using the same
JP5620045B2 (en) * 2007-12-28 2014-11-05 電気化学工業株式会社 Injection material and injection method
CN101486556B (en) * 2009-03-05 2012-01-04 安徽省皖北煤电集团有限责任公司含山恒泰非金属材料分公司 Ointment pumping filler material for mine roadway support and preparation
JP2011026572A (en) * 2009-07-01 2011-02-10 Denki Kagaku Kogyo Kk Grouting material and grouting workpiece
MY158997A (en) * 2009-09-07 2016-11-30 Denka Company Ltd Hydraulic cement composition for soil injection, and soil improvement method using the same
CN102199028B (en) * 2010-10-15 2013-06-05 河南理工大学 Rapid hardening early strength grouting material prepared with flue gas desulfurized gypsum and preparation method thereof
KR101051968B1 (en) 2011-01-27 2011-07-26 (주)제이엔티아이엔씨 Deep soil mixing method using eco-friendly soil grouting material
CN102321459B (en) * 2011-06-10 2013-12-04 天津中油渤星工程科技有限公司 Oil well cement chlorine-free coagulation accelerating early strength agent
US9102870B1 (en) 2011-12-05 2015-08-11 Entact, Llc Additives for soil, soil compositions and methods of making
JP6159195B2 (en) * 2013-08-23 2017-07-05 デンカ株式会社 Injection method
CN103803820B (en) * 2013-12-19 2016-02-03 柳州正菱鹿寨水泥有限公司 A kind of insulating cement
CN103833260B (en) * 2014-03-10 2015-10-21 甘肃智通科技工程检测咨询有限公司 Environment-friendly high-efficiency grouting agent
CN103951360B (en) * 2014-03-31 2016-01-13 安徽固维特材料科技有限公司 Mineral metal products exploitation tail ore pulp solidifying agent and application art thereof
TWI557293B (en) * 2014-09-19 2016-11-11 Da Di Liang Environmental Service Co Ltd Application of Washable Blast Furnace Slag in Making Farm Ditch Pavement
JP6818271B2 (en) * 2016-09-06 2021-01-20 株式会社大林組 Water-stopping method for water-stopping liquid mixing injection system, water-stopping liquid mixing injection plug and cement-based composition structure
KR101774529B1 (en) * 2016-09-29 2017-09-05 (주)대한하이텍건설 A Composition for Reinforcing Soft Ground and Restoring Depressed structures including Urethane and Cement for Solidifying Ground and Construction Methods Using Thereof
KR101764665B1 (en) * 2017-01-23 2017-08-04 (주)대한하이텍건설 A Composition for Reinforcing Soft Ground and Restoring Depressed structures including Clay and Construction Methods Using Thereof
KR101764664B1 (en) * 2017-01-23 2017-08-04 (주)대한하이텍건설 A Composition for Reinforcing Soft Ground and Restoring Depressed structures including Urethane and Clay for Solidifying Ground and Construction Methods Using Thereof
JP6993185B2 (en) * 2017-11-13 2022-02-04 デンカ株式会社 Soil reforming material and soil reforming method
CN109626912B (en) * 2019-01-28 2021-09-14 广东工业大学 Underground engineering concrete for shield construction and preparation method and application thereof
JP7303996B2 (en) * 2019-03-27 2023-07-06 住友大阪セメント株式会社 Soil improvement material, improved soil, and method for producing improved soil
KR102125347B1 (en) * 2019-10-15 2020-06-22 안민정 Polymer concrete composition and construction method for road pavement thereof
KR102147251B1 (en) * 2020-04-06 2020-08-24 주식회사 에스티 Method for manufacturing grout injection material, grout injection material produced thereby and construction method
TWI759748B (en) * 2020-05-28 2022-04-01 永覲工業股份有限公司 Geological improvement agent excited by high basicity steel slag and blast furnace cement for geological improvement
KR102211957B1 (en) * 2020-09-24 2021-02-04 주식회사 위드엠텍 Thixotropical Grout Composition and Grouting Method Using the Same
KR102619095B1 (en) * 2023-07-12 2023-12-29 주식회사 피오씨 Eco-friendly Grout revealing early high-strength

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623051A (en) * 1985-06-27 1987-01-09 新日本製鐵株式会社 Manufacture of road bed material
JPS6366283A (en) * 1986-09-08 1988-03-24 Shinji Sakuma Foundation improving material comprising dust of electric furnace as raw material
JPH02160895A (en) * 1988-12-15 1990-06-20 Tetsugen:Kk Foundation conditioner
JPH04221116A (en) * 1990-12-21 1992-08-11 Nishimatsu Constr Co Ltd Grouting engineering method
JP2002047037A (en) * 2000-07-31 2002-02-12 Kashiwagi Kosan:Kk Additive for glass fiber reinforced cement compound
JP2003013060A (en) * 2001-06-29 2003-01-15 Mitsubishi Materials Corp Cement-based setting material for improving seawater- resistant ground
JP2004067477A (en) * 2002-08-09 2004-03-04 Shinichi Numata Admixture for glass fiber reinforced cement composite
JP2005035877A (en) * 2003-06-27 2005-02-10 Shinichi Numata Acid resistant concrete

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63273689A (en) * 1987-05-01 1988-11-10 Tokyo Electric Power Co Inc:The Impregnation of grout

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623051A (en) * 1985-06-27 1987-01-09 新日本製鐵株式会社 Manufacture of road bed material
JPS6366283A (en) * 1986-09-08 1988-03-24 Shinji Sakuma Foundation improving material comprising dust of electric furnace as raw material
JPH02160895A (en) * 1988-12-15 1990-06-20 Tetsugen:Kk Foundation conditioner
JPH04221116A (en) * 1990-12-21 1992-08-11 Nishimatsu Constr Co Ltd Grouting engineering method
JP2002047037A (en) * 2000-07-31 2002-02-12 Kashiwagi Kosan:Kk Additive for glass fiber reinforced cement compound
JP2003013060A (en) * 2001-06-29 2003-01-15 Mitsubishi Materials Corp Cement-based setting material for improving seawater- resistant ground
JP2004067477A (en) * 2002-08-09 2004-03-04 Shinichi Numata Admixture for glass fiber reinforced cement composite
JP2005035877A (en) * 2003-06-27 2005-02-10 Shinichi Numata Acid resistant concrete

Also Published As

Publication number Publication date
CN101052697B (en) 2010-10-06
KR100869467B1 (en) 2008-11-19
WO2006051875A1 (en) 2006-05-18
CN101052697A (en) 2007-10-10
KR20070083874A (en) 2007-08-24
TWI313673B (en) 2009-08-21
TW200640821A (en) 2006-12-01
JP4902356B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
JP4902356B2 (en) Composition for ground improvement material, injection material using the same, and method of using the same
JP4981457B2 (en) Cement composition, injection material using the same, and method of using the same
JP5591483B2 (en) Injection method
JP5442944B2 (en) Injection material and injection method
JP5941299B2 (en) Spraying material and spraying method using the same
JP4107825B2 (en) Slug injection slurry
JP4786918B2 (en) Cement composition and method of use thereof
JP4841958B2 (en) Cement composition, injection material using the same, and method of using the same
JP5689224B2 (en) Injection material and injection method
JP5809525B2 (en) Method for producing cement composition
JP2012046651A (en) Grouting material and grouting method
JP2023049719A (en) Anchor fixing material, anchor fixing composition, and cured body
JP2022176037A (en) Grout material, grout mortar composition, and cured body
JP5646841B2 (en) Injection material and injection method
JP4498768B2 (en) Cement composition, cavity filler, and method of using the same
JP4420799B2 (en) Cement composition, cavity filler, and method of using the same
JP2005154608A (en) Grouting agent and grouting method
JP6985548B1 (en) Repair mortar material, repair mortar composition and cured product
JPH0891894A (en) Cement admixture and cement composition
JP2006335585A (en) Cement composition, injecting material using it and method for using cement composition
JP6797028B2 (en) Hexavalent chromium elution reducing agent and a method for reducing hexavalent chromium elution using it.
JP2006182821A (en) Highly penetrative grouting material
JP4265789B2 (en) Cement composition, cavity filler, and method of using the same
JP2022168791A (en) Grout material, grout mortar composition, and cured body
JP2023028443A (en) Soil improvement material, cement milk and soil improvement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111228

R150 Certificate of patent or registration of utility model

Ref document number: 4902356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250