TWI306780B - Molecular sieve compositions,catalysts thereof, their making and use in conversion processes. - Google Patents

Molecular sieve compositions,catalysts thereof, their making and use in conversion processes. Download PDF

Info

Publication number
TWI306780B
TWI306780B TW092103144A TW92103144A TWI306780B TW I306780 B TWI306780 B TW I306780B TW 092103144 A TW092103144 A TW 092103144A TW 92103144 A TW92103144 A TW 92103144A TW I306780 B TWI306780 B TW I306780B
Authority
TW
Taiwan
Prior art keywords
metal oxide
molecular sieve
catalyst composition
oxide
cerium
Prior art date
Application number
TW092103144A
Other languages
Chinese (zh)
Other versions
TW200303238A (en
Inventor
James C Vartuli
Doron Levin
Original Assignee
Exxonmobil Chem Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/215,511 external-priority patent/US6906232B2/en
Application filed by Exxonmobil Chem Patents Inc filed Critical Exxonmobil Chem Patents Inc
Publication of TW200303238A publication Critical patent/TW200303238A/en
Application granted granted Critical
Publication of TWI306780B publication Critical patent/TWI306780B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • C10G50/02Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation of hydrocarbon oils for lubricating purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/095Catalytic reforming characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • C10G45/54Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • C10G49/08Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/10Magnesium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/83Aluminophosphates (APO compounds)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/84Aluminophosphates containing other elements, e.g. metals, boron
    • C07C2529/85Silicoaluminophosphates (SAPO compounds)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

(1) (1)1306780 玖、發明說明 相關申請案的對照 本案爲2002年8月9日申請的美國申請案序號 1 0/2 15,511的部分連續案,及與同時申請之美國申請案序 號 60/3 60,963 (Attorney Docket 2002B010)及美國申請案序 號 60/360963(Attorney Docket 2002B057)有關,該等申請 案的整個內容倂入本文作爲參考。 【發明所屬之技術領域】 本發明係關於分子篩組成物及含有彼之觸媒,此組成 物及觸媒的合成,及此組成物及觸媒應用在製備烯烴之轉 換方法的用途。 【先前技術】 烯烴係藉由觸媒或蒸氣裂解方法由石油進料以傳統方 式予以製備。這些裂解方法,特別是蒸氣裂解,從各種烴 進料產生輕烯烴,例如乙烯及/或丙烯。乙烯及丙烯是用 於製備塑膠及其他化學化合物的各種方法的重要石油化學 商品。 含氧物,特別是醇類,轉換成輕烯烴在石油化學工業 上有名一段時間。有許多技術應用於製備含氧物,該含氧 物包括發酵或合成氣體的反應,該合成氣體源自天然氣、 石油液體或含煤的碳物質、回收的塑膠、地方廢料或任何 其他有機物質。通常,合成氣體的製備包括天然氣(大多 -6- (2) 1306780 爲甲烷)與氧來源的燃燒反應成氫、一氧化碳及/或二氧化 碳。其他已知的合成氣體的製備方法包括慣用的蒸氣重整 、自熱重整或其組合。 甲醇,供製備輕烯烴的較佳醇類,典型地在甲醇反應 器中及在多相觸媒存在下,氫、一氧化碳及/或二氧化碳 的催化反應予以製備。例如,在一合成方法中,甲醇係在 水冷管狀甲醇反應器中,使用銅/鋅氧化物觸媒予以製備 的。轉換含有甲醇之進料成一或多種烯烴(主要爲乙烯及/ 或丙烯)之較佳方法包含,使進料與分子篩觸媒組成物接 觸。 分子篩爲具有不同大小孔洞的多孔固體,例如沸石或 沸石型分子篩、碳及氧化物。石油及石油化學工業上最常 用的分子篩是沸石,例如矽酸鋁鹽分子篩。沸石通常具有 1-、2·或3維結晶孔洞結構,該結構具有均勻大小孔洞的 分子尺寸,其選擇性吸附可進入孔洞的分子,及排除太大 的分子。 已知多種類型的分子篩用於轉換進料,特別是包括含 氧物的進料,成一或多種烯烴。例如,US 5,367, 100描述 使用沸石(ZSM-5)將甲醇轉換成烯烴;US 4,062,905討論 使用結晶的矽酸鋁鹽沸石,例如沸石T、ZK5、毛沸石 (erionite)及菱沸石(chabazite),將甲醇或其他含氧物轉換 成乙烯及丙烯;US 4,079,095描述使用ZSM-34將甲醇轉 換成烴產物,例如乙烯及丙烯;及US 4,310,44 0描述使用 結晶磷酸鋁鹽,通常標示爲A1P 04,由醇類製備輕烯烴。 (4) (4)1306780 如氧化鍩、氧化鈦、氧化釔、蒙脫土或高嶺土。 US 5,<4 1 7,94 9係關於使用分子篩及金屬氧化物黏著劑 轉換存在於在含氧流出物之有毒氮氧化物爲氮及水之方法 ,較佳的黏著劑爲二氧化鈦,及分子篩爲矽酸鋁鹽。 EP-A-3 1 298 1揭示使用在含矽石載體物質上之觸媒組 成物裂解含釩之烴進料流之方法,該組成物包括嵌進無機 耐火基質物質中的沸石及至少一種鈹、鎂、鈣、緦、鋇或 鑭之氧化物。(1) (1) 1306780 玖, invention description of the relevant application This case is a partial continuation of the US application number 1 0/2 15,511 filed on August 9, 2002, and the US application number 60 of the simultaneous application / 3, 60, 963 (Attorney Docket 2002 B 010) and the U.S. Application Serial No. 60/360,963 (Attorney Docket 2002 B057), the entire disclosure of which is incorporated herein by reference. TECHNICAL FIELD OF THE INVENTION The present invention relates to the composition of molecular sieves and the catalysts containing the same, the synthesis of such compositions and catalysts, and the use of such compositions and catalysts in the conversion of olefins. [Prior Art] Olefin is prepared in a conventional manner from a petroleum feed by a catalyst or steam cracking process. These cracking processes, particularly steam cracking, produce light olefins, such as ethylene and/or propylene, from various hydrocarbon feeds. Ethylene and propylene are important petrochemical commodities for various methods of preparing plastics and other chemical compounds. The conversion of oxygenates, especially alcohols, to light olefins has been known for some time in the petrochemical industry. There are a number of techniques for preparing oxygenates, including fermentation or synthesis gas, which is derived from natural gas, petroleum liquids or coal-containing carbon materials, recycled plastics, local waste or any other organic matter. Typically, the synthesis gas is prepared by the reaction of natural gas (mostly -6-(2) 1306780 methane) with an oxygen source to form hydrogen, carbon monoxide and/or carbon dioxide. Other known methods of preparing synthesis gas include conventional steam reforming, autothermal reforming, or combinations thereof. Methanol, a preferred alcohol for the preparation of light olefins, is typically prepared by catalytic reaction of hydrogen, carbon monoxide and/or carbon dioxide in a methanol reactor and in the presence of a heterogeneous catalyst. For example, in a synthetic process, methanol is prepared in a water-cooled tubular methanol reactor using a copper/zinc oxide catalyst. A preferred method of converting a methanol-containing feed to one or more olefins (primarily ethylene and/or propylene) comprises contacting the feed with a molecular sieve catalyst composition. Molecular sieves are porous solids having pores of different sizes, such as zeolite or zeolite type molecular sieves, carbon and oxides. The most commonly used molecular sieves in the petroleum and petrochemical industries are zeolites, such as aluminum silicate ammonium molecular sieves. Zeolites generally have a 1-, 2-, or 3-dimensional crystalline pore structure with a molecular size of uniformly sized pores that selectively adsorb molecules that can enter the pores and exclude too large molecules. Various types of molecular sieves are known for converting feedstocks, particularly those comprising oxygenates, into one or more olefins. For example, US 5,367,100 describes the use of zeolite (ZSM-5) to convert methanol to olefins; US 4,062,905 discusses the use of crystalline aluminum citrate zeolites such as zeolite T, ZK5, erionite and chabazite, Conversion of methanol or other oxygenates to ethylene and propylene; US 4,079,095 describes the use of ZSM-34 to convert methanol to hydrocarbon products, such as ethylene and propylene; and US 4,310,44 0 describes the use of crystalline aluminum phosphates, usually designated A1P 04 , light olefins are prepared from alcohols. (4) (4) 1306780 Such as cerium oxide, titanium oxide, cerium oxide, montmorillonite or kaolin. US 5, <4 1 7,94 9 relates to a method for converting a toxic nitrogen oxide present in an oxygen-containing effluent to nitrogen and water using a molecular sieve and a metal oxide adhesive, preferably a titanium oxide, and The molecular sieve is an aluminum citrate salt. EP-A-3 1 298 1 discloses a method for cracking a vanadium-containing hydrocarbon feed stream using a catalyst composition on a vermiculite-containing support material, the composition comprising a zeolite embedded in an inorganic refractory matrix material and at least one ruthenium An oxide of magnesium, calcium, strontium, barium or strontium.

Kang 及 Inui, Effects of decrease in number of acid sites located on the external surface of Ni-SAPO-34 crystalline catalyst by the mechanochemical method, Catalyst Letters 53, pages 171-176 (1998)揭示在經由 Ni-SAPO-34使甲醇轉換成乙烯中,形狀選擇性可被增加 ,及焦炭的形成被減緩,該Ni-SAPO-34係藉由以在微球 形無孔矽石上之MgO、CaO、BaO或Cs20硏磨觸媒,以 BaO爲最佳。 WO 98/293 70揭示經由小孔非沸石型分子篩使含氧物 轉換成烯烴,該分子篩包括選自鑭系元素、輻射線元素、 銃 '釔、第4族金屬、第5族金屬或其混合物之金屬。 【發明內容】 在一觀點,本發明在於含有分子篩及至少一種選自元 素週期表之第3族、鑭系元素及锕系元素之金屬的氧化物 之觸媒組成物,其中該金屬氧化物的二氧化碳的攝入値在 -9- (5) 1306780 1 00 °C時至少爲0.03 mg/m2金屬氧化物,及典型至少爲 0.04mg/m2金屬氧化物。 觸媒組成物亦包括不同於該金屬氧化物的至少一種黏 著劑及基質物質。 觸媒組成物亦包括選自元素週期表的第2及3族金屬的 氧化物。在一實施例中,第4族金屬氧化物包括氧化銷, 及第2族及/或第3族金屬氧化物包括一或多種選自氧化鈣 、氧化鋇、氧化鑭、氧化釔及氧化钪的氧化物。 分子篩合宜地包括一含有至少兩個四面體單元之架構 ,例如矽鋁磷酸鹽,該單元選自[si〇4]、[aio4]及[P04]單 元。 在另一觀點中,本發明在於分子篩組成物,其包括第 3族金屬氧化物及/或鑭系或锕系元素的氧化物、黏著劑、 基質物質及矽鋁磷酸鹽分子篩。 在另一觀點中,本發明在於製備觸媒組成物之方法, 該方法包括使含有分子篩的第一粒子與含有至少一種選自 元素週期表中第3族、鑭系元素及锕系元素之金屬之氧化 物的第二粒子完全混合,其中該金靥氧化物的二氧化碳的 攝入値在l〇〇°C時至少爲〇.〇3mg/m2金屬氧化物粒子。 在一實施例中,分子篩、黏著劑及基質物質被製備成 一經配製的分子篩組成物,該組成物之後與活潑第3族金 屬氧化物及/或鑭系或锕系元素之活潑氧化物接觸、混合 、組合、噴霧乾燥或等等。 在另一觀點中,本發明在於製備觸媒組成物之方法, -10- (7) 1306780 週期表中第3族或鑭或锕系元素之金屬的氧化物。 在一實施例中,觸媒組成物的壽命增加指數(LEI)大 於1 ’例如大於1.5。LEI在此定義爲觸媒組成物的壽命對 無活潑金屬氧化物之相同觸媒組成物的壽命比値。 【實施方式】 實施例的詳細敘述 介紹 本發明係關於分子篩觸媒組成物及其用於轉換烴進料 ,特別是氧化的進料,成烯烴之用途。已發現,混合分子 篩與來自元素週期表中第3族(使用描述於CRC Handbook of Chemistry and Physics, 7 8th Edition, CRC Press, Boca Raton, Florida [1997]的IUPAC形式)及/或鑭或锕系元素 的活潑金屬氧化物,得到具有增加烯烴產率及/或較長壽 命之觸媒組成物,當用於轉換進料,例如含氧物,更特別 的是甲醇,成烯烴時。此外,得到的觸媒組成物傾向於對 丙烯較具選擇性,及傾向於產生較少量的不欲的乙烷及丙 烷及其他不欲之化合物,例如醛類及酮類,特別是乙醛。 分子篩 分子鋪已經由 Structure Commission of the International Zeolite Association 依據 IUPAC Commission on Zeolite Nomenclature予以分類。依據此分類,架構型 沸石及沸石型分子篩,其結構已被確認,被分配到3個字 -12- (8) 1306780 母及被描述在 Atlas of Zeolite Framework Types,5th edition, Elsevier, London, England (2001),其倂入本文作 爲參考。 結晶分子篩皆具有共享角[T〇4]四面體的3維、4相連 的骨架結構,其中Τ爲任何四面體配爲的陽離子。分子篩 典型地以定義孔洞的環大小予以描述,其中大小是以環中 Τ原子的數目計算。其他架構型特色包括形成籠的環的排 列,及,當存在時,通道的大小,及籠間的空間。參考 van Bekkum,et al.,Introduction to Zeolite Science and Practice, Second Completely Revised and Expanded Edition, Volumne 137, pages 1-67, Elsevier Science, B. V., Amsterdam, Netherlands (2001). 分子篩的非限制性範例小孔洞的分子篩、AEI、AFT 、APC、ATN、ATT、ATV、AWW、BIK、CAS、CHA、 CHI、DAC、DDR、EDI、ERI、GOO、KFI、LEV、LOV、 LTA ' MON、PAU、PHI、RHO、ROG、THO 及其經取代 的形式;中間孔洞分子篩、AFO、AEL、EUO、HEU、 FER、MEL、MFI、MTW、MTT、TON及其經取代的形式 :及大孔洞分子篩、EMT、FAU及其經取代的形式。其他 分子篩包括 ANA、BEA、CFI、CLO、DON、GIS、LTL、 MER、MOR、MWW及SOD。較佳分子篩的非限制性範例 ,特別是供轉換包括含氧物之進料成烯烴,包括AEL、 AFY、ΑΕΙ、BEA、CHA、EDI、FAU、FER、GIS、LTA、 LTL、MER、MFI、MOR、MTT ' MWW、TAM 及 TON。在 -13- (9) 1306780 一較佳實施例中,本發明的分子篩具有ΑΕΙ拓撲學或 CHA拓撲學、或其組合’最佳爲CHA拓撲學。 小、中間、大孔洞分子篩具有從4_環至12_環或較大 的架構型。在一較佳實施例中,沸石分子篩具有8-、10-或12 -環結構,及平均孔洞大小範圍從約3Α至15Α»在一 更佳實施例中,分子篩,較佳爲矽鋁磷酸鹽分子篩,具有 8 -環及平均孔洞大小小於約5 A ’例如在範圍從3 Α至約5 A ,例如從3A至4.5人’及特別從3.5A至約4.2A。 分子篩具有一分子架構,其共享1,較佳爲2或多個, 角[T04]四面體單元,更佳爲2或多個[Si04]、[Al〇4]及/或 [P04]四面體單元,及最佳爲[Si〇4]、[aio4]及/或[p〇4]四 面體單元。這些以矽、鋁及磷爲主的分子篩及其含有金屬 的衍生物已詳細地被描述在數種刊物,該刊物包括,例如 US 4,4567,029 (MeAPO 其中 Me 爲 Mg、Μη、Zn 或 Co)、 US 4,440,87 1 (SAPO)、EP-A-0 1 59624 (ELAPSO 其中 El 爲 As、Be、B、Cr、Co、Ga ' Ge、Fe、Li、Mg、Μη、Ti 或 Zn)、US 4,554,143 (FeAPO)、US 4,822,478 ' 4,683,21 7 ' 4,744,885 (FeAPSO) 、 EP - A-0 1 5 8 9 7 5 及 US 4,93 5,2 1 6Kang and Inui, Effects of decrease in number of acid sites located on the external surface of Ni-SAPO-34 crystalline catalyst by the mechanochemical method, Catalyst Letters 53, pages 171-176 (1998) disclosed by Ni-SAPO-34 In the conversion of methanol to ethylene, the shape selectivity can be increased and the formation of coke is slowed down by using MgO, CaO, BaO or Cs20 ruthenium catalyst on microspherical non-porous vermiculite. BaO is the best. WO 98/293 70 discloses the conversion of an oxygenate to an olefin via a small pore non-zeolitic molecular sieve comprising a lanthanide selected from the group consisting of a lanthanide, a radiant element, a ruthenium, a Group 4 metal, a Group 5 metal or a mixture thereof Metal. SUMMARY OF THE INVENTION In one aspect, the present invention resides in a catalyst composition comprising a molecular sieve and at least one oxide selected from the group consisting of Group 3, lanthanides and actinides of the Periodic Table of the Elements, wherein the metal oxide The carbon dioxide intake is at least 0.03 mg/m2 metal oxide at -9-(5) 1306780 1 00 °C, and typically at least 0.04 mg/m2 metal oxide. The catalyst composition also includes at least one binder and matrix material different from the metal oxide. The catalyst composition also includes an oxide selected from Group 2 and 3 metals of the Periodic Table of the Elements. In one embodiment, the Group 4 metal oxide comprises an oxidation pin, and the Group 2 and/or Group 3 metal oxide comprises one or more selected from the group consisting of calcium oxide, cerium oxide, cerium oxide, cerium oxide, and cerium oxide. Oxide. The molecular sieve desirably comprises a framework comprising at least two tetrahedral units, such as yttrium aluminum phosphate, the unit being selected from the group consisting of [si〇4], [aio4] and [P04]. In another aspect, the invention resides in a molecular sieve composition comprising a Group 3 metal oxide and/or an oxide of an lanthanide or actinide, an adhesive, a matrix material, and a yttrium aluminum phosphate molecular sieve. In another aspect, the invention resides in a method of preparing a catalyst composition, the method comprising: reacting a first particle comprising a molecular sieve with a metal comprising at least one member selected from Group 3, a lanthanide, and a lanthanide element of the Periodic Table of the Elements The second particles of the oxide are thoroughly mixed, wherein the carbon dioxide of the gold lanthanum oxide is at least 〇3 mg/m2 of metal oxide particles at 10 °C. In one embodiment, the molecular sieve, the adhesive, and the matrix material are prepared as a formulated molecular sieve composition which is then contacted with a reactive Group 3 metal oxide and/or an active oxide of a lanthanide or actinide. Mix, combine, spray dry or the like. In another aspect, the invention resides in a process for preparing a catalyst composition, an oxide of a metal of Group 3 or a lanthanum or a lanthanide element of the-10-(7) 1306780 periodic table. In one embodiment, the catalyst composition has a Lifetime Increase Index (LEI) greater than 1 ', such as greater than 1.5. LEI is defined herein as the lifetime ratio of the catalyst composition to the lifetime of the same catalyst composition without active metal oxide. [Embodiment] DETAILED DESCRIPTION OF THE EMBODIMENTS Introduction The present invention relates to molecular sieve catalyst compositions and their use for converting hydrocarbon feeds, particularly oxidized feeds, to olefins. It has been found that the mixed molecular sieves are derived from Group 3 of the Periodic Table of the Elements (using the IUPAC form described in the CRC Handbook of Chemistry and Physics, 7 8th Edition, CRC Press, Boca Raton, Florida [1997]) and/or 镧 or 锕The active metal oxide of the element results in a catalyst composition having an increased olefin yield and/or a longer life when used to convert a feed, such as an oxygenate, more particularly methanol, to an olefin. In addition, the resulting catalyst composition tends to be more selective for propylene and tends to produce lesser amounts of undesirable ethane and propane and other undesirable compounds such as aldehydes and ketones, particularly acetaldehyde. . Molecular sieves Molecular sieves have been classified by the Structure Commission of the International Zeolite Association in accordance with the IUPAC Commission on Zeolite Nomenclature. According to this classification, the structure of zeolites and zeolite-type molecular sieves, whose structure has been confirmed, is assigned to 3 words - 12 - (8) 1306780 and is described in Atlas of Zeolite Framework Types, 5th edition, Elsevier, London, England (2001), which is incorporated herein by reference. The crystalline molecular sieves all have a three-dimensional, four-linked skeleton structure sharing a tetragonal [T〇4] tetrahedron, wherein ruthenium is a cation of any tetrahedron. Molecular sieves are typically described by the size of the ring defining the pores, where the size is calculated as the number of ruthenium atoms in the ring. Other architectural features include the arrangement of the cage-forming rings and, when present, the size of the channels, and the space between the cages. Reference van Bekkum, et al., Introduction to Zeolite Science and Practice, Second Completely Revised and Expanded Edition, Volumne 137, pages 1-67, Elsevier Science, BV, Amsterdam, Netherlands (2001). Non-limiting examples of molecular sieves Molecular Sieve, AEI, AFT, APC, ATN, ATT, ATV, AWW, BIK, CAS, CHA, CHI, DAC, DDR, EDI, ERI, GOO, KFI, LEV, LOV, LTA 'MON, PAU, PHI, RHO , ROG, THO and their substituted forms; intermediate pore molecular sieves, AFO, AEL, EUO, HEU, FER, MEL, MFI, MTW, MTT, TON and their substituted forms: and macroporous molecular sieves, EMT, FAU and Its replaced form. Other molecular sieves include ANA, BEA, CFI, CLO, DON, GIS, LTL, MER, MOR, MWW, and SOD. Non-limiting examples of preferred molecular sieves, particularly for the conversion of oxygenate-containing feeds to olefins, including AEL, AFY, hydrazine, BEA, CHA, EDI, FAU, FER, GIS, LTA, LTL, MER, MFI, MOR, MTT 'MWW, TAM and TON. In a preferred embodiment of -13-(9) 1306780, the molecular sieve of the present invention has a ΑΕΙ topology or CHA topology, or a combination thereof, which is optimally CHA topology. Small, intermediate, and large pore molecular sieves have a configuration from 4_ring to 12-ring or larger. In a preferred embodiment, the zeolite molecular sieve has an 8-, 10- or 12-ring structure and the average pore size ranges from about 3 Torr to 15 Torr. In a more preferred embodiment, the molecular sieve, preferably yttrium aluminum phosphate Molecular sieves having an 8-ring and an average pore size of less than about 5 A' are for example in the range from 3 Torr to about 5 A, for example from 3 A to 4.5 A and especially from 3.5 A to about 4.2 A. The molecular sieve has a molecular structure sharing 1, preferably 2 or more, angular [T04] tetrahedral units, more preferably 2 or more [Si04], [Al〇4] and/or [P04] tetrahedrons The unit, and preferably the [Si〇4], [aio4], and/or [p〇4] tetrahedral elements. These molecular sieves based on ruthenium, aluminum and phosphorus and their metal-containing derivatives have been described in detail in several publications, including, for example, US 4,4567,029 (MeAPO where Me is Mg, Μη, Zn or Co), US 4,440,87 1 (SAPO), EP-A-0 1 59624 (ELAPSO where El is As, Be, B, Cr, Co, Ga 'Ge, Fe, Li, Mg, Μη, Ti or Zn) , US 4,554,143 (FeAPO), US 4,822,478 ' 4,683,21 7 ' 4,744,885 (FeAPSO) , EP - A-0 1 5 8 9 7 5 and US 4,93 5,2 1 6

(ZnAPSO) 、EP-A-0161489 (CoAPSO) 、EP-A-0158976 (ELAPO 其 中EL爲 C o、F e 、Mg、Mn 、Ti 或 Zn) ' US 4,3 10,440 (aipo4)、 EP-A -0158350 (SENAPO)、 US 4,973,460 (LiAPSO) 、US 4,789,535 (Li APO)、 US 4,992,250 (GeAPSO) 、US 4,888,167 (GeAPO)、 US 5,057,295 (BAPSO) 、US 4,73 8,83 7 (CrAPSO)、 US -14- (10) 1306780 4,759,9 1 9及 4,85 1,1 06 (CrAPO)、US 4,75 8,4 1 9、4,8 82,03 8 、5,43 4,32 6 及 5,478,787 (MgAPSO) 、 US 4,55 4. 1 43 (FeAPO) 、 US 4,894,2 1 3 (AsAPSO) 、 US 4,913,888 (AsAPO) 、 US 4,686,092 、 4,8 4 6,9 5 6 及 4,7 9 3,8 3 3 (MnAPSO) 、 US 5,345,0 1 1 及 6,1 56,93 1 (MnAPO) 、US 4,73 7,3 53 (BeAPSO) 、 US 4,940,570 (BeAPO) 、 US 4,801,309 ' 4,684,6 1 7 及 4,8 8 0,520 (TiAPSO) 、 US 4,5 00,65 1 、 4,55 1,23 6 及 4,605 、 492 (TiAPO) ' US 4,824,554 、 4,744,970 (CoAPSO) 、 US 4,73 5,8 06 (GaAPSO)、EP-A-0293 93 7 (QAPSO 其中 Q 爲架構氧化物 單元[Q〇2]),及 US 4,567,029、4,686,093、4,781,814、 4,793,984 ' 4,801,364 ' 4,853,197 > 4,917,876 ' 4,952,384 > 4,956,164 ' 4,956,165 ' 4,973,785 ' 5,241,093 ' 5,493,066及5,675,050,其皆倂入本文作爲參考。 其他分子篩包括該等描述於R. Szostal,Handbook of Molecular Sieves, Van Nostrand Reinhold, New York, New York (1992),其併入本文作爲參考。 更佳的分子篩包括磷酸鋁鹽(A1PO)分子篩及矽鋁磷酸 鹽(SAPO)分子篩及經取代,較佳爲經金屬取代,A1PO及 SAPO分子篩。最佳的分子篩爲SAPO分子篩,及經金屬 取代的SAP Ο分子篩。在一實施例中,金屬爲元素週期表 中第1族鹼金屬、元素週期表中第2族鹼土金屬、元素週期 表中第3族稀土金屬,該稀土金屬包括鑭系元素:鑭、姉 、鐯、銨、釤、銪、I、铽、鏑、鈥、餌、铥、鏡及餾; -15- (12) 1306780 本文中所用之S APO及A1PO分子篩的非限制性範例 包括 SAP0-5、SAPO-8、SAP0-11、SAP0-16、SAP0-17、 SAPO-18 > SAPO-20、SAPO-31、SAPO-34、SAPO-35、 SAPO-36、SAPO-37、SAPO-40、SAPO-41 ' SAPO-42 ' S APO-44 (US 6, 1 62,4 1 5)、S APO-47、SAPO-56、A1PO-5 、A1PO-11、A1PO-18、A1PO-3 1、A1PO-3 4、A1PO-3 6、 A1PO-37、A1PO-46及其含有金屬之分子篩中之一者或組 合。這些當中特別有用的分子篩爲SAPO-18、SAPO-34、 SAPO-35、SAPO-44、SAPO-56、A1P0-18及 A1PO-34及其 含有金屬之衍生物中之一者或組合,例如,SAPO-18、 SAPO-34、A1PO-34及 A1PO-18及其含有金屬之衍生物中 之一者或組合,且特別是,SAPO-34及A1P0-18及其含有 金屬之衍生物中之一者或組合。 在一實施例中,分子篩爲在一分子篩組成物內具有2 或多種明確結晶相交互生長的物質《特別地,交互生長的 分子篩被描述於2001年8月7日申請的美國專利案申請序號 09/92 4,01 6及1998年4月16日公開的W0 98/15496,兩者皆 倂入本文作爲參考。例如,SAPO-18、A1P0-18及RUW -1 8 具有AEI架構,及SAPO-34具有CHA架構。因此,用於 本文中之分子篩包括至少一種交互生長相的AEI及CHA 架構,特別是CHA架構對AEI架構的比値大於1 : 1,其係 藉由2001年8月7日申請的美國專利案申請序號09/924, 〇16 中所描述的DIF F a X方法予以測量。 -17- (17) 1306780 0.〇3mg/m2金屬氧化物,例如至少0.04mg/m2金屬氧化物。 雖然金屬氧化物的二氧化碳攝入値的上限並非關鍵性的, 通常,用於本文的金屬氧化物的二氧化碳在100 °C時將會 小於l〇mg/m2金屬氧化物,例如小於5 mg/m2金屬氧化物》 典型地,用於本文的金屬氧化物的二氧化碳的攝入値爲 0.05至1 mg/m2金屬氧化物。當混合使用分子篩,該活潑金 屬氧化物有利於觸媒轉換方法,特別是含氧物轉換成烯烴 〇 爲了測量金屬氧化物的二氧化碳攝入値,下面的步驟 被採用。金屬氧化物的樣品經由在流動空氣中受熱到約 200°C至5 00 t予以脫水到不變的重量,得到“乾燥重量” 。之後樣品的溫度被下降至1 〇〇 °C,二氧化碳通過樣品, 不論是連續或是脈衝,再次直到得到不變的重量。樣品重 量的增加,以樣品的乾燥重量計算及以mg/mg樣品表示 ,爲吸附二氧化碳的量。 在下面所描述的樣品中,二氧化碳的吸附是在周圍壓 力下使用Mettler TGA/SDTA 851熱重分析系統予以測量 。金屬氧化物樣品在流動空氣中及約5 00 °C下脫水1小時。 樣品的溫度之後在流動氦氣下被下降到欲得之吸附溫度 1 00 °C。樣品在l〇〇t及流動氦氣下達到平衡,樣品被施予 含有10重量%二氧化碳及剩餘者爲氦氣的氣體混合物的20 個個別脈衝(約1 2秒/脈衝)。吸附氣體的每一脈衝之後金屬 氧化物樣品以流動氦氣沖洗3分鐘。樣品重量的增加,以 在5 0 0 °C處理之後吸附劑重量計算及以m g / m g吸附劑表示 -22- (18) 1306780 ,爲吸附二氧化碳的量。樣品的表面積係依照ASTM D 3663公開的 Brunauer,Emmett,and Teller(BET)方法予以 測量,提供二氧化碳攝入,以mg二氧化碳/m2金屬氧化物 〇 較佳的第3族金屬氧化物包括銃、釔及鑭的氧化物, 鑭或锕系金屬的較佳氧化物包括鈽、鐯、鈸、釤、銪、釓 、铽、鏑、鈥、餌、錶、鏡、鎇及钍的氧化物。最佳的活 潑金屬氧化物爲氧化钪、氧化鑭、氧化釔、氧化姉、氧化 鐯、氧化銨及其混合物,特別是氧化鑭及氧化鈽的混合物 〇 在一實施例中,有用的金屬氧化物爲該等第3族金屬 及/或鑭及锕系金屬之氧化物,當與觸媒組成物中的分子 篩混合使用時,其有效延伸觸媒組成物的使用壽命。延長 觸媒組成物壽命的定量藉由下式所定義的壽命增加指數 (LEI)予以測定: LEI = 混有活潑金屬氧化物之觸媒壽命 觸麟命 其中觸媒或觸媒組成物的壽命,在相同的方法中及相 同的條件下予以測量’及爲加工進料的累積量/每克觸媒 組成物,直到經由觸媒組成物的進料轉換下降至低於某些 明確的水平’例如1 0% °非活潑金屬氧化物對觸媒組成物 的壽命將不具有影響,或是將會縮短觸媒組成物的壽命’ 及因此LEI將會小於或等於1。因此,本發明的活潑金屬 -23- (19) 1306780 氧化物爲該等第3族金屬氧化物,包括鑭及锕系的氧化物 ,當與分子篩混合使用時,提供具有LEI大於1的分子篩 觸媒組成物。明顯地,未與活潑金屬氧化物混合的分子篩 觸媒組成物的LEI將等於1。 發現觸媒組成物可藉由包括混合分子篩的活潑第3族 金屬氧化物及/或鑭或锕系活潑氧化物予以製備,其LEI 的範圍從大於1至50,例如從約1.5至約20。典型地,本發 明的觸媒組成物顯示出LEI値大於1. 1,例如範圍從約1.2 至15,及更特別地,大於1.3,例如大於1.5,例如大於1.7 ,例如大於2。 在一實施例中,當與觸媒組成物中的分子篩混合時, 活潑第3族金屬氧化物及/或鑭或锕系的活潑氧化物增加觸 媒組成物在含有甲醇之進料轉換成一或多種烯烴中的壽命 〇 用於本文中的活潑金屬氧化物可使用各種方法予以製 備。較佳的是,活潑金屬氧化物是從活潑金屬氧化物前驅 物,例如金屬鹽,例如鹵化物、硝酸鹽、硫酸鹽或乙酸鹽 ,予以製備。金屬氧化物的其他適合來源包括在鍛燒期間 形成金屬氧化物的化合物,例如氯氧化物及硝酸鹽。烷氧 化物亦包括第3族金屬氧化物的適合來源,例如正丙醇釔 〇 在一實施例中,第3族金屬氧化物或鑭或锕系的氧化 物在包括溫度至少,較佳至少100°C,的條件被熱液 處理。熱液處理可發生在密封的容器中及大於大氣壓力下 -24- (20) 1306780 。然而,處理的較佳模式包含在迴流條件下使用開口容器 。第3族金屬氧化物或鑭或锕系的氧化物在液體介質中攪 動,例如藉由迴流液體及/或攪拌,促進水合氧化物與液 體介質的有效相互作用。水合氧化物與液態介質的接觸時 間合宜地爲至少1小時,例如至少8小時。供該處理的液態 介質的pH値約6或更大,例如8或更大。適宜的液態介質 的非限制性範例包括水、氫氧化物溶液(包括NH4+、Na + 、K+、Mg2 +及Ca2 +的氫氧化物)、碳酸鹽及碳酸氫鹽溶液( 包括NH4+、Na+、K+、Mg2 +及Ca2 +的碳酸鹽及碳酸氫鹽) 、吡啶及其衍生物、及烷基/羥基胺。 在另一實施例中,活潑第3族金屬氧化物或鑭或锕系 的活潑氧化物,係藉由使液體溶液,例如含有金屬離子( 例如金屬鹽)來源的水溶液,歷經足以產生固體氧化物物 質的水合前驅物的沉澱物,例如,將沉澱劑加至溶液中, 的條件而予以製備的。合宜地,沉澱作用是在pH大於7 予以實施的。例如,沉澱劑可爲鹼,例如,氫氧化鈉或氫 氧化銨。 溫度通常低於約200 °C,例如,在範圍從約〇°c至約 2 0 0 °C,沉澱期間,液態介質被維持在該溫度。供沉澱的 特別溫度範圍爲從約2 〇 °C至約1 0 0 °C。得到的凝膠之後較 佳在80°C,較佳爲至少100°C ’予以水合處理。水合處理 典型地在容器中及在大氣壓下發生。在一實施例中,凝膠 被水合處理持續高達1 〇天,例如高達5天,例如高達3天β 金屬氧化物的水合前驅物之後被回收,例如,藉由過 -25- (21) 1306780 濾或離心,及淸洗及乾燥。得到的物質之後可被鍛燒,例 如在氧化氣氛下,及在溫度至少400°C,例如至少500°C, 例如從約6〇〇°C至約900Χ:,及特別從約650°C至約800°C, 形成固體氧化物物質。锻燒時間典型高達48小時,例如持 續〇 · 5至2 4小時,例如持續約1.0至1 〇小時。在一實施例中 ,锻燒是在約700°C實施約1至約3小時。 觸媒組成物 本發明的觸媒組成物包括前述之任何一種分子篩,及 上述之一或多種第3族金屬氧化物,及/或上述鑭或锕系元 素之一或多種氧化物,隨意地與不同於活潑金屬氧化物的 黏著劑及/或基質物質。典型地,在觸媒組成物中,分子 篩對活潑金屬氧化物的重量比範圍從5重量%至800重量% ,例如從1〇重量%至600重量%,特別從20重量%至500重 量%,及更特別從30重量%至400重量%。 有各種的黏著劑用於形成觸媒組成物。黏著劑的非限 制性範例包括各種類型的水合氧化鋁、矽石及/或其他無 機氧化物溶膠,該黏著劑可單獨或混合使用。一種含有氧 化鋁的較佳溶膠爲鹼式氯化鋁。無機氧化物溶膠像膠水使 合成的分子篩與其他物質,例如基質,黏結在一起,特別 是在熱處理之後。藉由加熱,無機氧化物溶膠,較佳地是 具有低黏性,被轉換成無機氧化物黏著劑成分。例如,熱 處理之後,氧化鋁溶膠將轉換成氧化鋁黏著劑。 鹼式氯化鋁(含有氯平衡離子的氫氧化鋁爲主的溶膠) -26- (22) 1306780 具有通式AlmOJOHhClp^xdO),其中m爲1至20,η爲1 至8’ 〇爲5至40,ρ爲2至15,及X爲0至30。在一實施例 中’黏著劑爲 Α1ι3〇4(〇Η)24〇1·7·12(Η2〇),其被描述於 G.M. Wolterman, et. al., Stud. Surf. Sci. and Catal., 76 pages 105-144 (1993),其倂入本文作爲參考。在另—實 施例,一或多種黏著劑與一或多種其他非限制性範例的氧 化銘物質,例如氧氫氧化錕(aluminum oxyhydroxide)、γ_ 氧化鋁、水鋁土、水鋁石,及過渡性的氧化鋁,例如α _氧 化鋁、β-氧化鋁、γ-氧化鋁、δ-氧化鋁、ε-氧化鋁、κ-氧 化鋁及Ρ -氧化鋁,三氫氧化鋁,例如三水鋁礦、拜三水鋁 土(bayerite)、諾三水 |呂土(nordstrandite) ' doyelite、及 其混合物相混合。 在另一實施例中,黏著劑爲氧化鋁溶膠,其優勢地包 括氧化鋁,隨意地包括矽石。在另一實施例中,黏著劑爲 膠溶的氧化鋁,其係藉由用酸,較佳爲不含鹵素的酸,處 理氧化鋁水合物(例如僞水鋁土)製備溶膠或鋁離子溶液, 而予以製得的。市售可得的膠體氧化鋁溶膠的非限制性範 例包括可購自 Nalco Chemical Co., Naperville, Illinois 的 Nalco 8676及可購自的 Nyacol nano Technologies, Inc., Ashland,Massachussetts 的 Nyacol AL20DW。 觸媒組成物包括基質物質,該基質物質較佳地不同於 金屬氧化物及任何黏著劑。基質物質典型地有效減低觸媒 總成本,充當熱槽以幫助觸媒組成物,例如再生期間,遮 蔽熱,硬化觸媒組成物及增加觸媒強度,例如抗碎強度及 -27- (23) 1306780 抗磨耗性0 基質物質的非限制性範例包括一或多種非活潑金屬氧 化物’該非活潑金屬氧化物包括氧化鋇、石英、砂石或溶 膠、及其混合物,例如矽石-氧化鎂、矽石-氧化銷、矽 石-氧化鈦、矽石·氧化鋁及矽石-氧化鋁-氧化钍。在一實 施例中,基質物質爲天然黏土,例如該等來自蒙脫土及高 嶺土族系者。這些天然黏土包括次皂土及該等有名的高嶺 土 ’例如Dixie、McNamee'喬治亞及佛羅里達黏土。其 他基質物質的非限制性範例包括haloysitte、高嶺土、迪 開石(dickite)、珍珠陶土(nacrite)或蠕陶土。基質物質, 例如黏土,可被施予已知的改良加工,例如鍛燒及/或酸 處理及/或化學處理。 在一較佳的施實例中,基質物質爲黏土或黏土類型的 組成物,特別是具有低含量鐡或二氧化鈦的黏土或黏土類 型的組成物,及最佳地,基質物質爲高嶺土。已發現高嶺 土會形成可泵抽的、高固體含量的漿料、及具有低新鮮的 表面積、及由於其平板結構而容易壓縮在一起。基質物質 (最佳爲高嶺土)的較佳平均顆粒大小是從約Ο.ίμηι至約 0.6 μ m,且D 9 〇顆粒大小分布小於1 μ m。 觸媒組成物包括黏著劑或基質物質,觸媒組成物典型 地包括從約1重量%至約8 〇重量% ’例如從約5重量%至約 6 0重量%,及特別從約5重量%至5 0重量%,的分子篩,以 觸媒組成物總重計算。 觸媒組成物包括黏著劑及基質物質’黏著劑對基質物 -28- (24) 1306780 質的重量比典型地從1 : 1 5至1 : 5,例如從1 : 1 〇至1 : 4, 及特別從1 : 6至1 : 5。黏著劑的含量典型地從約2重量% 至約3〇重量%,例如從約5重量%至約20重量%,及特別從 約7重量%至約1 5重量%,以黏著劑、分子篩及基質物質的 總重計算。已發現,高分子篩含量及低基質物質含量會增 加篩觸媒組成物的性能,然而低分子篩含量及高基質物質 含量會改善組成物的抗磨耗性。 觸媒組成物密度的典型範圍從〇.5g/cc至5g/cc,例如 從0.6g/cc至5g/cc,例如從0.7g/cc至4g/cc,特別是從 0.8g/cc 至 3g/cc。 製備觸媒組成物的方法 在製備觸媒組成物中,分子篩先被形成,之後與活潑 第3族金屬氧化物,或鑭或锕系元素之活潑氧化物,較佳 地以實質上乾燥、經乾燥或經鍛燒狀態,完全混合。最佳 地,分子篩及活潑金屬氧化物以其經锻燒狀態完全混合。 未受任何特別理論限制,令人咸信,分子篩及一或多種活 潑金屬氧化物的緊密混合改善使用本發明分子篩組成物及 觸媒組成物的轉換方法。緊密混合可經由此領域中任何已 知方法,例如以混合硏磨器方式的混合、鼓式混合器、螺 條/漿式摻和器、捏合器或諸如此類者,予以達成。分子 篩及金屬氧化物間的化學反應是不必要的,及通常是不被 喜歡的。 觸媒組成物包括基質及/或黏著劑,分子篩與基質及/ -29- (25) 1306780 或黏著劑合宜地先被調配成觸媒先質,之後活潑金屬氧化 與經調配的先質混合。活潑金屬氧化物可以未經承載的顆 粒方式被加入或以與載體(例如黏著劑或基質)混合方式加 入。得到的觸媒組成物之後可藉由已知技術,例如噴霧乾 燥、九化、擠壓及諸如此類者,形成有用的形狀及大小的 顆粒。 在一實施例中,分子篩組成物及基質物質,隨意地與 黏著劑,用液體混合形成漿料,之後混合,較佳地激烈混 合,產生一含有分子篩組成物的實質上均質的混合物》適 合的液體的非限制性範例包括水、醇+酮、醛及/或酯之一 者或混合。最佳的液體爲水。在一實施例中,漿料被膠體 硏磨一段時間,足以產生欲得之漿料組織、次顆粒大小及 /或次顆粒大小分布。 分子篩組成物及基質物質及隨意的黏著劑可以在相同 或不同的液體中混合,及可以任何次序、一起、同時、連 續或其組合方式混合。在一較佳實施例中,使用相同的液 體,較佳者爲水。分子篩組成物、基質物質及隨意的黏著 劑以固體、實質上乾燥或經乾燥的形式,或以漿料方式, 一起或個別方式,在液體中被混合。假如固體一起以乾燥 或實質上乾燥的固體方式被加入,較佳的是,加入受限制 量的及/或經控制量的液體。 在一實施例中,分子篩組成物、黏著劑及基質物質的 漿料被混合或硏磨,以得到一分子篩觸媒組成物次顆粒的 充分均勻的漿料,其之後被餵入至產生分子篩觸媒組成物 -30- (26) 1306780 之形成單元。在一較佳實施例中,形成單元爲噴霧乾燥器 。典型地,形成單元被維持在一溫度,該溫度足以從漿料 及從得到的分子篩觸媒組成物中移除大部分的液體。當觸 媒組成物係以該方式形成時,所得到的觸媒組成物爲微顆 粒形式。 當使用噴霧乾燥器作爲形成單元時,典型地,分子篩 組成物及基質物質及隨意的黏著劑的漿料被餵至有乾燥氣 體的噴霧乾燥容器中,其平均入口溫度範圍從200 °C至約 5 50°C,及出口溫度範圍從100°C至約225 〇C。在一實施例 中,噴霧乾燥所形成的觸媒組成物的平均直徑爲從約 40μηι至約300μηι,例如從約50μηι至約250μιη,例如從約 50μηι至約200μιη,及合宜地從約65μιη至約90μηι » 供形成分子篩觸媒組成物的其他方法被描述在2000年 7月17日申請的美國專利申請案序號09/6 17,714中(使用經 回收的分子篩觸媒組成物噴霧乾燥),其倂入本文作爲參 考。 一旦分子篩觸媒組成物以實質上乾燥或經乾燥狀態方 式形成,爲了進一步硬化及/或活化所形成的觸媒組成物 ,通常在高溫實施熱處理,例如鍛燒。典型的锻燒溫度範 圍從約400°C至約1,000°C,例如從約500°C至約80(TC,例 如從約5 5 0 °C至約700 °C。典型的鍛燒環境爲空氣(其可包 括少量的水蒸氣)、氮、氦、煙道氣體(貧氧的燃燒產物) 或其任何組合。 在一較佳實施例中,觸媒組成物在氮氣中及溫度從約 -31 - (27) 1306780 600 °C至約700 °C下受熱。加熱被持續一段時間,典型地從 3 〇分鐘至1 5小時,例如從1小時至約1 0小時,例如從約丄小 時至約5小時,及特別是從約2小時至約4小時。 使用分子篩觸媒組成物的方法 上述之觸媒組成物係用於各種方法,該方法包括裂解 ,例如石腦油進料裂解成輕烯烴類(US 6,3〇0,537)或較大 分子量(MW)烴裂解成較小MW烴;氫裂解,例如重石油 及/或環狀進料的氫裂解;異構化作用,例如芳香族(如二 甲苯)的異構化;聚合作用,例如一或多種烯烴類聚合產 生聚合物產物;重整;氫化作用;脫氫作用;脫蠟,例如 烴類的脫蠟以移除直鏈烷烴;吸收作用,例如烷基芳香族 化合物吸收以分離出其異構物;烷基化作用,例如芳香族 烴(如苯及烷基苯)隨意地以丙烯烷基化產生枯烯,或長鏈 烯烴類;烷基移轉作用,例如芳香族及多烷基芳香族烴的 組合的烷基移轉;脫烷基作用;加氫去環化作用;歧化作 用,例如甲苯的歧化作用以製備苯及對二甲苯;寡聚合作 用,例如直鏈及支鏈烯烴的寡聚合作用;及脫氫環化作用 〇 較佳的方法包括使石腦油轉換成高芳香族混合物的方 法;使輕烯烴類轉換成汽油、餾出物及潤滑油的方法;使 含氧物轉換成烯烴類的方法;使輕鏈烷烴轉換成烯烴類及 /或芳香族的方法;使不飽和烴(乙烯及/或乙炔)轉換成供 轉換成醇、酸及酯之醛的方法。 -32- (28) I3〇678〇 本發明的最佳方法是關於使進料轉換成一或多種烧烴 類的方法。典型地,進料包括一或多種含脂肪族之化合物 ’該脂肪族部分包括從1至50個碳原子,例如從1至2〇個碳 原子,例如從1至10個碳原子,及特別地從1至4個碳原子 〇 含脂肪族之化合物的非限制性範例包括醇類,例如甲 醇及乙醇,烷硫醇,如甲硫醇及乙硫醇,硫醚,例如二甲 硫,院基胺,例如甲胺’焼醚,例如二甲醚、二乙酸及甲 乙醚’烷基鹵化物’例如甲基氯及乙基氯,烷基酮,例如 二甲酮、甲醛,及各種酸,例如乙酸。 在本發明的較佳實施例中,進料包括一或多種含氧物 ’更詳而言之,一或多種含有至少一個氧原子的有機化合 物。在本發明的最佳實施例中,進料中的含氧物是一或多 種醇類,較佳爲脂肪族的醇,醇類中的脂肪族部分具有從 1至20個碳原子,較佳從1至10個碳原子,及最佳從1至4個 碳原子。充當本發明方法之進料的醇類包括低級直鏈及支 鏈的脂肪族的醇及其不飽和的相似物(counterpart)。 含氧物的非限制性範例包括甲醇 '乙醇、正丙醇、異 丙醇、甲乙醚 '二甲醚、二乙醚、二異丙醚、甲醛、二甲 基碳酸酯、二甲酮、乙酸及其混合物。 在最佳實施例中,進料係選自一或多種甲醇、乙醇、 二甲醚、二乙醚或其組合,更佳地係是甲醇及二甲醚,及 最佳地是甲醇。 上面所討論的各種進料,特別是含有含氧物之進料, -33- (29) 1306780 更特別的是含有醇的進料,主要被轉換成一或多種烯烴類 。由進料所製備的烯烴類;ft型地具有從2至30個碳原子, 較佳2至8個碳原子,更佳2至6個碳原子,更佳2至4個碳原 子,及最佳爲乙嫌及/或丙嫌。 本發明的觸媒組成物特別用於通常稱爲氣體轉換成烯 烴(GTO)的方法或是甲醇轉換成烯烴(MT〇)的方法。在該 方法中’受充氧的進料,最佳爲含甲醇的進料,在分子篩 觸媒組成物存在下被轉換成一或多種烯烴類,較佳及優勢 地爲乙烯及/或丙烯。 / 使用本發明觸媒組成物以轉換進料,較佳爲含有一或 多種含氧物之進料,所產生的烯烴類的含量,以所產生的 烴類的總重計算,大於50重量%,典型地大於60重量%, 例如大於7 0重量%,及較佳地大於8 0重量%。此外,所產 生的乙烯及/或丙烯的含量,以所產生的烴類產物的總重 計算,大於40重量%,典型地大於50重量%,例如大於65 重量%,及較佳地大於7 8重量%。典型地,所產生的乙烯 的含量,以所產生的烴類產物的總重計算,大於20重量% ,例如大於3 0重量%,例如大於4 0重量°/〇。此外,所產生 的丙烯的含量,以所產生的烴類產物的總重計算,典型地 大於20重量%,例如大於25重量%,例如大於30重量%, 較佳地大於3 5重量%。 發現與無活潑金屬氧化物成分之相似觸媒組成物在相 同轉換條件相比,使用本發明觸媒組成物使含有甲醇及二 甲醚之進料轉換成乙烯及丙烯,產生的乙烷及丙烷被減至 -34- (30) 1306780 大於1 0%,例如大於20%,例如大於30%,及特別是在範 圍從約3 0 °/。至4 0 %。 除了含氧物成分之外,例如甲醇,進料可包括—或多 種稀釋劑,該稀釋劑通常對進料或分子篩觸媒組成物無& 應性,及典型地被用於減低進料的濃度。稀釋劑的非卩艮铜| 性範例包括氦、氬、氮、一氧化碳、二氧化碳、水、實質 上無反反應性的鏈烷烴(特別是烷類,例如甲院、乙院及 丙烷)、實質上無反應性的芳香族化合物,及其混合物。 最佳的稀釋劑爲水及氮,以水爲特別佳著。 稀釋劑,例如水,可以液態或蒸氣形式或其組合型是 被使用。稀釋劑可直接被加至輸入反應器中的進料,或直 接被加至反應器中,或與分子篩觸媒組成物一起被加入。 本發明方法可被實施於一寬廣的溫度範圍內,例如範 圍從約20(TC至約1 000°C,例如從約25〇t至約800°C,包 括從約25(TC至約75 0°C,合宜地從約3 00t至約65 0 t,典 型地從約3 5 0 °C至約6 0 0 °C,及特別地從約3 5 0。(:至約5 5 0 °C 〇 同樣地’本發明方法可被實施於一寬廣的壓力範圍內 ,該壓力範圍包括自生壓力。典型地,方法中所使用的進 料(不包括其中任何稀釋劑)的分壓範圍從約O.lkPaa至約 SMpaa,例如從約5kPaa至約IMpaa,及合宜地從約20kPaa 至約 5 00kPaa。 重量時空速度(WHSV),被定義爲排除任何稀釋劑的 進料的總重/小時/觸媒組成物中分子篩的重,典型範圍從 -35- (31) 1306780 約lhr-1至約sooohr-i,例如從約21^」至約woohr·〗,例如 從約5hr-l至約1 5 00hr-l,及合宜地從約1〇hr-l至約l〇〇〇hr-1 °在一實施例中,WHSV大於20hr-l,及範圍從約20hr-l 至約300 hr-1,其中進料包括甲醇及/或二甲醚。(ZnAPSO), EP-A-0161489 (CoAPSO), EP-A-0158976 (ELAPO where EL is C o, F e , Mg, Mn, Ti or Zn) ' US 4,3 10,440 (aipo4), EP-A -0158350 (SENAPO), US 4,973,460 (LiAPSO), US 4,789,535 (Li APO), US 4,992,250 (GeAPSO), US 4,888,167 (GeAPO), US 5,057,295 (BAPSO), US 4,73 8,83 7 (CrAPSO), US -14- (10) 1306780 4,759,9 1 9 and 4,85 1,1 06 (CrAPO), US 4,75 8,4 1 9 , 4,8 82,03 8 , 5,43 4,32 6 and 5,478,787 (MgAPSO), US 4,55 4. 1 43 (FeAPO), US 4,894,2 1 3 (AsAPSO), US 4,913,888 (AsAPO), US 4,686,092, 4,8 4 6,9 5 6 and 4,7 9 3,8 3 3 (MnAPSO), US 5,345,0 1 1 and 6,1 56,93 1 (MnAPO), US 4,73 7,3 53 (BeAPSO), US 4,940,570 (BeAPO), US 4,801,309 ' 4,684, 6 1 7 and 4,8 8 0 0,520 (TiAPSO) , US 4,5 00,65 1 , 4,55 1,23 6 and 4,605 , 492 (TiAPO) ' US 4,824,554 , 4,744,970 (CoAPSO) , US 4,73 5 , 8 06 (GaAPSO), EP-A-0293 93 7 (QAPSO where Q is the architectural oxide unit [Q〇2]), and US 4,567,029, 4,686,093, 4,781,814, 4,793,984 ' 4,8 No. 4, 956, 164 > Other molecular sieves include those described in R. Szostal, Handbook of Molecular Sieves, Van Nostrand Reinhold, New York, New York (1992), which is incorporated herein by reference. More preferred molecular sieves include aluminum phosphate (A1PO) molecular sieves and yttrium aluminum phosphate (SAPO) molecular sieves and substituted, preferably metal substituted, A1PO and SAPO molecular sieves. The best molecular sieves are SAPO molecular sieves and metal-substituted SAP® molecular sieves. In one embodiment, the metal is a Group 1 alkali metal of the periodic table, a Group 2 alkaline earth metal of the periodic table, and a Group 3 rare earth metal of the periodic table, the rare earth metal comprising a lanthanide element: lanthanum, cerium,鐯, ammonium, hydrazine, hydrazine, I, hydrazine, hydrazine, hydrazine, bait, hydrazine, mirror and distillation; -15- (12) 1306780 Non-limiting examples of the S APO and A1PO molecular sieves used herein include SAP0-5, SAPO-8, SAP0-11, SAP0-16, SAP0-17, SAPO-18 > SAPO-20, SAPO-31, SAPO-34, SAPO-35, SAPO-36, SAPO-37, SAPO-40, SAPO -41 ' SAPO-42 ' S APO-44 (US 6, 1 62, 4 1 5), S APO-47, SAPO-56, A1PO-5, A1PO-11, A1PO-18, A1PO-3 1, A1PO -3 4. One or a combination of A1PO-3 6, A1PO-37, A1PO-46 and its metal-containing molecular sieve. Particularly useful among these are one or a combination of SAPO-18, SAPO-34, SAPO-35, SAPO-44, SAPO-56, A1P0-18, and A1PO-34 and their metal-containing derivatives, for example, One or a combination of SAPO-18, SAPO-34, A1PO-34, and A1PO-18 and its metal-containing derivatives, and in particular, one of SAPO-34 and A1P0-18 and its metal-containing derivatives Or combination. In one embodiment, the molecular sieve is a material having two or more distinct crystal phases in a molecular sieve composition. "In particular, the intergrowth molecular sieve is described in U.S. Patent Application Serial No. 09, filed on Aug. 7, 2001. /92 4,01 6 and W0 98/15496 published on April 16, 1998, both of which are incorporated herein by reference. For example, SAPO-18, A1P0-18, and RUW-1 have an AEI architecture, and SAPO-34 has a CHA architecture. Therefore, the molecular sieves used herein include at least one AEI and CHA architecture of the intergrown phase, and in particular, the ratio of the CHA framework to the AEI architecture is greater than 1:1, which is based on the US patent application filed on August 7, 2001. The DIF F a X method described in Serial No. 09/924, 〇16 is measured. -17- (17) 1306780 0. 〇 3 mg/m 2 metal oxide, for example at least 0.04 mg/m 2 metal oxide. Although the upper limit of the carbon dioxide uptake of metal oxides is not critical, in general, the carbon dioxide used in the metal oxides herein will be less than 10 mg/m2 of metal oxide at 100 °C, for example less than 5 mg/m2. Metal Oxide Typically, the carbon dioxide uptake for the metal oxides herein is from 0.05 to 1 mg/m2 metal oxide. When a molecular sieve is used in combination, the active metal oxide facilitates the catalyst conversion method, particularly the conversion of oxygenates to olefins. To measure the carbon dioxide uptake of the metal oxides, the following steps are employed. The sample of the metal oxide is dehydrated to a constant weight by heating to about 200 ° C to 500 Torr in flowing air to give a "dry weight". After that, the temperature of the sample is lowered to 1 〇〇 ° C, and carbon dioxide passes through the sample, either continuously or pulsed, again until a constant weight is obtained. The increase in sample weight, expressed as the dry weight of the sample and expressed in mg/mg sample, is the amount of carbon dioxide adsorbed. In the samples described below, carbon dioxide adsorption was measured using a Mettler TGA/SDTA 851 thermogravimetric analysis system under ambient pressure. The metal oxide sample was dehydrated in flowing air at about 500 ° C for 1 hour. The temperature of the sample was then lowered under flowing helium to the desired adsorption temperature of 1 00 °C. The sample was equilibrated under l〇〇t and flowing helium, and the sample was applied to 20 individual pulses (about 12 seconds/pulse) containing 10% by weight of carbon dioxide and the remaining gas mixture of helium. The metal oxide sample was flushed with flowing helium for 3 minutes after each pulse of the adsorbed gas. The increase in sample weight is calculated as the weight of the adsorbent after treatment at 500 °C and -20-(18) 1306780 as the adsorbent of m g / m g , which is the amount of carbon dioxide adsorbed. The surface area of the sample is measured in accordance with the Brunauer, Emmett, and Teller (BET) method disclosed in ASTM D 3663 to provide carbon dioxide uptake, preferably in the form of mg carbon dioxide/m2 metal oxide. Group 3 metal oxides include ruthenium and osmium. Preferred oxides of lanthanum, lanthanum or lanthanide metals include lanthanum, cerium, lanthanum, cerium, lanthanum, cerium, lanthanum, cerium, lanthanum, bait, surface, mirror, cerium and lanthanum oxide. The most preferred active metal oxides are cerium oxide, cerium oxide, cerium oxide, cerium oxide, cerium oxide, ammonium oxide and mixtures thereof, in particular mixtures of cerium oxide and cerium oxide. In one embodiment, useful metal oxides The oxides of the Group 3 metals and/or lanthanum and lanthanide metals, when used in combination with molecular sieves in the catalyst composition, effectively extend the useful life of the catalyst composition. The quantification of the lifetime of the catalyst composition is determined by the Lifetime Growth Index (LEI) as defined by the following formula: LEI = the lifetime of the catalyst mixed with active metal oxides, the lifetime of the catalyst or catalyst composition, The same method and under the same conditions are measured 'and the cumulative amount of processing feed per gram of catalyst composition until the feed conversion via the catalyst composition drops below some definite level' eg The 10% ° non-active metal oxide will have no effect on the lifetime of the catalyst composition or will shorten the lifetime of the catalyst composition' and thus the LEI will be less than or equal to one. Thus, the active metal-23-(19) 1306780 oxide of the present invention is a Group 3 metal oxide, including lanthanum and lanthanide oxides, and when used in combination with molecular sieves, provides molecular sieves having a LEI greater than one. Media composition. Obviously, the LEI of the molecular sieve composition that is not mixed with the active metal oxide will be equal to one. The catalyst composition is found to be prepared by a reactive Group 3 metal oxide and/or a lanthanum or lanthanide active oxide comprising a mixed molecular sieve having an LEI ranging from greater than 1 to 50, such as from about 1.5 to about 20. Typically, the catalyst composition of the present invention exhibits a LEI 値 greater than 1.1, such as ranging from about 1.2 to 15, and more particularly greater than 1.3, such as greater than 1.5, such as greater than 1.7, such as greater than 2. In one embodiment, the active Group 3 metal oxide and/or the lanthanum or lanthanide active oxide increases the catalytic composition when converted to the molecular sieve in the catalyst composition to convert the catalyst composition to one or Lifetime in a variety of olefins The active metal oxides useful herein can be prepared using a variety of methods. Preferably, the active metal oxide is prepared from a reactive metal oxide precursor such as a metal salt such as a halide, nitrate, sulfate or acetate. Other suitable sources of metal oxides include compounds that form metal oxides during calcination, such as oxychlorides and nitrates. Alkoxides also include suitable sources of Group 3 metal oxides, such as n-propanol oxime. In one embodiment, the Group 3 metal oxide or lanthanum or lanthanide oxide comprises at least a temperature, preferably at least 100. The conditions of °C are treated by hydrothermal fluid. Hydrothermal treatment can occur in sealed containers and at atmospheric pressures -24- (20) 1306780. However, a preferred mode of processing involves the use of an open vessel under reflux conditions. The Group 3 metal oxide or lanthanum or lanthanide oxide is agitated in a liquid medium, for example by refluxing the liquid and/or agitation, promoting efficient interaction of the hydrated oxide with the liquid medium. The contact time of the hydrated oxide with the liquid medium is expediently at least 1 hour, for example at least 8 hours. The pH of the liquid medium to be treated is about 6 or greater, such as 8 or greater. Non-limiting examples of suitable liquid media include water, hydroxide solutions (including NH4+, Na+, K+, Mg2+, and Ca2+ hydroxides), carbonates, and bicarbonate solutions (including NH4+, Na+, K+). , carbonates and hydrogencarbonates of Mg2+ and Ca2+, pyridine and its derivatives, and alkyl/hydroxyamines. In another embodiment, the active Group 3 metal oxide or the lanthanum or lanthanide active oxide is sufficient to produce a solid oxide by causing a liquid solution, such as an aqueous solution containing a source of a metal ion (eg, a metal salt). A precipitate of the hydrated precursor of the substance, for example, prepared by adding a precipitating agent to the solution. Conveniently, the precipitation is carried out at a pH greater than 7. For example, the precipitating agent can be a base such as sodium hydroxide or ammonium hydroxide. The temperature is usually below about 200 ° C, for example, at a temperature ranging from about 〇 ° c to about 200 ° C during which the liquid medium is maintained. The specific temperature range for precipitation is from about 2 〇 ° C to about 100 ° C. The resulting gel is preferably hydrated after treatment at 80 ° C, preferably at least 100 ° C. The hydration treatment typically takes place in a container and at atmospheric pressure. In one embodiment, the gel is hydrated for up to 1 day, for example up to 5 days, for example up to 3 days after the hydrated precursor of the beta metal oxide is recovered, for example, by -25-(21) 1306780 Filter or centrifuge, rinse and dry. The resulting material can then be calcined, for example under an oxidizing atmosphere, and at a temperature of at least 400 ° C, such as at least 500 ° C, for example from about 6 ° C to about 900 ° C, and especially from about 650 ° C to At about 800 ° C, a solid oxide species is formed. The calcination time is typically up to 48 hours, for example, from 5 to 24 hours, for example from about 1.0 to 1 hour. In one embodiment, the calcination is carried out at about 700 ° C for about 1 to about 3 hours. Catalyst Composition The catalyst composition of the present invention comprises any one of the foregoing molecular sieves, and one or more of the above-mentioned Group 3 metal oxides, and/or one or more of the above-mentioned lanthanum or lanthanides, optionally An adhesive and/or matrix material that is different from active metal oxides. Typically, in the catalyst composition, the weight ratio of molecular sieve to active metal oxide ranges from 5% by weight to 800% by weight, for example from 1% by weight to 600% by weight, in particular from 20% by weight to 500% by weight, And more particularly from 30% by weight to 400% by weight. Various adhesives are used to form the catalyst composition. Non-limiting examples of adhesives include various types of hydrated alumina, vermiculite, and/or other inorganic oxide sols, which may be used alone or in combination. A preferred sol containing aluminum oxide is basic aluminum chloride. The inorganic oxide sol acts like a glue to bond the synthesized molecular sieve to other substances, such as a matrix, especially after heat treatment. By heating, the inorganic oxide sol, preferably having a low viscosity, is converted into an inorganic oxide adhesive composition. For example, after thermal treatment, the alumina sol will be converted to an alumina binder. Basic aluminum chloride (aluminum hydroxide-based sol containing chlorine counterion) -26- (22) 1306780 has the general formula AlmOJOHhClp^xdO), where m is 1 to 20 and η is 1 to 8' 〇 is 5 To 40, ρ is 2 to 15, and X is 0 to 30. In one embodiment, the 'adhesive is Α1ι3〇4(〇Η)24〇1·7·12(Η2〇), which is described in GM Wolterman, et. al., Stud. Surf. Sci. and Catal., 76 pages 105-144 (1993), which is incorporated herein by reference. In another embodiment, one or more adhesives and one or more other non-limiting examples of oxidized materials, such as aluminum oxyhydroxide, gamma alumina, bauxite, diaspore, and transitional Alumina, such as α-alumina, β-alumina, γ-alumina, δ-alumina, ε-alumina, κ-alumina and yttrium-alumina, aluminum trihydroxide, such as gibbsite , Bayerite, Novos | Nordstrandite ' doyelite, and mixtures thereof. In another embodiment, the adhesive is an alumina sol, which advantageously comprises alumina, optionally including vermiculite. In another embodiment, the adhesive is a peptized alumina prepared by treating an alumina hydrate (eg, pseudo-aluminosilicate) with an acid, preferably a halogen-free acid, to prepare a sol or aluminum ion solution. And made it. Non-limiting examples of commercially available colloidal alumina sols include Nalco 8676, available from Nalco Chemical Co., Naperville, Illinois, and Nyacol AL20DW, available from Nyacol nano Technologies, Inc., Ashland, Massastussetts. The catalyst composition comprises a matrix material which is preferably different from the metal oxide and any adhesive. Matrix materials typically reduce the total cost of the catalyst and act as a heat sink to aid in catalyst composition, such as during heat regeneration, masking heat, hardening catalyst composition, and increasing catalyst strength, such as crush strength and -27- (23) 1306780 Anti-Abrasion 0 Non-limiting examples of matrix materials include one or more non-reactive metal oxides. The non-active metal oxides include cerium oxide, quartz, sand or sol, and mixtures thereof, such as vermiculite-magnesia, cerium Stone-oxidized pin, vermiculite-titanium oxide, vermiculite·alumina and vermiculite-alumina-yttria. In one embodiment, the matrix material is a natural clay, such as those from the montmorillonite and kaolin families. These natural clays include sub-sandite and these well-known kaolins such as Dixie, McNamee' Georgia and Florida clay. Non-limiting examples of other matrix materials include haloysitte, kaolin, dickite, nacrite or vermiculite. Substrate materials, such as clay, can be subjected to known modified processing such as calcination and/or acid treatment and/or chemical treatment. In a preferred embodiment, the matrix material is a clay or clay type composition, particularly a clay or clay type composition having a low content of barium or titanium dioxide, and optimally, the matrix material is kaolin. Kaolin has been found to form pumpable, high solids slurries, have a low fresh surface area, and are easily compressed together due to their flat structure. The preferred average particle size of the matrix material (preferably kaolin) is from about ί.ίμηι to about 0.6 μm, and the D 9 〇 particle size distribution is less than 1 μm. The catalyst composition comprises an adhesive or matrix material, and the catalyst composition typically comprises from about 1% to about 8% by weight 'e.g., from about 5% to about 60% by weight, and especially from about 5% by weight. The molecular sieve to 50% by weight is calculated based on the total weight of the catalyst composition. The catalyst composition comprises an adhesive and a matrix material. The weight ratio of the binder to the substrate -28-(24) 1306780 is typically from 1:15 to 1:5, for example from 1:1 to 1:4. And especially from 1: 6 to 1: 5. The adhesive is typically present in an amount from about 2% by weight to about 3% by weight, such as from about 5% by weight to about 20% by weight, and especially from about 7% by weight to about 15% by weight, based on the adhesive, molecular sieve and The total weight of the matrix material is calculated. It has been found that the high molecular sieve content and low matrix material content increase the performance of the screen catalyst composition, while the low molecular sieve content and high matrix material content improve the wear resistance of the composition. The typical concentration of the catalyst composition ranges from 〇5g/cc to 5g/cc, for example from 0.6g/cc to 5g/cc, for example from 0.7g/cc to 4g/cc, especially from 0.8g/cc to 3g. /cc. Method of Preparing a Catalyst Composition In the preparation of a catalyst composition, a molecular sieve is first formed, followed by a reactive Group 3 metal oxide, or an active oxide of a lanthanum or a lanthanide element, preferably substantially dry, Dry or calcined, thoroughly mixed. Most preferably, the molecular sieve and the active metal oxide are thoroughly mixed in their calcined state. Without being bound by any particular theory, it is believed that the intimate mixing of molecular sieves and one or more reactive metal oxides improves the conversion process using the molecular sieve compositions and catalyst compositions of the present invention. Intimate mixing can be achieved by any known method in the art, such as mixing in a honing manner, drum mixer, screw/pulp blender, kneader or the like. Chemical reactions between molecular sieves and metal oxides are unnecessary and often not preferred. The catalyst composition comprises a matrix and/or an adhesive, and the molecular sieve and the matrix and/or -29-(25) 1306780 or an adhesive are conveniently formulated as a catalyst precursor, after which the active metal oxidation is mixed with the formulated precursor. The active metal oxide may be added as an unsupported particle or may be added in admixture with a carrier such as an adhesive or a matrix. The resulting catalyst composition can then be formed into particles of useful shape and size by known techniques, such as spray drying, nitrile, extrusion, and the like. In one embodiment, the molecular sieve composition and the matrix material are optionally mixed with an adhesive, formed into a slurry, and then mixed, preferably vigorously mixed, to produce a substantially homogeneous mixture comprising the molecular sieve composition. Non-limiting examples of liquids include one or a mixture of water, alcohol + ketone, aldehyde, and/or ester. The best liquid is water. In one embodiment, the slurry is lapped by the colloid for a period of time sufficient to produce the desired slurry texture, secondary particle size, and/or secondary particle size distribution. The molecular sieve composition and the matrix material and the optional adhesive may be mixed in the same or different liquids and may be mixed in any order, together, simultaneously, continuously, or a combination thereof. In a preferred embodiment, the same liquid is used, preferably water. The molecular sieve composition, the matrix material and the optional adhesive are mixed in a liquid in a solid, substantially dry or dried form, or in a slurry form, together or in a separate manner. If the solids are added together as a dry or substantially dry solid, it is preferred to add a limited amount and/or a controlled amount of liquid. In one embodiment, the slurry of molecular sieve composition, adhesive, and matrix material is mixed or honed to obtain a substantially uniform slurry of a molecular sieve composition subparticle, which is then fed to produce molecular sieves. Forming unit of the composition -30-(26) 1306780. In a preferred embodiment, the forming unit is a spray dryer. Typically, the forming unit is maintained at a temperature sufficient to remove most of the liquid from the slurry and from the resulting molecular sieve composition. When the catalyst composition is formed in this manner, the resulting catalyst composition is in the form of microparticles. When a spray dryer is used as the forming unit, typically, the slurry of the molecular sieve composition and the matrix material and the optional adhesive is fed to a spray drying vessel having a dry gas having an average inlet temperature ranging from 200 ° C to about 5 50 ° C, and the outlet temperature range from 100 ° C to about 225 〇 C. In one embodiment, the catalyst composition formed by spray drying has an average diameter of from about 40 μm to about 300 μm, such as from about 50 μm to about 250 μm, such as from about 50 μm to about 200 μm, and conveniently from about 65 μm to about 90μηι » Other methods for forming a molecular sieve catalyst composition are described in U.S. Patent Application Serial No. 09/6,17,714, filed on Jul. 17, 2000, which uses the recovered molecular sieve catalyst composition for spray drying, which is infiltrated. This article serves as a reference. Once the molecular sieve composition is formed in a substantially dry or dried state, in order to further harden and/or activate the formed catalyst composition, heat treatment, such as calcination, is usually carried out at a high temperature. Typical calcining temperatures range from about 400 ° C to about 1,000 ° C, such as from about 500 ° C to about 80 (TC, such as from about 550 ° C to about 700 ° C. Typical calcined environments are air (which may include small amounts of water vapor), nitrogen, helium, flue gases (oxygen-depleted combustion products), or any combination thereof. In a preferred embodiment, the catalyst composition is in nitrogen and at a temperature of from about -31 - (27) 1306780 Heating from 600 ° C to about 700 ° C. Heating is continued for a period of time, typically from 3 〇 minutes to 15 hours, for example from 1 hour to about 10 hours, for example from about 丄 hours to about 5 hours, and especially from about 2 hours to about 4 hours. Method of using molecular sieve catalyst composition The above catalyst composition is used in various processes including cracking, for example, cracking of naphtha feed to light olefins. Class (US 6,3〇0,537) or larger molecular weight (MW) hydrocarbons are cracked into smaller MW hydrocarbons; hydrocracking, such as hydrogen cracking of heavy petroleum and/or cyclic feeds; isomerization, such as aromatics ( Isomerization of, for example, xylene; polymerization, such as polymerization of one or more olefins to produce a polymer product Reforming; hydrogenation; dehydrogenation; dewaxing, such as dewaxing of hydrocarbons to remove linear alkanes; absorption, such as absorption of alkyl aromatic compounds to separate their isomers; alkylation, for example Aromatic hydrocarbons (such as benzene and alkylbenzene) are optionally alkylated with propylene to produce cumene, or long chain olefins; alkyl transfer reactions, such as alkyl shifts of combinations of aromatic and polyalkyl aromatic hydrocarbons Dealkylation; hydrodecyclization; disproportionation, such as disproportionation of toluene to produce benzene and p-xylene; oligomerization, such as oligomerization of linear and branched olefins; and dehydrogenation Preferred methods for converting hydrazine include a method for converting naphtha to a highly aromatic mixture; a method for converting light olefins to gasoline, distillate and lubricating oil; and a method for converting oxygenates to olefins; A method for converting light paraffins to olefins and/or aromatics; a method for converting unsaturated hydrocarbons (ethylene and/or acetylene) into aldehydes for conversion to alcohols, acids and esters. -32- (28) I3〇678 The best way of the invention is to make progress A method of converting to one or more hydrocarbons. Typically, the feed comprises one or more aliphatic containing compounds. The aliphatic moiety comprises from 1 to 50 carbon atoms, for example from 1 to 2 carbon atoms, for example from Non-limiting examples of the aliphatically-containing compound having 1 to 10 carbon atoms, and particularly from 1 to 4 carbon atoms, include alcohols such as methanol and ethanol, and alkanethiols such as methyl mercaptan and ethyl mercaptan. a thioether such as dimethyl sulfide, a decylamine such as methylamine 'oxime ether, such as dimethyl ether, diacetic acid and methyl ethyl ether 'alkyl halides' such as methyl chloride and ethyl chloride, alkyl ketones, for example two Methyl ketone, formaldehyde, and various acids, such as acetic acid. In a preferred embodiment of the invention, the feed comprises one or more oxygenates', more specifically, one or more organic compounds containing at least one oxygen atom. In a preferred embodiment of the invention, the oxygenate in the feed is one or more alcohols, preferably an aliphatic alcohol, and the aliphatic portion of the alcohol has from 1 to 20 carbon atoms, preferably. From 1 to 10 carbon atoms, and most preferably from 1 to 4 carbon atoms. Alcohols which act as feeds to the process of the invention include lower linear and branched aliphatic alcohols and their unsaturated counterparts. Non-limiting examples of oxygenates include methanol 'ethanol, n-propanol, isopropanol, methyl ether 'dimethyl ether, diethyl ether, diisopropyl ether, formaldehyde, dimethyl carbonate, dimethyl ketone, acetic acid and Its mixture. In a preferred embodiment, the feed is selected from the group consisting of one or more of methanol, ethanol, dimethyl ether, diethyl ether or a combination thereof, more preferably methanol and dimethyl ether, and most preferably methanol. The various feeds discussed above, particularly feeds containing oxygenates, -33-(29) 1306780, more particularly feeds containing alcohols, are primarily converted to one or more olefins. An olefin prepared from a feed; ft-type having from 2 to 30 carbon atoms, preferably 2 to 8 carbon atoms, more preferably 2 to 6 carbon atoms, still more preferably 2 to 4 carbon atoms, and most Jia is suspected of being suspected of being B and/or C. The catalyst composition of the present invention is particularly useful in a process generally referred to as gas conversion to an olefin (GTO) or a process in which methanol is converted to an olefin (MT?). In this process, the oxygenated feed, preferably the methanol containing feed, is converted to one or more olefins in the presence of the molecular sieve composition, preferably and advantageously ethylene and/or propylene. / using the catalyst composition of the invention to convert the feed, preferably one or more oxygenate-containing feeds, to produce olefins in an amount greater than 50% by weight based on the total weight of the hydrocarbons produced Typically, it is greater than 60% by weight, such as greater than 70% by weight, and preferably greater than 80% by weight. Furthermore, the ethylene and/or propylene content produced is greater than 40% by weight, typically greater than 50% by weight, such as greater than 65% by weight, and preferably greater than 7 8 %, based on the total weight of the hydrocarbon product produced. weight%. Typically, the amount of ethylene produced, based on the total weight of the hydrocarbon product produced, is greater than 20% by weight, such as greater than 30% by weight, such as greater than 40% by weight. Furthermore, the amount of propylene produced, based on the total weight of the hydrocarbon product produced, is typically greater than 20% by weight, such as greater than 25% by weight, such as greater than 30% by weight, preferably greater than 35% by weight. It was found that a catalyst composition similar to the active metal oxide component was converted to ethylene and propylene by the use of the catalyst composition of the present invention in the same conversion conditions, and the resulting ethane and propane were produced. It is reduced to -34- (30) 1306780 greater than 10%, such as greater than 20%, such as greater than 30%, and especially in the range from about 30 °/. Up to 40%. In addition to the oxygenate component, such as methanol, the feed may include - or a plurality of diluents, which are generally not <Desc/Clms Page>> concentration. Examples of non-copper copper thinners include helium, argon, nitrogen, carbon monoxide, carbon dioxide, water, and substantially no reaction-reactive paraffins (especially alkanes such as sylvanites, sylvans, and propane), essentially Unreactive aromatic compounds, and mixtures thereof. The best diluents are water and nitrogen, which is especially good for water. A diluent, such as water, may be used in liquid or vapor form or a combination thereof. The diluent can be added directly to the feed to the reactor or added directly to the reactor or with the molecular sieve catalyst composition. The process of the invention can be practiced over a wide range of temperatures, for example ranging from about 20 (TC to about 1 000 °C, such as from about 25 〇t to about 800 °C, including from about 25 (TC to about 75 0). °C, conveniently from about 30,000 tt to about 650 volts, typically from about 305 ° C to about 6,000 ° C, and especially from about 305 ° (: to about 550 ° C) Similarly, the process of the present invention can be practiced over a wide range of pressures including autogenous pressures. Typically, the partial pressure of the feed used in the process (excluding any of the diluents therein) ranges from about 0. From 1 kPaa to about SMpaa, for example from about 5 kPaa to about IMpaa, and conveniently from about 20 kPaa to about 5,000 kPaa. Weight hourly space velocity (WHSV), defined as the total weight/hour/catalyst of the feed excluding any diluent. The weight of the molecular sieve in the composition typically ranges from -35 to (31) 1306780 from about 1 hr-1 to about sooohr-i, for example from about 21 Å to about woohr, for example from about 5 hr-1 to about 1,500 hr. -1, and conveniently from about 1 hr hr to about 10 hr - 1 ° in one embodiment, WHSV is greater than 20 hr-1, and ranges from about 20 hr-l to about 300 hr-1, wherein Feeding package Including methanol and / or dimethyl ether.

該方法是在流體化床中實施,進料的表面氣體速度 (SGV)爲至少〇.im/sec,例如大於〇.5m/sec,例如大於 lm/sec,例如大於2m/sec,合宜地大於3m/sec,及典型地 大於4m/sec,該進料包括在反應器系統內,特別是在上升 管反應器,的稀釋劑及反應產物。參考2000年11月8曰申 請的美國專利申請案序號09/7〇8,753,其倂入本文作爲參 考。 本發明方法合宜地以固定床方法,或更典型地以流體 化床方法(包括湍動床方法),例如連續流體化床方法,及 特別是連續高速流體化床方法,實施。The method is carried out in a fluidized bed, the surface gas velocity (SGV) of the feed being at least 〇.im/sec, for example greater than 〇5 m/sec, such as greater than lm/sec, such as greater than 2 m/sec, conveniently greater than At 3 m/sec, and typically greater than 4 m/sec, the feed includes diluents and reaction products in the reactor system, particularly in the riser reactor. U.S. Patent Application Serial No. 09/7, 8, 753, filed on Jan. The process of the present invention is conveniently carried out in a fixed bed process, or more typically in a fluid bed process (including a turbulent bed process), such as a continuous fluid bed process, and in particular a continuous high velocity fluidized bed process.

該方法可發生在各種催化反應器,例如混合反應器, 該混合反應器具有緊密床或固定床反應區域及/或快速流 體化床反應區域連接在一起,循環流體化床反應器、上升 管反應器及諸如此類者。適合的反應器類型被描述在,例 如 US 4,076,796 ' US 6,287,522(雙重上升管)及 Fluidization Engineering, D. Kunii and O. Levenspiel, Robert E. Krieger Published Company, New York, New York 1977,其皆倂入本文作爲參考。 較佳的反應器類型爲上升管反應器,該上升管反應器 通常被描述於 Riser Reactor, Fluidization and Fluid- -36- (32) 1306780The process can occur in various catalytic reactors, such as a mixed reactor having a tight or fixed bed reaction zone and/or a fast fluidized bed reaction zone connected together, a circulating fluidized bed reactor, a riser reaction And so on. Suitable reactor types are described, for example, in US 4,076,796 'US 6,287,522 (Double riser) and Fluidization Engineering, D. Kunii and O. Levenspiel, Robert E. Krieger Published Company, New York, New York 1977, all of which are incorporated This article serves as a reference. A preferred reactor type is a riser reactor, which is generally described in Riser Reactor, Fluidization and Fluid--36- (32) 1306780.

Particle System, pages 48 to 59, F.A. Zenz and D.F. Othmo, Reinhold Publishing Corporation, New york, I 960, 及US 6,166,282(快速流體化床反應器),及2000年5月4日 申請的美國專利申請案序號09/504,613,其皆倂入本文作 爲參考。 在一實際實施例中,該方法以流體化床方法或高速流 體化床,利用反應器系統、再生系統及回收系統,予以實 施。 在此方法中,反應器系統合宜地包括流體化床反應器 系統,該反應器系統具有在一或多個上升管反應器內的第 一反應區域,及在至少一個分離容器內的第二反應區域, 典型地包括一或多個旋風分離機。在一實施例中,一或多 個上升管反應器及分離容器被包含在單一反應容器內。新 鮮進料,較佳地含有一或多種含氧物,隨意地有一或多種 稀釋劑,被餵至該一或多個上升管反應器,分子篩觸媒組 成物或其焦結版被導入至該上升管反應器。在一實施例中 ,分子篩觸媒組成物或其焦結版在被導入至該上升管反應 器之前,與液體及/或氣體接觸,該液體較佳爲水或甲醇 ,該氣體例如爲惰性氣體,例如氮。 在一實施例中’以液體及/或蒸氣方式進入反應器系 統的新鮮進料的含量範圍從約〇. 1重量%至約8 5重量%,例 如從約1重量%至約7 5重量%,更典型地從約5重量%至約 6 5重量% ’以含有在其中的任何稀釋劑的進料的總重計算 。液體及蒸氣進料可爲相同組成物,或可包括各種比例的 -37- (33) 1306780 相同或不同進料,該進料具有相同或不同的稀釋劑。Particle System, pages 48 to 59, FA Zenz and DF Othmo, Reinhold Publishing Corporation, New York, I 960, and US 6,166,282 (Fast Fluidized Bed Reactor), and U.S. Patent Application Serial No. 09/504,613, which is incorporated herein by reference. In a practical embodiment, the process is carried out using a fluidized bed process or a high velocity fluidized bed using a reactor system, a regeneration system, and a recovery system. In this method, the reactor system conveniently includes a fluidized bed reactor system having a first reaction zone in one or more riser reactors and a second reaction in at least one separation vessel The zone typically includes one or more cyclones. In one embodiment, one or more riser reactors and separation vessels are contained within a single reaction vessel. Fresh feed, preferably containing one or more oxygenates, optionally with one or more diluents, fed to the one or more riser reactors, into which the molecular sieve composition or its coke-junction is introduced Riser tube reactor. In one embodiment, the molecular sieve composition or its cokled plate is contacted with a liquid and/or a gas prior to being introduced into the riser reactor. The liquid is preferably water or methanol, such as an inert gas. , for example, nitrogen. In one embodiment, the amount of fresh feed entering the reactor system in a liquid and/or vapor range ranges from about 0.1% by weight to about 85% by weight, such as from about 1% by weight to about 7% by weight. More typically from about 5% to about 5% by weight 'calculated as the total weight of the feed containing any diluent therein. The liquid and vapor feeds can be the same composition, or can include the same or different feeds in various ratios -37-(33) 1306780, the feed having the same or different diluents.

輸入反應器系統的進料在第一反應區域部份或完全地 較佳地被轉換爲氣體流出物,該流出物隨同焦結的觸媒組 成物進入分離容器。在較佳實施例中,在分離容器內提供 旋風分離機以在分離容器內從含有一或多種烯烴類之氣體 流出物中分離出焦結的觸媒組成物。雖然旋風分離機是較 佳的,在分離容器內重力效應亦可被應用於從氣體流出物 分離出觸媒組成物。從氣體流出物分離出觸媒組成物的其 他方法包括使用板、罩、彎頭及諸如此類者。 在一實施例中,分離容器包括典型地在分離容器的下 游部份中的汽提區域。在汽提區域中,焦結的觸媒組成物 與氣體,較佳爲物流、甲烷、二氧化碳、一氧化碳、輕或 惰性氣體(例如氬)中之一者或其組合,較佳爲氣體,相接 觸,以移除來自焦結的觸媒組成物的受吸附的烴類,該觸 媒組成物之後被導入至再生系統。The feed to the reactor system is partially or completely converted to a gaseous effluent in the first reaction zone, which effluent enters the separation vessel along with the coked catalyst composition. In a preferred embodiment, a cyclone separator is provided within the separation vessel to separate the coked catalyst composition from the gas effluent containing one or more olefins in the separation vessel. Although a cyclone separator is preferred, gravity effects in the separation vessel can also be applied to separate the catalyst composition from the gaseous effluent. Other methods of separating the catalyst composition from the gas effluent include the use of plates, covers, elbows, and the like. In one embodiment, the separation vessel includes a stripping zone typically in the downstream portion of the separation vessel. In the stripping zone, the coked catalyst composition and gas, preferably one of or a combination of a stream, methane, carbon dioxide, carbon monoxide, light or inert gas (e.g., argon), preferably a gas, is in contact. To remove adsorbed hydrocarbons from the catalyst composition of the coking junction, the catalyst composition is then introduced to a regeneration system.

焦結的觸媒組成物從分離容器中移除,及被導入至再 生系統。再生系統包括再生器,於再生器中,焦結的觸媒 組成物在慣用的溫度、壓力及滯留時間的再生條件下與再 生介質,較佳爲含有氧的氣體,相接觸。 適合的再生介質的非限制性範例包括一或多種的氧、 03、S03、N2 0、NO、N02、N2 05、空氣、用氮或二氧化 碳稀釋的空氣、氧、及水(US 6,245,7〇3)、一氧化碳及/或 氫。適合的再生條件爲該等具有燃燒來自焦結的觸媒組成 物的焦炭能力者,較佳地燃燒該焦炭至低於0.5重量%的程 -38- (34) 1306780The coked catalyst composition is removed from the separation vessel and introduced into the regeneration system. The regeneration system includes a regenerator in which the coked catalyst composition is contacted with a regeneration medium, preferably a gas containing oxygen, under regenerative conditions of conventional temperature, pressure and residence time. Non-limiting examples of suitable regeneration media include one or more of oxygen, 03, S03, N2 0, NO, N02, N2 05, air, air diluted with nitrogen or carbon dioxide, oxygen, and water (US 6,245,7〇) 3) Carbon monoxide and/or hydrogen. Suitable regeneration conditions are those having the coke ability to burn the catalyst composition from the coking junction, preferably burning the coke to less than 0.5% by weight -38- (34) 1306780

度,以輸入至再生系統之焦結的分子篩觸媒組成物的總重 計算。例如,再生溫度可在範圍從約200 °C至約l5〇〇°C, 例如從約300 °c至約l〇〇〇°C,例如從約450°C至約750 °c, 及合宜地從約550 °C至約7〇〇 °C。再生壓力可在範圍從約 15psia(103kPaa)至約 500psia(3448kPaa),例如從約 20psia(138kPaa)至約 2 5 0 p si a( 1 72 4kP aa),包括從約 25psia(172kPaa)至約 150psia( 1034kPaa),及合宜地從約 30psia(207kPaa)至約 60psia(414kPaa) 〇 觸媒組成物於再生器中的滯留時間可在範圍從約1分 鐘至數小時,例如從約1分鐘至100分鐘,及於再生作用中 氧的容積可在範圍從約0 . ο 1莫耳%至約5莫耳%,以氣體的 總容積計算。Degree, calculated as the total weight of the molecular sieve catalyst composition input to the coking junction of the regeneration system. For example, the regeneration temperature can range from about 200 ° C to about 15 ° C, such as from about 300 ° C to about 10 ° C, such as from about 450 ° C to about 750 ° C, and conveniently From about 550 ° C to about 7 ° ° C. The regeneration pressure can range from about 15 psia (103 kPaa) to about 500 psia (3448 kPaa), such as from about 20 psia (138 kPaa) to about 250 psi (1 72 4 kPaa), including from about 25 psia (172 kPaa) to about 150 psia. (1034 kPaa), and conveniently from about 30 psia (207 kPaa) to about 60 psia (414 kPaa), the residence time of the rhodium catalyst composition in the regenerator can range from about 1 minute to several hours, such as from about 1 minute to 100 minutes. And the volume of oxygen in the regeneration can range from about 0. ο 1 mol % to about 5 mol %, calculated as the total volume of the gas.

於再生步驟中焦炭的燃燒是放熱反應,及在一實施例 中,再生系統內的溫度藉由領域中各種技術予以控制,該 技術包括以批次、連續或部分連續模式或其組合方式,將 經冷卻的氣體餵入至再生器容器中。較佳的技術包含從再 生系統中移出經再生的觸媒組成物,及使經再生的觸媒組 成物通過觸媒冷卻器,形成經冷卻的再生觸媒組成物。在 一實施例中,觸媒冷卻器爲熱交換器,熱交換器位於再生 系統的內部或外部。操作再生系統的其他方法被描述於 US 6,29〇,916(控制溼氣),其倂入本文作爲參考。 從再生系統,較佳地從觸媒冷卻器,移出的再生觸媒 組成物與新鮮的分子篩觸媒組成物及/或循環分子篩觸媒 組成物及/或進料及/或新鮮氣體或液體相混合,及被送回 -39- (35) 1306780 至上升管反應器。在一實施例中,從再生系統移出的再生 觸媒組成物直接地,較佳地是在通過觸媒冷卻器之後,被 送回至上升管反應器。可以部分連續或連續方式使用載體 ,例如惰性氣體、進料蒸氣、氣體及諸如此類者,以幫助 使再生觸媒組成物導入至反應器系統,較佳地至一或多個 上升管反應器。The combustion of coke in the regeneration step is an exothermic reaction, and in one embodiment, the temperature within the regeneration system is controlled by various techniques in the art, including in batch, continuous or partial continuous mode, or a combination thereof, The cooled gas is fed to the regenerator vessel. A preferred technique involves removing the regenerated catalyst composition from the regeneration system and passing the regenerated catalyst composition through a catalytic converter to form a cooled regenerative catalyst composition. In one embodiment, the catalytic converter is a heat exchanger that is internal or external to the regeneration system. Other methods of operating a regeneration system are described in US 6,29, 916 (Control of Moisture), which is incorporated herein by reference. Regenerated catalyst composition removed from the regeneration system, preferably from the catalyst cooler, and fresh molecular sieve catalyst composition and/or recycled molecular sieve composition and/or feed and/or fresh gas or liquid phase Mix and return to -39- (35) 1306780 to the riser reactor. In one embodiment, the regenerated catalyst composition removed from the regeneration system is sent directly back to the riser reactor, preferably after passing through the catalytic converter. The support may be used in a partially continuous or continuous manner, such as an inert gas, feed vapor, gas, and the like, to aid in the introduction of the regenerated catalyst composition to the reactor system, preferably to one or more riser reactors.

藉由控制來自再生系統的再生觸媒組成物或經冷卻的 再生觸媒組成物流通至反應器系統,維持在輸入至反應器 之分子篩觸媒組成物上焦炭的最理想程度。控制觸媒組成 物流動的多種技術被描述在Michael Louge,ExperimentalThe optimum level of coke on the molecular sieve catalyst composition fed to the reactor is maintained by controlling the regeneration catalyst composition from the regeneration system or the cooled regeneration catalyst constituent stream to pass to the reactor system. A variety of techniques for controlling the composition of catalysts are described in Michael Louge, Experimental

Techniques, Circulating Fluidized Beds, Grace, Avidan and Knowlton,eds.,Blackie,1997 (336-337),其倂入本 文作爲參考。Techniques, Circulating Fluidized Beds, Grace, Avidan and Knowlton, eds., Blackie, 1997 (336-337), incorporated herein by reference.

觸媒組成物上焦炭程度係藉由從轉換方法中移出觸媒 組成物及測定其碳含量而予以測量的。再生作用之後,在 分子篩觸媒組成物上焦炭的典型程度在範圍從0.01重量% 至約1 5重量%,例如從約0 · 1重量%至約1 0重量%,例如從 約0.2重量%至約5重量%,及合宜地從約0.3重量%至約2重 量%,以分子篩重量計算。 氣體流出物從分離容器中移出,及通過回收系統。多 種已知的回收系統、技術及程序用於從氣體流出物中分離 出烯烴類及純化烯烴類。回收系統通常包括各種分離作用 、分餾及/或蒸餾塔、管柱、分離機或機組、反應系統, 例如乙苯的製造(US 5,476,978)及其他衍生方法,例如醛 -40- (36) 1306780 、酮及酯的製造(US 5,675,CM1),及其他組合設備,例如各 種冷凝管、熱交換器、冷凍系統或冷卻機組、壓縮機、分 離鼓或鍋、泵及諸如此類者中之一或多種或其組合^ 這些單獨或是組合使用的塔、管柱、分離機或機組的 非限制性範例包括一或多種的甲烷餾除器(較佳爲高溫甲 烷餾除器)、乙烷餾除器、丙烷餾除器、淸洗塔(通常爲鹼 性淸洗塔及/或驟冷塔)、吸收器、吸附器、膜、乙烯(C2) 分離機、丙烯(C3)分離機、丁烯(C4)分離機及諸如此類者 〇 用於優先回收烯烴(較佳爲輕烯烴,例如乙烯、丙烯 及/或丁烯)的各種回收系統被描述於US 5,960,643(第二富 含乙烯物流)、113 5,019,143、5,452,581及5,082,481 (膜分 離)、US 5,672,197(依賴壓力吸附劑)、US 6,069,288(氫移 除)、US 5,904,88 0(在單一步驟中,回收的甲醇被轉換成 氫及二氧化碳)、US 5,927,063(回收的甲醇被轉換成氣體 渦輪發電廠)及 US 6,121,504(直接產物驟冷)、US 6,〗21,503(無超精餾的高純化烯烴類)及1^ 6,293,998(壓 力轉換吸附作用),其皆倂入本文作爲參考。 含有純化系統(例如烯烴類的純化)的其他回收系統被 描述於 Kirk-Othmer Encyclopedia of Chemical Technology, 4th Edition, Volume 9,John Wiley & Sons, 1 996 pages 249-2 7 1 and 894-899,其倂入本文作爲參考。 純化系統亦被描述於,例如US 6,27 1,428(二烯烴物流的 純化)、US 6,293,999(從丙烷分離出丙烯)及2000年1〇月20 -41 - (37) (37)1306780 曰申請的美國專利申請案序號09/689,3 63 (使用水合觸媒的 淸洗物流),其皆倂入本文作爲參考。 通常’伴隨大部分的回收系統是額外的產物、副產物 及/或污染物與較佳的主產物的製備、產生或累積。較佳 的主產物,輕烯烴,例如乙烯及丙烯,典型地被純化,以 用於衍生物製造方法,例如聚合方法。因此,在回收系統 的最佳實施例中,回收系統亦包括純化系統。例如,特別 於MTO方法所產生的輕烯烴通過純化系統,該純化系統 移除低程度的副產物或污染物。 污染物及副產物的非限制性範例通常包括極性化合物 ,例如水、醇類、羧酸類、醚類、碳氧化物類、硫化合物 ,例如硫化氫、硫化羰及硫醇類,氨及其他氮化合物、胂 、磷化氫及氯化物。其他污染物或副產物包括氫及烴,例 如乙炔、甲基乙炔、丙二烯、丁二烯及丁炔。 典型地,在轉換一或多種含氧物成具有2或3個碳原子 的烯烴類中,次量的烴,特別是具有4或多個碳原子的烯 烴亦被產生。C4 +烴的含量通常小於20重量%,例如小於 1 〇重量%,例如小於5重量%,及特別小於2重量%,以從 方法中移出的流出氣體總重計算,排除水。典型地,回收 系統因此可包括一或多種反應系統,以轉換CM +不純物成 有用的產物。 此反應系統的非限制性範例被描述於us 5,95 5,64 0( 轉換4個碳原子產物成丁 -1-烯)、US 4,774,3 75(異丁烷及 丁-2-烯被轉換成烷化汽油)、1;56,〇49,〇17(正丁烯的二聚 -42 - (38) 1306780 合作用)、US 4,287,3 69及5,763,678(較高級烯烴用二氧化 碳羰基化或醛化製造羰基化合物)、US 4,542,252(多階段 絕熱方法)、US 5,63 4,3 54(烯烴-氫回收)及Cosyns,J. et. al., Process for Upgrading C3, C4 and C5 OlefinicThe degree of coke on the catalyst composition was measured by removing the catalyst composition from the conversion method and measuring its carbon content. Typical levels of coke on the molecular sieve composition after regeneration are in the range from 0.01% by weight to about 15% by weight, such as from about 0. 1% by weight to about 10% by weight, such as from about 0.2% by weight to About 5% by weight, and conveniently from about 0.3% by weight to about 2% by weight, based on the weight of the molecular sieve. The gas effluent is removed from the separation vessel and passed through a recovery system. A variety of known recovery systems, techniques, and procedures are used to separate olefins and purified olefins from gaseous effluents. Recovery systems typically include various separations, fractionation and/or distillation columns, columns, separators or units, reaction systems such as the manufacture of ethylbenzene (US 5,476,978) and other derivatization methods such as aldehyde-40-(36) 1306780, Manufacture of ketones and esters (US 5,675, CM1), and other combined equipment, such as one or more of various condensers, heat exchangers, refrigeration systems or cooling units, compressors, separation drums or pots, pumps, and the like or Combinations ^ These non-limiting examples of columns, columns, separators or units used alone or in combination include one or more methane distillers (preferably high temperature methane distillers), ethane distillers, Propane distillator, scrubber (usually alkaline scrubber and / or quench tower), absorber, adsorber, membrane, ethylene (C2) separator, propylene (C3) separator, butene (C4 Separators and the like, various recovery systems for preferentially recovering olefins, preferably light olefins, such as ethylene, propylene and/or butene, are described in US 5,960,643 (second ethylene-rich stream), 113 5,019, 143, 5, 452, 581 5,082,481 (membrane separation), US 5,672,197 (pressure dependent adsorbent), US 6,069,288 (hydrogen removal), US 5,904,88 0 (in a single step, recovered methanol is converted to hydrogen and carbon dioxide), US 5,927,063 ( The recovered methanol is converted to a gas turbine power plant) and US 6,121,504 (direct product quenching), US 6, 21,503 (highly purified olefins without superfractionation) and 1^6,293,998 (pressure conversion) Adsorption), which is incorporated herein by reference. Other recovery systems containing purification systems, such as purification of olefins, are described in Kirk-Othmer Encyclopedia of Chemical Technology, 4th Edition, Volume 9, John Wiley & Sons, 996 pages 249-2 7 1 and 894-899, It is incorporated herein by reference. Purification systems are also described, for example, in US 6,27 1,428 (purification of diolefin streams), US 6,293,999 (solubilization of propane from propane) and 2000 January 20-41 - (37) (37) 1306780 曰U.S. Patent Application Serial No. 09/689, the entire disclosure of which is incorporated herein by reference. Often' with most of the recovery system is the preparation, production or accumulation of additional products, by-products and/or contaminants and preferred main products. Preferred main products, light olefins such as ethylene and propylene, are typically purified for use in derivative manufacturing processes, such as polymerization processes. Thus, in a preferred embodiment of the recovery system, the recovery system also includes a purification system. For example, light olefins produced in particular by the MTO process pass through a purification system that removes low levels of by-products or contaminants. Non-limiting examples of contaminants and by-products typically include polar compounds such as water, alcohols, carboxylic acids, ethers, carbon oxides, sulfur compounds such as hydrogen sulfide, carbonyl sulfide and mercaptans, ammonia and other nitrogens. Compounds, hydrazine, phosphine and chloride. Other contaminants or by-products include hydrogen and hydrocarbons such as acetylene, methyl acetylene, propadiene, butadiene and butyne. Typically, in converting one or more oxygenates to olefins having 2 or 3 carbon atoms, minor amounts of hydrocarbons, particularly olefins having 4 or more carbon atoms, are also produced. The C4 + hydrocarbon content is generally less than 20% by weight, such as less than 1% by weight, such as less than 5% by weight, and particularly less than 2% by weight, calculated as the total weight of the effluent gas removed from the process, excluding water. Typically, the recovery system may thus include one or more reaction systems to convert CM + impurities into useful products. Non-limiting examples of this reaction system are described in us 5,95 5,64 0 (converting 4 carbon atoms to but-1-ene), US 4,774,3 75 (isobutane and but-2-ene) Conversion to alkylated gasoline), 1; 56, 〇49, 〇17 (dimerization of n-butene-42 - (38) 1306780), US 4,287,3 69 and 5,763,678 (higher olefins are carbonylated with carbon dioxide or Hydroformylation to produce carbonyl compounds), US 4,542,252 (multi-stage adiabatic process), US 5,63 4,3 54 (olefin-hydrogen recovery) and Cosyns, J. et. al., Process for Upgrading C3, C4 and C5 Olefinic

Streams,Pet. & Coal,Vol. 37,No. 4 ( 1 995)(二聚合或寡 聚合丙烯、丁烯及戊烯),其皆倂入本文作爲參考。 藉由上述方法中任一者所製備的較佳輕烯烴爲高純淨 主要烯烴產物,該產物包括含量大於8〇重量%,例如大於 9 〇重量%,例如大於9 5重量%,例如至少約9 9重量%的單 —碳原子數的烯烴,以烯烴的總重計算。 在一實際實施例中,本發明方法形成整合方法的一部 份’該整合方法用於從烴進料,較佳爲氣體烴進料,特別 爲甲烷及/或乙烷,製備輕烯烴。在該方法的第一步驟使 氣體進料,較佳是混有水物流,通過合成氣體產生區域, 製備合成氣體物流,典型地包括二氧化碳、一氧化碳及氫 °合成氣體產物是已知的,及典型的合成氣體溫度在範圍 從約700°C至約1200 °C,及合成氣體壓力在範圍從約2MPa 至約100MP a。合成氣體物流是由天然氣、石油液體及含 碳物質,例如煤、回收的塑膠、都市廢棄物或任何其他有 機材料製備的。較佳地,合持氣體物流是經由天然氣的重 組物流製備的。 在該方法的下一步驟包含使合成氣體物流與多相觸媒 ’典型爲以銅爲底質的觸媒,相接觸製備含有含氧物的物 流,通常與水混合。在一實施例中,接觸的步驟是在溫度 -43- (39) (39)1306780 範圍從約150°C至約450 °C及壓力範圍從約5MPa至約 lOMPa時予以實施的。 該含有含氧物的物流或粗甲醇,典型地包括醇類產物 及各種其他成分,例如醚類、特別是二甲醚,酮類、醛類 、經溶解的氣體,例如氫、甲烷、碳氧化物、及氮、及燃 料油。在一較佳實施例中,含有含氧物之物流,粗甲醇, 通過已知純化方法、蒸餾、分離及分餾,得到經純化的含 氧物之物流,例如,商業等級A及AA甲醇。 含有含氧物之物流或經純化的含有含氧物之物流,隨 意地與一或多種稀釋劑,之後可充當方法中的進料,製備 輕烯烴,例如乙烯及/或丙烯。該整合方法的非限制性範 例被描述於EP-B-093 3 3 45,其倂入本文作爲參考。 在另一更完全的整合方法中,其隨意地與上述整合方 法相組合,在一實施例中,所製得的烯烴類係針對供製備 各種聚烯類之一或多種聚合方法。(參考,例如,200 0年7 月13日申請的美國專利申請案序號09/615,376,其倂入本 文作爲參考)。 聚合方法包括溶液、氣相、漿相及高壓方法,或其組 合。特別佳者爲一或多種烯烴類之氣相或漿相聚合,該烯 烴之至少一者爲乙烯或丙烯。這些聚合方法利用聚合觸媒 ,該聚合觸媒可包括上面所討論的分子篩觸媒中之任一者 或其組合,然而,較佳的聚合觸媒爲齊格-納塔、飛利浦 型、茂金屬、茂金屬型及前聚合觸媒,及其混合物。 在較佳實施例中,整合方法包括在聚合觸媒系統存在 -44- (40) 1306780 於聚合反應器中聚合一或多種烯烴類製備一或多種聚合產 物之方法’其中該一或多種烯烴類已藉由使用上述分子篩 觸媒組成物轉換醇類,特別是甲醇,予以製得。較佳的聚 合方法是氣相聚合方法,及烯烴類中至少一者爲乙烯或丙 烧’及較佳地’聚合觸媒系統爲經支撐的茂金屬觸媒系統 。在此實施例中,經支撐的茂金屬觸媒系統包括載體、茂 金屬或茂金屬型化合物及活化劑,較佳地,活化劑爲非配 位的陰離子或鋁氧烷’或其組合,及最佳地,活化劑爲鋁 氧烷。 上述聚合方法所製得的聚合物包括線性低密度聚乙烯 、彈性體、塑料、高密度聚乙烯、低密度聚乙烯、聚丙烯 及聚丙烯共聚物。藉由聚合方法所製得之以丙烯爲底質的 聚合物包括雜排聚丙烯、同排聚丙烯、對排聚丙烯、及丙 烯雜亂、嵌段或碰撞共聚物。 【實施方式】 實施例 提供下面實施例,以使本發明,包括其代表性優點, 獲得較佳了解。 在實施例中,LEI被定義爲含有活潑金屬氧化物分子 篩觸媒組成物的壽命對LEI定義爲1之無金屬氧化物的相 同分子篩的壽命的比値。爲了測定LEI,壽命被定義爲被 轉換的含氧物的累積含量(較佳爲轉換成一或多種烯烴類 )/g分子篩,直到轉換率下降至約其初始値的1 〇%。若實 -45- (42) 1306780 AS4C)(4()%Si〇2),接著被加入R1,混合形成均質混合物。 該均質混合物被加入R2。該均質混合物之後在不鏽鋼壓 力鍋中攪動受熱至17(TC持續40小時予以結晶。此提供結 晶分子筛的漿料。結晶體之後經由過濾從母液中分離出來 。分子篩結晶體之後與黏著劑及基質物質混合,及經由噴 霧乾燥形成顆粒。 實施例B 轉換方法 使用微流動反應器,得到所有催化或轉換數據,該反 應器由位於爐內之不鏽鋼反應器(1/4英吋(0.64 cm)外直徑) 構成,蒸氣甲醇被餵至微流動反應器。反應器被維持在溫 度475 °C及壓力25psig(172.4kPag)。甲醇的流速爲致使甲 醇的重量/g分子篩的流速,亦稱爲重量時空速度(WHSV) ,爲lOOh-l。從反應器出來的產物氣體被收集,及使用氣 體層析法予以分析。每一實驗所負荷的觸媒爲5 0mg,及 反應器床用石英予以稀釋,以最小化反應器內的熱點。特 別地,對本發明觸媒組成物而言,實施例A的MS A分子 篩與活潑金屬氧化物的物理狀態混合物被使用。負荷的總 觸媒組成物保持50mg,及當反應器床內分子篩的含量經 由加入混合的金屬氧化物而減低’甲醇流速被調整’致使 甲醇的WHSV爲100h-l,以反應器床內分子篩的含量計算 實施例1 -47- (43) (43)1306780Streams, Pet. & Coal, Vol. 37, No. 4 (1955) (di- or oli-polymerized propylene, butene and pentene) are incorporated herein by reference. Preferred light olefins prepared by any of the above methods are high purity primary olefin products comprising a content greater than 8% by weight, such as greater than 9% by weight, such as greater than 9% by weight, such as at least about 9, 9 wt% of the mono-carbon number olefin, calculated as the total weight of the olefin. In a practical embodiment, the process of the invention forms part of an integrated process. The integrated process is used to produce light olefins from a hydrocarbon feed, preferably a gaseous hydrocarbon feed, particularly methane and/or ethane. In the first step of the process, a gas feed, preferably a water stream, is passed through the synthesis gas generation zone to produce a synthesis gas stream, typically comprising carbon dioxide, carbon monoxide and hydrogen. The synthesis gas product is known, and typically The synthesis gas temperature ranges from about 700 ° C to about 1200 ° C, and the synthesis gas pressure ranges from about 2 MPa to about 100 MP a. Syngas streams are prepared from natural gas, petroleum liquids, and carbonaceous materials such as coal, recycled plastic, municipal waste, or any other organic material. Preferably, the coherent gas stream is prepared via a reconstituted natural gas stream. The next step in the process involves contacting the synthesis gas stream with a multiphase catalyst, typically a copper-based catalyst, in contact with an oxygenate-containing stream, typically mixed with water. In one embodiment, the contacting step is carried out at a temperature of -43-(39) (39) 1306780 ranging from about 150 ° C to about 450 ° C and a pressure ranging from about 5 MPa to about 10 MPa. The oxygenate-containing stream or crude methanol typically comprises an alcohol product and various other components such as ethers, particularly dimethyl ether, ketones, aldehydes, dissolved gases such as hydrogen, methane, carbon oxidation. Matter, and nitrogen, and fuel oil. In a preferred embodiment, the oxygenate-containing stream, crude methanol, is purified by known methods of distillation, separation, and fractionation to provide a purified oxygenate stream, such as commercial grade A and AA methanol. The oxygenate-containing stream or purified oxygenate-containing stream, optionally with one or more diluents, can then be used as a feed in the process to produce light olefins such as ethylene and/or propylene. A non-limiting example of this method of integration is described in EP-B-093 3 3 45, which is incorporated herein by reference. In another more complete method of integration, it is optionally combined with the above described integrated process. In one embodiment, the olefins produced are directed to one or more polymerization processes for preparing various polyolefins. (Reference, for example, U.S. Patent Application Serial No. 09/615, file, filed on Jan. The polymerization process includes a solution, a gas phase, a slurry phase, and a high pressure process, or a combination thereof. Particularly preferred is gas phase or slurry phase polymerization of one or more olefins, at least one of which is ethylene or propylene. These polymerization methods utilize a polymerization catalyst which may include any one or a combination of the molecular sieve catalysts discussed above, however, preferred polymerization catalysts are Zieg-Natta, Philips, and metallocene. , metallocene type and prepolymerization catalysts, and mixtures thereof. In a preferred embodiment, the integrated process comprises the method of polymerizing one or more olefins in a polymerization reactor to produce one or more polymerization products in the presence of a polymerization catalyst system - 44-(40) 1306780, wherein the one or more olefins Alcohols, particularly methanol, have been prepared by using the above molecular sieve catalyst composition. A preferred polymerization process is a gas phase polymerization process, and at least one of the olefins is ethylene or propylene' and preferably the polymerization catalyst system is a supported metallocene catalyst system. In this embodiment, the supported metallocene catalyst system comprises a carrier, a metallocene or metallocene-type compound and an activator, preferably the activator is a non-coordinating anion or aluminoxane' or a combination thereof, and Most preferably, the activator is an aluminoxane. The polymers obtained by the above polymerization methods include linear low density polyethylene, elastomer, plastic, high density polyethylene, low density polyethylene, polypropylene, and polypropylene copolymer. The propylene-based polymers produced by the polymerization process include miscellaneous polypropylene, identical polypropylene, aligned polypropylene, and propylene miscellaneous, block or impinging copolymers. [Embodiment] The following examples are provided to give a better understanding of the invention, including its representative advantages. In the examples, LEI is defined as the ratio of the lifetime of a composition containing an active metal oxide molecular sieve to the lifetime of a similar molecular sieve having no metal oxide as defined by LEI. To determine LEI, lifetime is defined as the cumulative content of converted oxygenates (preferably converted to one or more olefins) / g molecular sieves until the conversion rate drops to about 1% of its initial enthalpy. If -45-(42) 1306780 AS4C) (4()%Si〇2), it is then added to R1 and mixed to form a homogeneous mixture. This homogeneous mixture was added to R2. The homogenous mixture is then agitated in a stainless steel pressure cooker and heated to 17 (TC lasts for 40 hours to crystallize. This provides a slurry of crystalline molecular sieve. The crystals are then separated from the mother liquor by filtration. The molecular sieve crystals are then mixed with the adhesive and the matrix material, and Particles were formed by spray drying.Example B Conversion Method All catalysis or conversion data was obtained using a microfluidic reactor consisting of a stainless steel reactor (1/4 inch (0.64 cm) outer diameter) located in the furnace. The vapor methanol is fed to the microfluidic reactor. The reactor is maintained at a temperature of 475 ° C and a pressure of 25 psig (172.4 kPag). The flow rate of methanol is the weight of methanol / g molecular sieve, also known as weight hourly space velocity (WHSV) , lOOh-l. The product gas from the reactor was collected and analyzed by gas chromatography. The catalyst loaded in each experiment was 50 mg, and the reactor bed was diluted with quartz to minimize the reaction. Hot spot in the device. In particular, the physical properties of the MS A molecular sieve of Example A and the active metal oxide for the catalyst composition of the present invention The state mixture was used. The total catalyst composition of the load was kept at 50 mg, and when the content of the molecular sieve in the reactor bed was reduced by adding the mixed metal oxide, the 'methanol flow rate was adjusted', so that the WHSV of methanol was 100 h-l. Calculation of the content of molecular sieves in the bed Example 1 -47- (43) (43)1306780

La(N03)3 . xH2〇(Aldrich Chemical Company)樣品在 空氣中及在700°C锻燒3小時,產生氧化鑭。 實施例2 50克的 La(N03)3. xH2〇(Aldrich Chemical Company) 被攪拌溶解於500ml的蒸餾水中。pH經由加入濃氫氧化 銨被調整至約9。此漿料之後被放入聚丙烯瓶中及置於氣 流盒(100 °C ) 72小時。所形成的產物經由過濾被回收,用 過量的水淸洗,及在8 5 °C乾燥隔夜》此觸媒的一部份在流 動空氣中被段燒至600 °C持續3小時,以製備氧化鑭 (La2〇3)。 實施例3 5 0克的Y(N03)3 . 6H20被攪拌溶解於500 ml的蒸餾水 中。pH經由加入濃氫氧化銨被調整至約9。此漿料之後被 放入聚丙烯瓶中及置於氣流盒(10 0t )72小時。所形成的 產物經由過濾被回收,用過量的水淸洗,及在8 5 °C乾燥隔 夜。此觸媒的一部份在流動空氣中被段燒至600 °C持續3小 時,以製備氧化銘(Υ2〇3)。 實施例4A sample of La(N03)3.xH2(R) (Aldrich Chemical Company) was calcined in air at 700 °C for 3 hours to produce cerium oxide. Example 2 50 g of La(N03)3.xH2〇 (Aldrich Chemical Company) was dissolved in 500 ml of distilled water with stirring. The pH was adjusted to about 9 by the addition of concentrated ammonium hydroxide. This slurry was then placed in a polypropylene bottle and placed in a gas flow box (100 ° C) for 72 hours. The resulting product was recovered via filtration, rinsed with excess water, and dried overnight at 85 ° C. A portion of this catalyst was burned to 600 ° C for 3 hours in flowing air to prepare oxidation.镧 (La2〇3). Example 3 50 g of Y(N03)3.8H20 was stirred and dissolved in 500 ml of distilled water. The pH was adjusted to about 9 by the addition of concentrated ammonium hydroxide. This slurry was then placed in a polypropylene bottle and placed in a flow box (100 t) for 72 hours. The resulting product was recovered via filtration, rinsed with excess water, and dried overnight at 85 °C. A portion of this catalyst was burned to 600 ° C for 3 hours in flowing air to prepare an oxide (Υ2〇3). Example 4

Sc(N03)3 . xH2〇(Aldrich Chemical Company)樣品在 空氣中及在700t锻燒3小時,產生氧化钪(Sc203)。 實施例5 -48- (44) 1306780 50克的Ce(N03)3. 6H20被攪拌溶解於500ml的蒸餾 水中。pH經由加入濃氫氧化銨被調整至約8 »此漿料之後 被放入聚丙烯瓶中及置於氣流盒(100°C)72小時。所形成 的產物經由過濾被回收,用過量的水淸洗,及在8 5 t乾燥 隔夜。此觸媒的一部份在流動空氣中被段燒至600 °C持續3 小時,以製備氧化铈(Ce203)。A sample of Sc(N03)3.xH2(R) (Aldrich Chemical Company) was calcined in air at 700t for 3 hours to produce cerium oxide (Sc203). Example 5 -48- (44) 1306780 50 g of Ce(N03)3.6H20 was stirred and dissolved in 500 ml of distilled water. The pH was adjusted to about 8 by the addition of concentrated ammonium hydroxide. This slurry was placed in a polypropylene bottle and placed in a flow box (100 ° C) for 72 hours. The resulting product was recovered via filtration, rinsed with excess water, and dried overnight at 8 5 t. A portion of this catalyst was burned to 600 ° C for 3 hours in flowing air to prepare cerium oxide (Ce203).

實施例6 50克的Pr(N03)3. 6H20被攪拌溶解於500ml的蒸餾 水中。pH經由加入濃氫氧化銨被調整至約8。此漿料之後 被放入聚丙烯瓶中及置於氣流盒(100°C )72小時。所形成 的產物經由過濾被回收,用過量的水淸洗,及在85 °C乾燥 隔夜。此觸媒的一部份在流動空氣中被段燒至60(TC持續3 小時,以製備氧化鐯(Pr2〇3)。Example 6 50 g of Pr(N03)3.6H20 was dissolved and dissolved in 500 ml of distilled water. The pH was adjusted to about 8 by the addition of concentrated ammonium hydroxide. This slurry was then placed in a polypropylene bottle and placed in a flow box (100 ° C) for 72 hours. The resulting product was recovered via filtration, rinsed with excess water, and dried overnight at <RTIgt; A portion of this catalyst was burned to 60 in flowing air (TC lasted 3 hours to prepare cerium oxide (Pr2〇3).

實施例7 50克的Nd(N03)3. 6H20被攪拌溶解於500ml的蒸餾 水中。pH經由加入濃氫氧化銨被調整至約9。此漿料之後 被放入聚丙嫌瓶中及置於氣流盒(10(TC )72小時。所形成 的產物經由過瀘被回收,用過量的水清洗,及在8 5 °C乾燥 隔夜。此觸媒的一部份在流動空氣中被段燒至600°C持續3 小時,以製備氧化銨(Nd203)。 實施例8 39克的 Ce(N03)3. 6H20 及 7.0克的 La(N03)3. 6H20 -49- (45) (45)1306780 被攪拌溶解於5 00ml的蒸餾水中。製備另一含有20克濃氫 氧化銨及500ml蒸餾水的溶液。這兩溶液使用噴嘴混合器 以速率50ml/min混合。最終混合物的pH經由加入濃氫氧 化銨被調整至約9。此漿料之後被放入聚丙烯瓶中及置於 氣流盒(100t ) 72小時。所形成的產物經由過濾被回收, 用過量的水淸洗,及在8 5 t乾燥隔夜。此觸媒的一部份在 流動空氣中被段燒至700 °C持續3小時,以製備含有5重量 %鑭之混合金屬氧化物,以混合金屬氧化物的最終重量計 算。 實施例9 9克的 Ce(N03)3. 6H20 及 30.0克的 La(N03)3. 6H20 被攪拌溶解於5 00ml的蒸餾水中。製備另一含有20克濃氫 氧化銨及5 00ml蒸餾水的溶液。這兩溶液使用噴嘴混合器 以速率50ml/min混合。最終混合物的pH經由加入濃氫氧 化銨被調整至約9。此漿料之後被放入聚丙烯瓶中及置於 氣流盒(l〇〇°C )72小時。所形成的產物經由過濾被回收, 用過量的水淸洗,及在8 5 t乾燥隔夜。此觸媒的一部份在 流動空氣中被段燒至700 °C持續3小時,以製備含有5重量 %鈽之混合金屬氧化物,以混合金屬氧化物的最終重量計 算。 實施例1 〇 實施例1至9之氧化物的二氧化碳攝入値在周圍壓力下 -50- (46) 1306780 使用Mettler TGA/SDTA 851熱重分析系統予以測量。金 屬氧化物樣品在流動空氣中及約5 0 0 °C下脫水1小時,之後 在1 00 °C測量二氧化碳的攝入値。樣品的表面積係依照 Brunauer,Emmett,and Teller(BET)方法予以測量,提供 二氧化碳攝入値’以mg二氧化碳/m2金屬氧化物表示,如 表1所示。 表1 實施例 觸媒乾燥 吸附的 表面積 C 0 2攝入値 重量(mg) C〇2(mg) (m2/g) (mg/m2'» 1 22 0.1846 40 0.210 2 3 1 0.6487 38 0.551 3 24 0.3 296 80 0. 172 4 20 0.0490 3 3 0.074 5 143 0.7714 57 0.095 6 50 0.3136 24 0.261 7 4 1 0.6491 18 0.880 8 13 0 0.8407 5 1 0.127 9 42 1.2542 46 0.649 比較實施例11 在這比較實施例1 l(Cex. 1 1)中,實施例A所製備的分 子篩觸媒組成物係在實施例B方法中使用5 Omg無活潑金 屬氧化物之分子篩觸媒組成物予以測試。測試結果顯示在 -51 - (47) 1306780 表2及表3。 實施例1 2Example 7 50 g of Nd(N03)3.6H20 was dissolved and dissolved in 500 ml of distilled water. The pH was adjusted to about 9 by the addition of concentrated ammonium hydroxide. This slurry was then placed in a polypropylene bottle and placed in a flow box (10 (TC) for 72 hours. The resulting product was recovered via hydrazine, washed with excess water, and dried overnight at 85 ° C. A portion of the catalyst was burned to 600 ° C for 3 hours in flowing air to prepare ammonium oxide (Nd 203). Example 8 39 g of Ce(N03) 3. 6H20 and 7.0 g of La(N03) 3. 6H20 -49- (45) (45)1306780 was dissolved in 500 ml of distilled water with stirring. Prepare another solution containing 20 g of concentrated ammonium hydroxide and 500 ml of distilled water. The two solutions were sprayed at a nozzle rate of 50 ml/ Min mixed. The pH of the final mixture was adjusted to about 9 by the addition of concentrated ammonium hydroxide. This slurry was then placed in a polypropylene bottle and placed in a flow box (100 t) for 72 hours. The resulting product was recovered via filtration. Rinse with an excess of water and dry overnight at 85 Torr. A portion of this catalyst was burned to 700 ° C for 3 hours in flowing air to prepare a mixed metal oxide containing 5% by weight of ruthenium. Calculated based on the final weight of the mixed metal oxide. Example 9 9 g of Ce(N03) 3. 6H20 and 30.0 g La(N03)3. 6H20 was stirred and dissolved in 500 ml of distilled water to prepare another solution containing 20 g of concentrated ammonium hydroxide and 500 ml of distilled water. The two solutions were mixed using a nozzle mixer at a rate of 50 ml/min. The pH was adjusted to about 9 by the addition of concentrated ammonium hydroxide. The slurry was then placed in a polypropylene bottle and placed in a flow box (10 ° C) for 72 hours. The resulting product was recovered via filtration. Excess water was rinsed and dried overnight at 85 Torr. A portion of this catalyst was burned to 700 ° C for 3 hours in flowing air to prepare a mixed metal oxide containing 5% by weight of cerium. Final weight calculation of mixed metal oxides.Example 1 Carbon dioxide uptake of the oxides of Examples 1 to 9 at ambient pressure -50 - (46) 1306780 was measured using a Mettler TGA/SDTA 851 thermogravimetric analysis system. The metal oxide sample was dehydrated in flowing air at about 500 ° C for 1 hour, after which the carbon dioxide intake was measured at 100 ° C. The surface area of the sample was measured according to the method of Brunauer, Emmett, and Teller (BET). Provides oxidation The intake 値' is expressed in mg carbon dioxide/m2 metal oxide, as shown in Table 1. Table 1 Example Catalyst Dry Adsorption Surface Area C 0 2 Intake Weight (mg) C〇2 (mg) (m2/g ) (mg/m2'» 1 22 0.1846 40 0.210 2 3 1 0.6487 38 0.551 3 24 0.3 296 80 0. 172 4 20 0.0490 3 3 0.074 5 143 0.7714 57 0.095 6 50 0.3136 24 0.261 7 4 1 0.6491 18 0.880 8 13 0 0.8407 5 1 0.127 9 42 1.2542 46 0.649 Comparative Example 11 In Comparative Example 1 l (Cex. 1 1), the molecular sieve catalyst composition prepared in Example A was used in Example B method using 5 Omg. The molecular sieve composition of the active metal oxide is tested. The test results are shown in Tables 2 and 3 of -51 - (47) 1306780. Example 1 2

在這實施例中,實施例A所製備的分子舖觸媒組成 物係在實施例B方法中使用4〇mg分子飾觸媒組成物予以 測試,該分子篩觸媒組成物具有10mg的La2〇3,該La2〇3 經由在實施例1中之硝化分解予以製得的。組成份被混合 ,之後用砂稀釋,形成反應器床。測試結果顯示在表2及3 ,說明La203,活潑第3族金屬氧化物的加入增加149%壽 命。對乙烷的選擇性減低3 6 % ’及對丙烷的選擇性減低 3 2 %,暗示氫轉換反應顯著地減低。 實施例1 3In this example, the molecular vehicle composition prepared in Example A was tested in the method of Example B using 4 〇mg of a molecular vehicle composition having 10 mg of La2〇3. This La2〇3 was obtained by the nitration decomposition in Example 1. The components of the group were mixed and then diluted with sand to form a reactor bed. The test results are shown in Tables 2 and 3, indicating that La203, the addition of active Group 3 metal oxides increased by 149%. The selectivity to ethane was reduced by 36% and the selectivity to propane was reduced by 32%, suggesting a significant reduction in the hydrogen conversion reaction. Example 1 3

在這實施例中,實施例A所製備的分子篩觸媒組成 物係在實施例B方法中使用4〇mg分子篩觸媒組成物予以 測試,該分子篩觸媒組成物具有l〇mg的La203,且經由 在實施例2中之沉澱作用予以製得的。組成份被混合,之 後用砂稀釋,形成反應器床。測試結果顯示在表2及3,說 明經由沉澱作用所製得之La203,活潑第3族金屬氧化物 的加入增加340%壽命。對乙烷的選擇性減低55%,及對丙 烷的選擇性減低44%,暗示氫轉換反應顯著地減低。 實施例1 4 在這實施例1 4中,實施例A所製備的分子篩觸媒組 -52- (48) 1306780 成物係在實施例B方法中使用40mg分子篩觸媒組成物予 以測試,該分子篩觸媒組成物具有1 〇mg實施例3所製得之 Y2〇3。組成份被混合,之後用砂稀釋,形成反應器床。測 試結果顯示在表2及3,說明Υ2〇3,活潑第3族金屬氧化物 的加入增加1090%壽命。對乙烷的選擇性減低45%,及對 丙烷的選擇性減低28%,暗示氫轉換反應顯著地減低。 實施例1 5 在這實施例15中,實施例Α所製備的分子篩觸媒組 成物係在實施例B方法中使用40mg分子篩觸媒組成物予 以測試,該分子篩觸媒組成物具有1 〇mg實施例4所製得之 Sc203。組成份被混合,之後用砂稀釋,形成反應器床。 测試結果顯示在表2及3,說明Sc203,活潑第3族金屬氧 化物的加入增加1 67%壽命。對乙烷的選擇性減低27%,及 對丙烷的選擇性減低2 1 %,暗示氫轉換反應顯著地減低。 實施例1 6 在這實施例1 6中,實施例A所製備的分子篩觸媒組 成物係在實施例B方法中使用40mg分子篩觸媒組成物予 以測試,該分子篩觸媒組成物具有1 〇mg實施例5所製得之 Ce203。組成份被混合,之後用砂稀釋,形成反應器床。 測試結果顯示在表2及3,說明Ce203,活潑鑭金屬氧化物 的加入增加630%壽命》對乙烷的選擇性減低50%,及對丙 烷的選擇性減低3 4%,暗示氫轉換反應顯著地減低。 -53- (49) 1306780 實施例1 7 在這實施例17中,實施例A所製備的分子篩觸媒組 成物係在實施例B方法中使用40mg分子篩觸媒組成物予 以測試,該分子篩觸媒組成物具有1 0mS實施例6所製得之 Pr203。組成份被混合,之後用砂稀釋’形成反應器床。 測試結果顯示在表2及3,說明Pr203,活潑鑭金屬氧化物 的加入增加640%壽命。對乙烷的選擇性減低5 1%,及對丙 烷的選擇性減低3 8 %,暗示氫轉換反應顯著地減低。 實施例1 8 在這實施例1 8中,實施例A所製備的分子篩觸媒組 成物係在實施例B方法中使用40mg分子篩觸媒組成物予 以測試,該分子篩觸媒組成物具有1 Omg實施例7所製得之 Nd203。組成份被混合,之後用砂稀釋,形成反應器床。 測試結果顯示在表2及3,說明Nd203,活潑鑭金屬氧化物 的加入增加340%壽命。對乙烷的選擇性減低49%,及對丙 烷的選擇性減低3 4%,暗示氫轉換反應顯著地減低。 實施例1 9 在這實施例19中,實施例A所製備的分子篩觸媒組 成物係在實施例B方法中使用40mg分子篩觸媒組成物予 以測試,該分子篩觸媒組成物具有1 0 m g實施例8所製得之 混合金屬氧化物。組成份被混合,之後用砂稀釋,形成反 -54 - (50) (50)1306780 應器床。測試結果顯示在表2及3,說明La0x/Ce203,經 由第3族氧化物改良的活潑鑭金靥氧化物的加入增加4 5 0% 壽命。對乙烷的選擇性減低47%,及對丙烷的選擇性減低 3 7%,暗示氫轉換反應顯著地減低。 實施例20 在這實施例20中,實施例A所製備的分子筛觸媒組 成物係在實施例B方法中使用40mg分子篩觸媒組成物予 以測試,該分子篩觸媒組成物具有1 實施例9所製得之 混合金屬氧化物。組成份被混合,之後用砂稀釋’形成反 應器床。測試結果顯示在表2及3’說明5%Ce0x/La203 ’ 經鑭系氧化物改良的活潑第3族金屬氧化物的加入增加 2 60%壽命。對乙烷的選擇性減低56% ’及對丙焼的選擇性 減低4 5 %,暗示氫轉換反應顯著地減低。 -55- 1306780In this example, the molecular sieve catalyst composition prepared in Example A was tested in the method of Example B using 4 〇mg of a molecular sieve catalyst composition having 10 mg of La203, and It was prepared by the precipitation in Example 2. The components of the group were mixed and then diluted with sand to form a reactor bed. The test results are shown in Tables 2 and 3, indicating that the addition of the active Group 3 metal oxide by La203, which was produced by precipitation, increased the lifetime by 340%. The selectivity to ethane was reduced by 55% and the selectivity to propane was reduced by 44%, suggesting a significant reduction in the hydrogen conversion reaction. Example 1 4 In this Example 14, the molecular sieve catalyst group prepared in Example A-52-(48) 1306780 was tested in the method of Example B using 40 mg of molecular sieve catalyst composition, which was tested. The catalyst composition had 1 〇mg of Y2〇3 obtained in Example 3. The components of the group were mixed and then diluted with sand to form a reactor bed. The test results are shown in Tables 2 and 3, indicating that Υ2〇3, the addition of the active Group 3 metal oxide increased the lifetime by 1090%. A 45% reduction in the selectivity to ethane and a 28% reduction in the selectivity to propane suggest a significant reduction in the hydrogen conversion reaction. Example 1 5 In this Example 15, the molecular sieve catalyst composition prepared in Example 测试 was tested in the method of Example B using 40 mg of a molecular sieve catalyst composition having a molecular sieve composition of 1 〇 mg. Sc203 obtained in Example 4. The components of the group were mixed and then diluted with sand to form a reactor bed. The test results are shown in Tables 2 and 3, indicating that Sc203, the addition of the active Group 3 metal oxide increased the life of 16.7%. The selectivity to ethane was reduced by 27%, and the selectivity to propane was reduced by 21%, suggesting a significant reduction in the hydrogen conversion reaction. Example 1 6 In this Example 16, the molecular sieve catalyst composition prepared in Example A was tested in the method of Example B using 40 mg of a molecular sieve catalyst composition having 1 〇mg. Ce203 obtained in Example 5. The components of the group were mixed and then diluted with sand to form a reactor bed. The test results are shown in Tables 2 and 3, which shows that Ce203, the addition of active ruthenium metal oxide increases the lifetime by 630%, the selectivity to ethane is reduced by 50%, and the selectivity to propane is reduced by 34%, suggesting a significant hydrogen conversion reaction. The land is reduced. -53- (49) 1306780 Example 1 7 In this Example 17, the molecular sieve catalyst composition prepared in Example A was tested in the method of Example B using 40 mg of a molecular sieve catalyst composition, which was tested. The composition had 10 mS of Pr203 obtained in Example 6. The components of the group were mixed and then diluted with sand to form a reactor bed. The test results are shown in Tables 2 and 3, indicating that Pr203, the addition of active cerium metal oxides increased the lifetime by 640%. The selectivity to ethane was reduced by 51% and the selectivity to propane was reduced by 38%, suggesting a significant reduction in the hydrogen conversion reaction. Example 1 8 In this Example 18, the molecular sieve catalyst composition prepared in Example A was tested in the method of Example B using 40 mg of a molecular sieve catalyst composition having a 10 mg implementation. Nd203 obtained in Example 7. The components of the group were mixed and then diluted with sand to form a reactor bed. The test results are shown in Tables 2 and 3, indicating that Nd203, the addition of active cerium metal oxides increased the lifetime by 340%. The selectivity to ethane was reduced by 49% and the selectivity to propane was reduced by 34%, suggesting a significant reduction in the hydrogen conversion reaction. Example 1 9 In this Example 19, the molecular sieve catalyst composition prepared in Example A was tested in the method of Example B using 40 mg of a molecular sieve catalyst composition having a composition of 10 mg. The mixed metal oxide prepared in Example 8. The ingredients of the group were mixed and then diluted with sand to form an anti-54 - (50) (50) 1306780 reactor bed. The test results are shown in Tables 2 and 3, indicating that La0x/Ce203, the addition of the active lanthanum lanthanum oxide modified by the Group 3 oxide increased the lifetime by 450%. The selectivity to ethane was reduced by 47% and the selectivity to propane was reduced by 37%, suggesting a significant reduction in the hydrogen conversion reaction. Example 20 In this Example 20, the molecular sieve catalyst composition prepared in Example A was tested in the method of Example B using 40 mg of a molecular sieve catalyst composition having 1 Example 9 A mixed metal oxide prepared. The components of the group were mixed and then diluted with sand to form a reactor bed. The test results show that the addition of the 5% Ce0x/La203' modified lanthanide-modified active Group 3 metal oxide in Tables 2 and 3' increases the lifetime by 2 60%. The selectivity to ethane was reduced by 56%' and the selectivity to propylene was reduced by 45%, suggesting a significant reduction in the hydrogen conversion reaction. -55- 1306780

l^ 。純度 (%) 1—Η 96.1 96.9 96.0 95.5 96.3 96.6 96.3 96.4 96.9 〇2=/〇3= 0.90 1 ( 〇〇 0.74 0.76 1 1 〇〇 0.69 0.72 R 主要顯 (%) 72.99 73.84 73.78 73.68 73.74 70.51 72.37 72.57 70.64 70.52 壽命增加指數(LEI) 〇 σ\ 1—( CO 反應器床組成物 100%MSA 80%MSA/20%La2〇3 80%MSA/20%La2〇3 80%MSA/20%Y2〇3 80%MSA/20%Sc2〇3 80%MSA/20%Ce2〇3 80%MSA/20%Pr2〇3 80%MSA/20%Nd2〇3 80%MSA/20%LaOx/Ce2〇3 80%MSA/20%CeO*/La2〇3 實施例 比較例11 CS CO v〇 r-H oo On -56- (52) 1306780 (52)l^. Purity (%) 1—Η 96.1 96.9 96.0 95.5 96.3 96.6 96.3 96.4 96.9 〇2=/〇3= 0.90 1 ( 〇〇0.74 0.76 1 1 〇〇0.69 0.72 R Main display (%) 72.99 73.84 73.78 73.68 73.74 70.51 72.37 72.57 70.64 70.52 Lifetime increase index (LEI) 〇σ\ 1—(CO reactor bed composition 100% MSA 80%MSA/20%La2〇3 80%MSA/20%La2〇3 80%MSA/20%Y2〇3 80% MSA/20% Sc2〇3 80%MSA/20%Ce2〇3 80%MSA/20%Pr2〇3 80%MSA/20%Nd2〇3 80%MSA/20%LaOx/Ce2〇3 80%MSA /20% CeO*/La2〇3 Example Comparative Example 11 CS CO v〇rH oo On -56- (52) 1306780 (52)

± S3 1 < vn l〇 f "''< ΙΟ cn oo $ CN On u cn VD wn 卜'· iS GO ι—Η On C£) ^__ On ON Csl <N <N CO VO OO b vS JO JO i£J ΰ cn 〇5 VO r·1 '< P; 1 < cn ON t1 ·Η \〇 »—H to r*~H »—< v〇 cs v〇 t " < r—H il On l〇 CO CO oo VO CN) 2 cn CO od CO o qi 1 t o 1 ( o3 〇 i 1 9 oo 沄 CO E〇 ON CO oo cn 1—4 c5 〇 o O o o o o 〇 u CO vr^ oo oo ON oo 00 1 4 CN VO oo VO i 1 a\ cs CO CO CO CO od cs 裒 cr; cs s 宅 i—H oo CO t—H os CO »' < s On l〇 S r-H cs v〇 CO t—H cs u oi t—H cs r—H CN CM O iS a m f*·» cn fN cu s z I 〇 h3 h2 (N (¾ ^.(D ^.(D 承 伥 o i—H s 承 博 承 承 承 # 1¾ § g § IK i' "H 鎰 ΓΟ un VD r-j oo ON -57- (53) 1306780± S3 1 < vn l〇f "''< ΙΟ cn oo $ CN On u cn VD wn 卜'· iS GO ι—Η On C£) ^__ On ON Csl <N <N CO VO OO b vS JO JO i£J ΰ cn 〇5 VO r·1 '<P; 1 < cn ON t1 ·Η \〇»—H to r*~H »—< v〇cs v〇t &quot ; < r—H il On l〇CO CO oo VO CN) 2 cn CO od CO o qi 1 to 1 ( o3 〇i 1 9 oo 沄CO E〇ON CO oo cn 1—4 c5 〇o O oooo 〇 u CO vr^ oo oo ON oo 00 1 4 CN VO oo VO i 1 a\ cs CO CO CO CO od cs 裒cr; cs s house i-H oo CO t-H os CO »' < s On l〇 S rH cs v〇CO t—H cs u oi t—H cs r—H CN CM O iS amf*·» cn fN cu sz I 〇h3 h2 (N (3⁄4 ^.(D ^.(D 承伥oi —H s 承承承承承# 13⁄4 § g § IK i' "H 镒ΓΟ un VD rj oo ON -57- (53) 1306780

當經由特別實施例描述及說明本發明時,熟習該項技 術者將瞭解,本發明適於變化,無須在此說明。例如,預 期的是’混合使用活塞式流動、固定床或流動床方法,特 別是在單一或多重反應器系統中的不同反應區域。亦預期 的是,本文中所述之分子篩組成物充當吸收劑、吸附劑、 氣體分離劑、去污劑、水純化劑及用於各種用途,例如農 學及園藝。將一或多種活潑第3族金屬氧化物加至合成混 合物中,製備上述之分子篩,是在本發明之範圍內。同樣 地,預期的是,一或多種分子篩被用於觸媒組成物。爲此 理由,爲決定本發明之真實範圍之目的,僅參考所附之申 請專利範圍。While the invention has been described and illustrated by the embodiments of the invention, it will be understood For example, it is anticipated that 'mixed use of plug flow, fixed bed or fluid bed processes, particularly in different reaction zones in single or multiple reactor systems. It is also contemplated that the molecular sieve compositions described herein act as absorbents, adsorbents, gas separating agents, detergents, water purifying agents, and for a variety of uses, such as agronomy and horticulture. It is within the scope of the invention to add one or more active Group 3 metal oxides to the synthesis mixture to prepare the molecular sieves described above. Likewise, it is contemplated that one or more molecular sieves are used in the catalyst composition. For the purpose of determining the true scope of the invention, reference is made only to the scope of the appended claims.

-58--58-

Claims (1)

1306780 (1) 拾、申請專利範圍 附件4A : 第92 1 03 1 44號專利申請案 中文申請專利範圍替換本i 民國97年1 1月2〇日修正 1_ 一種觸媒組成物,包括分子篩及至少一種選自元素 週期表之第3族、鑭系元素及銅系元素的金屬之氧化物, 其中該金屬氧化物的二氧化碳的攝入値在100 °C時至少爲 0.03mg/m2金屬氧化物, 其中該金屬氧化物係選自氧化鑭、氧化釔、氧化銃、 氧化铈、氧化鐯、氧化鈸、氧化釤、氧化钍及其混合物; 分子篩包括矽鋁磷酸鹽:及 分子篩對金屬氧化物的重量比例範圍在5 %至8 0 0 %間 〇 2 ·如申請專利範圍第1項之觸媒組成物,其中該金屬 氧化物的二氧化碳的攝入値在1 0CTC時至少爲〇.〇4mg/m2金 屬氧化物。 3 如申請專利範圍第1項之觸媒組成物,其中該金屬 氧化物的二氧化碳的攝入値在1 〇〇 時低於1 〇mg/m2金屬氧 化物。 4.如申請專利範圍第1項之觸媒組成物,其中該金屬 氧化物的二氧化碳的攝入値在1〇〇 °C時低於5ing/m2金屬氧 化物。 5 .如申請專利範圍第1項之觸媒組成物,亦包括不同 於該金屬氧化物的至少一種黏著劑及基質物質。 1306780 (2) 6 .如申請專利範圍第1項之觸媒組成物,亦包括黏著 劑及基質物質,其互爲不同且不同於該金屬氧化物。 7.如申請專利範圍第6項之觸媒組成物,其中黏著劑 爲氧化鋁溶膠,及基質物質爲黏土。 8 ·如申請專利範圍第1項之觸媒組成物,其中該金屬 氧化物爲氧化釔。 9. 如申請專利範圍第1項之觸媒組成物,其中分子篩 包括CHA架構類型的分子篩。 10. 如申請專利範圍第9項之觸媒組成物,其中分子篩 另外包括AEI架構類型的分子篩。 1 1.一種製備觸媒組成物之方法,該方法包括: (i) 由反應混合物合成分子篩,該混合物包括至少一種 模板劑以及矽來源、磷來源及鋁來源中至少兩者;及 (ii) 回收(i)中所合成的分子篩; (iii) 藉由從一含有該金屬離子來源的溶液中沉澱,以 形成選自元素週期表中第3族、鑭系元素及锕系元素之金 屬的氧化物的水合前驅物; (iv) 回收(iii)中所形成的水合前驅物; (v) 鍛燒(iv)中所回收的水合前驅物,以形成受鍛燒的 金屬氧化物,該金屬氧化物的二氧化碳的攝入値在1 〇〇 °C 時至少爲〇.〇3mg/m2金屬氧化物;及 (v i)完全混合(i)中所回收的分子舖及(v)中所製備的受 锻燒的金屬氧化物, 其中分子篩對金屬氧化物的重量比例範圍在5 %至 -2- 1306780 (3) 8 00% 間。 1 2 ·如申請專利範圍第1 1項之方法,其中分子篩及/或 金屬氧化物在(vi)之前先與黏著劑及/或基質物質混合。 1 3 ·如申請專利範圍第1 1項之方法,其中分子篩對受 锻燒的金屬氧化物的重量比例範圍從30%至400%。 14.如申請專利範圍第1 1項之方法,其中分子篩在(vi) 之前與基質物質及黏著劑進行噴霧乾燥。 1 5 .如申請專利範圍第1 4項之方法,其中分子篩爲矽 鋁磷酸鹽’黏著劑爲氧化鋁溶膠,及基質物質爲黏土。 1 6.如申請專利範圍第1 1項之方法,其中金屬氧化物 係選自氧化鑭、氧化釔' 氧化銃、氧化铈、氧化鐯、氧化 钕及其混合物。 1 7 ·如申請專利範圍第1 1項之方法,其中該沉澱作用 是在pH大於7時實施的。 18. 如申請專利範圍第11項之方法,其中(Hi)亦包括 在溫度至少80 °C熱液處理沉澱物持續高達1〇天。 19. 如申請專利範圍第π項之方法’其中(v)是在溫度 範圍從約400 °C至約900 °C內實施的。 20. —種製備一或多種烯烴之方法,該方法包括: (a) 將含有至少一種含氧物之進料在觸媒組成物存在 下導入反應器系統’該組成物包括分子篩、黏著劑、基質 物質及至少一種第3族元素及/或鑭系元素或锕系元素的氧 化物; (b) 從反應器系統排出含有一或多種烯烴之流出物物 1306780 (4) 流;及 (c) 使流出物物流通過回收系統;及 (d) 回收至少該一或多種烯烴, 其中該金屬氧化物的二氧化碳攝入値在100 °c時至少 爲0.03mg/m2金屬氧化物; 分子篩包括矽鋁磷酸鹽;及 分子篩對金屬氧化物的重量比例範圍在5 %至8 0 0 %間 〇 2 1.如申請專利範圍第20項之方法,其中黏著劑爲氧 化鋁溶膠。 22. 如申請專利範圍第20項之方法,其中基質物質爲 黏土。 23. 如申請專利範圍第20項之方法,其中金屬氧化物 爲氧化鑭或氧化釔或其混合物。 2 4 .如申請專利範圍第2 0項之方法,其中進料包括甲 醇及/或二甲醚。 2 5 .如申請專利範圍第2 0項之方法,其中觸媒組成物 的LEI大於無活潑金屬氧化物的相同觸媒組成物的LEI。 2 6 ·如申請專利範圍第2 0項之方法,其中篩觸媒組成 物的LEI大於1 .5。 27.—種製備一或多種烯烴之整合方法’該整合方法 包括: (a)使烴進料通過合成氣體產生區域以產生合成氣體 物流; -4- 1306780 (5) (b) 使合成氣體物流與觸媒接觸,形成含氧進料;及 (c) 使含氧進料在分子篩觸媒組成物存在下轉換成該 一或多種烯烴,該組成物包括分子篩及至少一種選自元素 週期表中第3族或鑭或锕系元素之金屬的氧化物, 其中該金屬氧化物的二氧化碳攝入値在100 °C時至少 爲0.03mg/m2金屬氧化物; 分子篩包括矽鋁磷酸鹽;及 分子篩對金屬氧化物的重量比例範圍在5 %至8 0 0 %間 〇 28.如申請專利範圍第27項之整合方法,其中該方法 進一步包括(d)在聚合觸媒存在下使該一或多種烯烴聚合 成聚烯烴。 2 9.如申請專利範圍第27項之整合方法,其中含氧進 料包括甲醇,烯烴包括乙烯及丙烯。1306780 (1) Picking up, patent application scope Annex 4A: No. 92 1 03 1 44 Patent application Chinese patent application scope replacement i Republic of China 97 years 1 January 2nd amendment 1_ A catalyst composition, including molecular sieves and at least An oxide of a metal selected from Group 3 of the Periodic Table of the Elements, a lanthanide element, and a copper-based element, wherein the metal oxide has a carbon dioxide intake of at least 0.03 mg/m 2 of metal oxide at 100 ° C, Wherein the metal oxide is selected from the group consisting of cerium oxide, cerium oxide, cerium oxide, cerium oxide, cerium oxide, cerium oxide, cerium oxide, cerium oxide and mixtures thereof; the molecular sieve comprises cerium aluminophosphate: and the weight of the molecular sieve to the metal oxide The ratio ranges from 5% to 8.0% ·2 · The catalyst composition of claim 1 of the patent scope, wherein the carbon dioxide intake of the metal oxide is at least 〇.〇4 mg/m2 at 10 CTC Metal oxide. 3 As in the catalyst composition of claim 1, the carbon dioxide intake of the metal oxide is less than 1 〇mg/m2 of metal oxide at 1 〇〇. 4. The catalyst composition of claim 1, wherein the metal oxide has a carbon dioxide uptake of less than 5 ing/m2 of metal oxide at 1 °C. 5. The catalyst composition of claim 1, further comprising at least one adhesive and matrix material different from the metal oxide. 1306780 (2) 6. The catalyst composition of claim 1, which also includes an adhesive and a matrix material which are different from each other and different from the metal oxide. 7. The catalyst composition of claim 6, wherein the adhesive is an alumina sol and the matrix material is clay. 8. The catalyst composition of claim 1, wherein the metal oxide is cerium oxide. 9. The catalyst composition of claim 1, wherein the molecular sieve comprises a molecular sieve of the CHA framework type. 10. The catalyst composition of claim 9, wherein the molecular sieve additionally comprises a molecular sieve of the AEI framework type. 1 1. A method of preparing a catalyst composition, the method comprising: (i) synthesizing a molecular sieve from a reaction mixture, the mixture comprising at least one templating agent and at least two of a cerium source, a phosphorus source, and an aluminum source; and (ii) Recovering the molecular sieve synthesized in (i); (iii) oxidizing by depositing from a solution containing the metal ion source to form a metal selected from Group 3, lanthanides and actinides of the periodic table a hydrated precursor of the substance; (iv) recovering the hydrated precursor formed in (iii); (v) calcining the hydrated precursor recovered in (iv) to form a calcined metal oxide, the metal is oxidized The carbon dioxide intake of the material is at least 〇.〇3mg/m2 of metal oxide at 1 °C; and (vi) complete mixing of the molecular layer recovered in (i) and the preparation of (v) A calcined metal oxide wherein the weight ratio of molecular sieve to metal oxide ranges from 5 % to -2- 1306780 (3) 8 00%. The method of claim 11, wherein the molecular sieve and/or metal oxide is mixed with the adhesive and/or the matrix material prior to (vi). The method of claim 11, wherein the weight ratio of the molecular sieve to the calcined metal oxide ranges from 30% to 400%. 14. The method of claim 11, wherein the molecular sieve is spray dried with the matrix material and the adhesive prior to (vi). The method of claim 14, wherein the molecular sieve is yttrium aluminum phosphate, the adhesive is alumina sol, and the matrix material is clay. The method of claim 11, wherein the metal oxide is selected from the group consisting of cerium oxide, cerium oxide cerium oxide, cerium oxide, cerium oxide, cerium oxide, and mixtures thereof. The method of claim 11, wherein the precipitation is carried out at a pH greater than 7. 18. The method of claim 11, wherein (Hi) also comprises hydrothermally treating the precipitate at a temperature of at least 80 ° C for up to 1 day. 19. The method of claim π, wherein (v) is carried out at a temperature ranging from about 400 ° C to about 900 ° C. 20. A process for the preparation of one or more olefins, the process comprising: (a) introducing a feed comprising at least one oxygenate into a reactor system in the presence of a catalyst composition - the composition comprising molecular sieves, an adhesive, a matrix material and at least one Group 3 element and/or an oxide of a lanthanide or a lanthanide; (b) an effluent containing a stream of one or more olefins from the reactor system 1306780 (4); and (c) Passing the effluent stream through a recovery system; and (d) recovering at least the one or more olefins, wherein the metal oxide has a carbon dioxide uptake of at least 0.03 mg/m2 of metal oxide at 100 ° C; the molecular sieve comprises yttrium aluminum phosphate And the weight ratio of the molecular sieve to the metal oxide ranges from 5% to 8.0%. 2. The method of claim 20, wherein the adhesive is an alumina sol. 22. The method of claim 20, wherein the matrix material is clay. 23. The method of claim 20, wherein the metal oxide is cerium oxide or cerium oxide or a mixture thereof. 2 4. The method of claim 20, wherein the feed comprises methanol and/or dimethyl ether. The method of claim 20, wherein the LEI of the catalyst composition is greater than the LEI of the same catalyst composition without the active metal oxide. 2 6 The method of claim 20, wherein the sieve catalyst composition has an LEI greater than 1.5. 27. An integrated process for the preparation of one or more olefins'. The integrated process comprises: (a) passing a hydrocarbon feed through a synthesis gas generation zone to produce a synthesis gas stream; -4- 1306780 (5) (b) syngas gas stream Contacting the catalyst to form an oxygen-containing feed; and (c) converting the oxygen-containing feed to the one or more olefins in the presence of a molecular sieve catalyst composition, the composition comprising the molecular sieve and at least one selected from the periodic table of elements a metal oxide of a Group 3 or a lanthanum or a lanthanide element, wherein the metal oxide has a carbon dioxide uptake of at least 0.03 mg/m2 of metal oxide at 100 ° C; the molecular sieve comprises yttrium aluminum phosphate; and a molecular sieve pair The weight ratio of the metal oxide ranges from 5% to 8.0%. 28. The method according to claim 27, wherein the method further comprises (d) causing the one or more olefins in the presence of a polymerization catalyst Polymerized into polyolefin. 2 9. The integrated process of claim 27, wherein the oxygen-containing feed comprises methanol and the olefin comprises ethylene and propylene.
TW092103144A 2002-02-28 2003-02-14 Molecular sieve compositions,catalysts thereof, their making and use in conversion processes. TWI306780B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US36096302P 2002-02-28 2002-02-28
US36601202P 2002-03-20 2002-03-20
US37469702P 2002-04-22 2002-04-22
US10/215,511 US6906232B2 (en) 2002-08-09 2002-08-09 Molecular sieve compositions, catalysts thereof, their making and use in conversion processes

Publications (2)

Publication Number Publication Date
TW200303238A TW200303238A (en) 2003-09-01
TWI306780B true TWI306780B (en) 2009-03-01

Family

ID=27792286

Family Applications (3)

Application Number Title Priority Date Filing Date
TW092103148A TWI265824B (en) 2002-02-28 2003-02-14 Molecular sieve compositions, catalyst thereof, their making and use in conversion processes
TW092103154A TWI265825B (en) 2002-02-28 2003-02-14 Molecular sieve compositions, catalyst thereof, their making and use in conversion processes
TW092103144A TWI306780B (en) 2002-02-28 2003-02-14 Molecular sieve compositions,catalysts thereof, their making and use in conversion processes.

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW092103148A TWI265824B (en) 2002-02-28 2003-02-14 Molecular sieve compositions, catalyst thereof, their making and use in conversion processes
TW092103154A TWI265825B (en) 2002-02-28 2003-02-14 Molecular sieve compositions, catalyst thereof, their making and use in conversion processes

Country Status (11)

Country Link
EP (3) EP1478464A2 (en)
JP (3) JP2005518929A (en)
KR (3) KR20040089680A (en)
CN (3) CN100335172C (en)
AU (3) AU2003225560B2 (en)
BR (1) BR0308011A (en)
CA (2) CA2477432A1 (en)
EA (3) EA007871B1 (en)
MY (2) MY140018A (en)
TW (3) TWI265824B (en)
WO (3) WO2003074177A2 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040089680A (en) * 2002-02-28 2004-10-21 엑손모빌 케미칼 패턴츠 인코포레이티드 Catalyst compositions comprising molecular sieves, their preparation and use in conversion processes
US7074739B2 (en) 2002-11-19 2006-07-11 Exxonmobil Chemical Patents Inc. Multi-component molecular sieve catalyst compositions and their use in aromatics reactions
US6951830B2 (en) 2003-08-05 2005-10-04 Exxonmobil Chemical Patents Inc. Molecular sieve catalyst compositions, their production and use in conversion processes
US7404891B2 (en) * 2004-03-29 2008-07-29 Exxonmobil Chemical Patents Inc. Heat recovery technique for catalyst regenerator flue gas
US7166757B2 (en) * 2004-07-30 2007-01-23 Exxonmobil Chemical Patents Inc. Conversion of oxygenates to olefins
WO2007021394A2 (en) * 2005-08-18 2007-02-22 Exxonmobil Chemical Patents Inc. Catalytic conversion of oxygenates to olefins
CN101003018A (en) * 2006-01-20 2007-07-25 中国石油天然气股份有限公司 Heterogeneous catalysis solid base catalyst and preparation method and application thereof
US7335621B2 (en) 2006-04-19 2008-02-26 Exxonmobil Chemical Patents Inc. Catalyst compositions and preparation thereof
JP4710744B2 (en) * 2006-07-18 2011-06-29 トヨタ自動車株式会社 Method for producing composite metal oxide
US7595275B2 (en) 2006-08-15 2009-09-29 Exxonmobil Chemical Patents Inc. Catalyst compositions and their synthesis
CN101239878B (en) * 2007-02-07 2010-05-19 中国石油化工股份有限公司 Method for increasing yield of ethylene and propylene from olefin with four carbon or above
CN101239866B (en) * 2007-02-07 2010-12-01 中国石油化工股份有限公司 Method for producing ethylene and propylene from oxygen-containing compounds
CA2578494A1 (en) * 2007-02-14 2008-08-14 Nova Chemicals Corporation Catalytic cracking of ethers to 1-olefins
EP2022565A1 (en) * 2007-07-06 2009-02-11 Casale Chemicals S.A. Process for preparing silicoaluminoposphate (SAPO) molecular sieves, catalysts containing said sieves and catalytic dehydration processes using said catalysts
JP5543347B2 (en) * 2007-08-13 2014-07-09 サウディ ベーシック インダストリーズ コーポレイション Process for converting aliphatic fuel promoters to aromatic compounds
DE102007059129A1 (en) * 2007-12-07 2009-06-10 Süd-Chemie AG Catalyst with increased olefin selectivity for the conversion of oxygenates to olefins
WO2009123556A1 (en) * 2008-04-04 2009-10-08 Petr Vasiliev Zeolite catalyst zeolite secondary structure
JP5818133B2 (en) * 2011-05-20 2015-11-18 国立大学法人東京工業大学 Olefin production catalyst and olefin production method
CN102344328B (en) * 2011-07-25 2014-03-12 浙江大学 Semi-continuous method for converting methyl alcohol into propylene by using moving bed technology
WO2014061569A1 (en) * 2012-10-15 2014-04-24 三菱瓦斯化学株式会社 Method for producing catalyst for use in production of methylamine compound, and method for producing methylamine compound
KR101803051B1 (en) * 2013-05-07 2017-11-29 신도스 에스.에이. Process for the production of 1,3-butadiene
CN107661774B (en) * 2016-07-27 2020-11-03 中国科学院大连化学物理研究所 Catalyst and method for preparing low-carbon olefin by directly converting synthesis gas
CN107661773B (en) * 2016-07-29 2020-08-04 中国科学院大连化学物理研究所 Method for preparing liquid fuel and co-producing low-carbon olefin by directly converting catalyst and synthesis gas
CN108568311B (en) * 2017-03-07 2021-03-23 中国科学院大连化学物理研究所 Catalyst and method for preparing ethylene by directly converting synthesis gas
KR102326358B1 (en) * 2017-04-27 2021-11-12 달리안 인스티튜트 오브 케미컬 피직스, 차이니즈 아카데미 오브 사이언시즈 In situ production method and reaction process of catalyst for producing at least one of toluene, P-xylene and light olefins
CN109939722B (en) * 2018-01-26 2021-05-25 中国科学院大连化学物理研究所 Organic base modified composite catalyst and method for preparing ethylene by hydrogenation of carbon monoxide
CN109939667B (en) * 2018-01-26 2021-01-05 中国科学院大连化学物理研究所 Catalyst and method for preparing low-carbon olefin by directly converting synthesis gas
WO2020091969A1 (en) * 2018-10-30 2020-05-07 Exxonmobil Chemical Patents Inc. Group 1 metal ion content of microporous molecular sieve catalysts
CN111346664B (en) * 2018-12-24 2022-11-15 中国石油化工股份有限公司 Modified vanadium-silicon molecular sieve, preparation method thereof and thioether oxidation method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4465889A (en) * 1982-07-02 1984-08-14 Summit Gas Systems Pte. Ltd. Catalytic conversion of methanol, dimethyl ether and mixtures thereof to a hydrocarbon product rich in iso-C4 compounds and new catalysts therefor
US4781816A (en) 1987-10-19 1988-11-01 Phillips Petroleum Company Cracking process
US6040264A (en) * 1996-04-04 2000-03-21 Exxon Chemical Patents Inc. Use of alkaline earth metal containing small pore non-zeolitic molecular sieve catalysts in oxygenate conversion
TW412510B (en) * 1996-12-31 2000-11-21 Exxon Chemical Patents Inc Oxygenate conversions using small pore non-zeolitic molecular sieve catalysts
US6423879B1 (en) * 1997-10-02 2002-07-23 Exxonmobil Oil Corporation Selective para-xylene production by toluene methylation
JP4221532B2 (en) * 1998-06-26 2009-02-12 三菱瓦斯化学株式会社 Methylamine production catalyst and method for producing methylamines using the catalyst
US6388156B1 (en) * 1999-05-14 2002-05-14 Exxonmobil Chemical Patents Inc. Direct selective synthesis of para-xylene by reacting an aromatic compound with a methylating agent formed from CO, Co2 and H2
WO2001064340A1 (en) * 2000-03-01 2001-09-07 Exxonmobil Chemical Patents Inc. Thorium-containing sapo molecular sieve for producing olefins
US6448197B1 (en) * 2000-07-13 2002-09-10 Exxonmobil Chemical Patents Inc. Method for making a metal containing small pore molecular sieve catalyst
WO2002005952A2 (en) * 2000-07-13 2002-01-24 Uop Llc Attrition resistant catalyst for light olefin production
CA2369318A1 (en) * 2002-01-28 2003-07-28 Universite Concordia Hybrid catalysts for the deep catalytic cracking of petroleum naphthas and other hydrocarbon feedstocks for the selective production of light olefins
KR20040089680A (en) * 2002-02-28 2004-10-21 엑손모빌 케미칼 패턴츠 인코포레이티드 Catalyst compositions comprising molecular sieves, their preparation and use in conversion processes

Also Published As

Publication number Publication date
JP2005518928A (en) 2005-06-30
KR20040089679A (en) 2004-10-21
CN1646221A (en) 2005-07-27
AU2003225560A1 (en) 2003-09-16
AU2003212993A1 (en) 2003-09-16
AU2003212993A8 (en) 2003-09-16
JP2005518929A (en) 2005-06-30
CA2477428C (en) 2011-03-22
EA200401102A1 (en) 2005-04-28
CN1327964C (en) 2007-07-25
TW200303238A (en) 2003-09-01
MY139847A (en) 2009-11-30
EA200401061A1 (en) 2005-04-28
TWI265824B (en) 2006-11-11
CN1642648A (en) 2005-07-20
KR20040089680A (en) 2004-10-21
CN100335172C (en) 2007-09-05
WO2003074176A3 (en) 2003-12-18
WO2003074176A2 (en) 2003-09-12
AU2003216248B2 (en) 2008-12-11
WO2003074175A3 (en) 2003-12-04
WO2003074177A2 (en) 2003-09-12
JP2005518930A (en) 2005-06-30
MY140018A (en) 2009-11-30
WO2003074177A3 (en) 2003-12-31
CA2477432A1 (en) 2003-09-12
WO2003074175A2 (en) 2003-09-12
EA200401101A1 (en) 2005-04-28
BR0308011A (en) 2005-01-04
CN1638865A (en) 2005-07-13
EP1478461A2 (en) 2004-11-24
TWI265825B (en) 2006-11-11
CA2477428A1 (en) 2003-09-12
EP1478464A2 (en) 2004-11-24
AU2003225560B2 (en) 2008-05-08
EA007871B1 (en) 2007-02-27
KR20040091080A (en) 2004-10-27
EP1478462A2 (en) 2004-11-24
EA007873B1 (en) 2007-02-27
TW200303237A (en) 2003-09-01
TW200306890A (en) 2003-12-01
CN1298427C (en) 2007-02-07
AU2003216248A1 (en) 2003-09-16
EA007872B1 (en) 2007-02-27

Similar Documents

Publication Publication Date Title
TWI306780B (en) Molecular sieve compositions,catalysts thereof, their making and use in conversion processes.
US7557256B2 (en) Molecular sieve catalyst composition, its making and use in conversion processes
US6844291B2 (en) Molecular sieve compositions, catalyst thereof, their making and use in conversion processes
CN101018606B (en) Molecular sieve catalyst composition, its making and use in conversion processes
US6995111B2 (en) Molecular sieve compositions, catalysts thereof, their making and use in conversion processes
US7319178B2 (en) Molecular sieve compositions, catalysts thereof, their making and use in conversion processes
US7378563B2 (en) Molecular sieve compositions, catalysts thereof, their making and use in conversion processes
US7384887B2 (en) Attrition resistant molecular sieve catalysts
US20030171633A1 (en) Molecular sieve compositions, catalyst thereof, their making and use in conversion processes
ZA200309696B (en) Molecular sieve catalyst composition, its making and use in conversion processes.
CN100425344C (en) Molecular sieve catalyst composition, its making and use in conversion processes
CN1681753A (en) Process for preparing olefins from oxygenates
US7307196B2 (en) Molecular sieve compositions, catalyst thereof, their making and use in conversion processes
US7199277B2 (en) Pretreating a catalyst containing molecular sieve and active metal oxide
EP1843847B1 (en) Molecular sieve catalyst composition, its making and use in conversion processes
US20090192276A1 (en) Methods Addressing Aging In Flocculated Molecular Sieve Catalysts For Hydrocarbon Conversion Processes

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees