TWI313036B - Multi-anneal process - Google Patents

Multi-anneal process Download PDF

Info

Publication number
TWI313036B
TWI313036B TW92113648A TW92113648A TWI313036B TW I313036 B TWI313036 B TW I313036B TW 92113648 A TW92113648 A TW 92113648A TW 92113648 A TW92113648 A TW 92113648A TW I313036 B TWI313036 B TW I313036B
Authority
TW
Taiwan
Prior art keywords
annealing
substrate
annealing step
temperature
annealing process
Prior art date
Application number
TW92113648A
Other languages
Chinese (zh)
Other versions
TW200426949A (en
Inventor
Chen-Ming Huang
Sen-Shan Yang
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW92113648A priority Critical patent/TWI313036B/en
Publication of TW200426949A publication Critical patent/TW200426949A/en
Application granted granted Critical
Publication of TWI313036B publication Critical patent/TWI313036B/en

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

1313036 _案號92113648_年月曰 修正_ 五、發明說明(1) 【發明所屬之技術領域】 本發明是有關於一種多重退火(Mult i-anneal )製程,且特 別是有關於一種適用於半導體銅製程之多重退火製程。 【先前技術】 在傳統鋁金屬導線無法突破瓶頸之情況下,經過多年的研 究發展,銅導線已經成為半導體材料的主流。由於銅的電 阻值比铭還小,因此可在較小的面積上承載較大的電流, 讓廠商得以生產速度更快、電路更密集,且效能可提昇約 3 0 %至4 0%的晶片。此外,由於銅的抗電子遷移 (Electro-migration)能力比I呂好,因此可減輕其電移作 用,因而提高晶片的可靠度。 請參考第1圖所繪示之習知具有單一退火步驟之銅製程之 流程圖。首先,提供一基材,其中此基材已於先前製程形 成半導體元件之一部分。接著,如步驟1 0所示,於此基材 上形成銅膜,其中此銅膜可為雙鑲嵌製程中的介層(Via) 與金屬層(或接觸層與金屬層),而此步驟1 0可以例如電化 學電鐘(Electrochemical Plating; ECP )之方法來達成。 由於上述形成銅膜之步驟完成之後,銅膜尚處於不穩定狀 態,因此必須對此銅膜施以熱處理製程,藉以使銅膜之晶 粒成長趨於穩定。因此,接著需如步驟2 0所示,對上述具 有銅膜之基材進行退火步驟,其中此退火步驟一般係於上 述進行電化學電鍍之同一反應室中以臨場(I η - s i t u )之方 式進行。 然後,如步驟4 0所示,對上述銅膜之表面進行化學機械研 磨(Chemical Mechanical Poiishing; CMP)’ 藉以使銅膜1313036 _Case No. 92113648_年月曰曰 Revision_5. Description of the Invention (1) Technical Field of the Invention The present invention relates to a Mult i-anneal process, and more particularly to a semiconductor suitable for use in a semiconductor Multiple annealing process for copper processes. [Prior Art] Under the circumstances that traditional aluminum metal wires cannot break through the bottleneck, after years of research and development, copper wires have become the mainstream of semiconductor materials. Since copper has a lower resistance than the previous one, it can carry a large current on a small area, allowing manufacturers to produce chips with faster speeds, more dense circuits, and improved performance by about 30% to 40%. . In addition, since the electro-migration ability of copper is better than that of I, it can reduce the electromigration effect, thereby improving the reliability of the wafer. Please refer to the flow chart of the conventional copper process with a single annealing step as shown in FIG. First, a substrate is provided in which the substrate has been formed into a portion of a semiconductor component in a prior art process. Next, as shown in step 10, a copper film is formed on the substrate, wherein the copper film can be a via (Via) and a metal layer (or a contact layer and a metal layer) in the dual damascene process, and step 1 0 can be achieved, for example, by an electrochemical clock (ECC) method. Since the copper film is still in an unstable state after the step of forming the copper film described above, it is necessary to apply a heat treatment process to the copper film, whereby the crystal grain growth of the copper film tends to be stable. Therefore, the substrate having the copper film is subjected to an annealing step as shown in step 20, wherein the annealing step is generally performed in the same reaction chamber as described above for electrochemical plating in the presence of (I η - situ ) get on. Then, as shown in step 40, the surface of the copper film is subjected to chemical mechanical polishing (CMP) to thereby make the copper film

第6頁 1313036 案號 92113648_月 日_ 五 、發明說明 (2) 之 表面達 成 所 需 平 坦 度 〇 目 前,上 述 第 1圖中具有步驟 2 0之銅製程已成為標準製 程 。然而 , 如 第 1圖所示之銅製程雖然可使銅膜具有合乎 要 求之抗 電 子 遷 移 能 力 ? 但 是 就 銅 膜 之 應 力 '渔 遷 移 (Stress M] l grat i on )現 象 而 言 如 第 1圖所示之銅製程卻無法順利 抑 制銅膜 之 應 力 * Φ 遷 移 現 象 5 因 而 導 致 應 力 遷 移 測 試 中 介層 電 阻的增 南 與 產 率 的 降 低 〇 所 以 有 必 要 尋 求 解 決 之 道。 [ 發明内 容 ] 因 此本發 明 的 的 就 是 在 提 供 一 種 多 重 退 火 製 程 可 藉以 減 輕應力 » St 遷 移 之 現 象 〇 本 發明的 另 一 § 的 是 在 提 供 一 種 多 重 退 火 製 程 可 藉 以降 低 應力遷 移 測 言式 中 介 層 電 阻 之 增 加 率 〇 本 發明的 再 一 a 的 在 提 供 一 種 多 重 退 火 製 程 可 藉 以使 良 率提高 並 較 為 穩 定 〇 根 據本發 明 之 上 述 g 的 提 出 -- 種 多 重 退 火 製 程 〇 在 本發 明 一較佳 實 施 例 中 此 多 重 退 火 製 程 至 少 包 括 以 下 步 驟。 首 先,提 供 一 基 材 〇 接 著 形 成 一 銅 膜 覆 蓋 基 材 〇 缺 後, 對 基材進 行 數 個 退 火 步 驟 〇 此 外 上 述 數 個 退 火 步 驟 中至 少 包括依 序 進 行 之 一 第 一 退 火 步 驟 與 -— 第 - 退 火 步 驟 ,其 中 第一退 火 步 驟 之 溫 度 與 時 間 分 別 為 5 0°C 至 4 0 0〇C 與 10秒 至 1 0 0 0秒 5 而 第 二 退 火 步 驟 之 溫 度 與 時 間 分 別 為 1( 〕(TC 至 5 0(TC與1分 至 1 0小 時 〇 另 外 第 一 退 火 步 驟 與 第 二 退 火步 驟 之溫度 與 時 間 除 了 可 如 上 述 以 外 在 本 發 明 之 較 佳 實施 例 中,第 一 退 火 步 驟 之 溫 度 可 小 於 第 二 退 火 步 驟 之 溫 度; 而 第一退 火 步 驟 之 時 間 可 小 於 第 二 退 火 步 驟 之 時 間 〇 再Page 6 1313036 Case No. 92113648_月日_5, invention description (2) Before the surface reaches the required flatness, the copper process with step 20 in the above figure 1 has become the standard process. However, the copper process as shown in Fig. 1 can provide the copper film with the desired resistance to electron migration. However, as for the stress of the copper film, the phenomenon of "Stress M] l grat i on is shown in Fig. 1. The copper process shown does not smoothly suppress the stress of the copper film* Φ migration phenomenon 5, which leads to a decrease in the resistance of the dielectric layer of the stress migration test and a decrease in the yield. Therefore, it is necessary to find a solution. SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a multiple annealing process that mitigates the stress»St migration phenomenon. Another aspect of the present invention is to provide a multiple annealing process to reduce stress migration. The rate of increase of resistance 〇 another one of the present invention provides a multiple annealing process by which the yield can be improved and stabilized. The above-mentioned g of the present invention is proposed as a multiple annealing process, which is a preferred embodiment of the present invention. In this example, the multiple annealing process includes at least the following steps. First, a substrate is provided, and then a copper film is formed to cover the substrate, and the substrate is subjected to a plurality of annealing steps. In addition, the plurality of annealing steps include at least one of the first annealing steps and the first step. An annealing step, wherein the temperature and time of the first annealing step are 50 ° C to 400 ° C and 10 seconds to 1 000 ° 5 respectively, and the temperature and time of the second annealing step are 1 ( ) ( TC to 50 (TC and 1 minute to 10 hours, the temperature and time of the other first annealing step and the second annealing step may be as described above. In a preferred embodiment of the invention, the temperature of the first annealing step may be Less than the temperature of the second annealing step; and the time of the first annealing step may be less than the time of the second annealing step

1313036 案號92113648 年 月 曰 修正 五、發明說明(3) 者,第一退火步驟與第二退火步驟間更包括將基材冷卻至 室溫。 因此,應用本發明可藉以減輕應力遷移之現象。 此外,應用本發明可藉以降低應力遷移測試中介層電阻之 增加率。 再者,應用本發明可藉以使良率提高並較為穩定。 【實施方式】1313036 Case No. 92113648 月 Amendment V. Inventive Note (3), the first annealing step and the second annealing step further include cooling the substrate to room temperature. Therefore, the application of the present invention can alleviate the phenomenon of stress migration. Furthermore, the application of the present invention can reduce the rate of increase in the resistance of the stress migration test interposer. Furthermore, the application of the present invention can improve the yield and be relatively stable. [Embodiment]

本發明係有關於一種適用於半導體銅製程之多重退火製 程。請參考第2圖所繪示之依照本發明一較佳實施例的一 種具有多重退火步驟之銅製程之流程圖。首先,提供一基 材,其中此基材已於先前製程形成半導體元件之部分結 構。接著,如步驟11 0所示,於此基材上形成銅膜,其中 此銅膜可為雙鑲嵌製程中的介層與金屬層(或接觸層與金 屬層),而此步驟1 1 0可以例如電化學電鍍之方法來達成。 接著,如步驟12 0所示,對上述具有銅膜之基材進行第一 退火步驟,其中此第一退火步驟一般係於上述進行電化學 電鍍之同一反應室中進行。至於,進行此步驟12 0之第一 退火步驟所需之溫度與時間例如可分別為5 0°C至4 0 0°C與 1 0秒至1 0 0 0秒。 然後,讓上述基材之溫度降至室溫。此基材之溫度降至室 溫之過程可繼續以臨場之方式來進行,或是將基材移出上 述用以進行步驟1 2 0之第一退火步驟之反應室外來進行。 接著,如步驟13 0所示,對基材進行第二退火步驟,其中 進行此步驟1 3 0之第二退火步驟所需之溫度與時間例如可 分別為1 0 0°C至5 0 0°C與1分至1 0小時。至於,此第二退火This invention relates to a multiple annealing process suitable for use in a semiconductor copper process. Please refer to FIG. 2 for a flow chart of a copper process having multiple annealing steps in accordance with a preferred embodiment of the present invention. First, a substrate is provided in which the substrate has been partially formed into a semiconductor device in a prior art process. Next, as shown in step 110, a copper film is formed on the substrate, wherein the copper film can be a dielectric layer and a metal layer (or a contact layer and a metal layer) in the dual damascene process, and the step 1 1 0 can For example, electrochemical plating is achieved. Next, as shown in step 120, the substrate having the copper film is subjected to a first annealing step, wherein the first annealing step is generally performed in the same reaction chamber as described above for performing electrochemical plating. As for the temperature and time required for performing the first annealing step of this step 120, for example, 50 ° C to 400 ° C and 10 0 to 1 000 seconds, respectively. Then, the temperature of the above substrate was lowered to room temperature. The process of lowering the temperature of the substrate to room temperature can be continued in the presence of the substrate or by moving the substrate out of the reaction chamber for performing the first annealing step of step 120. Next, as shown in step 130, the substrate is subjected to a second annealing step, wherein the temperature and time required for performing the second annealing step of the step 130 are, for example, 1 0 0 ° C to 5 0 0 °, respectively. C and 1 minute to 10 hours. As for this second annealing

第8頁 1313036 _案號92Π3648_年月曰 修正_ 五、發明說明(4) 步驟所使用之方法可例如為熱墊板(Η 〇 t P 1 a t e )。 另外,第一退火步驟與第二退火步驟之溫度與時間除了可 如上述以外,在本發明之較佳實施例中,第一退火步驟之 溫度可小於第二退火步驟之溫度;而第一退火步驟之時間 可小於第二退火步驟之時間。 上述步驟1 3 0之第二退火步驟為本發明之特徵所在。藉由 此步驟1 3 0之第二退火步驟,可減輕銅膜中應力遷移之現 象,因而可降低應力遷移測試中介層電阻之增加率,且可 藉以提高良率。然而,本發明中並不限定僅使用二個退火 步驟。只要在基材上形成銅膜後進行至少二個退火製程, 皆在本發明之請求保護範圍内。亦即,本發明可如第2圖 中所示,在標準單一退火製程後僅新增另一退火製程,亦 可在標準單一退火製程後新增至少二個退火製程,皆在本 發明之請求保護範圍内。 然後,如步驟1 4 0所示,對上述銅膜之表面進行化學機械 研磨,藉以使銅膜之表面達成所需之平坦度。 請參考第3圖所繪示之本發明之多重退火製程、習知標準 單一退火製程、以及提高熱預算之單一退火製程三者之介 層電阻偏移量與發生機率之關係圖。如上所述,藉由本發 明之多重退火製程,可有效抑制銅膜中的應力遷移現象, 因而降低長時間應力遷移所導致的介層電阻之增加。從第 3圖中可明顯看出本發明之此一功效。第3圖中的圖例A表 示本發明之多重退火製程之對應數據;圖例B表示習知標 準單一退火製程之對應數據;而圖例C則表示增加熱預算 之單一退火製程之對應數據,其中此圖例C所對應之增加Page 8 1313036 _ Case No. 92Π3648_年月曰 修正 Amendment _ V. Invention Description (4) The method used in the step can be, for example, a thermal pad (Η 〇 t P 1 a t e ). In addition, the temperature and time of the first annealing step and the second annealing step may be as described above. In a preferred embodiment of the invention, the temperature of the first annealing step may be lower than the temperature of the second annealing step; and the first annealing The time of the step may be less than the time of the second annealing step. The second annealing step of the above step 130 is a feature of the present invention. By the second annealing step of the step 130, the phenomenon of stress migration in the copper film can be alleviated, thereby reducing the increase rate of the stress migration test interposer resistance, and thereby improving the yield. However, it is not limited in the present invention to use only two annealing steps. It is within the scope of the present invention to perform at least two annealing processes after forming a copper film on the substrate. That is, the present invention can be as shown in FIG. 2, after adding another annealing process after the standard single annealing process, or adding at least two annealing processes after the standard single annealing process, all of which are claimed in the present invention. Within the scope of protection. Then, as shown in step 140, the surface of the copper film is subjected to chemical mechanical polishing so that the surface of the copper film achieves the desired flatness. Please refer to the relationship between the dielectric resistance offset and the probability of occurrence of the multiple annealing process of the present invention, the conventional standard single annealing process, and the single annealing process for increasing the thermal budget, as shown in FIG. As described above, with the multiple annealing process of the present invention, the stress migration phenomenon in the copper film can be effectively suppressed, thereby reducing the increase in the dielectric resistance caused by the long-term stress migration. This effect of the present invention is apparent from Fig. 3. The legend A in Fig. 3 represents the corresponding data of the multiple annealing process of the present invention; the legend B represents the corresponding data of the conventional standard single annealing process; and the legend C represents the corresponding data of the single annealing process which increases the thermal budget, wherein the legend The corresponding increase of C

1313036 _案號92113648_年月曰 修正_ 五、發明說明(5) 熱預算之單一退火製程之總退火能量與圖例A所對應之本 發明之多重退火製程之總退火能量大約相等。至於,第3 圖中的橫座標為介層電阻偏移量(單位為% ),而縱座標則 為某一介層電阻偏移量之發生機率(單位為%)。此外,第3 圖之數據係針對半導體業界所慣用的Ke 1 v i η單一介層測試 結構進行1 〇 〇 〇小時的標準應力遷移烘烤測試而得。由第3 圖可明顯看出,圖例Α所代表的多重退火製程具有最佳的 測試結果,且針對約1 0 0 %之發生機率而言,圖例A所代表 的多重退火製程之介層電阻偏移量比圖例B與圖例C所代表 的其它兩種退火製程之介層電阻偏移量約降低1 0 %。 請參考第4圖所繪示之本發明之多重退火製程以及習知標 準單一退火製程之良率比較圖。第4圖中分別顯示本發明 之多重退火製程與習知標準單一退火製程之良率數據。由 此第4圖可明顯看出,習知標準單一退火製程具有變動較 大的良率分佈,而本發明之多重退火製程則具有較穩定的 良率分佈。此外,第4圖中標準單一退火製程的平均良率 約為49. 9%,而本發明之多重退火製程的平均良率約為61. 5 %。亦即,本發明之多重退火製程可使良率較習知標準單 一退火製程提高至少約1 0 °/。。因此,本發明確實可提供較 為穩定且較高的良率。 由上述本發明較佳實施例可知,應用本發明可藉以減輕應 力遷移之現象。 此外,由上述本發明較佳實施例可知,應用本發明可藉以 降低應力遷移測試中介層電阻之增加率。 再者,由上述本發明較佳實施例可知,應用本發明可藉以1313036 _ Case No. 92113648_年月曰 Amendment _ V. Description of the invention (5) The total annealing energy of the single annealing process of the thermal budget is approximately equal to the total annealing energy of the multiple annealing process of the present invention corresponding to the legend A. As for the diagonal coordinate in Figure 3, the dielectric resistance offset (in %), and the ordinate is the probability of occurrence of a certain dielectric resistance offset (in %). In addition, the data in Figure 3 was obtained for a standard stress-migration test of 1 〇 〇 〇 for the Ke 1 v i η single-layer test structure commonly used in the semiconductor industry. It can be clearly seen from Fig. 3 that the multiple annealing process represented by the legend 具有 has the best test results, and for the probability of occurrence of about 100%, the dielectric resistance of the multiple annealing process represented by the legend A is biased. The shift ratio is reduced by about 10% from the dielectric resistance offset of the other two annealing processes represented by Legend B and Legend C. Please refer to the multi-anneal process of the present invention illustrated in FIG. 4 and the yield comparison chart of the conventional standard single annealing process. The yield data of the multiple annealing process of the present invention and the conventional standard single annealing process are shown in Fig. 4, respectively. As is apparent from Fig. 4, the conventional standard single annealing process has a relatively large yield distribution, and the multiple annealing process of the present invention has a relatively stable yield distribution. 5 %。 The average yield of the standard single-annealing process in Figure 4 is about 49. 9%, and the average yield of the multiple annealing process of the present invention is about 61.5 %. That is, the multiple annealing process of the present invention can increase the yield by at least about 10 °/ over the conventional standard single annealing process. . Therefore, the present invention does provide a relatively stable and high yield. It will be apparent from the above-described preferred embodiments of the present invention that the application of the present invention can alleviate the phenomenon of stress migration. Furthermore, it is apparent from the above-described preferred embodiments of the present invention that the application of the present invention can reduce the rate of increase in the resistance of the stress migration test interposer. Furthermore, it can be seen from the above preferred embodiments of the present invention that the application of the present invention can be utilized

第10頁 1313036 _案號92113648_年月曰 修正_ 五、發明說明(6) 使良率提高並較為穩定。 雖然本發明已以一較佳實施例揭露如上,然其並非用以限 定本發明,任何熟習此技藝者,在不脫離本發明之精神和 範圍内,當可作各種之更動與潤飾,因此本發明之保護範 圍當視後附之申請專利範圍所界定者為準。 1313036 案號92113648 年 月 曰 修正 圖式簡單說明 第1圖係繪示習知具有單一退火步驟之銅製程之流程圖。 第2圖係繪示依照本發明一較佳實施例的一種具有多重退 火步驟之銅製程之流程圖。 第3圖係繪示本發明之多重退火製程、習知標準單一退火 製程、以及提高熱預算之單一退火製程三者之介層電阻偏 移量與發生機率之關係圖。 第4圖係繪示本發明之多重退火製程以及習知標準單一退 火製程之良率比較圖。Page 10 1313036 _ Case No. 92113648_年月曰 修正 Amendment _ V. Invention Description (6) Improve the yield and be more stable. Although the present invention has been described above in terms of a preferred embodiment, it is not intended to limit the invention, and it is obvious to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. 1313036 Case No. 92113648 月 Amendment Simple description of the drawing Fig. 1 is a flow chart showing a conventional copper process with a single annealing step. 2 is a flow chart showing a copper process having multiple annealing steps in accordance with a preferred embodiment of the present invention. Fig. 3 is a graph showing the relationship between the amount of interlayer resistance displacement and the probability of occurrence of the multiple annealing process of the present invention, the conventional standard single annealing process, and the single annealing process for increasing the thermal budget. Figure 4 is a graph showing the yield comparison of the multiple annealing process of the present invention and the conventional standard single annealing process.

【元件代表符號簡單說明】 10:於基材上形成銅膜 2 0 :進行退火步驟 4 0 :進行化學機械研磨 110:於基材上形成銅膜 120:進行第一退火步驟 1 3 0 :進行第二退火步驟 140:進行化學機械研磨 A :多重退火製程[Simplified Description of Component Symbols] 10: Forming a Copper Film on a Substrate 20: Performing an Annealing Step 40: Performing Chemical Mechanical Polishing 110: Forming a Copper Film on a Substrate: Performing a First Annealing Step 1 3 0: Performing Second annealing step 140: performing chemical mechanical polishing A: multiple annealing process

B:標準單一退火製程 C:提高熱預算之單一退火製程B: Standard single annealing process C: Single annealing process to increase thermal budget

第12頁Page 12

Claims (1)

Π 酌W t日修王戍E/補充 _案號92113648_年月日 修正_ 六、申請專利範圍 ' 1. 一種多重退火(Multi-anneal)製程,至少包括: 提供一基材; 形成一銅膜覆蓋該基材;以及 對該基材進行複數個退火步驟,該些退火步驟至少包括依 序進行之一第一退火步驟、一冷卻步驟與一第二退火步 驟,其中該冷卻步驟係將該基材冷卻至一室溫,該第一退 火步驟之溫度為5 0 °C至4 0 0 °C ,該第一退火步驟之時間為 1 0秒至1 0 0 0秒,該第二退火步驟之溫度為1 0 0 °C至5 0 0 °C , 且該第二退火步驟之時間為1分至1 0小時。 2. 如申請專利範圍第1項所述之多重退火製程,其中該形 成該銅膜之步驟係使用電化學電鍵(Electrochemical Plating ;ECP)。 3. 如申請專利範圍第1項所述之多重退火製程,其中該第 二退火步驟係使用熱墊板(Hot Plate)。 4. 如申請專利範圍第1項所述之多重退火製程,其中該第 一退火步驟之溫度小於該第二退火步驟之溫度。 5. 如申請專利範圍第1項所述之多重退火製程,其中該第 一退火步驟之時間小於該第二退火步驟之時間。Π Wt 修修王戍E/Supplement_Case No. 92113648_年月日日 Revision_6. Patent Application Scope' 1. A multi-anneal process, including at least: providing a substrate; forming a copper The film covers the substrate; and the substrate is subjected to a plurality of annealing steps, the annealing step comprising at least one of a first annealing step, a cooling step and a second annealing step, wherein the cooling step is The substrate is cooled to a room temperature, the temperature of the first annealing step is 50 ° C to 400 ° C, and the time of the first annealing step is 10 seconds to 1000 seconds, and the second annealing step is performed. The temperature is from 10 ° C to 500 ° C, and the time of the second annealing step is from 1 minute to 10 hours. 2. The multiple annealing process of claim 1, wherein the step of forming the copper film uses an electrochemical bond (ECP). 3. The multiple annealing process of claim 1, wherein the second annealing step uses a hot plate. 4. The multiple annealing process of claim 1, wherein the temperature of the first annealing step is less than the temperature of the second annealing step. 5. The multiple annealing process of claim 1, wherein the time of the first annealing step is less than the time of the second annealing step. 第13頁 1313036 _案號92113648_年月曰 修正_ 六、申請專利範圍 ' 6. 如申請專利範圍第1項所述之多重退火製程,其中該些 退火步驟之後更包括對該基材進行一化學機械研磨 (Chemical Mechanical Polishing ;CMP)步驟。 7. —種多重退火製程,至少包括: 提供一基材; 形成一銅膜覆蓋該基材; 對該基材進行一第一退火步驟; 對該基材進行一冷卻步驟,該冷卻步驟係將該基材冷卻至 一室溫;以及 對該基材進行一第二退火步驟; 其中該第一退火步驟之溫度小於該第二退火步驟之溫度, 且該第一退火步驟之時間小於該第二退火步驟之時間。 8. 如申請專利範圍第7項所述之多重退火製程,其中該形 成該銅膜之步驟係使用電化學電鍍。 9. 如申請專利範圍第7項所述之多重退火製程,其中該第 一退火步驟之溫度為5 0 °C至4 0 0 °C。 10. 如申請專利範圍第7項所述之多重退火製程,其中該 第一退火步驟之時間為1 0秒至1 0 0 0秒。 11. 如申請專利範圍第7項所述之多重退火製程,其中該Page 13 1313036 _ Case No. 92113648 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Chemical Mechanical Polishing (CMP) step. 7. A multiple annealing process comprising, at least: providing a substrate; forming a copper film over the substrate; performing a first annealing step on the substrate; performing a cooling step on the substrate, the cooling step Cooling the substrate to a room temperature; and performing a second annealing step on the substrate; wherein the temperature of the first annealing step is less than the temperature of the second annealing step, and the time of the first annealing step is less than the second The time of the annealing step. 8. The multiple annealing process of claim 7, wherein the step of forming the copper film is by electrochemical plating. 9. The multiple annealing process of claim 7, wherein the temperature of the first annealing step is from 50 ° C to 400 ° C. 10. The multiple annealing process of claim 7, wherein the first annealing step is from 10 seconds to 1 000 seconds. 11. The multiple annealing process as described in claim 7 of the patent application, wherein 第14頁 1313036 _案號 92Π3648_年月日 修正_ 六、申請專利範圍 、 第二退火步驟之溫度為1 0 0 °C至5 0 0 °C。 12. 如申請專利範圍第7項所述之多重退火製程,其中該 第二退火步驟之時間為1分至1 0小時。 13. 如申請專利範圍第7項所述之多重退火製程,其中該 第二退火步驟係使用熱墊板。 14. 如申請專利範圍第7項所述之多重退火製程,其中該 第二退火步驟之後更包括對該基材進行一化學機械研磨步 驟。Page 14 1313036 _ Case No. 92Π3648_年月日日 Revision _ 6. Patent application scope, the temperature of the second annealing step is 1 0 0 °C to 500 °C. 12. The multiple annealing process of claim 7, wherein the second annealing step is from 1 minute to 10 hours. 13. The multiple annealing process of claim 7, wherein the second annealing step uses a thermal pad. 14. The multiple annealing process of claim 7, wherein the second annealing step further comprises subjecting the substrate to a chemical mechanical polishing step. 第15頁 1313036 ________案號 92113648_年月曰 條正_ 四、中文發明摘要(發明名稱:多重退火製程) 一種多重退火(Multi-anneal)製程。本發明之多重退火製 程至少包括以下步驟。首先,提供一基材。接著,形成一 銅膜覆蓋基材。然後,對基材進行數個退火步驟。此外, 上述數個退火步驟中至少包括依序進行之一第一退火步驟 與一第二退火步驟,其中第一退火步驟之溫度與時間分別 為5 0°C至4 0 0°C與1 0秒至1 0 0 0秒,而第二退火步驟之溫度 與時間分別為1 0 0°C至5 0 0°C與1分至1 0小時。Page 15 1313036 ________ Case No. 92113648_年月曰 Article 正 _ IV. Abstract of Chinese Invention (Invention Name: Multiple Annealing Process) A multi-anneal process. The multiple annealing process of the present invention includes at least the following steps. First, a substrate is provided. Next, a copper film covering substrate is formed. The substrate is then subjected to several annealing steps. In addition, the plurality of annealing steps include at least one of the first annealing step and the second annealing step, wherein the temperature and time of the first annealing step are 50 ° C to 400 ° C and 1 0 respectively. The second to 1000 seconds, and the temperature and time of the second annealing step are from 1 0 0 ° C to 500 ° C and 1 minute to 10 hours, respectively. 五、(一)、本案代表圖為:第_____圖 (二)、本案代表圖之元件代表符號簡單說明: 110: 於基材上形成銅膜 120 : 進行第 一退火步驟 130 : 進行第 二退火步驟 140 : 進行化學機械研磨 五、英文發明摘要(發明名稱:MULTI-ANNEAL PROCESS)V. (1) The representative figure of this case is: _____ diagram (2), the representative symbol of the representative figure of this case is a simple description: 110: Forming a copper film 120 on the substrate: performing the first annealing step 130: Second annealing step 140: performing chemical mechanical polishing. V. English abstract (invention name: MULTI-ANNEAL PROCESS) A multi-anneal process is disclosed. The present invention comprises : providing a substrate; forming a copper film on the substrate ; and proceeding with a plurality of anneal steps to the substrate. Moreover, the aforementioned plurality of anneal steps comprise a first anneal step and a second anneal step proceeded sequentially, wherein the temperature and time of the first anneal stepThe present invention includes: providing a substrate; forming a copper film on the substrate; and proceeding with a plurality of anneal steps to the substrate. further, the plurality of anneal steps comprises a first anneal step And a second anneal step proceeded sequentially, the temperature and time of the first anneal step 第2頁 1313036 _案號 92113648_年月日_魅 六、指定代表圖 第4頁Page 2 1313036 _ Case No. 92113648_年月日日_魅 Six, designated representative map Page 4
TW92113648A 2003-05-20 2003-05-20 Multi-anneal process TWI313036B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92113648A TWI313036B (en) 2003-05-20 2003-05-20 Multi-anneal process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92113648A TWI313036B (en) 2003-05-20 2003-05-20 Multi-anneal process

Publications (2)

Publication Number Publication Date
TW200426949A TW200426949A (en) 2004-12-01
TWI313036B true TWI313036B (en) 2009-08-01

Family

ID=45072701

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92113648A TWI313036B (en) 2003-05-20 2003-05-20 Multi-anneal process

Country Status (1)

Country Link
TW (1) TWI313036B (en)

Also Published As

Publication number Publication date
TW200426949A (en) 2004-12-01

Similar Documents

Publication Publication Date Title
TWI603430B (en) Method to fabricate backend interconnects
JP2003273209A (en) Method of manufacturing semiconductor device
CN102709232A (en) Preparation method for metal hard mask layer applied to copper interconnection
US7199043B2 (en) Method of forming copper wiring in semiconductor device
EP1401015A1 (en) Selective dry etching of tantalum and tantalum nitride
JP2007150301A (en) Semiconductor device and its manufacturing method
US6316356B1 (en) Thermal processing of metal alloys for an improved CMP process in integrated circuit fabrication
JP2000156406A (en) Semiconductor device and its manufacture
JPH10335657A (en) Manufacture of semiconductor device
TWI313036B (en) Multi-anneal process
US20120273948A1 (en) Integrated circuit structure including a copper-aluminum interconnect and method for fabricating the same
KR100701673B1 (en) METHOD FOR FORMING Cu WIRING OF SENICONDUCTOR DEVICE
US6339022B1 (en) Method of annealing copper metallurgy
KR100973277B1 (en) Metal wiring of semiconductor device and method for forming the same
KR101132700B1 (en) Metal wiring of semiconductor device and method of manufacturing the same
US6818548B2 (en) Fast ramp anneal for hillock suppression in copper-containing structures
JP3282496B2 (en) Method for manufacturing semiconductor device
JP4626795B2 (en) Laminated structure for metal wiring and method for forming the same
KR100935193B1 (en) Metal layer of semiconductor device and method for manufacturing the same
KR100833407B1 (en) Low temperature Cu wafer bonding method using high pressure hydrogen anneal
TW502391B (en) Fabrication method for doped copper interconnect
JP3612249B2 (en) Manufacturing method of semiconductor device
JP2005129849A (en) Manufacturing method of semiconductor device
KR100744600B1 (en) Method for forming metal line in semiconductor device
TW439213B (en) Process of copper adhesion/barrier layer

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent