TWI309552B - - Google Patents

Download PDF

Info

Publication number
TWI309552B
TWI309552B TW095148911A TW95148911A TWI309552B TW I309552 B TWI309552 B TW I309552B TW 095148911 A TW095148911 A TW 095148911A TW 95148911 A TW95148911 A TW 95148911A TW I309552 B TWI309552 B TW I309552B
Authority
TW
Taiwan
Prior art keywords
medium
vegetable
conductivity
organic
composting
Prior art date
Application number
TW095148911A
Other languages
Chinese (zh)
Other versions
TW200826833A (en
Inventor
yi-feng Cai
Jun-Wei Chen
De-Zheng Gao
Original Assignee
Taichung Distr Agricultural Improvement Station Council Of Agriculture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taichung Distr Agricultural Improvement Station Council Of Agriculture filed Critical Taichung Distr Agricultural Improvement Station Council Of Agriculture
Priority to TW095148911A priority Critical patent/TW200826833A/en
Publication of TW200826833A publication Critical patent/TW200826833A/en
Application granted granted Critical
Publication of TWI309552B publication Critical patent/TWI309552B/zh

Links

Classifications

    • Y02P60/216

Description

1309552 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種蔬果栽培介質及其製備方法,特別 是添加一有益微生物以縮短有機物分解時間,以成為一化 學成分穩定且物理性狀均一的蔬果栽培介質。 【先前技術】 一般農業廢棄物均兼具污染性及資源性,如利用微生 馨 物妥為處理,將能轉化為農業生產糸統中的養分源(氮、填、 鉀)及能量源(碳)。因此將農業廢棄物回歸于農田,不僅合 乎資源再利用的自然法則,而且也是現今消納如此龐大量 有機廢棄物之重要方向之一。 施用未腐熟的有機物,容易造成土壤過度還原性及釋 出毒性物質等問題。因此有機廢棄物需經過適當的堆肥化 處理以除去不良有機成分及毒性物質等限制作物生長的因 子。所謂堆肥化作用即利用廣泛分佈於自然界之微生物, 在控制的條件下,將廢棄物中不穩定的有機成份加以分 ® 解,轉換為安定的腐植質成份,即腐熟的堆肥。在堆肥化 過程中,有機物基質中所含碳水化合物會迅速被微生物作 用而分解,同時微生物之增殖必須吸收氮、磷等營養成份 以合成微生物體質(biomass ),所以堆肥化前有機物基質中 應含有豐富的營養要素成份,並需將堆肥化前有機物基質 中各種成份調整至較適宜比例範圍内,以利於微生物進行 堆肥化作用。 不同有機材料所含營養成分差異頗大,如經適當調 配,製成的堆肥成分能配合不同作物生長所需,且堆積腐 5 1309552 熟後可增加有機材料的有效性構與氮素,可增進作物產量 及品質。 施用新鮮或未腐熟之有機物於土壤可能引起不良後 果,如土壌缺氮、產生有機酸或土壤還原性阻害作物生長、 傳播病原菌、雜草種子等。因此,製作堆肥之堆肥化過程; 讓有機物充分腐熟,使它轉變為安全、穩定之高品質有機 質肥料,相當重要。一般堆肥腐熟之目的包括有: 1. 調整有機物腐熟度 一般新鮮或未腐熟之有機物,其有機組成分相當不穩 定,在堆肥化過程中,有機廢棄物中碳氮比是一個非常重 要的因素,堆肥中微生物需要碳素當作生活能源,同時也 需氮素來維持生命及建造體細胞。當堆肥材料碳氮比太高 時,會因氮素缺乏,致使微生物無法大量繁殖,堆肥化過 程進行相當緩慢。如果碳氮比太低,微生物分解出過多之 氨,而易從堆肥中逸散,導致氮素損失。堆積過程進行時, 有機廢棄物中之碳氮比逐漸減少至20:1左右。 2. 減少有害成分 有機物分解會產生曱烷、氫氣、酚酸、有機酸等有毒 物質,對作物生長有害,若經過堆積腐熟分解可減少有害 成分。 3. 避免有機物分解所產生的不良因子 一般有機物含有醣類、脂肪酸等成分,當微生物分解 時會產生高溫及局部的缺氧情形,微生物大量繁殖,產生 土壤還原性,不利作物根部生長,如事先堆積分解,則可 避免直接施用時影響作物生長。 4. 消滅病菌、蟲卵、雜草種子 有機材料如穀殼、蒿桿、糞尿等均附著許多病原菌、 6 1309552 蟲卵及雜草種子。堆肥如經適當醱酵,溫度最高可達60 °C以上,大部分的病原菌、蟲卵及雜草種子在此種溫度下 可被殺滅。 5. 改良物理性 許多有機材料如萬桿、殘枝、樹皮等材質堅硬、纖維 強韌,經過堆積分解後會變成脆細、柔軟、利於撒布,與 土壤混合均勻。 6. 減少臭味,維護田間衛生 經過適當堆積腐熟的堆肥會降低令人不快的臭味,於 _ 田間施用也可減少蚊蠅茲生,維護環境衛生。 7. 可調配堆肥成分、增進肥效 不同有機材料所含營養成分差異頗大,如經適當調 配,製成的堆肥成分能配合不同作物生長所需,且堆積腐 熟後可增加有機材料的有效性構與氮素,可增進作物產量 及品質。 在作物永續栽培過程中使用生物製劑為現今栽培的新 趨勢,其生物製劑使用的種類包含有幾大項,(1)促進植物 φ 生長,如菌根菌、固氮菌、根圈有益微生物群。⑺病蟲害 生物防治,如蘇力菌、木黴菌、枯草桿菌。(3)改善作物生 長環境,如溶填菌。其功用主要在促進植物生長、增加產 •量、減少病蟲害,其它功能尚包含有產生植物賀爾蒙、誘 .發植物抗病反應、降低土壤酸化、減低土壤鹽類累積、誘 使其它有益微生物產生,這些生物製劑近年來已有相當多 的研究人員投入。生物製劑的定義如以廣泛的生物種類區 分,則其除包含作物本身外,尚包含與作物發生反應之各 種生物。如僅以微生物的製劑而言,則生物製劑只包含微 生物體或其相關代謝產物。微生物製劑使用在作物生長上 7 1309552 的效益可粗分為直接利益及間接利益二大類。直接利益微 生物包括與亞科共生根瘤菌(Rhizobium),與森林作物共生 之放線菌(Frankia),促進植物生長之固氮細菌,囊叢枝菌根 菌(vesicualar-arbuscular mycorrhizal fungi)及外生菌根菌 (ectomycorrhizalfungi)等五大類,皆以能直接促進植物營養 吸收方式促進生長;而間接利益微生物則包括對植物病原 菌、植物蟲害及雜草競爭之生物控制作用,所以是屬於降 低影響作物生長不良環境因子作用的間接機制。無論其所 採取的機制為何’這些微生物在實驗過程中均能顯現促進 作物生長潛能,能取代無機肥料及化學殺蟲劑,降低生產 成本及減少環境污染,並能確保作物產量。是以目前在各 項農業資源遭受威脅的今天,微生物肥料的研發可能是一 條明智之途。一般農業廢棄物均兼具污染性及資源性,如 利用微生物妥為處理,將能轉化為農業生產系統中的養分 源(I、磷、鉀)及能量源(碳)。因此將農業廢棄物回歸于農 田’不僅合乎資源再利用的自然法則,而且也是現今消納 如此龐大量有機廢棄物之重要方向之一。 被生物在堆肥化過程中,擔任有機物分解與堆肥穩定 化之重要角色。不同的堆積材料如能接種適當的微生物菌 種’可以加速堆肥醱酵。為達到最有效率之堆肥化作用, 除了添加適當的微生物菌種外,在堆積材料環境中,維持 微生物最適宜之生長條件’使微生物充分的活動與繁殖, 亦月b加強堆肥材料的撥酵與分解。一般堆肥化微生物菌種 的繁殖’可以採用自然堆肥法,即依照堆肥化條件,於木 屑、豆粕等堆肥材料肀,調整適當的材料大小、水份含量 及通氣性等,再進行堆積腐熟,使自然界中微生物滋生于 堆肥材料中’最後在腐熟堆肥中即含有許多分解有機物的 8 1309552 微生物菌種。但為了增進堆肥材料發酵分解效率’針對不 同有機物材料特性,施予適當的微生物菌種,將是堆肥製 作過程之重要步驟之一。其中有關於利用有益微生物菌種 的關鍵機制,應包括有篩選出適當的微生物菌種、建立有 效率的菌種栽培繁殖方法與應用於堆肥化作用的特殊接種 囷種方法等。在製作蔬果介質上,除上述利用有益微生物 菌種的關鍵技術外,包括介質材料種類、特性與用量(配 方)、堆肥化作用控制條件、介質產品品質標準等’均需要 _ 建置標準的條件因子與作業流程,才能夠生產出品質優良 且穩定的介質產品。 由於在製造蔬果栽培介質過程中,其堆肥化階段相當 重要’如能於此一階段進行改良,將可製作出化學成分穩 定含有效植物營養成分的蔬果栽培介質,對於蔬果裁培將 有相當大的助益。 【發明内容】 為製作出化學成分穩定且物理性狀均一的蔬果栽培介 質’本發明於製造蔬果栽培介質過程中的堆肥化階段進行 • 改良,故本發明之一目的在於提供一種蔬果栽培介質含有 一有益微生物,用以縮短有機物分解時間。 本發明之另一目的在於提供一種製造蔬果栽培介質之 方法’利用添加有益微生物至有機栽培介質中,增加其堆 -肥熟化速度,並提供一養分含量穩定及優良的蔬果栽^公 質。 ° ;丨 為達上述目的,本發明提供一種蔬果裁培介質,係勺 含一介質材料與一有益微生物,有益微生物為木徽菌g (Trichoderma sp·)。該介質材料之導電度為0.2 dS/m至j 5 dS/m,較佳為 〇.3 dS/m 至 1·4 dS/m,更佳為 1 ds/m。。 1309552 菌開發成生物防治用的生物^ T.harzianum、T.atroviride 及 f :,吊用的菌株以 T.virens、 則以蔬菜、果樹、花卉及草皮^P^eUUm為主,應用的作物 有機材料在適當的控制條株^〜 作用,可以縮短有機物分解^時^酸酵’利用微生物 -,化學成分穩定的高品質蔬二物理性狀均 木栽培介質。本發明運用堆1309552 IX. Description of the Invention: [Technical Field] The present invention relates to a vegetable and vegetable cultivation medium and a preparation method thereof, in particular to adding a beneficial microorganism to shorten the decomposition time of the organic matter, so as to become a chemically stable and uniform physical and chemical fruit and vegetable Cultivation medium. [Prior Art] General agricultural waste is both polluting and resource-oriented. If it is treated with micro-sweet, it will be converted into nutrient source (nitrogen, fill, potassium) and energy source in agricultural production system ( carbon). Therefore, returning agricultural waste to farmland is not only a natural law for resource reuse, but also one of the important directions for the consumption of such a large amount of organic waste. The application of unfertilized organic matter is liable to cause problems such as excessive reduction of soil and release of toxic substances. Therefore, organic waste needs to be properly composted to remove undesirable organic components and toxic substances that limit crop growth. The so-called composting effect is to use the microorganisms widely distributed in nature to convert the unstable organic components in the waste into controlled humic components, that is, composted compost under controlled conditions. During the composting process, the carbohydrates contained in the organic matrix are rapidly decomposed by the action of microorganisms. At the same time, the proliferation of microorganisms must absorb nutrients such as nitrogen and phosphorus to synthesize microbial biomass (biomass), so the organic matter matrix should be contained before composting. Rich in nutrient elements, and the various components in the organic matrix before composting should be adjusted to a suitable ratio to facilitate the composting of microorganisms. The nutrients contained in different organic materials vary greatly. If properly formulated, the compost ingredients can be matched with the growth of different crops, and the accumulation of rot 5 1309552 can increase the availability of organic materials and nitrogen. Crop yield and quality. Application of fresh or unfermented organic matter to the soil may cause undesirable consequences, such as soil nitrogen deficiency, organic acid production or soil reduction, crop growth, pathogens, weed seeds, and the like. Therefore, it is important to make a composting process for composting; it is important to fully decompose organic matter and turn it into a safe and stable high-quality organic fertilizer. The general purpose of composting includes: 1. Adjusting the organic matter of fresh or undecomposed organic matter, the organic composition is quite unstable. In the process of composting, the carbon-nitrogen ratio in organic waste is a very important factor. Microorganisms in compost require carbon as a source of energy, and nitrogen is also needed to sustain life and build somatic cells. When the carbon-nitrogen ratio of the compost material is too high, the nitrogen deficiency is caused, so that the microorganisms cannot be multiplied, and the composting process is rather slow. If the carbon to nitrogen ratio is too low, the microorganisms decompose too much ammonia and easily escape from the compost, resulting in nitrogen loss. As the accumulation process progresses, the carbon to nitrogen ratio in organic waste gradually decreases to around 20:1. 2. Reducing harmful components Decomposition of organic matter can produce toxic substances such as decane, hydrogen, phenolic acid, and organic acids, which are harmful to crop growth. If it is decomposed by decomposition, it can reduce harmful components. 3. Avoid the bad factors caused by the decomposition of organic matter. Generally, organic matter contains carbohydrates, fatty acids and other components. When microorganisms decompose, high temperature and local anoxic conditions occur. Microorganisms multiply and produce soil reducing, which is unfavorable for crop root growth. Accumulation and decomposition can avoid affecting crop growth when applied directly. 4. Elimination of pathogens, eggs, weed seeds Organic materials such as chaff, wormwood, excrement, etc. are attached to many pathogens, 6 1309552 eggs and weed seeds. If the compost is properly fermented, the temperature can be up to 60 °C, and most of the pathogens, eggs and weed seeds can be killed at this temperature. 5. Improve physical properties Many organic materials such as 10,000 rods, residual branches, bark and other materials are hard and strong, and after being piled up and decomposed, they become brittle, soft, conducive to spreading, and evenly mixed with the soil. 6. Reduce odor and maintain field hygiene. Proper accumulation of decomposed compost will reduce the unpleasant odor. In the field, _ field application can also reduce mosquitoes and maintain environmental sanitation. 7. Adjustable composting composition and improving fertilizer efficiency Different organic materials contain different nutrients. If properly formulated, the compost composition can be matched with the growth of different crops, and the accumulation of decomposed can increase the effectiveness of organic materials. With nitrogen, it can increase crop yield and quality. The use of biological agents in the continuous cultivation of crops is a new trend in today's cultivation. The types of biological agents used include several major items. (1) Promote the growth of plant φ, such as mycorrhizal fungi, nitrogen-fixing bacteria, and beneficial microflora . (7) Pests and diseases Biological control, such as Suri, Trichoderma, Bacillus subtilis. (3) Improve crop growth environment, such as dissolved bacteria. Its function is mainly to promote plant growth, increase production and quantity, reduce pests and diseases, and other functions include plant hormones, induce plant disease resistance, reduce soil acidification, reduce soil salt accumulation, and induce other beneficial microorganisms. As a result, these biological agents have been put into considerable research by researchers in recent years. The definition of a biological agent, if it is distinguished by a wide range of biological species, includes, in addition to the crop itself, various organisms that react with the crop. If only in the case of a microbial preparation, the biological preparation contains only the microorganism or its associated metabolite. The benefits of microbial preparations used in crop growth 7 1309552 can be broadly divided into two categories: direct benefits and indirect benefits. Direct interest microbes include Rhizobium with subfamily Rhizobium, Frankia, which is symbiotic with forest crops, nitrogen-fixing bacteria that promote plant growth, vesicualar-arbuscular mycorrhizal fungi and ectomycorrhizal fungi The five major types of bacteria (ectomycorrhizalfungi) promote growth by directly promoting plant nutrient absorption; while indirect microbes include biological control of plant pathogens, plant pests and weed competition, so it is a disease-reducing environment that reduces crop growth. The indirect mechanism of factor action. Regardless of the mechanism used, these microorganisms can show the potential for promoting crop growth during the experiment, can replace inorganic fertilizers and chemical pesticides, reduce production costs and reduce environmental pollution, and ensure crop yield. With the current threat to various agricultural resources, the development of microbial fertilizers may be a wise way. General agricultural wastes are both polluting and resource-intensive. If properly treated with microorganisms, they can be converted into nutrient sources (I, phosphorus, potassium) and energy sources (carbon) in agricultural production systems. Therefore, the return of agricultural waste to farmland is not only a natural law of resource reuse, but also one of the important directions for the consumption of such a large amount of organic waste. It is an important role for the decomposition of organic matter and the stabilization of compost in the process of composting. Different stacked materials, such as the ability to inoculate appropriate microbial strains, can accelerate composting. In order to achieve the most efficient composting, in addition to the addition of appropriate microbial strains, in the environment of the stacked materials, the optimal growth conditions of the microorganisms are maintained to enable the microorganisms to fully act and reproduce, and also to strengthen the composting materials. And decomposition. Generally, the composting of microbial strains can be carried out by natural composting method, that is, in the composting conditions, in the composting materials such as wood chips and soybean meal, the appropriate material size, moisture content and air permeability are adjusted, and then the piles are decomposed and made. Microorganisms in nature breed in composting materials' Finally, in the composting compost, there are many 13 1309552 microbial strains that decompose organic matter. However, in order to improve the fermentation decomposition efficiency of compost materials, it is one of the important steps in the composting process to apply appropriate microbial strains for different organic material properties. Among them, there are key mechanisms for the use of beneficial microbial strains, including the selection of appropriate microbial strains, the establishment of efficient strain cultivation and propagation methods, and special inoculation methods for composting. In the production of fruits and vegetables, in addition to the above-mentioned key technologies for the use of beneficial microbial species, including the types, characteristics and dosages of the dielectric materials (formulation), composting control conditions, medium product quality standards, etc. Factor and workflow to produce high quality and stable media products. Since the composting stage is very important in the process of manufacturing vegetable and fruit cultivation medium, if it can be improved at this stage, it will be able to produce a vegetable and fruit cultivation medium with chemical composition to stabilize the effective plant nutrient composition, which will be quite large for the cultivation of fruits and vegetables. Help. SUMMARY OF THE INVENTION In order to produce a vegetable and vegetable cultivation medium having stable chemical composition and uniform physical properties, the present invention provides an improvement in the composting stage in the process of manufacturing a vegetable and fruit cultivation medium, and an object of the present invention is to provide a vegetable and fruit cultivation medium containing one Beneficial microorganisms to shorten the decomposition time of organic matter. Another object of the present invention is to provide a method for producing a vegetable and fruit cultivation medium, which utilizes the addition of beneficial microorganisms to an organic cultivation medium, increases the speed of heap-fat ripening, and provides a nutrient-stable and excellent vegetable-fruit planting quality. In order to achieve the above object, the present invention provides a vegetable and vegetable cutting medium, which comprises a medium material and a beneficial microorganism, and the beneficial microorganism is Trichoderma sp. The dielectric material has a conductivity of from 0.2 dS/m to j 5 dS/m, preferably from 〇.3 dS/m to 1.4 μs/m, more preferably 1 ds/m. . 1309552 The bacteria were developed into biological control organisms T.harzianum, T.atroviride and f:, the strains used for hanging were T.virens, then vegetables, fruit trees, flowers and turf ^P^eUUm, the applied crop organic The material in the appropriate control strips ^ ~ role, can shorten the decomposition of organic matter ^ when ^ acid yeast 'utility of microorganisms -, chemical composition of stable high-quality vegetable two physical properties of wood cultivation medium. The invention uses the heap

肥化作用的特殊接種:種方法(接種有益微生物菌種方 法)’應用於製造蔬果栽=介質過程中。意即在關鍵的堆肥 化階段接種-定量有Μ生物’再配合包括介質材料種 類、特性與用量(配方)、堆肥化作用控制條件、介質產品品 質標準等控制條件方法,以使蔬果栽培介質能夠迅速充分 分解醱酵腐熟及產出成品。這一種新型製作方法,可以有 效率地製造成品質優良的蔬果栽培介質,穩定蔬果栽培介 質中有效植物營養成分含量’能夠顯著增進蔬果栽培介質 製作效益。 ' 以下係提供利用本發明之實施例詳細說明書本發明之 技術及特點,然本實施例並非用以限定本發明,任何熟悉 此技藝者,在不脫離本發明之精神和範圍内’當可作各種 之更動與潤飾。 實施例 實施例一、製備蔬果 材料準備: 1.木黴菌製備 木黴菌株之學名係為(sp.),編號為 TCT103,其在中華民國食品工業發展研究所菌種中心的寄 11 1309552 】曰、:係為93年5月27曰’寄存編號係為BCRC93〇〇7〇。 際使㈣木㈣種及其寄存日期及編號) ^適值在6.5〜7·5 ’而此S株培養 :平米平板培養基,於培養七天後,以苟糖 液IxlO3 spore/nu’加人固態稻縠培養基中培^二】_,Special inoculation of fertilization: the seed method (method of inoculating beneficial microbial strains) is applied to the process of manufacturing fruits and vegetables = medium. This means that inoculation in the key composting stage - quantification of Μ Μ ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' Quickly and fully decompose the fermented and matured products. This new production method can efficiently produce high quality vegetable and fruit cultivation medium, and stabilize the effective plant nutrient content in the vegetable and fruit cultivation medium', which can significantly improve the production efficiency of the vegetable and fruit cultivation medium. The present invention is not limited to the details of the present invention. It is intended to be A variety of changes and retouching. EXAMPLES Example 1 Preparation of Fruits and Vegetables Materials Preparation: 1. The scientific name of Trichoderma strains prepared by Trichoderma sp. is sp., numbered TCT103, which is sent to the Center of Fungi of the Republic of China Food Industry Development Institute, 11 1309552 曰,: The system is May 27, 1993. The registration number is BCRC93〇〇7〇. (4) Wood (four) species and their registration date and number) ^ Appropriate value is 6.5~7·5 ' and this S strain culture: flat rice plate medium, after seven days of cultivation, IxlO3 spore/nu' plus solid rice縠 中 中 培 】 】 】

Si:?長滿稻穀培養基後,開始形“即 為里產之種囷’以此法進行接種源之後發酵,能: 之孢子濃度可達lxl09sp〇re/g以上。 口心囷種 2.介質材料製備 由於”貝材料中氮、填、鉀…含量等等化學成 多寡’經由堆肥化作用後,會直接影響到成品的化學 特性;因此為獲得㈣純的絲裁培介f, 二 作前有機材料特性之標準,如表一與表二所示,心2: 導度最為重要,有機材料的導電度根據表—與表^,人: 益廢木屬電導度(1 : 5)較佳為〇.5〜丨3 dS/m,電導产^、: 10)較佳為0.4〜〇·8 ds/m。粉碎稻殼電導度(1 :=盔 0.7~1.2dS/m’電導度(1 : 1〇)較佳為〇 3〜〇 7奶〜。::: 電度之比例為材料與水之比例萃取濾液檢測。 削’ 类一、堆坚也試驗前爆ώ公公批 % % Κ Ca Mg OM pH EC~ EC~~ % % % % (1:5) dS/m (1:10) rlQ/r^ 0.4 1.2 0.4 60〜 6.0 _ α〇/ιη 0.4-0.8 〜 〜 70 〜 1.3 0.8 1.4 0.7 7.0 0.8 0.2 0.1 65 5.0 0.7〜 0.3 〜0.7 ~ 〜 〜 1.2 1.2 0.5 0.4 75 6.5 材料名稱 粉 12 1309552 表二 材料名 稱 $或分分析 0.5 备碎稻殼ο.κ Cu Μη mg/kg Zn mg/kg Fe mg/kg 1 ITicr/κ 4.0〜 8.0 2.0〜 50~ 100 100- 200 25〜 40 15~ 30 250〜 500 100〜 200 3·〇〜 8.0 2.0-. 5.0 製備流程如下: (1)原料化學特性分析总 學 特性分析,並依照有=·㈣進場之原料逐批進行化 ⑵原料種類與料標準實行管控。 積比例80: 20混合均勻。金針讀木屑、粉碎稻殼以體 5與t控t]:將固態木黴菌菌種加水稀釋成 °心囷液,^騍(1)製備的堆肥材料與水懸菌液以ln^ . 公升混合,再調整水分含量至約6〇%,堆積高度維持約 1.5-2.〇m,爾後進行堆肥化發酵步驟。 、、 (4) 堆肥化製作管理方法:堆積期間以鏟裝機、怪手或自動 翻堆機等機具’每週進行翻堆工作1〜2次,待堆肥體溫度 由6〇。(:以上高溫期,逐漸降為5〇。(:以下低溫期,如肥體溫 度維持40~45°C之間’介質即接近腐熟穩定。 (5) 介質成品特性品管分析··採取介質樣品進行化學成分分 析、發芽率及發芽速率指標(GRI)分析等品質管控。 复选例二、蔬果盖座介.質之特'11全jt 由介質成品化學成分分析結果顯示(表三,表四),介質 PH(1 : 10)值為 6.65~7.22 ’ 電導度(1 : 5) 1.32〜1.64 dS/m, 電導度(1 : 10) 〇.46~0.59 dS/m,氮含量為 〇·80〜0.88%,磷 1309552 3里為0.36〜〇·44%,鉀含量為〇 5〇~〇 59%,鈣含量為 1.40〜1.65%,鎂含量# G 32〜q.44%,有機質含量為 61·〇~72.6% ’ 鋼含量為 G.19〜0.26%,銅含量為 3.15~3.82 mg/kg鐘^畺為77 2〜9〇1叫㈣,辞含量為Μ?—%.) mg/kg鐵含置為298〜378 mg/kg,删含量為3.11~3.80 mgLkg’木黴菌有效菌數為6·7χ1〇5·6〜3.5xl06·3。以上之數值 已符合作為蔬果栽培介質化學特性品質之標準。After Si:? is overgrown with rice medium, it begins to form a “plant that is produced in the same way” and fermented by this method. The concentration of spores can reach lxl09sp〇re/g or more. The preparation of materials due to the "chemical content of nitrogen, filling, potassium, etc. in the shell material" will directly affect the chemical properties of the finished product after composting; therefore, in order to obtain (four) pure silk cutting, f The standard of organic material properties, as shown in Table 1 and Table 2, is the most important for the conductivity: the conductivity of organic materials is based on the table-- and the table ^, the person: the electrical conductivity of the wood is better (1: 5) For 〇.5~丨3 dS/m, the conductance yield is: 10) preferably 0.4~〇·8 ds/m. Crushing rice hull conductivity (1:=Helmet 0.7~1.2dS/m' Conductivity (1:1〇) is preferably 〇3~〇7 milk~.::: The ratio of electricity is the ratio of material to water. Filtrate detection. Cutting 'Class I, pile hard is also tested before the test, the public share of the batch % % Κ Ca Mg OM pH EC~ EC~~ % % % % (1:5) dS/m (1:10) rlQ/r^ 0.4 1.2 0.4 60~ 6.0 _ α〇/ιη 0.4-0.8 ~ ~ 70 ~ 1.3 0.8 1.4 0.7 7.0 0.8 0.2 0.1 65 5.0 0.7~ 0.3 ~ 0.7 ~ ~ ~ 1.2 1.2 0.5 0.4 75 6.5 Material Name Powder 12 1309552 Table 2 Materials Name $ or sub-analysis 0.5 Prepared rice husk ο.κ Cu Μη mg/kg Zn mg/kg Fe mg/kg 1 ITicr/κ 4.0~ 8.0 2.0~ 50~ 100 100- 200 25~ 40 15~ 30 250~ 500 100~200 3·〇~ 8.0 2.0-. 5.0 The preparation process is as follows: (1) analysis of the chemical properties of the raw materials, and the batch-by-batch according to the raw materials with the presence of (4) (2) control of raw material types and material standards The ratio is 80:20, and the mixture is evenly mixed. The gold needle reads the sawdust and pulverizes the rice husk to the body 5 and t control t]: the solid Trichoderma strain is diluted with water to form the heart sputum, and the compost material prepared by the 骒(1) The aqueous suspension is mixed with ln^. liters, and then the water content is adjusted to about 6〇%, the accumulation height is maintained at about 1.5-2.〇m, and then the composting fermentation step is carried out. (4) Composting production management method: During the accumulation period, the equipment such as the shovel loader, the strange hand or the automatic turning machine will be turned over once or twice a week, and the temperature of the composting body will be 6 〇. (: The above high temperature period is gradually reduced to 5 〇. During the low temperature period, if the temperature of the fertilizer body is maintained between 40 and 45 °C, the medium is close to maturity and stability. (5) Analysis of the quality of the finished product of the medium. · Chemical sample analysis, germination rate and germination rate index (GRI) Analysis and other quality control. Re-selection example 2, vegetable and fruit cover. Quality special '11 full jt The chemical composition analysis results of the finished product (Table 3, Table 4), the medium PH (1: 10) value is 6.65~7.22 Conductivity (1: 5) 1.32~1.64 dS/m, electrical conductivity (1: 10) 〇.46~0.59 dS/m, nitrogen content is 〇·80~0.88%, phosphorus 1309552 3 is 0.36~〇· 44%, potassium content is 〇5〇~〇59%, calcium content is 1.40~1.65%, magnesium content #G 32~q.44%, organic matter content is 61· 〇~72.6%' steel content is G.19~0.26%, copper content is 3.15~3.82 mg/kg bell^畺77 2~9〇1 (4), the content is Μ?-%.) mg/kg iron The content is 298~378 mg/kg, and the content of the effective bacteria is 3.11~3.80 mgLkg' Trichoderma is 6. 7χ1〇5·6~3.5xl06·3. The above values have met the criteria for the quality of chemical properties of vegetable and fruit cultivation media.

學成分分析(一) N p 介質處 P K Ca Mg OM pH EC EC 理1 (1:5) (1:10) % % % % % % dS/m dS/m A 0.88 0.38 0.59 1.43 0.37 62.2 7.17 1.32 0.46 B 0.86 0.44 0.57 1.65 0.44 62.7 7.13 1.42 0.46 C 0.81 0.43 0.50 1.56 0.41 61.0 7.22 1.38 0.49 D 0.83 0.36 0.54 1.40 0.32 72.6 6.86 1.64 0.56 E 0.80 0.40 0.51 1.52 0.41 72.2 6.65 1.63 0.59 表四、 介質成品化學成分分析(二) 介_理Na Cu Mn Zn Fe B 木黴菌 % mg/kg mg/kg mg/kg mg/kg mg/kg Spore/g A 0.25 3.79 77.3 26.4 361 3.11 2.3xl06·2 B 0.26 3.82 83.6 32.1 365 3.80 3.5xl06·3 C 0.22 3.76 84.0 36.3 378 3.55 6.7xl05·6 D 0.24 3.18 81.7 21,7 339 3.16 7.0xl05·9 E 0.19 3.15 90.1 27.2 298 3.33 8.1xl061 14 1309552 接著,由介質成品發芽率及發芽速率指標(GRi)分析結 果顯示(表五),本發明之蔬果栽培介質與進口泥炭介質的發 芽率及發芽速率指標(GRI)差異不顯著。顯示本發明之蔬果 栽培介質的化學特性頗為穩定,致使發芽率及發芽速率指 標(GRI)相當高,因此本發明之蔬果栽培介質品質不遜於進 口泥厌介質’頗具有取代進口泥炭介質之潛力。Component Analysis (1) N p Medium PK Ca Mg OM pH EC EC 1 (1:5) (1:10) % % % % % % dS/m dS/m A 0.88 0.38 0.59 1.43 0.37 62.2 7.17 1.32 0.46 B 0.86 0.44 0.57 1.65 0.44 62.7 7.13 1.42 0.46 C 0.81 0.43 0.50 1.56 0.41 61.0 7.22 1.38 0.49 D 0.83 0.36 0.54 1.40 0.32 72.6 6.86 1.64 0.56 E 0.80 0.40 0.51 1.52 0.41 72.2 6.65 1.63 0.59 Table IV. Chemical composition analysis of finished products ( b) Na Cu Mn Zn Fe B Trichoderma % mg / kg mg / kg mg / kg mg / kg mg / kg Spore / g A 0.25 3.79 77.3 26.4 361 3.11 2.3xl06 · 2 B 0.26 3.82 83.6 32.1 365 3.80 3.5xl06·3 C 0.22 3.76 84.0 36.3 378 3.55 6.7xl05·6 D 0.24 3.18 81.7 21,7 339 3.16 7.0xl05·9 E 0.19 3.15 90.1 27.2 298 3.33 8.1xl061 14 1309552 Next, the germination rate and germination rate index of the finished product (GRi) analysis results show that (Table 5), the germination rate and germination rate index (GRI) of the vegetable and fruit cultivation medium of the present invention and the imported peat medium are not significantly different. It is shown that the chemical characteristics of the vegetable and fruit cultivation medium of the present invention are quite stable, and the germination rate and the germination rate index (GRI) are relatively high. Therefore, the quality of the vegetable and fruit cultivation medium of the present invention is not inferior to that of the imported mud anodial medium, which has the potential to replace the imported peat medium. .

堯互二Jig成品發芽率及發芽速率指標(qRI)分析_ --ίϊΐϊ---率(%)1_發芽速率^標(GRI)1 小白菜芥藍 新型介質A l〇〇a2 95.8a 新型介質B 98.6a 93.1a 新型介質C l〇〇a 98.6a 新型介質D l〇〇a i〇〇a 新型介質E l〇〇a 94.4a 泥炭介質l〇〇a 98.6a 萵苣小白菜 88.1a 0.99a 89.7a 0.97a 90.3a l.〇〇a 94.4a 0.98a 89.6a 0.98a 95.8a l.〇〇a 界藍 〇.85a 〇.82a 〇.92a 〇.90a 〇.84a 〇.87a 1發芽率= 100xN/S,發芽速率指標(GRI) = S(n/D)/S » 萵苣 〇.67a 0.72a 〇.78a 〇.77a 0.72a 〇.7〇aAnalysis of germination rate and germination rate index (qRI) of 尧 尧 J Jig _ _ ϊΐϊ ϊΐϊ - - 率 % % % 发芽 新型 新型 新型 新型 新型 新型 新型 新型 新型 新型 新型 新型 新型 新型 新型 新型 新型 新型 新型 新型 新型 新型 新型 新型 新型 新型 新型 新型 新型 新型 新型 新型 新型Medium B 98.6a 93.1a New medium C l〇〇a 98.6a New medium D l〇〇ai〇〇a New medium E l〇〇a 94.4a Peat medium l〇〇a 98.6a Lettuce cabbage 88.1a 0.99a 89.7 a 0.97a 90.3a l.〇〇a 94.4a 0.98a 89.6a 0.98a 95.8a l.〇〇a 〇蓝〇.85a 〇.82a 〇.92a 〇.90a 〇.84a 〇.87a 1 germination rate = 100xN /S, germination rate index (GRI) = S(n/D)/S » Lettuce 〇.67a 0.72a 〇.78a 〇.77a 0.72a 〇.7〇a

s是供試種子總數。 N是發芽種子總數。 D是指各次計算發芽種子數目的時間(以天為計算單位)。 η是第D次計算時的發芽數目。 顯著水準 2'同一行中標示相同英文字母者,代表使用鄧肯氏多變域分析法未達5% 實施例三、蔬果栽培介質之效益評 本實施例係使用實施例-之蔬果栽培介質進 培試驗,以下分別就小胡瓜、小蕃^及香瓜為試^ (1)小胡瓜試驗 豕。 15 1309552 小胡瓜試區設置于南投縣草屯鎮,由小胡瓜生育性狀 與產量調查結果顯示(表六),新型蔬果栽培介質處理的小胡 瓜莖部節間較短,莖幹較粗,株高略矮,所以外觀顯示植 株較粗壯。其中小胡瓜產量在新型蔬果栽培介質處理為5.8 9 kg/m2,較進口泥炭(對照)處理可增加17%。 表六、本發明之蔬果栽培介質與進口泥炭介質對小胡瓜生 長與產量之影響 介質種類 株南 ^cm) 株高 2(cm) 株徑 2(cm) 茱見 2(cm) 產量 (kg/m2) 指數 (%) 新型介質 35.7 92.3 2.26 22.3 5.89 117 泥炭介質 38.2 97.5 1.96 23.6 5.03 100 h定植後第20曰。 定植後第35曰。 (2)小番茄 小蕃茄試區設置于南投縣埔里鎮,由小番茄生育性狀 與產量調查結果顯示(表七),小番茄產量在新型蔬果栽培介 質處理為3.38 kg/m2,與進口泥炭(對照)處理3.21 kg/m2相 比較,增產5 %。 表七、本發明蔬果栽培介質與進口泥炭介質對小蕃茄生長 與產量之影響 介質種類 株南 ^cm) 株而 2(〇m) 株兩 3(cm) 產量 (kg/m2) 指數 (%) 新型介質 46.1 103 162 3.38 105 泥炭介質 44.7 105 168 3.21 100 h定植後第22曰。 2'定植後第38曰。 3·定植後第55曰。 (3)香瓜 16 1309552 香瓜試區設置于彰化縣大村鄉,由香瓜生育性狀與產 量調查結果顯示(表八),香瓜產量在新型蔬果栽培介質處理 為3_27 kg/m2,與進口泥炭(對照)處理2.86 kg/m2相比較, 增產14%。 表八、新型蔬果栽培介質與進口泥炭介質對香瓜生長與產 量之影響 介質種類 株南 '(cm) 株南 2(cm) 產量 (kg/m2) 指數 (%) 新型介質 54.1 147 3.27 114 泥炭介質 52.6 135 2.86 100 h定植後第26曰》 2·定植後第47曰。 綜上所述,本發明之蔬果栽培介質利用接種有益微生 物方法以穩定有機介質材料之化學成分以及均一物理性 狀,可促進有機材料分解、減少臭味產生與穩定蔬果栽培 介質產品中成分含量,亦能穩定增加蔬果栽培介質產品中 有益菌數。本發明之蔬果栽培介質製作方法可以加速有機 材料腐熟並達到一定品質標準,減少製作時程,降低蔬果 栽培介質製作成本。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟悉此技藝者,在不脫離本發明之精神 和範圍内,當可作各種之更動與潤飾,因此,本發明之保 護範圍,當視後附之申請專利範圍所界定者為準。 其他實施態樣 本發明之實施方法已詳述於前述實施例中,任何熟悉 17 1309552 在不背離本發明 ,因此,其他實 本技術領域之人士皆可依本發明之說明, 之精神與範圍内視需要更動、修飾本發明 施態樣亦包含在本發明之申請專利範圍中 【圖式簡單說明】 無 【元件符號說明】 無s is the total number of seeds tested. N is the total number of germinating seeds. D is the time (in days) for calculating the number of germinating seeds each time. η is the number of germinations at the time of the Dth calculation. Significant level 2' indicates the same English letter in the same line, representing less than 5% using Duncan's multivariate domain analysis. Example 3: Benefits of vegetable and fruit cultivation medium This example uses the vegetable-fruit cultivation medium of the example-introduction The test, the following are the small courgette, Xiaofan ^ and cantaloupe for the test ^ (1) courgette test 豕. 15 1309552 The small courgette test area is set up in Caotun Town, Nantou County. The results of the survey on the fertility and yield of the small courgettes (Table 6) show that the stems of the small courgettes treated by the new vegetable and fruit cultivation medium are shorter and the stems are thicker. The height is slightly shorter, so the appearance shows that the plants are thicker. Among them, the yield of courgettes was 5.8 9 kg/m2 in the new vegetable and fruit cultivation medium, which was 17% higher than that of imported peat (control). Table 6. Effect of vegetable and vegetable cultivation medium and imported peat medium on the growth and yield of courgettes of the present invention Medium type plant south ^cm) Plant height 2 (cm) Plant diameter 2 (cm) 茱 see 2 (cm) Yield (kg/ M2) Index (%) New medium 35.7 92.3 2.26 22.3 5.89 117 Peat medium 38.2 97.5 1.96 23.6 5.03 100 h After planting 20th. 35th after planting. (2) The small tomato and small tomato test area was set up in Puli Town, Nantou County. The results of the survey on the growth traits and yield of small tomatoes (Table 7) showed that the yield of small tomato was 3.38 kg/m2 in the new vegetable and fruit cultivation medium, and imported peat ( Compared with the treatment of 3.21 kg/m2, the yield increased by 5%. Table 7. Effect of the vegetable and vegetable cultivation medium and the imported peat medium on the growth and yield of small tomatoes of the present invention Medium type strains of plant south ^cm) strain and 2 (〇m) strain two 3 (cm) yield (kg/m2) index (%) New medium 46.1 103 162 3.38 105 Peat medium 44.7 105 168 3.21 100 h after planting 22nd. 2' 38th after planting. 3. The 55th day after planting. (3) Melon 16 1309552 The melon test area was set up in Dacun Township, Changhua County. The results of the survey on the growth characteristics and yield of melon showed (Table 8). The yield of melon was treated in the new vegetable and fruit cultivation medium to 3_27 kg/m2, compared with imported peat (control). Compared with the treatment of 2.86 kg/m2, the yield increased by 14%. Table 8. Effect of new vegetable and fruit cultivation medium and imported peat medium on growth and yield of melon. Medium type Zhunan' (cm) Strain 2 (cm) Yield (kg/m2) Index (%) New medium 54.1 147 3.27 114 Peat medium 52.6 135 2.86 100 h after planting, 26th 2 2, 47th post-planting. In summary, the vegetable and fruit cultivation medium of the present invention utilizes the method of inoculating beneficial microorganisms to stabilize the chemical composition and uniform physical properties of the organic medium material, thereby promoting the decomposition of the organic material, reducing the odor generation and stabilizing the content of the components in the vegetable and fruit cultivation medium products. It can stably increase the number of beneficial bacteria in vegetable and fruit cultivation medium products. The method for preparing the vegetable and fruit cultivation medium of the invention can accelerate the decomposing of the organic material and reach a certain quality standard, reduce the production time and reduce the manufacturing cost of the vegetable and fruit cultivation medium. While the present invention has been described above in terms of the preferred embodiments thereof, it is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection of the invention is defined by the scope of the appended claims. Other embodiments of the present invention have been described in detail in the foregoing embodiments, and any one skilled in the art does not depart from the present invention. Therefore, those skilled in the art can make the spirit and scope of the present invention. The need to change and modify the aspect of the present invention is also included in the scope of the patent application of the present invention. [Simple description of the figure] No [component symbol description] None

1818

Claims (1)

年上月7日修(東)正替換頁In the year of the last month, the repair (east) is replacement page 1309552 十、申請專利範圍: 1. 一種蔬果栽培介質,係包含: 一介質材料; 一有益微生物; 其中前述有益微生物為木黴菌株(sp.); 前述介質材料之導電度為0.2 dS/m至1.5 dS/m。 2. 如申請專利範圍第1項所述之介質,其中前述介質材 料為有機材料。 3. 如申請專利範圍第1項所述之介質,其中前述介質材 料包含養金針菇之廢木屑、稻殼或其混合物。 4. 如申請專利範圍第1項所述之介質,其中前述介質材 料之導電度為0.3 dS/m至1.4 dS/m。 5. 如申請專利範圍第4項所述之介質,其中前述介質材 料之導電度為1 dS/m。 6. —種蔬果栽培介質製造方法,係包含下列步驟: 提供一介質材料; 取木黴菌株sp.)之種菌加水稀釋成菌 懸液; 將前述菌懸液與前述介質材料混合; 調整前述介質材料之水分含量至50-60% ;及 進行堆積製作至堆肥腐熟為止; 其中前述介質材料之導電度為0.2至1.5 dS/m。 7. 如申請專利範圍第6項所述之方法,其中前述介質材 料為有機材料。 8. 如申請專利範圍第6項所述之方法,其中前述有機材 料包含養金針菇之廢木屑、稻殼或其混合物。 19 1309552 9.如申請專利範圍第8項所述之方法,其中前述介質材 料之導電度為0.3至1.4 dS/m。 10·如申請專利範圍第9項所述之方法,其中前述介質材 料之導電度為1 dS/m。1309552 X. Patent application scope: 1. A vegetable and fruit cultivation medium comprising: a medium material; a beneficial microorganism; wherein the beneficial microorganism is a Trichoderma strain (sp.); the conductivity of the medium material is 0.2 dS/m to 1.5 dS/m. 2. The medium of claim 1, wherein the dielectric material is an organic material. 3. The medium of claim 1, wherein the medium material comprises waste wood chips, rice husks or mixtures thereof. 4. The medium of claim 1, wherein the dielectric material has a conductivity of from 0.3 dS/m to 1.4 dS/m. 5. The medium of claim 4, wherein the dielectric material has a conductivity of 1 dS/m. 6. A method for producing a vegetable and vegetable cultivation medium, comprising the steps of: providing a medium material; and extracting the inoculum of the strain of Trichoderma sp.) with water to form a bacterial suspension; mixing the bacterial suspension with the medium material; adjusting the medium The moisture content of the material is 50-60%; and the stacking is performed until the compost is decomposed; wherein the dielectric material has a conductivity of 0.2 to 1.5 dS/m. 7. The method of claim 6, wherein the dielectric material is an organic material. 8. The method of claim 6, wherein the organic material comprises waste wood chips, rice husks or mixtures thereof. The method of claim 8, wherein the dielectric material has a conductivity of 0.3 to 1.4 dS/m. 10. The method of claim 9, wherein the dielectric material has a conductivity of 1 dS/m. 2020
TW095148911A 2006-12-26 2006-12-26 Fruit and vegetable cultivation medium and the manufacture method thereof TW200826833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW095148911A TW200826833A (en) 2006-12-26 2006-12-26 Fruit and vegetable cultivation medium and the manufacture method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW095148911A TW200826833A (en) 2006-12-26 2006-12-26 Fruit and vegetable cultivation medium and the manufacture method thereof

Publications (2)

Publication Number Publication Date
TW200826833A TW200826833A (en) 2008-07-01
TWI309552B true TWI309552B (en) 2009-05-11

Family

ID=44817005

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095148911A TW200826833A (en) 2006-12-26 2006-12-26 Fruit and vegetable cultivation medium and the manufacture method thereof

Country Status (1)

Country Link
TW (1) TW200826833A (en)

Also Published As

Publication number Publication date
TW200826833A (en) 2008-07-01

Similar Documents

Publication Publication Date Title
CN105838644B (en) Complex micro organism fungicide and bacterial manure and preparation method thereof and the application in reparation salt affected soil
CN102174412B (en) Phosphorus-solubilizing fungi and application thereof to preparation of biological fungus fertilizer
CN104817397B (en) A kind of biological organic fertilizer and its production method using filter mud of sugarcane as main material
Jayathilake et al. Productivity and soil fertility status as influenced by integrated use of N-fixing biofertilizers, organic manures and inorganic fertilizers in onion
CN102173891A (en) Method for processing light organic substrate on basis of taking eucalyptus bark as raw material
Situmeang Utilization of Biochar, Compost, and Phonska in Improving Corn Results on Dry Land
CN112457125A (en) Banana wilt prevention bio-organic fertilizer and preparation method and application thereof
Sulok et al. Introducing Natural Farming in Black Pepper (Piper nigrumL.) Cultivation
CN107188724A (en) A kind of zymotechnique of biological organic bacterial manure
CN104098408B (en) A kind of cultural method of leaf vegetables
Srivastava et al. Biofertilizers for sustainable agriculture
Patil et al. Effect of 32 year long-term integrated nutrient management on soil p fractions and availability of phosphorus under sorghum-wheat cropping sequence in vertisol
CN107602278A (en) The preparation method of tobacco breeding and seedling nursing with equipment matrix
TWI309552B (en)
JP2002212560A (en) Method for preparing super high-density antimicrobial basic material
Singh et al. Biofertilizers and plant growth regulators as key player in sustainable agriculture by enhancing soil fertility and crop productivity
Raha Studies on the effect of vermicompost on the growth, yield and quality of chrysanthemum (Chrysanthemum coronarium L. cv. Kasturba Gandhi)
JP2000327470A (en) Production of fermented fertilizer using culture residue of mushroom bed culture mushroom and organic material or the like and method for calculating fertilizer component after fermentation
McClintock Production and use of compost and vermicompost in sustainable farming systems
CN114031461B (en) Organic silicon fertilizer for reducing chromium and arsenic content in rice, and preparation method and application thereof
Ghehsareh et al. Comparison of municipal solid waste compost, vermicompost and leaf mold on growth and development of cineraria (Pericallis× hybrida ‘Star Wars’)
Barbadillo et al. Reformulation of vermicast as organic fertilizer for corn (Zea mays L.)
Thakur et al. Effect of Trichoderma inoculated trash, nitrogen level and biofertilizer on performance of sugarcane (Saccharum officinarum) in calcareous soils of Bihar
TWI306448B (en)
JP2004299935A (en) Organic fertilizer, soil conditioner and method of manufacturing the same