JP4405056B2 - Admixtures used in glass fiber reinforced cement composites. - Google Patents

Admixtures used in glass fiber reinforced cement composites. Download PDF

Info

Publication number
JP4405056B2
JP4405056B2 JP2000230599A JP2000230599A JP4405056B2 JP 4405056 B2 JP4405056 B2 JP 4405056B2 JP 2000230599 A JP2000230599 A JP 2000230599A JP 2000230599 A JP2000230599 A JP 2000230599A JP 4405056 B2 JP4405056 B2 JP 4405056B2
Authority
JP
Japan
Prior art keywords
blast furnace
admixture
glass fiber
fiber reinforced
grc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000230599A
Other languages
Japanese (ja)
Other versions
JP2002047037A (en
Inventor
晉一 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KABUSHIKIKAISHA KASHIWAGIKOSAN
Original Assignee
KABUSHIKIKAISHA KASHIWAGIKOSAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KABUSHIKIKAISHA KASHIWAGIKOSAN filed Critical KABUSHIKIKAISHA KASHIWAGIKOSAN
Priority to JP2000230599A priority Critical patent/JP4405056B2/en
Publication of JP2002047037A publication Critical patent/JP2002047037A/en
Application granted granted Critical
Publication of JP4405056B2 publication Critical patent/JP4405056B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
本発明は、セメント類の混和材の技術分野に属し、特に、ガラス繊維補強セメント複合体に用いられる新規な混和材に関する。
【0002】
【従来の技術】
ガラス繊維補強セメント複合体(以下、単にGRCと称することがある)は、セメント系マトリックスにガラス繊維を分散混合することにより引張強度や脆性を向上させた複合材料として注目されている。しかし、ガラス繊維は、セメント硬化体中の水和物に含まれる水酸化カルシウムなどのアルカリに弱く、このアルカリによるガラスの侵食劣化を防ぐために酸化ジルコンを多量添加したものに代表される耐アルカリガラス(ARガラス)が用いられている。
【0003】
ARガラスはその成分が種々改良されており、その結果、かなり劣化に対して安定的であるGRCが製造できるようになったが、長期的安定性にはまだ不充分な点があるため、ガラスの侵食を抑制する各種の混和材(結合材)の開発がなされている。例えば、ポルトランドセメントを高炉スラグ微粉末、フライアッシュまたはシリカフュームなどで置換したものや、カルシウムサルフォアルミネート系の焼成物(アウイン等)と適量の石膏でポルトランドセメントを置換したもの、あるいは上記の両者を併用したものが知られている。特に現在では、GRCセメントと称して、ポルトランドセメントの主成分である珪酸カルシウムにアウイン、石膏、高炉スラグを配合した低アルカリ・低収縮のセメントが好んで使われている。これは珪酸カルシウムの水和に伴い生成する水酸化カルシウムを水和初期においてアウインなどが吸収してエトリンガイトに転換して、生成した水酸化カルシウムがすべて消費されるようにした材料である。
【0004】
このGRCセメントとARガラスと併用したGRCは長期劣化が少ないことが確認されているが、GRCセメントがコスト高のために普及しないのが悩みである。すなわち、現在のガラス繊維補強セメント複合体は、酸化ジルコンを多量に含有するARガラスが高価であり、またGRCセメントもアウインなどをプレミックスし、焼成、破砕、分粒などの工程を経ることによって高価な材料となっている。そのためガラス繊維補強セメント複合体の使用量は年々衰退してきている。
【0005】
【発明が解決しようとする課題】
本発明の目的は、上述のごとき従来の高価な混和材に代えて、ガラス繊維補強セメント複合体に用いられガラス繊維のアルカリによる侵食劣化を防止して高性能のガラス繊維補強セメント複合体を与え、しかも安価に入手または製造することのできる新しいタイプの混和材を提供することにある。
【0006】
【課題を解決するための手段】
本発明者は、小型高炉で銑鉄を製造する際に炉頂から排出される微粒ダストについて研究を重ねた結果、上述の目的を達成することができるGRC用混和材を見出した。
【0007】
かくして、本発明は、非晶質のアルミノシリケートを主成分とし、20〜30重量%のSiO2、10〜20重量%のAl23、15〜20重量%のCaO、5〜10重量%のSO3を含有し、但し、SiO2+Al23≦50重量%であり、粒径が80μm以下の球形の微粉末から成ることを特徴とするガラス繊維補強セメント複合体用混和材を提供するものである。本発明の特に好ましい態様に従えば、炉頂温度が約1300℃の高炉から排出されるフュームから集塵されたものからガラス繊維補強セメント複合体用混和材が構成される。
【0008】
【発明の実施の形態】
本発明のガラス繊維補強セメント複合体用混和材は、中国山西省を中心として存在する小型高炉(内容積500m3以下)の高温の炉頂ガス(炉頂温度は約1300℃)中に含まれる高炉装入物中から高温揮発した微粒ダストをバッグフィルターなどで捕集された非晶質のアルミノシリケートを主成分とする副産物に適量の石膏を加えて混和材としたものである(以下、本発明のガラス繊維補強セメント複合体を高炉フュームと称することがある)。
【0009】
この高炉フュームから構成される本発明のGRC用混和材は、一般に、SiO2として20〜30重量%、Al23として10〜20重量%(但し、SiO2量は比較的少なくSiO2+Al23≦50重量%である)、CaOとして15〜20重量%およびSO3として5〜10重量%を含有し、且つ、粒径が80μm以下(平均粒径4μm程度)の球形の形態を呈している。したがって、本発明の混和材を構成する高炉フュームは、一般的に知られているシリカ(SiO2)を多量に含む高炉スラグとは異なる材料であり、また、炉頂ガスの温度が約200℃程度と低い我が国で見られる高炉から得られる炉頂灰とも異なるものである。
【0010】
非晶質のアルミノシリケートを主成分とし粒径が80μm以下(平均粒径は4μm程度)の微粉末から成る高炉フュームは、セメント類の水和によって生成する水酸化カルシウムとの反応性が高くこれを除去して硬化体のアルカリ性を緩和するので、ガラス繊維補強セメント複合体におけるガラス侵食性を防止する混和材としてきわめて優れている。これは、高炉フュームから成る本発明のGRC用混和材においては、高炉フューム中のAl23と石膏成分と水酸化カルシウムとの反応(反応生成物:エトリンガイト)だけでなく、高炉フューム中に含まれるSiO2と水酸化カルシウムとの反応(ポゾラン反応)が進行する(反応生成物:トベルモナイト系水和物)ことにより、水酸化カルシウムの消費がきわめて効率的に行われるためと理解される。
【0011】
高炉フュームから構成される本発明のGRC用混和材は、セメント類の混和材としても優れている。例えば、生成する水和物がエトリンガイトであるため、得られる硬化体の収縮抑制にも寄与する。また、高炉フュームの形態は80μm以下の微粒子(平均粒径4μm程度)で、球形であるので反応速度が速く、モルタルにしたときの流動性が高くガラス繊維の分散性も良好で成形しやすい。さらに、反応速度が速いためにモルタルやコンクリートとしたときの初期強度が高く高強度が得られる。また、水酸化カルシウム生成時に周辺の水分を吸着する作用から生じる空隙の発生を抑えることによって緻密な硬化体となり高強度となる。そして、本発明のGRC用混和材は、副産物を再利用することにより安価に入手することができ、したがって、従来から知られた技術に比べてきわめて低廉で上述のごとき高性能のガラス繊維補強セメント複合体を得ることができる。
【0012】
かくして、高炉フュームから成る本発明の混和材は、ガラス繊維を分散混合したセメント類に混和することにより各種の高性能のガラス繊維補強セメント複合体を得ることができる。本発明のGRC用混和材の添加量(置換率)は一般的には10重量%以上であるが、セメント類の種類や用途に応じて適宜変更する。例えば、ポルトランドセメントの場合、高炉フュームから成る本発明のGRC用混和材で35%程度を置換すれば硬化体中の水酸化カルシウムはほぼ完全に消費されてなくなる。高炉セメントやフライアッシュセメントから成るGRC用には、一般にこれよりも低い置換率で水酸化カルシウムを除去できる。
【0013】
以下に本発明の特徴をさらに具体的に明らかにするため実施例を示すが、本発明はこれらの実施例によって制限されるものではない。
実施例1:高炉フュームの形態観察
本発明に従うGRC用混和材として、炉頂温度が1300℃の小型高炉から排出されたフュームからバッグフィルターで集塵し、下記の表1で示される組成を有する高炉フュームを用いた。
【0014】
【表1】

Figure 0004405056
【0015】
この高炉フュームのレーザー粒度分析器による粒度分析結果を図1に示す。平均粒径は約4μm程度であり、ほぼ全体が30μm以下の粒径を有し、セメントの粒径に比較し著しく小さい粒子であることが理解される。
【0016】
また、図2に高炉ファームのSEM(走査型電子顕微鏡)像を示す。SEM像に示すように高炉フュームの粒子はほぼ球形になっていることが分かる。これは高温の炉頂ガスに高炉装入物からの揮発成分や微細なダストがさらされて溶融状態となり、非晶質の球形微細粒子(微粉末)になったものと理解される。このように、球形の微細粒子であることからセメントモルタルの性状、さらに繊維を混入したときの混入のし易さに寄与していると推測される。
【0017】
実施例2:高炉フュームの性能試験
実施例1に示した高炉フュームのセメント混合材としての性能について幾つか試験した。セメントとしては、下記の表2に示される組成の低アルカリ形普通ポルトランドセメント(OPC)を用いた。
【0018】
【表2】
Figure 0004405056
【0019】
高炉フュームでポルトランドセメントを0〜30%置換したときの初期(3日後)の曲げ強さ、圧縮強さを測定した結果を表3に、フロー試験の結果を表4に、また、乾燥による質量減少率測定の結果を図3に、それぞれ示す。なお、乾燥による質量減少率の測定は、10×40×160mmの供試体を用い、40℃、相対温度50%の半促進的な雰囲気で乾燥することによって行った。
【0020】
【表3】
Figure 0004405056
【0021】
【表4】
Figure 0004405056
【0022】
表3から本発明の高炉フュームを混和すると初期強度の高いセメントモルタルが得られること、また、表4からモルタルにしたときに良好な流動性が得られること、さらに、図3から本発明の高炉フュームは硬化体の収縮抑制に寄与することが理解される。
【0023】
実施例3:中性化試験
実施例1に示す高炉フュームの水酸化カルシウムとの反応性を調べるために中性化試験を行った。W/C=0.5、S/C=2.25の旧JSCEモルタルを40×40×160mmに成形し、材齢14日まで標準養生を行った後、試験に供した。試験条件は、40℃、相対湿度50%の気中に放置したが、時々定期的に、供試体を水中に数時間浸して吸水させてから、半促進環境に暴露することを繰り返した。フェノールフタレインを用い、赤色が白色化している部分の深さを中性化深さとして測定した。その結果を表5に示す。表5から分かるように、高炉フューム添加量が増えるに従い中性化が促進されている。すなわち、高炉フュームは水酸化カルシウム吸収効果が大きくGRCにおける水酸化カルシウムによる浸食劣化を防ぐ混和材として有用であることが示唆される。
【0024】
【表5】
Figure 0004405056
【0025】
実施例5:水酸化カルシウム吸収機構の検討
本発明に従うGRC用混和材による水酸化カルシウムに対する吸収反応機構を検討するため、実施例1に示した組成の高炉フュームに含まれるAl23と石膏成分が下記の反応式(1)で示されるようにエトリンガイト(AFt)を生成する場合と、実施例1に示した組成の高炉フュームに含まれるSiO2が下記の反応式(2)で示されるようにトベルモナイト系水和物(CSH)を生成する場合について、水酸化カルシウムの消費量(相対残存量)を計算により求めた。
Al23+3CaSO4・2H2O+3Ca(OH)2 → AFt (1)
2SiO2+3Ca(OH)2 → CSH (2)
また、実施例2に示す組成のポルトランドセメントの生成するCa(OH)2量を30.1%とし(C3S+C2S+C3A+C4AF+二水石膏の合計量から推算)、高炉フュームによる置換率に応じた理論上のCa(OH)2生成量を計算した。
【0026】
一方、材齢6ヶ月のセメント強さ供試体の示差熱分析を行い残存Ca(OH)2量を実測した。示差熱分析の400〜500℃に現われるDTAピーク全てが水酸化カルシウムの分解によるものとして、TG減量よりCa(OH)2の量を求めた。その結果を表6に示す。表中〔 〕はCa(OH)2の相対量を示す。
【0027】
【表6】
Figure 0004405056
【0028】
これらの計算結果を図4にまとめて示す。図4中、高炉フュームによるCSH生成のみを考慮した場合のCa(OH)2残存量が線Iであり、CSHとAFtの両方が生成する場合Ca(OH)2残存量が線IIIである。TG実測値は、線IIIに近接しており、高炉フュームから成る本発明のGRC用混和材は、CSH(トベルモナイト系水和物)とAFt(エトリンガイト)の両方を生成しながらCa(OH)2と反応しこれを消費することが推測される。なお、図4中、CHとはCa(OH)2、また、BFFとは高炉フュームを意味する。
【0029】
実施例6:GRCへの適用試験
実施例2に示した組成の低アルカリ形ポルトランドセメントにガラス繊維〔チョップトストランド:日本電気硝子(株)製〕を5重量%含有したGRCに、実施例1に示した組成の高炉フュームを混和材として35重量%添加して強制劣化試験を行った。
試験はGRCの強制劣化試験法として一般的に行われている80℃の熱水中に浸漬する方法によった。10日間浸漬後の曲げ強度および乾燥収縮率を調べたところ、いずれも低下は10%以下であった。
【図面の簡単な説明】
【図1】本発明のガラス繊維補強セメント複合体用混和材を構成する高炉フュームの粒度分析結果を示す。
【図2】本発明のガラス繊維補強セメント複合体用混和材を構成する高炉フュームの粒子構造を示す走査顕微鏡写真である。
【図3】本発明の混和材を用いたモルタル供試体の乾燥による質量減少率の測定結果を示す。
【図4】本発明の混和材を用いた場合の水酸化カルシウムの生成と消費の関係を示す。[0001]
The present invention belongs to the technical field of cement admixtures, and particularly relates to a novel admixture used for glass fiber reinforced cement composites.
[0002]
[Prior art]
BACKGROUND ART Glass fiber reinforced cement composites (hereinafter sometimes simply referred to as GRC) are attracting attention as composite materials in which tensile strength and brittleness are improved by dispersing and mixing glass fibers in a cementitious matrix. However, glass fibers are weak against alkalis such as calcium hydroxide contained in hydrates in hardened cementitious bodies, and alkali-resistant glass typified by the addition of a large amount of zircon oxide to prevent erosion degradation of the glass due to this alkali. (AR glass) is used.
[0003]
AR glass has various improvements in its components, and as a result, it has become possible to produce a GRC that is fairly stable against degradation, but there are still insufficient points for long-term stability. Various admixtures (binding materials) that suppress erosion have been developed. For example, Portland cement is replaced with blast furnace slag fine powder, fly ash, silica fume, etc., Portland cement is replaced with calcium sulfoaluminate-based fired products (auin, etc.) and an appropriate amount of gypsum, or both of the above A combination of these is known. In particular, as a GRC cement, a low alkali / low shrinkage cement in which Auin, gypsum and blast furnace slag are blended with calcium silicate, which is the main component of Portland cement, is preferably used. This is a material in which calcium hydroxide produced by hydration of calcium silicate is absorbed by Auin and converted into ettringite at the initial stage of hydration, so that all of the produced calcium hydroxide is consumed.
[0004]
Although it has been confirmed that the GRC used in combination with this GRC cement and AR glass has little long-term deterioration, it is a problem that the GRC cement does not spread due to high cost. That is, in the present glass fiber reinforced cement composite, AR glass containing a large amount of zircon oxide is expensive, and the GRC cement is premixed with Auin and the like, and is subjected to processes such as firing, crushing, and sizing. It is an expensive material. Therefore, the amount of glass fiber reinforced cement composite used has been declining year by year.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a high-performance glass fiber reinforced cement composite that is used in a glass fiber reinforced cement composite instead of the conventional expensive admixture as described above and prevents erosion degradation due to alkali of the glass fiber. Another object of the present invention is to provide a new type of admixture that can be obtained or manufactured at low cost.
[0006]
[Means for Solving the Problems]
As a result of repeated research on fine dust discharged from the top of the furnace when producing pig iron in a small blast furnace, the present inventor has found an admixture for GRC that can achieve the above-mentioned object.
[0007]
Thus, the present invention is mainly composed of amorphous aluminosilicate, 20 to 30 wt% of SiO 2, 10 to 20 wt% of Al 2 O 3, 15 to 20 wt% of CaO, 5 to 10 wt% An admixture for glass fiber reinforced cement composites, characterized in that it comprises a spherical fine powder having a particle size of 80 μm or less, and containing SO 3 of SiO 2 + Al 2 O 3 ≦ 50 wt% To do. According to a particularly preferred embodiment of the present invention, the admixture for glass fiber reinforced cement composite is composed of dust collected from fumes discharged from a blast furnace having a furnace top temperature of about 1300 ° C.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The admixture for glass fiber reinforced cement composite of the present invention is contained in a high-temperature furnace top gas (top temperature is about 1300 ° C.) of a small blast furnace (with an internal volume of 500 m 3 or less) mainly in Shanxi Province, China. An admixture is obtained by adding an appropriate amount of gypsum to a by-product mainly composed of amorphous aluminosilicate that is collected by bag filter etc. from fine dust volatilized at high temperature from the blast furnace charge. The glass fiber reinforced cement composite of the invention may be referred to as a blast furnace fume).
[0009]
The GRC admixture of the present invention composed of this blast furnace fume generally has a SiO 2 content of 20 to 30% by weight and an Al 2 O 3 content of 10 to 20% by weight (however, the amount of SiO 2 is relatively small and SiO 2 + Al 2 O 3 ≦ 50% by weight), 15 to 20% by weight as CaO and 5 to 10% by weight as SO 3 and having a particle size of 80 μm or less (average particle size of about 4 μm). Presents. Therefore, the blast furnace fume constituting the admixture of the present invention is a material different from the generally known blast furnace slag containing a large amount of silica (SiO 2 ), and the temperature of the top gas is about 200 ° C. It is also different from the top ash obtained from the blast furnace found in Japan.
[0010]
Blast furnace fume consisting mainly of amorphous aluminosilicate and having a particle size of 80 μm or less (average particle size of about 4 μm) is highly reactive with calcium hydroxide produced by hydration of cements. Is removed, and the alkalinity of the cured body is relaxed. Therefore, it is extremely excellent as an admixture for preventing glass erosion in a glass fiber reinforced cement composite. In the admixture for GRC of the present invention comprising blast furnace fume, not only the reaction of Al 2 O 3 , gypsum component and calcium hydroxide in the blast furnace fume (reaction product: ettringite) but also in the blast furnace fume It is understood that the consumption of calcium hydroxide is carried out very efficiently by the progress of the reaction (pozzolanic reaction) between SiO 2 and calcium hydroxide contained (reaction product: tobermonite hydrate).
[0011]
The GRC admixture of the present invention composed of blast furnace fumes is also excellent as an admixture for cements. For example, since the hydrate to be produced is ettringite, it contributes to the suppression of shrinkage of the resulting cured product. Further, the form of the blast furnace fume is fine particles of 80 μm or less (average particle size of about 4 μm), and since it is spherical, the reaction rate is fast, the fluidity when mortar is high, the dispersibility of the glass fibers is good, and it is easy to mold. Furthermore, since the reaction rate is fast, the initial strength when mortar or concrete is used is high and high strength can be obtained. Further, by suppressing the generation of voids resulting from the action of adsorbing the surrounding water when calcium hydroxide is produced, it becomes a dense hardened body and has high strength. The GRC admixture of the present invention can be obtained at low cost by reusing the by-products, and therefore is extremely inexpensive compared to the conventionally known techniques and has the above-described high performance glass fiber reinforced cement. A complex can be obtained.
[0012]
Thus, the admixture of the present invention comprising a blast furnace fume can be used to obtain various high-performance glass fiber reinforced cement composites by mixing them with cements in which glass fibers are dispersed and mixed. The addition amount (substitution rate) of the GRC admixture of the present invention is generally 10% by weight or more, but is appropriately changed according to the type and application of the cement. For example, in the case of Portland cement, if about 35% is replaced with the GRC admixture of the present invention comprising blast furnace fume, the calcium hydroxide in the cured product is almost completely consumed. For GRC made of blast furnace cement or fly ash cement, calcium hydroxide can generally be removed at a lower substitution rate.
[0013]
Examples are given below to clarify the features of the present invention more specifically, but the present invention is not limited to these examples.
Example 1: Observation of morphology of blast furnace fume As an admixture for GRC according to the present invention, dust was collected from a fume discharged from a small blast furnace having a furnace top temperature of 1300 ° C with a bag filter, and is shown in Table 1 below. A blast furnace fume having the following composition was used.
[0014]
[Table 1]
Figure 0004405056
[0015]
The particle size analysis result of this blast furnace fume with a laser particle size analyzer is shown in FIG. It is understood that the average particle size is about 4 μm, and almost the whole has a particle size of 30 μm or less, which is significantly smaller than the particle size of cement.
[0016]
FIG. 2 shows an SEM (scanning electron microscope) image of the blast furnace farm. As shown in the SEM image, it can be seen that the particles of the blast furnace fume are substantially spherical. It is understood that the volatile components and fine dust from the blast furnace charge are exposed to a high-temperature furnace top gas to be in a molten state and become amorphous spherical fine particles (fine powder). Thus, since it is a spherical fine particle, it is estimated that it contributes to the property of cement mortar, and also the ease of mixing when a fiber is mixed.
[0017]
Example 2: Performance test of blast furnace fume Several tests were conducted on the performance of the blast furnace fume shown in Example 1 as a cement mixture. As the cement, low alkali type ordinary Portland cement (OPC) having the composition shown in Table 2 below was used.
[0018]
[Table 2]
Figure 0004405056
[0019]
Table 3 shows the results of measuring the initial bending strength and compressive strength (after 3 days) when 0-30% of Portland cement was replaced with blast furnace fume, Table 4 shows the results of the flow test, and mass by drying. The results of the reduction rate measurement are shown in FIG. The mass reduction rate by drying was measured by using a 10 × 40 × 160 mm specimen and drying in a semi-promoting atmosphere at 40 ° C. and a relative temperature of 50%.
[0020]
[Table 3]
Figure 0004405056
[0021]
[Table 4]
Figure 0004405056
[0022]
From Table 3, the cement mortar with high initial strength can be obtained by mixing the blast furnace fume of the present invention, and good fluidity can be obtained when the mortar is made from Table 4. Furthermore, from FIG. It is understood that fume contributes to suppression of shrinkage of the cured body.
[0023]
Example 3: Neutralization test A neutralization test was conducted to investigate the reactivity of the blast furnace fume shown in Example 1 with calcium hydroxide. An old JSCE mortar with W / C = 0.5 and S / C = 2.25 was formed into 40 × 40 × 160 mm, subjected to standard curing until the age of 14 days, and then subjected to the test. The test conditions were left in the air at 40 ° C. and 50% relative humidity, but occasionally the test specimen was immersed in water for several hours to absorb water and then exposed to a semi-accelerated environment. Using phenolphthalein, the depth at which the red color turned white was measured as the neutralization depth. The results are shown in Table 5. As can be seen from Table 5, neutralization is promoted as the blast furnace fume addition amount increases. That is, it is suggested that the blast furnace fume has a large calcium hydroxide absorption effect and is useful as an admixture for preventing erosion deterioration due to calcium hydroxide in the GRC.
[0024]
[Table 5]
Figure 0004405056
[0025]
Example 5: Examination of calcium hydroxide absorption mechanism In order to examine the absorption reaction mechanism for calcium hydroxide by the GRC admixture according to the present invention, Al 2 contained in the blast furnace fume having the composition shown in Example 1 was used. When O 3 and the gypsum component produce ettringite (AFt) as shown in the following reaction formula (1), SiO 2 contained in the blast furnace fume having the composition shown in Example 1 has the following reaction formula (2 ), The consumption (relative residual amount) of calcium hydroxide was determined by calculation for the case of producing tobermonite hydrate (CSH).
Al 2 O 3 + 3CaSO 4 .2H 2 O + 3Ca (OH) 2 → AFt (1)
2SiO 2 + 3Ca (OH) 2 → CSH (2)
Further, the amount of Ca (OH) 2 produced by the Portland cement having the composition shown in Example 2 was set to 30.1% (estimated from the total amount of C 3 S + C 2 S + C 3 A + C 4 AF + dihydrate gypsum) and replaced with blast furnace fume. The theoretical production amount of Ca (OH) 2 according to the rate was calculated.
[0026]
On the other hand, the residual Ca (OH) 2 amount was measured by conducting a differential thermal analysis of a cement strength specimen having a material age of 6 months. Assuming that all DTA peaks appearing at 400 to 500 ° C. in the differential thermal analysis are due to decomposition of calcium hydroxide, the amount of Ca (OH) 2 was determined from the TG loss. The results are shown in Table 6. In the table, [] indicates the relative amount of Ca (OH) 2 .
[0027]
[Table 6]
Figure 0004405056
[0028]
These calculation results are shown together in FIG. In FIG. 4, the remaining amount of Ca (OH) 2 when considering only CSH generation by the blast furnace fume is line I, and when both CSH and AFt are generated, the remaining amount of Ca (OH) 2 is line III. The measured TG value is close to the line III, and the GRC admixture of the present invention consisting of blast furnace fume generates Ca (OH) 2 while producing both CSH (tobermonite hydrate) and AFt (ettringite). It is presumed to react with and consume this. In FIG. 4, CH means Ca (OH) 2 , and BFF means blast furnace fume.
[0029]
Example 6: Application test to GRC GRC containing 5% by weight of glass fiber [chopped strand: manufactured by Nippon Electric Glass Co., Ltd.] in low alkali Portland cement having the composition shown in Example 2 A forced deterioration test was conducted by adding 35% by weight of a blast furnace fume having the composition shown in Example 1 as an admixture.
The test was conducted by dipping in hot water at 80 ° C., which is generally performed as a forced deterioration test method for GRC. When the bending strength and the drying shrinkage after immersion for 10 days were examined, the decrease was 10% or less.
[Brief description of the drawings]
FIG. 1 shows the result of particle size analysis of blast furnace fumes constituting the admixture for glass fiber reinforced cement composites of the present invention.
FIG. 2 is a scanning photomicrograph showing the particle structure of blast furnace fume constituting the admixture for glass fiber reinforced cement composite of the present invention.
FIG. 3 shows the measurement results of the rate of mass reduction due to drying of a mortar specimen using the admixture of the present invention.
FIG. 4 shows the relationship between the production and consumption of calcium hydroxide when the admixture of the present invention is used.

Claims (2)

非晶質のアルミノシリケートを主成分とし、20〜30重量%のSiO2、10〜20重量%のAl23、15〜20重量%のCaO、5〜10重量%のSO3を含有し、但し、SiO2+Al23≦50重量%であり、粒径が80μm以下の球形の微粉末から成ることを特徴とするガラス繊維補強セメント複合体用混和材。It is mainly composed of amorphous aluminosilicate and contains 20 to 30% by weight of SiO 2 , 10 to 20% by weight of Al 2 O 3 , 15 to 20% by weight of CaO, and 5 to 10% by weight of SO 3. However, it is SiO 2 + Al 2 O 3 ≦ 50% by weight, and consists of a spherical fine powder having a particle size of 80 μm or less. 炉頂温度が約1300℃の高炉から排出されるフュームから集塵されたものであることを特徴とする請求項1のガラス繊維補強セメント複合体用混和材。The admixture for glass fiber reinforced cement composites according to claim 1, wherein the admixture is collected from fumes discharged from a blast furnace having a furnace top temperature of about 1300 ° C.
JP2000230599A 2000-07-31 2000-07-31 Admixtures used in glass fiber reinforced cement composites. Expired - Fee Related JP4405056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000230599A JP4405056B2 (en) 2000-07-31 2000-07-31 Admixtures used in glass fiber reinforced cement composites.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000230599A JP4405056B2 (en) 2000-07-31 2000-07-31 Admixtures used in glass fiber reinforced cement composites.

Publications (2)

Publication Number Publication Date
JP2002047037A JP2002047037A (en) 2002-02-12
JP4405056B2 true JP4405056B2 (en) 2010-01-27

Family

ID=18723537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000230599A Expired - Fee Related JP4405056B2 (en) 2000-07-31 2000-07-31 Admixtures used in glass fiber reinforced cement composites.

Country Status (1)

Country Link
JP (1) JP4405056B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3953469B2 (en) * 2003-06-27 2007-08-08 晉一 沼田 Acid resistant concrete
CN101052697B (en) * 2004-11-11 2010-10-06 电气化学工业株式会社 Composition for ground-improving material, grouting material comprising the same, and method of using the same
CN116375443B (en) * 2023-03-31 2023-10-24 江苏五茅建设集团有限公司 Composite material for self-repairing bridge cracks and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844623B2 (en) * 1975-10-29 1983-10-04 フジフアイバ−グラス カブシキガイシヤ Glass Senikiyouka Cement Seihin
JPH10218643A (en) * 1997-02-06 1998-08-18 Chichibu Onoda Cement Corp Material for admixing with cement and cement composition

Also Published As

Publication number Publication date
JP2002047037A (en) 2002-02-12

Similar Documents

Publication Publication Date Title
Zhu et al. Insights to the sulfate resistance and microstructures of alkali-activated metakaolin/slag pastes
Ramujee et al. Mechanical properties of geopolymer concrete composites
JP5091519B2 (en) Geopolymer composition and method for producing the same
Hasnain et al. Eco-friendly utilization of rice husk ash and bagasse ash blend as partial sand replacement in self-compacting concrete
Ahmad et al. Microstructural characterization of basalt fiber reinforced magnesium phosphate cement supplemented by silica fume
Bostanci Effect of waste glass powder addition on properties of alkali-activated silica fume mortars
Thokchom et al. Effect of incorporating silica fume in fly ash geopolymers
JPWO2007046297A1 (en) Cement additive and cement composition
US10800704B2 (en) Fly ash-based geopolymer concrete and method of formation
CN110799472A (en) Concrete composition and method for producing same
AU2719988A (en) Hydraulic cement and composition employing the same
CN112851264A (en) High-temperature-resistant concrete based on iron tailings and steel slag powder
JP4405056B2 (en) Admixtures used in glass fiber reinforced cement composites.
Mandal et al. Effect of Na2O content on performance of fly ash geopolymers at elevated temperature
Subekti et al. Potential strength of fly ash-based geopolymer paste with substitution of local waste materials with high-temperature effect
Akturk et al. Utilization of basalt powder as geopolymeric binder
Arroudj et al. Use of Algerian natural mineral deposit as supplementary cementitious materials
JP3936776B2 (en) Admixture and concrete composition
Wang et al. Effect of Extracted Titanium Tailing Slag on the Properties of Alkali-Activated Fly Ash-Ground Blast Furnace Slag Binder
Astariani et al. Setting time of geopolymer binder based on Umeanyar slate stone powder
Darweesh et al. Specific characteristics and microstructure of Portland cement pastes containing wheat straw ash (WSA)
JP2004067477A (en) Admixture for glass fiber reinforced cement composite
JP4028966B2 (en) Method for producing cement-based composition
Darweesh et al. The Performance of Portland Cement Pastes (OPC) Incorporated with Ceramic Sanitary Ware Powder Waste (CSPW) at Ambient Temperature
Harbi et al. Resistance to Seawater of a New Cement Mortar Based on Additions of Recycled Product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees