TWI308703B - Method for performing probability constrained optimization in electrical fabrication control and related system - Google Patents

Method for performing probability constrained optimization in electrical fabrication control and related system Download PDF

Info

Publication number
TWI308703B
TWI308703B TW092130888A TW92130888A TWI308703B TW I308703 B TWI308703 B TW I308703B TW 092130888 A TW092130888 A TW 092130888A TW 92130888 A TW92130888 A TW 92130888A TW I308703 B TWI308703 B TW I308703B
Authority
TW
Taiwan
Prior art keywords
built
probability
group
limit
likelihood
Prior art date
Application number
TW092130888A
Other languages
English (en)
Other versions
TW200415497A (en
Inventor
Richard P Good
Gregory A Cherry
Jin Wang
Original Assignee
Advanced Micro Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Micro Devices Inc filed Critical Advanced Micro Devices Inc
Publication of TW200415497A publication Critical patent/TW200415497A/zh
Application granted granted Critical
Publication of TWI308703B publication Critical patent/TWI308703B/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41885Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by modeling, simulation of the manufacturing system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32015Optimize, process management, optimize production line
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50129Setup machines as function of process model, control strategy for optimum use of machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Automation & Control Theory (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Factory Administration (AREA)
  • Feedback Control In General (AREA)

Description

1308703 玫、發明說明: 【發明所屬之技術領域】 本發明概括說來係關於一種工業製法,更特別的是關 於一種方法及裝置用於測定數個製程目標,其中係運用具 區間後退之或然率限制最佳化技術(a probability onstrained optimization with a receding horizon)。 【先前技術】 為了增加積體電路裝置(例如微製程器,記憶體裝置, 及其類似物)之品質’可靠性以及生產量,在半導體工業中 有—持續性的驅力。此驅力係來自消費者對操作更可靠' 品質更高的電腦以及電路裴置之需求。這些需求導致在半 導體裝置(例如電晶體)的製造上以及整合該電晶體之積體 電路的製造上有不斷的改善。除此之外,減少典型電晶體 之裝置製造之缺陷也可降低每一電晶體之整體成本和整合 §玄電晶體之積體電路之成本。 通常’在晶圓片上進行— 製程工具,包括光微影步進機 光工具,快速熱處理工具,植 體製程生產線作業之技術包括 動控制各式各樣的製程工具之 平台或製程模組網路互相通訊 設備介面。該設備介面則連接 和製造平台之間的通訊。該機 制系統(APC)之一部份 系列製程步驟要使用不同的 ,蝕刻工具,沈積工具,拋 入工具等等。一種改善半導 使用一種全廠控制系統以自 運作。該製造工具與一製造 。每一製造工具通常連接到 到一機器介面以利製造工具 器介面一般可為高級製程控 該ApC系統啟動一依據製造模式 92475 5 1308703 之控制腳本,其可為一軟體程式係可自動擷取一執行製造 過程所需的資料。通常半導體裝置在多重製程中要通過7 重的製造工具,並產生與已加工之半導體裝置之品質有關 之資料。預處理及/或後處理之度量資料係供給於工具用之 衣知控制器。依據性能模式及度量衡資訊,用製程控制器 "十算刼作方法參數,試圖實現使後處理結果儘可能逼近制 私目標數值。以此方式減少變化的程度可導致生產量嶒 加,成本降低,裝置性能提高等等,在在都等於是增^利 W玍產規格越 '^八王Ο口 ϋ口貝的至兴,平導體工 業中的製程控制越是重要。過去,半導體製程控制係由獨 立單元操作之批次控制器組成中製程目標係由個別操 :模式決定且不整體考慮該製程。批次控制器曾被用來控 :這些獨立單元作#,例如化學機械平坦化,化學氣相沈 積’快速熱處理退火,雪將 電水姓刻寺等,且該批次控制演首
法(係設計用來维確置士 W A ^ 維4早7作於必要製程目標L·均已經為 人所相§瞭解。批次々制 控制斋通常只專注於一種製程及與之 相關之製程目碑封枯 — T數值。母-批次控制器企圖在可接受的變
化I&圍内貫現其製斧呈3 P ..^ f目私數值。製程目標數值通常設定在 破控制之特性之可桩成e阁 又圍之中央值附近。不過,通常數 驟會影響製得裝置之—特定性能特性的結果。由 f:目程有其本身之製程目標數值以及企圖達成其 衣牙王目4示數值之批告丨丨哭 ^制扣,故而難以控制該性能特性。 有t f月况中,測定制 '疋衣传凌置性能之電路度量要到製造 92475 6 1308703 過程相對後期十At _ 能進行。這種裝:制仃’而有時還要直到最後測試階段才 以自動控制製造過程以達到性能目標。 …成難 '常製得裝置之性能特性(例如速度,接觸電率 :=)值之間接控制係藉由依據測量自尺寸及材料特性之 程::來控制裝置之物理特性。實際裝置之特性與製 .兄中值之差異會導致對應的性能特性之差異。w 數:t異來源可能以疊加方式結合,造成製= 包1·生此特性等級下降或完全無法接受。 通常實現—種特定性能特性目標要用—組 =程目標數值…,因為控制電路性能特性所用= 疋間接的’故而製程目標數值通常為靜態的。有些情況 奸-個或以上之製造過程可能難以可靠地滿足彼之製程 :。不同的因素’例如工具之清潔&,耗材之使用年齡 •寺,會影響31具之性能與可控制性。這種偏離目標之差 異:製得裂置之電路性能特性有不利的影響,纟某種程度 上藉由間接控制是不容易加以解釋的。 β本發明所針對的是要克服上述所提及之一種或以上之 問題,或者至少降低其影響。 【發明内容】 從本發明之一方面可以看到,在—方法中係包括了: 界定-種製造裝置之製程模式,該製程包括複數個步驟; 為该製程步驟之至Φ ___早隹尺今@ & “、 主乂 十尔界疋棱數個内建製程目標;該 模式使該内建製程目標與複數個製程輪出參數連繫起來; 92475 7 1308703 内建製程目標用之第—組或然率限制條件 =出參數用之第二組或然率限制條件;依據該模= 出程輸出參數界定一個目標函數;測定該製程輪 之 跡’係藉由最佳化該限制條件為每-製程步驟 用之第―细及第二組或然率限制之目標函數以測制 ==該内建製程目標之數值,重覆最佳化其餘製程; 驟直到每一製程步驟完成。 從本發明之另一方面可以看到,在一系統中係包括了 複=製造裝置用之工具於複數個步驟上,與該等工具之 至子集有關之複數個製程控制器,以及監督控制器。 依才内建製程目標,每一製程控制器可用來控制至少—相 μ工具之製程。該監督控制器可用以組構應用於製造該裝 置用之製程步驟之模式,該模式係將該内建製程目標連繫 於莜數個製程輸出參數,界定該内建製程目標用之第一組 或然率限制條孙,兴—# & 八 "疋6亥衣程輸出參數用之第二組或然率 限:条件’依據該模式及該複數個製程輸出參數界定—個 ^ 以及測定该製程輪出參數之軌跡,係藉由最佳 化該限制條株氧息 , '、為母一衣粒步驟用之第一組及第二组或然率 限.,目‘函& ’以測定與製程控制器連繫之每一製程步 驟之=内建製程目標之數值,重覆最佳化其餘製程步驟, 直到母一製程步驟完成。 [實施方式】 ^發明之圖解說明之實施例描述如下。為求清晰,實 ’于、、彳寸性/又有完全描述於本說明書。顯然應了解任何 92475 8 1308703 例之發展,必須作出許多與特定組裝有關之 鞏㈣的5發展者之特定目#,例如要與系統相關的及企 此類:展限制一致,此係因每1衷而異。此外,應了解 二,努力可能又複雜又花時間,而對受惠於本揭示 :技術的普通技藝者來言兒1對不是一種例行工作。 參考第1圖,係提供—埒日曰击, W竹奴供D允明製造系統10之簡化方塊 於該說明實施例中,該製造系統則來製造半導體裝 ^。雖然所描述之本發明係組裳於半導體製造設備内,但 二本發明並不受限於此,而可應用於其他製造環境。在此 :奴技術可應用於不同的工作部件或製造品目,包括, 但不受限於’微處理器,記憶體裝置,數位信號處理器, 1定應用積體電路(ASK:),或其他裝置。該技術也可應用 於半導體裝置以外之工作部件或製造品目。 豆。—網路20將製造系統1〇之不同零件相互連接起來使 ”可父換資訊。該圖解之製造系統〖〇包括複數個工具3 〇 至8〇〇每一工具3〇至8〇可耦合於一連接到網路之電 腦(未圖示)。工具30至80依類似工具分組,標示於字尾。 ,士工具組3 0 A至3 0 C表示某—類型之工具,例如一種化 學機械平坦化工具。一特定晶圓或批次晶圓在製造時會行 進通過工具30至80,而製造流程中每一工具3〇至8〇執 仃—個特定功能。用於半導體裝置製造環境之範例製程工 具包括度量衡工具,光微影步進機,蝕刻工具,沈積工具, 拋光工具,快速熱處理工具,植入工具等等。圖示工具3〇 至80之排列及分類歸檔只是為了說明之目的。在實際之實 92475 9 1308703 行中可以用任何實際次序或編組安排工具30至8〇 ^除 此之外,在一特定編組之工具間的連結意思是表示與網路 2〇之連結,而非工具3〇至8〇間的相互連結。 一一製造執行系統(MES)伺服器9〇係管理製造系統ι〇 ^高階操作。該MES伺服器9〇監視製造系統1〇中不同實 =之狀態(即批次’工具3請)以及控制製造物品通過製造 L釦之抓動(例如半導體晶圓片之批次)。提供一資料庫伺 :器·:〇〇用來儲存有關不同實體以及製造流程中之製造物 叩,資料。該資料庫伺服器100可儲存資訊於一個或以上 /之貧料儲存區11G。資料可包括預處理以及後處理之度量 衡寊料,工具狀態,批攻優先順序等等。 本心月之數個部份以及對應之詳細描述係以軟體,或 2异法與符號表示法呈現於電腦記憶體内之資料位元。這 些t述以及表示法係為普通技藝者能有效傳輸給其他普通 :支藝者,工作物質。演算法’在此所用名稱一如—般所用 '就是為一可導致必要結果之步驟之自相一致的序列。 =驟為所需物理量之實質操作。經常,雖然不必然,這 2置值^形式為光學的,電路的,或磁性的信號,係可儲 子,傳送,結合,比較,以及其他方法的操 時是方便的,主要理由是為了受目田太 _ 要理由疋為了常見用法,稱這些信號為位 " 值元’τ、,符唬,子元,項目,數字,或其類似物。 不過應记住所有這些及類似術語係用來連繫合適之 物理里且只是用在這些量值之方便的標記。除非特別用其 他方法陳述,或在討論中是顯而易見的,術語例如“處理 92475 10 Ϊ308703 (piocessing)或‘推算(c〇inpUting)”或“計算(caicuiating),,或 測疋(determining)”或“顯示(displaying)’’或其類似物,係 才曰電腦系統之運作及處理,或類似之電路計算裝置,將呈 現在電腦系統之暫存器與記憶體内之物理量、電路量之資 料操作及轉換為同樣呈現在電腦系統之記憶體或暫存器或 其他此類貧訊之儲存,傳輸或顯示裝置内之物理量之其他 資料。 衣仏系統1 0也包括一個執行於工作站1 50之監督控制 【 忒'^督控制器1 4 0接合至一個或以上與個別工具 80連繫之製程控制器〗6〇(例如批次控制器)。該製程 控制器1 6 0,依μ曰m在,』+ 據日日圓衣造時所收集之度量衡資料,決定 用來控制選定作為T a e a 义 _ ’’’’具之工具3〇至§〇之控制動作(換 藉由不同於工具心80作為度量衡工具)。該製程 160所用之特定控制模式係根據所控制工且30至 型。可使用習知線性或非線性技術憑經驗發展該控 ,^ 為相對間早的以方程式為基礎的模 式(例如線性的,指數的 加榷平均的)或更複雜的模式, 例如類神經網路模式, 平 、 成伤/刀析模式(PCA),部份最小 十方投影於潛在結構模式 ^ ^ >|f ^ 、 ( S)。忒控制模式之特定組裝可 依據選定之建模技術以及所 < i,, _u e 控制之衣程而不同。該特定 求清晰以万炎V、 曰通技螫者之能力内,因此為 制模式。 毛月在此不予詳細描述該控 與製程控制器 該監督控制器140 160接合以設定製程 η 92475 1308703 目標,係用來控制所連繫之工具3()至8〇。一般來說,該 監督控制器140選定製程目標以解出通過製造過程之會影 響特定性能特性之步驟之晶圓片之最佳轨跡。 一適用於製造系統1 〇之範例資訊交換與製程控制架 構係兩級製程控制(APC)架構,例如其組裝可使用KLA-
Tencor,Inc提供之Catalyst系統。該Catalyst系統使用國 際半導體設備暨材料協會(Semiconductor Equipment and Materials International (SEMI))之電腦整合製造(Computer Integrated Manufacturing (CIM))架構相容的系統技術且以 鬲級製程控制(APC)架構為基礎。CIM (SEMI E8 1-0699 _ Provisional Specification for CIM Framework Domain Architecture)和 APC (SEMI E93-0999 -Provisional Specification for CIM Framework Advanced Process Control Component)之規格書可公開得自SEMI ,該SEMI 總部在美國加州山景城(Mountain View, CA)。 ) 第1圖中分散於不同電腦或工作站之間的處理與資料 儲存功能係為了提供大體上的獨立性以及集中式資訊之儲 存。當然,使用不同數目之電腦與安排不會偏離本發明之 精神與範疇。 以下討論集中於監督控制器1 40之應用於生產快閃記 憶體裝置用之製造過程,不過’本發明之應用不受限於此 且可應用於其他類型之裝置及工作部件或半導體裝置以外 之製造品目。依據快閃記憶體裝置之複雜性,快閃記憶體 之製造係由3 0到1⑻個個別製程步驟組成,其中包括長 92475 12 1308703 晶,氧化,沈積(介電體,石夕,金屬),物 雜劑擴散,摻雜劑離子植入,光微影、目沈積,摻 械拋光。雖然該監督控制器14〇 ::以及化學機 生每一單元操作之製程目標,是可行的,過程以產 —組對要控制之特定性能特性有顯著影由識別出 集可降低系統之複雜性。在-實施例中,;::步驟之子 可識別出及控制6到10個決定大部份電路性^空制器⑽ 之製造步驟。該特定製程步驟之選定係依$裝置性能 之特定類型以及所欲控制 康所欲製造裝置 佐制之特定性能特性。 快閃記憶體裝置之範例性能特 期,臨界電屬變化(delta VT)清除等等式/清除周 能特性包括驅動電流,環振盈頻率1 =電路之範例性 等等。影響快閃記憶體裝置之性能特性^昼,接觸電阻 性有穿隧氧化層厚度,浮閘寬度,浮可控制的範例特 高溫氧化層厚度,氮化層厚度,Y度’控制閘寬度, 處理退火溫度或時間,植Μ =厚度,快速熱 ,特性之可控制的範例特性有閘氧化^=電路裝置之性 見度,植入劑量或能量,電漿钱刻參數,’,'、’閘長度,閘 溫度或時間,間隔層寬度,等等。 块速熱處理退火 該監督控制器】40應用由製 造用之模式。部份最小平方阳)迴=而來的裝置製 到-組正交之潛在變數用來減少資错由將資料投影
到更多設性控, u 厂 維數。此投影考A 叉夕又/生無式(robust则dei)而較少… 4應 確模式。例如’如果有必要用5。個資二?以產生精 n點建立有20個獨 92475 ]3 703 立變數之模式,所得趙— ^侍核式可旎幾乎完全立基於製程雜訊(不 精確模式),但是將舍#、+,山丄 疋# ’指逑出由該模式所獲得之大量哄人的 變異數。用PLS,另一古;分〜, 万面6亥20個獨立變數可減少成一組
正交變數使得用來键r M 遷彳4的資料顯著減少為較少之獨立變 數。以5 0個資料赴7奢a ‘ . .....建立有2個或3個變數之模式比有20 :變數的模式健全許多。似建模的第二個好處是(與普通 最小平方迴歸比較)能夠迴歸排列有缺陷的資料。
假設輸入矩障為Y 十Λ 1 早為X輪出矩陣為γ,兩者之線性相關 方程式為:
y ^ XC + V ^ ’ ⑴ ^ . γ建 線性权式係藉由先投影輸入矩陣X及輸出 矩陣Υ於一組正交潛在變數, ^ ^ {]ΡιΤ + Ej γ (2) W+ 心 (3) 其中G與…係計分(分 γγΤχχΤ. 0 、乃J虫付斂向量對應到及 以及五特Γ值所決定)’〜與〜為對應的負荷矩陣, 式相關為㈣陣°因此潛在計分向量以線性内模 bh + rh ( ή3 h (4) 广 A知通過普通最小平方泡辕、、i 、 素用殘餘柏 取法所決定。然後對下一因 ’、 余值重覆該處理並且透渦六,^ 數。 匕父又確認以決定因素之個 半‘體之製造經常經驗 程中緩怦& ± J因工具性能等級下降造成製 又的蚪變變化。為補此㈤ 、k二/示移(drift),可用指數 92475 14 1308703 扣抵較舊資料以遞迴更新模式。可用_種遞迴pLs演算 法,其模式更新係運用-組新資料,指數扣抵較舊資料, 且用移動窗的方法有系統地將較舊資料自處理模式排除。 與遞迴最小平方建财關之挑戰之—為持續性激發 (persistent excitation)。持續性激發的問題是源自封閉迴路 系統沒有成比例變化到足以激發系統所有的節點。如果較 舊資料被扣抵且新資料中沒有製程資訊,則共變盈矩陣 (e〇variance matrix)變成相當不良狀況(iu-condition)而系 統會變得不穩定。有-避免這種情況之技術涉及添加少量 雜訊到控制器輸入資料以確定封閉迴路系統中有足夠資 訊。這種激發技術之缺點县.夭l ' 缺點疋添加的雜訊會降低控制器的效 能。持續性激㈣題之第二解決方案是使料變的遺亡^ 子(variabIe forgetting⑹叫。使用遺忘因子逼近單一二 是將所有資料視為平等,也 、° 杈2 *也就疋說,資料不以指數方式扣 抵。另一方面,藉由減少遺忘因子 更重視最新資料。著眼於此,故:&較快而 的資1旦n眩 故而要置化初始資料中有效 。育汛置且遥定遺忘因子以保持因子不變。 一旦建立模式,該監督护岳 之製程目標以最佳化目二…定製程控制⑽ 所用之目標函數Γ 在該圖解說明實施例中, m'nJ^{y-TyQ(y-T)Hx-x)TR(x^)+AxrSAx^ 其限制條件為: 92475 15 1308703
y^xC ^min ^max
Ajrmi.n <J:SAxmax ymi„ Jmax 二中y係有製程輸出估計值之行向量,x係包含製程輸入資 料之行向* (内建製程目標),c係遞迴.p L s模式、之:數: 陣’以及τ為包含製程輸出目標之向量。加權矩陣q,r 及=假設為正定(P〇sitivedefinite)的。Xmj χ⑽所表示 的乾圍為製程目標的限制條件。△^與^如所界定的 範圍限定内建製程數值一步可改變的大小。在此範圍運作 t確保製程目標會在預定範圍内且數值不會改變太大。同 裣,\ax與%ax所界定的範圍為輪出特性(例如特徵尺寸) 的限制條件。方程式(5)所述這類問題之解答辦法可用二次 規割(quadratic program)找出,例如 The 仏卿〇如,
Natick,MA 所提供的 MATLAB®。 ’ 第2圖係使用方程式5所界定之限制條件解出最佳化 所產生之圖示最佳晶圓軌跡200和實際晶圓軌跡21〇。晶 圓執跡200, 210上之每一點表示其中—個製程步驟。第2 圖說明因工廠·模式不協調與在内建製程目標附近之正常 操作變動而發生限制違規的可能性。由於工廠_模式不協調 且/或在内建製程目標附近之正常操作之變動’實際晶圓軌 跡210會低於最佳軌跡200。因為剩餘製程步驟數減少時 預測範圍(prediction horizon)會縮小,該監督控制器14〇 92475 16 1308703 可能無法達到必要的品質目 違反一個或以上的内建限制 violati〇n)220 所示。 標而在隨後之製程步驟中 如限制違規(constraint 不會 々征: 主道μ制& π …'丨伯逖又敢佳化之限制性係在 ::體製造壤境中模式參數和操作變數本身内有大量的不 確疋性,目為是用批次製程控制器16〇控制。不確定性來 源包括核式不喊定性(例如結構/參數不協調),市場不 性(例如製程經濟/原料),度 疋 里不確夂性(例如感測器誤 差)、’以及製程不4定性(例如周遭條件,進料品質)。 2 5之名目解答導致有包括設定内建製程目標於限制之 ”則稱因在内建製程目標附近的正常變動而限制違規 (constraint violati〇n)會達半數是公允的。 第3圖係顯示滿足製程目標之能力有關之工具3〇至 80其中之-的性能圖示。關於製程目標之可預測分布_ 係表示該目標將達成之或㈣。該分布3⑽之決定可^ 驗依據一特定製程工具之歷史性能或製程工具之類型。= 依據工具30至80目前之操作狀態變更該分布300。例如, 依據工具目前操作條件(例如壓力,溫度,氣體流量等等 矛由所用操作方法參數衍生出來之期望值之比較決定工具 健康度里值(t001 health metric)。當觀察數值與預測數值之 差2增加時,工具健康度量值則下降。具有較高工具健康 度里值的工具3 〇至80較有能力滿足彼之製程目標,且因 此有較窄的分布300。同樣地,有較低工具健康度量值的 工具30至80則傾向有較寬的分布3〇〇。 92475 1308703 應付此種情況,該監督控制器140應用一種明確考 慮不確定性之最佳化技術。限制違規之或然率轉化為 化的因子。Α丄一 土 、、… 在此方面,該監督控制器140確保限制相關於 或然率之某可接受程度。著眼於此,方程式(5)之限制條件 修正為: ^^η,ίη - Λ ^ (6) AXmax )>ράχ ymaxpy, 其中户為滿足限制之或然率而P為或然率之門檻值。 —般來說,有兩類或然率限制問題;個別或然率限制 (IPC)及聯合或然率限制(JPC)。在Ipc的情形中每—變 數視為獨立且希望保證,以給定或然帛,不達反限制。該 IPC方法不考慮系統為一整體。為解答最佳化,兮龄 督控制器140可包括限制邊界: '"里 ⑺ (x^+b})<x<(Xnax-b^ (九in+\)小(文时、) 後移量(bac“ff)’bi,係由假設分布決定以 解答1PC。如果沒有可行解,則該監督控制器140增力” 直到有可行解。 在一實施例中,該監督控制器140可應用JPC方法, 其中係考慮要同時滿^所有的限制之或然#。在方 6 中解答這種限制條件纟且之―範例方法包括-蒙地卡^ (M〇nie_Car1。)技術或使用—假設多變量分布之累積分布函 92475 18 1308703 數使用JPC方法解決限制 為普通技藝者所習知,因此為长 用之技術之貫行已 取明m 為求音晰以及為了避免糢糊本 發明,在此不予詳細描述。 '7月今 砀诳’r徑制 你鮮合攻佳化問題上的操作 考第1圖及第4圖予以較詳細十务、十, 、 冬 定士#曰η > a 、.、田处0該監督控制器14〇決 疋兀成曰曰圓之加工步驟所需之工具3〇至8〇之子隼 該監督控制器140使用界定於方程式6且/或方程式7 :或 — J疋方^式5之最佳化之解答(換言之,依據所選 ^之敎求解技術)以及決定該製程控制器16G(係與經組 態以執行第一個製程步驟之工具30至80連繫著)用之第— 個内建製程目#。隨後’製程該晶圓或晶圓批次。在進行 下二個製程步驟之前,以前饋方式應用第一個製程步驟= 度置衡資料以及該監督控制器1 40再次用方程式5 , 6,且 /或7最佳化該製程目標於剩餘之製程步驟。在晶圓行進通 過製造過程時,對所有剩餘之製程步驟重覆這一反覆過 私’並總6十於具有收縮投影區間(shrinking projection h o r i 2 〇 η)之模式預測控制。 第4圖所描述之一最佳軌跡400及一設性可達性軌跡 (robust reachability trajectory)4 1 0 係以上述技術測定。令 監督控制器1 4〇明確考慮内建製程目標之不確定性以及因 此測定設性可達性軌跡4 1 0,係作為限制之第二層,給定 内建製程目標之不確定性(即,由分布曲線420所表示的), 以確保可達成品質目標。 設性軌跡限制可能導致沒有解之最佳化D在此情形, 19 92475 1308703 可考慮隨機最佳化勒 _ ^ ^ '之二種可能解。首先,可假今:方寇 式5為-限制違規極 叉叹方私 程目標以極小化限告,卜 也就是說,可選定内建製 小化項# Λ 、,廷規下游之期望值。接下來,限制極 小化項添加到方蔣4 合極小化。最德/限制違規與控制能量之加權組 ipc , 以限制達規之較不保守的限定來解答該 或JPc問題。 現請參閱第5圖,#坦版# # 士、 係美供依據本發明之另一實施例之 對製造過程測定製转 — “ 才示之簡化流程圖。在方塊5 0 0中界 疋了 一個製造裝置用之迤 疋袈%杈式。该製程包括複數個步 Ί方塊51G中界定了該等製程步驟之至少-個子集用
之複數個内建製程目庐 _ _ L 衣牙目私。该核式將該等内建製程目標與複 數個衣私輪出茶數連繫起來。在方塊52q中界定了該等内 建衣私目標用之第-組或然率限制。纟方塊530中界定了 該等製程輸出參數用之第二組或然率限制。在方塊54〇中 依據該模式及該等複數個製程輸出參數界定了一個目標函 數。在方塊550中-該等製程輸出參數之軌跡之測定,係 藉由:最佳化限制條件為每一製程步驟用之第一組及第二 组的或然率限制之目標函數,以測定在每一製程步驟之該 等内建製程目標之數值。重覆最佳化其餘製程步驟,直到 每一製程步驟完成。 以上揭示之特定實施例係只是用來圖解說明,由於對 受惠於在此之教導之熟諳此技藝者,顯而易見可以用不同 但等價的方式修改及實施本發明。再者,除了以下申請專 利範圍所描述的,不希望受限於在此所揭示之建構或設計 92475 20 1308703 的細節。因此顯而易見的以上揭示之 L改及所有此類之變化係認定仍在本發明之料成 内。於是,在此所請求之保護將在 、月神 及。 ^在以下申请專利範圍中提 【圖式簡單說明】 參考以下描述及附圖可瞭解本發明,#中 碼用以識別相似裝置,以及其中有·· 參考號 第1圖係依據本發明之說明實施例之製 方塊圖; 呪之間化 第2圖係使用製程目標及輸出之限制條件解 所產生之圖示最佳軌跡及實際軌跡; 土 第3圖係與滿足製程目標 布. 八名關之圖不或然率分 弟4圖係使用製程目標及輸出 啊俅件解出 〜叫w ·丨王限刊 最佳化所產生之圖示最佳軌跡及設性軌跡(r〇bust trajectory);以及. 第5圖係依據本發明之另一邙明杏 力況明只轭例之製造過程 測定製程目標之簡化流程圖。 而本發明或有不同的修改及替代形式, 八付疋貫施例 係藉由實施例說明於圖中以及在此之詳細描述所達成 過,應瞭解在此描述之特定實施例並非用來限制本發明: 為所揭不之特定形式,相反地,本發明將涵蓋所有落入 申請專利範圍所界定之本發明之精神與範疇内之佟改,$ 價物,以及替代物。 # 92475 21 1308703 10 製 造 系 統 100 110 儲 存 區 140 150 工 作 站 160 20 網 路 2 00 210 實 際 晶 圓執跡 220 300 分布 400 410 設 性 可 達性執跡 420 500 ' 510 ' 520 Λ 530 > 540 ' 550 30A 至 30C 工 具 40Α 至40D 50A 至 50C 工 具 60Α 、60Β 70A 至 70C 工 具 80Α 至80C 90 MES 祠 服器 資料庫伺服器 監督控制器 製程控制器 隶佳晶圓軌跡 限制違規 最佳軌跡 分布曲線 製程方塊 工具 工具 工具 22 92475

Claims (1)

1308703 Vv:: I Π - 年::月,.1日修(p正替換頁 〒巧130888號ϋ +請案 (96年1〇月24曰) 拾、申請專利範圍: 限制或然率最佳化之方 1 ·—種電路裝置製造控制中執行 法,包括: 界定製造裝置用之製程模式,該製程包括複數個步 鄉, 子集,界定複數個内建製程 目標與複數個製程輸出參數
為該製程步驟之至少一 目標’該模式將該内建製程 連繫起來; 界定該内建製程目標用之第-組或然率限制; 界定該製程輸出參數用之第二組或然率限制; 依據該模式與該複數個製程輪出參數,界定一目標 函數;以及 A 測定該製程㈣參數之軌跡,係藉由最佳化限制條 件為每一製程步驟用之該第一組及第二組或然率限制 之目標函數’以測定在每一製程步驟之該内建製程目標 之數值’重覆最佳化其餘製程步驟直到每—製程步驟完 成。 2. 如申請專利範圍第1項之方法,其中最佳化該目標函數 進一步包括使用個別或然率限制技術(individual probabihty constained technique)以最佳化限制條件為 該第一組及第二組限制之該目標函數。 3. 如申請專利範圍帛!項之方法,其令最佳化該目標函數 進一步包括使用聯合或然率限制技術(j〇int pr〇babiHty constained technique)以最佳化限制條件為該第一組及 (修正本)92475 23 1308703 _·
第92130888號專利申請案 (96年10月24曰) 第二組限制之該目標函數。 4. 如申請專利範®T tS # 、也, 祀阁第1項之方法,其令界定該第一組或然 率限制進-步包括界定該内建製程目標之範圍用之或 然率限制。 5. 如申請專利範圍第w之方法,其中界定該第一組或然 率限制進-步包括界定該内建製程目標之變化用之步 長範圍(range 〇f step size)之或然率限制。 6. 如申請專利範圍第1項之方法,其中界^該第二組或缺 率限制進-步包括界定該製程輸出參數之範圍用之或 然率限制。 7. 如申請專利範圍第1項之方法,其中界定該第-組或然 率限制進一步包括界定限制用 別阳 < 後移量(back_〇ff)。 8. 如申請專利範圍第丨項之方法,進—步包括: 判定該第一組及第二細忐缺古 、 ^ 矛,,且或然率限制之一組可能不 被滿足, 修改該第一組及第二矣且式姊、方 、、且或然率限制之至少一組;以 及 依據該第一組及第二組式缺* 、、且或然率限制之該修改之一 組測定該軌跡。 9· 一種電路裝置製造控制中執杆昨幻 仃限制或然率最佳化之方 法,包括: 乃 界定製造裝凳用之製程橄4 驟; 、式,該製程包括複數個步 為該製程步雜之至少一;隹 茱’界定複數個内建製輕 (修正本)924M 24 1308703 1 第92130888號專利申請案 (96年10月24曰) :該核式將該内建製矛呈目標與複數個製程輸出參數 連繫起來; 界疋該内建製程目標用之第-組限制; 界定該製程輪出參數用之第二組限制; 測定該内建· α # _ Α 程目標用之第一組數值,當其應用於 5亥稷數個步驟用之贫握 逆技式時,使得滿足該第一組限制之 〆率大於第 < 然率門檻值以及滿足該第二組限制 之或然率大於第二或然率門檻值; 使用與該製程之第-個步驟連繫之該内建製程目 標用之敎所得數值來執行該第一個步驟; 度置舆該第—個步驟連繫之輸出參數; 依據該度量所得之輸出參數更新該模式;以及 測定該内建@ a描m Hr Μ ^ 、 示用之第二組數值,當其應用於 該複數個步驟之剩餘步 -組限制之或然率大於c式時,使得滿足該第 ^^ 於該弟一或然率門檻值以及滿足 該^…且限制之或然率大於第二或然 10.如申請專利範圍第9項 $值 俨用之节第B 方法,其中測定該内建製程目 “用之該第-組數值及第二組數值進―步包 依據該模式與該複數個 數;以及 個衣程輪出參數界定目標函 最佳化限制條件為該第—组 標函數。 、第—,、·且限制之該目 】·如申請專利範圍第1G項之方法, 數進-步包括使用個別或然率限制目標函 议何以取佳化限制 (修正本)92475 25 be !3〇87〇3 第92130888號專利申請案 (96年10月24日') 條件為該第一組及第二組限制之該目標函數。 U·如申請專利範圍第1()項之方法,其中最佳化該目標函 數進一步包括使用聯合或然率限制技術以最佳化限制 條件為該第一組及第二組限制之該目標函數。 13·如申請專利範圍第9項之方法,其中界定該第—組限制 進—步包括界定該内建製程目標用之範圍。 14. 如申請專利範圍第9頊 , m 、 』莉*国罘y項之方法,其中界定該第一組限制 進一步包括界定該内建製程目標之變化用之步長範圍。 15. 如申請專利範圍第9項 国乐項之方法,其中界定該第二組限制 進一步包括界定該製程輸出參數用之範圍。 16. 如申請專利範圍第9 谁一 +勺扛@ f界疋該弟一組限制 進步包括界定限制用之後移量。 1 7.如申請專利範圍第9項 碉灸万法,進一步包括: 測定該内建製程目#田# ,.^ 祐用之該第一組數值可能不被 測疋使得滿足該第一纽 、,且限制之或然率大於該第一戋鈇 率門檻值; # 4…' 降低該第-或然率門檻值;以及 測定該内建製程目標 鈿用之該弟一組數值,當盆應用 於該複數個步驟用之兮伊 士 ㉝用之•式時,使得滿足該第一組限制 之或然率大於該降低少窜 丨牛低之弟一或然率門襤值。 18.如申請專利範圍第9項 巧之方法’進—步包括: 測定該内建製程目標 > /± 9知用之該弟一組數值可能不被 測定使得滿足第二組限制 門檻值; H、羊大於該弟二或然率 (修正本)92475 26 1308703
第92130888號專利申請案 (96年10月24日) 降低該第二或然率門檻值;以及 測定該内建製程目標用之該第一組數值,當其應用 於該複數個步驟用之該模式時,使得滿足該第二組限制 之或然率大於該降低之第二或然率門檻值。 19. 一種電路裝置製造控制中執行限制或然率最佳化之系 統,包括: 透過複數個步驟製造裝置用之複數個工具; 與該工具之至少—個子集連繫之複數個製程控制 器,每一製程控制器組構以依據内建製程目標來控制至 少一個與其連繫之工具之製程;以及 組構以利用製造該裝置用之製程步驟模式之監督 控制器,該模式將該内建製程目標與複數個 f 數連繫起來,界定該内建製程目標用之第 制’界定該製程輸出參數用之第二組或然率限制,依據 該模式及該複數個製程輸出參數界定目標函數,以及測 定該製程輪出參數之執跡,其係、藉由最佳化限制條件為 每一製程步驟用之該第-組及第二組或然率限制之目’ 標函數,以測定在與製程控制器連繫之每—製程㈣之 該:建製程目標用之數值,重覆最佳化其餘製程步驟直 到每一製程步驟完成。 20. 如申請專利範圍第 .六τ软诳f控制器 一步組構以使用個別或'然率限制技術來最佳化限^ 件為該第-組及第二組限制之該目標函數。 21. 如申請專利範圍第19項之系 甘士 &护上 承統’其中該監督控制器 (修正本)92475 27 1308703 ia..43.24-. 第92130888號專利申請案 (96年10月μ日 件^心使用聯合或然率限制技術來最佳化限制條 件:該"及第二組限制之該目標函數。 22 4專利範園第19項之系統,其中該監督控制器進 -步組構以界定該内建製程目標之範圍用之或然率限 制。 23 .如申請專利範圍第I Q 弟9項之系統,其中該監督控制器進 一步組構以界定該内奢 門建製程目標之變化用之步長範圍 之或然率限制。 24.如申請專利範圍第19項之系統,纟中該監督控制器進 一步組構以界定該製程輪出參數之範圍用之或然率限 制。 25. 如申請專利範圍第19項之系統,纟中該監督控制器進 一步組構以界定限制用之後移量。 26. 如申請專利範圍第19項之系統,其中該監督控制器進 一步組構以判定可能不被滿足之該第一組及第二組或 然率限制之一組,修改該第一組及第二組或然率限制之 至少一組’以及依據該第—組及第二組或然率限制之該 修改之一組來測定該軌跡。 27. —種電路裝置製造控制中執行限制或然率最佳化之系 統,包括: 透過複數個步驟製造裝置用之工具; 依據§亥步驟之至少一個子集用之内建製程目標來 控制透過該複數個步驟之製程用之工具; 界定製造該裝置用之製程步驟之模式之工具,該模 28 (修正本)92475
(96年10月24日) 式將該内建製程目標與〜 界定該内建製程目1數個製程輪出參數連繫起來; 製程輸出參數用之第_I用之第—組或然率限制及該 依據該模式與該複制之工具; 標函數用之工且· 個衣私輪出參數來界定該目 〜丄具,以及 測定該製程輪出炎叙 限制條件為每之執跡之工具’係藉由最佳化 限制之目標函數,以列 第一,、且及弟-組或然率 輊步驟之該内建製程母衣 葙牛鰥古^用之數值,重覆最佳化其餘萝 红步驟直到每-製程 -餘1 (修正本)92475 29
TW092130888A 2002-11-08 2003-11-05 Method for performing probability constrained optimization in electrical fabrication control and related system TWI308703B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US42494402P 2002-11-08 2002-11-08
US10/335,748 US6959224B2 (en) 2002-11-08 2003-01-02 Probability constrained optimization for electrical fabrication control

Publications (2)

Publication Number Publication Date
TW200415497A TW200415497A (en) 2004-08-16
TWI308703B true TWI308703B (en) 2009-04-11

Family

ID=32233139

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092130888A TWI308703B (en) 2002-11-08 2003-11-05 Method for performing probability constrained optimization in electrical fabrication control and related system

Country Status (8)

Country Link
US (1) US6959224B2 (zh)
EP (1) EP1558977B1 (zh)
JP (1) JP4472637B2 (zh)
KR (1) KR101003558B1 (zh)
AU (1) AU2003290570A1 (zh)
DE (1) DE60307310T2 (zh)
TW (1) TWI308703B (zh)
WO (1) WO2004044660A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11182688B2 (en) * 2019-01-30 2021-11-23 International Business Machines Corporation Producing a formulation based on prior distributions of a number of ingredients used in the formulation

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6912433B1 (en) * 2002-12-18 2005-06-28 Advanced Mirco Devices, Inc. Determining a next tool state based on fault detection information
US7103452B2 (en) * 2003-12-29 2006-09-05 Theodora Retsina Method and system for targeting and monitoring the energy performance of manufacturing facilities
US7272544B2 (en) * 2004-01-15 2007-09-18 Honeywell International Inc. Integrated modeling through symbolic manipulation
US7198964B1 (en) * 2004-02-03 2007-04-03 Advanced Micro Devices, Inc. Method and apparatus for detecting faults using principal component analysis parameter groupings
DE102004009516B4 (de) * 2004-02-27 2010-04-22 Advanced Micro Devices, Inc., Sunnyvale Verfahren und System zum Steuern eines Produktparameters eines Schaltungselements
US6922600B1 (en) * 2004-04-28 2005-07-26 International Business Machines Corporation System and method for optimizing manufacturing processes using real time partitioned process capability analysis
US7596546B2 (en) * 2004-06-14 2009-09-29 Matchett Douglas K Method and apparatus for organizing, visualizing and using measured or modeled system statistics
TWI336823B (en) * 2004-07-10 2011-02-01 Onwafer Technologies Inc Methods of and apparatuses for maintenance, diagnosis, and optimization of processes
KR100610447B1 (ko) 2004-09-06 2006-08-09 현대자동차주식회사 폐자동차의 액상류 회수 시스템
EP1785396A1 (en) * 2005-11-09 2007-05-16 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Process for preparing a metal hydroxide
US7954072B2 (en) * 2006-05-15 2011-05-31 Taiwan Semiconductor Manufacturing Company, Ltd. Model import for electronic design automation
US7769843B2 (en) * 2006-09-22 2010-08-03 Hy Performix, Inc. Apparatus and method for capacity planning for data center server consolidation and workload reassignment
US20080140590A1 (en) * 2006-12-12 2008-06-12 Taiwan Semiconductor Manufacturing Co., Ltd. Process control integration systems and methods
US8190391B2 (en) * 2007-03-29 2012-05-29 Globalfoundries Inc. Determining die performance by incorporating neighboring die performance metrics
US20080262769A1 (en) * 2007-04-23 2008-10-23 Daniel Kadosh Using multivariate health metrics to determine market segment and testing requirements
US7974728B2 (en) * 2007-05-04 2011-07-05 Taiwan Semiconductor Manufacturing Company, Ltd. System for extraction of key process parameters from fault detection classification to enable wafer prediction
US8145337B2 (en) * 2007-05-04 2012-03-27 Taiwan Semiconductor Manufacturing Company, Ltd. Methodology to enable wafer result prediction of semiconductor wafer batch processing equipment
US8041518B2 (en) * 2007-05-08 2011-10-18 Globalfoundries Inc. Determining die test protocols based on process health
US7957948B2 (en) * 2007-08-22 2011-06-07 Hyperformit, Inc. System and method for capacity planning for systems with multithreaded multicore multiprocessor resources
US8788986B2 (en) 2010-11-22 2014-07-22 Ca, Inc. System and method for capacity planning for systems with multithreaded multicore multiprocessor resources
KR100937512B1 (ko) * 2007-09-20 2010-01-19 한양대학교 산학협력단 변동계수 분포 및 비중심 t 분포를 이용한 통계적 공정관리 방법
US7783999B2 (en) * 2008-01-18 2010-08-24 Taiwan Semiconductor Manufacturing Company, Ltd. Electrical parameter extraction for integrated circuit design
US8037575B2 (en) * 2008-02-28 2011-10-18 Taiwan Semiconductor Manufacturing Company, Ltd. Method for shape and timing equivalent dimension extraction
US8209045B2 (en) * 2008-04-07 2012-06-26 Honeywell International Inc. System and method for discrete supply chain control and optimization using model predictive control
DE102008021556B4 (de) * 2008-04-30 2019-06-06 Advanced Micro Devices, Inc. Verfahren und System für zweistufige Vorhersage einer Qualitätsverteilung von Halbleiterbauelementen
US7774451B1 (en) * 2008-06-30 2010-08-10 Symantec Corporation Method and apparatus for classifying reputation of files on a computer network
US7908109B2 (en) * 2008-07-08 2011-03-15 Advanced Micro Devices, Inc. Identifying manufacturing disturbances using preliminary electrical test data
JP2010087243A (ja) * 2008-09-30 2010-04-15 Panasonic Corp 半導体装置の製造方法
US8001494B2 (en) * 2008-10-13 2011-08-16 Taiwan Semiconductor Manufacturing Company, Ltd. Table-based DFM for accurate post-layout analysis
US8155770B2 (en) * 2009-03-31 2012-04-10 Globalfoundries Inc. Method and apparatus for dispatching workpieces to tools based on processing and performance history
EP2325710A1 (fr) * 2009-10-14 2011-05-25 Tornos SA Procédé et système de compenser les variations dimensionnelles dans une machine d'usinage
US8806386B2 (en) * 2009-11-25 2014-08-12 Taiwan Semiconductor Manufacturing Company, Ltd. Customized patterning modulation and optimization
US8745554B2 (en) * 2009-12-28 2014-06-03 Taiwan Semiconductor Manufacturing Company, Ltd. Practical approach to layout migration
US8527566B2 (en) * 2010-05-11 2013-09-03 International Business Machines Corporation Directional optimization via EBW
US8594821B2 (en) * 2011-02-18 2013-11-26 International Business Machines Corporation Detecting combined tool incompatibilities and defects in semiconductor manufacturing
US8543966B2 (en) * 2011-11-11 2013-09-24 International Business Machines Corporation Test path selection and test program generation for performance testing integrated circuit chips
US9645575B2 (en) 2013-11-27 2017-05-09 Adept Ai Systems Inc. Method and apparatus for artificially intelligent model-based control of dynamic processes using probabilistic agents
TWI571810B (zh) * 2014-12-01 2017-02-21 財團法人資訊工業策進會 生產效能管理裝置及其生產效能管理方法
US20160342147A1 (en) * 2015-05-19 2016-11-24 Applied Materials, Inc. Methods and systems for applying run-to-run control and virtual metrology to reduce equipment recovery time
US10386829B2 (en) 2015-09-18 2019-08-20 Kla-Tencor Corporation Systems and methods for controlling an etch process
CN110637213B (zh) * 2017-05-16 2022-11-11 北京骑胜科技有限公司 用于数字路径规划的系统和方法
GB2570115B (en) * 2018-01-10 2022-12-21 Spiro Control Ltd Process control system and method
CN112969968B (zh) * 2018-11-08 2024-06-11 Asml荷兰有限公司 基于过程变化度的空间特性对不合格的预测
DE102019200482A1 (de) * 2019-01-16 2020-07-16 Robert Bosch Gmbh Verfahren und Vorrichtung zum automatisierten Bearbeiten eines Werkstücks mit einer Werkzeugmaschine
EP3869271A1 (en) * 2020-02-20 2021-08-25 ASML Netherlands B.V. Method for controlling a manufacturing process and associated apparatuses
WO2021160365A1 (en) * 2020-02-12 2021-08-19 Asml Netherlands B.V. Method for controlling a manufacturing process and associated apparatuses
US20230054342A1 (en) * 2021-06-28 2023-02-23 Sandisk Technologies Llc Modelling and prediction of virtual inline quality control in the production of memory devices

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616475B2 (ja) * 1987-04-03 1994-03-02 三菱電機株式会社 物品の製造システム及び物品の製造方法
US6041270A (en) * 1997-12-05 2000-03-21 Advanced Micro Devices, Inc. Automatic recipe adjust and download based on process control window
US6434441B1 (en) * 1998-04-30 2002-08-13 General Electric Company Designing and making an article of manufacture
EP1045304A1 (fr) * 1999-04-16 2000-10-18 Martine Naillon Procédé de pilotage d'un processus décisionnel lors de la poursuite d'un but dans un domaine d'application déterminé, tel qu'économique, technique organisationnel ou analogue et système pour la mise en oeuvre du procédé
US6470230B1 (en) 2000-01-04 2002-10-22 Advanced Micro Devices, Inc. Supervisory method for determining optimal process targets based on product performance in microelectronic fabrication
DE10047381A1 (de) * 2000-09-25 2002-04-18 Siemens Ag Verfahren und Vorrichtung zum Betreiben einer Anlage der Grundstoffindustrie

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11182688B2 (en) * 2019-01-30 2021-11-23 International Business Machines Corporation Producing a formulation based on prior distributions of a number of ingredients used in the formulation

Also Published As

Publication number Publication date
WO2004044660A3 (en) 2004-07-29
DE60307310T2 (de) 2007-10-18
AU2003290570A1 (en) 2004-06-03
EP1558977B1 (en) 2006-08-02
AU2003290570A8 (en) 2004-06-03
KR20050074561A (ko) 2005-07-18
JP4472637B2 (ja) 2010-06-02
WO2004044660A2 (en) 2004-05-27
TW200415497A (en) 2004-08-16
KR101003558B1 (ko) 2010-12-30
JP2006505876A (ja) 2006-02-16
DE60307310D1 (de) 2006-09-14
US6959224B2 (en) 2005-10-25
EP1558977A2 (en) 2005-08-03
US20040093107A1 (en) 2004-05-13

Similar Documents

Publication Publication Date Title
TWI308703B (en) Method for performing probability constrained optimization in electrical fabrication control and related system
Khan et al. An approach for factory-wide control utilizing virtual metrology
JP3883914B2 (ja) 工程装置の制御方法
US11099485B2 (en) Maintaining a set of process fingerprints
JP2004509407A (ja) 半導体製造における制御を改良するための適応サンプリング方法
Su et al. Accuracy and real-time considerations for implementing various virtual metrology algorithms
CN103247518B (zh) 改进半导体制造中的fab工艺的工具功能的新型设计
US8429569B2 (en) Method and system for feed-forward advanced process control
JP2012033170A (ja) 高度プロセス制御システム及び信頼指数を有する仮想測定による方法
TW201033844A (en) Advanced process control method and system
TW201805731A (zh) 用於微影裝置之排序批次的方法、器件製造方法、用於微影裝置之控制系統及微影裝置
TW200403784A (en) Method and apparatus for predicting device electrical parameters during fabrication
TW200947251A (en) Process control using process data and yield data
JP2006276079A (ja) 光リソグラフィの光近接補正におけるマスクパターン設計方法および設計装置ならびにこれを用いた半導体装置の製造方法
US7076321B2 (en) Method and system for dynamically adjusting metrology sampling based upon available metrology capacity
JP2008305373A (ja) 2段階仮想測定方法
US6912437B2 (en) Method and apparatus for controlling a fabrication process based on a measured electrical characteristic
CN111190393B (zh) 半导体制程自动化控制方法及装置
Pampuri et al. Multistep virtual metrology approaches for semiconductor manufacturing processes
TWI825209B (zh) 微電子元件製造用的系統和方法
Chan et al. Modelling and optimization of fluid dispensing for electronic packaging using neural fuzzy networks and genetic algorithms
Jen et al. General run-to-run (R2R) control framework using self-tuning control for multiple-input multiple-output (MIMO) processes
TW200407687A (en) Method and apparatus for providing first-principles feed-forward manufacturing control
WO2008023660A1 (fr) Procédé de conception d'un modèle de masque et procédé de fabrication d'un dispositif semi-conducteur comprenant ce dernier
Preil Patterning challenges in the sub-10 nm era