KR20040089679A - Catalyst compositions comprising molecular sieves, their preparation and use in conversion processes - Google Patents

Catalyst compositions comprising molecular sieves, their preparation and use in conversion processes Download PDF

Info

Publication number
KR20040089679A
KR20040089679A KR10-2004-7013378A KR20047013378A KR20040089679A KR 20040089679 A KR20040089679 A KR 20040089679A KR 20047013378 A KR20047013378 A KR 20047013378A KR 20040089679 A KR20040089679 A KR 20040089679A
Authority
KR
South Korea
Prior art keywords
oxide
catalyst composition
metal oxide
molecular sieve
carbon dioxide
Prior art date
Application number
KR10-2004-7013378A
Other languages
Korean (ko)
Inventor
레빈도론
바툴리제임스씨
Original Assignee
엑손모빌 케미칼 패턴츠 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/215,511 external-priority patent/US6906232B2/en
Application filed by 엑손모빌 케미칼 패턴츠 인코포레이티드 filed Critical 엑손모빌 케미칼 패턴츠 인코포레이티드
Publication of KR20040089679A publication Critical patent/KR20040089679A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • C10G50/02Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation of hydrocarbon oils for lubricating purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/095Catalytic reforming characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • C10G45/54Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • C10G49/08Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/10Magnesium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/83Aluminophosphates (APO compounds)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/84Aluminophosphates containing other elements, e.g. metals, boron
    • C07C2529/85Silicoaluminophosphates (SAPO compounds)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

본 발명은 촉매 조성물, 이들의 제조 방법 및 원료, 바람직하게는 산소화된 원료에서 하나 이상의 올레핀(들), 바람직하게는 에틸렌 및/또는 프로필렌으로의 전환에서의 이들의 용도에 관한 것이다. 촉매 조성물은 원소 주기율표의 3족, 란탄계 원소 및 악티늄계 원소중에서 선택된 금속의 산화물 1종 이상 및 분자 체를 포함한다.The present invention relates to catalyst compositions, methods for their preparation and their use in the conversion of raw materials, preferably oxygenated raw materials, to one or more olefin (s), preferably ethylene and / or propylene. The catalyst composition comprises at least one oxide and a molecular sieve of a metal selected from Group 3, lanthanum-based and actinium-based elements of the Periodic Table of Elements.

Description

분자 체를 포함하는 촉매 조성물, 이들의 제조 방법 및 전환 공정에서의 이들의 용도{CATALYST COMPOSITIONS COMPRISING MOLECULAR SIEVES, THEIR PREPARATION AND USE IN CONVERSION PROCESSES}Catalyst compositions comprising molecular sieves, methods for their preparation and their use in the conversion process {CATALYST COMPOSITIONS COMPRISING MOLECULAR SIEVES, THEIR PREPARATION AND USE IN CONVERSION PROCESSES}

올레핀은 통상적으로 촉매적 또는 스팀 크래킹 공정에 의해 석유 원료로부터 제조된다. 이런 크래킹 공정, 특히 스팀 크래킹은 다양한 탄화수소 원료로부터 저급(light) 올레핀(들), 예컨대 에틸렌 및/또는 프로필렌을 생성한다. 에틸렌 및 프로필렌은 플라스틱 및 기타 화학적 화합물의 제조를 위한 다양한 공정에 유용한 중요 석유화학 제품이다.Olefins are typically prepared from petroleum raw materials by catalytic or steam cracking processes. This cracking process, in particular steam cracking, produces light olefin (s) such as ethylene and / or propylene from various hydrocarbon sources. Ethylene and propylene are important petrochemical products useful in a variety of processes for the production of plastics and other chemical compounds.

석유화학 산업에서는 산소화물(oxygenate), 특히 알콜이 저급 올레핀(들)으로 전환가능하다고 얼마 동안 알려져 있었다. 저급 올레핀 제조에 바람직한 알콜은 메탄올이고, 메탄올-함유 원료를 저급 올레핀(들), 주로 에틸렌 및/또는 프로필렌으로 전환시키는 바람직한 공정은 원료를 분자 체 촉매 조성물과 접촉시키는 것을 포함한다.In the petrochemical industry it has been known for some time that oxygenates, especially alcohols, are convertible to lower olefin (s). Preferred alcohols for the production of lower olefins are methanol, and preferred processes for converting the methanol-containing feedstock into lower olefin (s), primarily ethylene and / or propylene, include contacting the feedstock with the molecular sieve catalyst composition.

산소화물을 함유하는 원료를 1종 이상의 올레핀(들)으로 전환시키는 것으로 알려진 많은 상이한 유형의 분자 체가 있다. 예컨대, 미국 특허 제 5,367,100 호는 제올라이트, ZSM-5를 사용하여 메탄올을 올레핀(들)으로 전환시키는 것을 기술하고; 미국 특허 제 4,062,905 호는 결정성 알루미노실리케이트 제올라이트, 예컨대 제올라이트 T, ZK5, 에리오나이트 및 카바자이트를 사용하여 메탄올 및 기타 산소화물을 에틸렌 및 프로필렌으로 전환시키는 것을 기술하고; 미국 특허 제 4,079,095 호는 ZSM-34를 사용하여 메탄올을 에틸렌 및 프로필렌과 같은 탄화수소 생성물로 전환시키는 것을 기술하고; 미국 특허 제 4,310,440 호는 결정성 알루미노포스페이트(종종 AlPO4로 지칭)를 사용하여 알콜로부터 저급 올레핀(들)을 제조하는 것을 기술한다.There are many different types of molecular sieves known to convert oxygenate-containing feedstock into one or more olefin (s). For example, US Pat. No. 5,367,100 describes the conversion of methanol to olefin (s) using zeolite, ZSM-5; US Patent No. 4,062,905 describes the conversion of methanol and other oxygenates to ethylene and propylene using crystalline aluminosilicate zeolites such as zeolite T, ZK5, erionite and carbazite; US Patent No. 4,079,095 describes the use of ZSM-34 to convert methanol into hydrocarbon products such as ethylene and propylene; US Pat. No. 4,310,440 describes the preparation of lower olefin (s) from alcohols using crystalline aluminophosphate (often referred to as AlPO 4 ).

메탄올을 올레핀(들)로 전환시키는 가장 유용한 분자 체의 일부는 실리코알루미노포스페이트(SAPO) 분자 체이다. 실리코알루미노포스페이트 분자 체는 [SiO4], [AlO4] 및 [PO4] 코너 공유 4구 유닛의 3차원적 미세공 결정성 골격 구조를 함유한다. SAPO 분자 체의 합성, 그의 촉매로의 배합 및 원료(특히 원료가 메탄올인 경우)를 올레핀으로 전환시키는 공정에서의 이들의 용도는 미국 특허 제 4,499,327 호, 제 4,677,242 호, 제 4,677,243 호, 제 4,873,390 호, 제 5,095,163 호, 제 5,714,662 호 및 제 6,166,282 호에 기술되어 있고, 이들 모두는 그 전체가본원에 참고로 인용된다.Some of the most useful molecular sieves that convert methanol to olefin (s) are silicoaluminophosphate (SAPO) molecular sieves. Silicoaluminophosphate molecular sieves contain three-dimensional microporous crystalline framework structures of [SiO 4 ], [AlO 4 ] and [PO 4 ] corner covalent four-sphere units. Their use in the synthesis of SAPO molecular sieves, blending them into catalysts and converting raw materials (particularly where the raw material is methanol) to olefins is described in US Pat. Nos. 4,499,327, 4,677,242, 4,677,243, 4,873,390 , 5,095,163, 5,714,662 and 6,166,282, all of which are incorporated herein by reference in their entirety.

메탄올의 올레핀으로의 전환에 사용되는 경우, SAPO 분자 체를 비롯한 대부분의 분자 체는 급속한 코킹(coking)을 겪으므로, 촉매를 고온 및 증기 환경에 노출시키는 것을 전형적으로 포함하는 잦은 재생이 필요하다. 그 결과, 현재의 메탄올 전환 촉매는 제한된 유효 수명을 갖는 경향이 있으므로, 특히 메탄올의 올레핀으로의 전환에 사용되는 경우 증가된 수명을 보이는 분자 체 촉매 조성물의 제공 필요성이 존재한다.When used for the conversion of methanol to olefins, most molecular sieves, including SAPO molecular sieves, undergo rapid coking and require frequent regeneration, which typically involves exposing the catalyst to high temperature and vapor environments. As a result, current methanol conversion catalysts tend to have a limited useful life, and therefore there is a need to provide molecular sieve catalyst compositions that exhibit increased life, especially when used in the conversion of methanol to olefins.

미국 특허 제 4,465,889 호는 메탄올, 다이메틸 에테르 또는 이들의 혼합물을 이소-C4화합물이 풍부한 탄화수소 생성물로 전환시키는데 사용되는 토륨, 지르코늄 또는 티타늄 금속 산화물로 함침된 실리칼라이트 분자 체를 포함하는 분자 체 조성물을 기술한다.US Pat. No. 4,465,889 discloses molecular sieves comprising silicalite molecular sieves impregnated with thorium, zirconium or titanium metal oxides used to convert methanol, dimethyl ether or mixtures thereof into hydrocarbon products rich in iso-C 4 compounds. Describe the composition.

미국 특허 제 6,180,828 호는 개질된 분자 체를 사용하여 메탄올 및 암모니아로부터 메틸아민을 제조하는 것을 기술하는데, 여기서 예컨대 실리코알루미노포스페이트 분자 체는 1종 이상의 개질제, 예컨대 산화 지르코늄, 산화 티타늄, 산화 이트륨, 몬트모릴로나이트 또는 카올리나이트와 조합된다.U. S. Patent No. 6,180, 828 describes the preparation of methylamines from methanol and ammonia using modified molecular sieves, where, for example, silicoaluminophosphate molecular sieves comprise one or more modifiers such as zirconium oxide, titanium oxide, yttrium oxide, In combination with montmorillonite or kaolinite.

미국 특허 제 5,417,949 호는 분자 체 및 금속 산화물 결합제를 사용하여 산소 함유 유출물(effluent) 중의 유독한 질소 산화물을 질소 및 물로 전환시키는 공정에 관한 것인데, 여기서 바람직한 결합제는 티타니아이고, 분자 체는 알루미노실리케이트이다.US Pat. No. 5,417,949 relates to a process for converting toxic nitrogen oxides in an oxygen containing effluent to nitrogen and water using molecular sieves and metal oxide binders, wherein the preferred binder is titania and the molecular sieve is alumino Silicate.

EP-A-312981 호는 무기 내화성(refractory) 매트릭스 물질에 매설된 제올라이트, 및 실리카-함유 지지 물질 상의 베릴륨, 마그네슘, 칼슘, 스트론튬, 바륨 또는 란탄의 산화물 중 1 종 이상, 바람직하게는 산화 마그네슘의 물리적 혼합물을 포함하는 촉매 조성물을 사용하여 바나듐-함유 탄화수소 공급 스트림을 크래킹하는 공정을 개시한다.EP-A-312981 discloses at least one of zeolites embedded in an inorganic refractory matrix material and oxides of beryllium, magnesium, calcium, strontium, barium or lanthanum on silica-containing support materials, preferably magnesium oxide. A process for cracking a vanadium-containing hydrocarbon feed stream is disclosed using a catalyst composition comprising a physical mixture.

강(Kang) 및 이뉘(Inui)의 문헌[Effects of decrease in number of acid sites located on the external surface of Ni-SAPO-34 crystalline catalyst by the mechanochemical method, Catalysis Letters 53, pages 171-176(1998)]은 형상 선택도가 증진될 수 있고, 코크 형성이 Ni-SAPO-34 상에서 메탄올의 에틸렌으로의 전환에서 미세구 비다공성 실리카 상의 MgO, CaO, BaO 또는 Cs2O, 가장 바람직하게는 BaO와 촉매를 밀링시켜 완화될 수 있다는 것을 개시한다.Kang and Inui, [ Effects of decrease in number of acid sites located on the external surface of Ni-SAPO-34 crystalline catalyst by the mechanochemical method , Catalysis Letters 53, pages 171-176 (1998)]. Silver shape selectivity can be enhanced and coke formation can be catalyzed by MgO, CaO, BaO or Cs 2 O, most preferably BaO and catalysts on microspheres nonporous silica in the conversion of methanol to ethylene on Ni-SAPO-34. It is disclosed that it can be relaxed by milling.

국제 공개 제 WO 98/29370 호는 란타나이드, 악티나이드, 스칸듐, 이트륨, 4족 금속, 5족 금속 또는 이들의 조합물로 구성된 군에서 선택되는 금속 함유 소공 비-제올라이트 분자 체 상에서 산소화물을 올레핀으로 전환시키는 것을 개시한다.WO 98/29370 discloses olefins of oxygenated on a metal containing pore non-zeolitic molecular sieve selected from the group consisting of lanthanides, actinides, scandium, yttrium, Group 4 metals, Group 5 metals or combinations thereof. Initiate the conversion to.

본 발명은 분자 체 조성물 및 이를 함유하는 촉매, 이런 조성물 및 촉매의 합성, 및 올레핀 제조를 위한 전환 공정에서의 이런 조성물 및 촉매의 용도에 관한 것이다.The present invention relates to molecular sieve compositions and catalysts containing them, the synthesis of such compositions and catalysts, and the use of such compositions and catalysts in conversion processes for the production of olefins.

한 양태에서, 본 발명은 원소 주기율표의 3족, 란탄계 원소 및 악티늄계 원소중에서 선택된 금속의 산화물 1 종 이상 및 분자 체를 포함하고, 상기 금속 산화물이 100℃에서 0.03mg(이산화탄소)/㎡(금속 산화물) 이상, 전형적으로는 0.04mg(이산화탄소)/㎡(금속 산화물) 이상인 이산화탄소 흡착량을 갖는 촉매 조성물이다.In one embodiment, the present invention comprises at least one oxide of a metal selected from Group 3, lanthanide and actinium-based elements and a molecular sieve of the Periodic Table of the Elements, wherein the metal oxide is 0.03 mg (carbon dioxide) / m 2 (at 100 ° C.). Metal oxide), typically a catalyst composition having a carbon dioxide adsorption amount of at least 0.04 mg (carbon dioxide) / m 2 (metal oxide).

바람직하게는, 촉매 조성물은 상기 금속 산화물과 상이한 결합제 및 매트릭스 물질 중 1종 이상을 추가로 포함할 수 있다.Preferably, the catalyst composition may further comprise at least one of a binder and a matrix material different from the metal oxide.

한 실시양태에서, 상기 금속 산화물은 산화 란탄, 산화 이트륨, 산화 스칸듐, 산화 세륨, 산화 프라세오다이뮴, 산화 네오다이뮴, 산화 토륨 및 이들의 혼합물중에서 선택된 1종 이상의 산화물을 포함한다.In one embodiment, the metal oxide comprises at least one oxide selected from lanthanum oxide, yttrium oxide, scandium oxide, cerium oxide, praseodymium oxide, neodymium oxide, thorium oxide, and mixtures thereof.

바람직하게는, 분자 체는 편리하게 실리코알루미노포스페이트를 포함할 수 있다.Preferably, the molecular sieve may conveniently comprise silicoaluminophosphate.

다른 양태에서, 본 발명은 3족 금속 산화물 및/또는 란탄계 또는 악티늄계 원소의 산화물, 결합제, 매트릭스 물질 및 실리코알루미노포스페이트 분자 체를 포함하는 촉매 조성물에 관한 것이다.In another aspect, the present invention relates to a catalyst composition comprising an oxide, a binder, a matrix material and a silicoaluminophosphate molecular sieve of a Group 3 metal oxide and / or a lanthanide or actinium based element.

또 다른 양태에서, 본 발명은, 원소 주기율표의 3족, 란탄계 원소 및 악티늄계 원소중에서 선택된 금속의 산화물 1종 이상을 포함하고 상기 금속 산화물이 100℃에서 0.03mg(이산화탄소)/㎡(금속 산화물 입자) 이상의 이산화탄소의 흡착량을 갖는 제 2 입자와, 분자 체를 포함하는 제 1 입자를 물리적으로 혼합하는 단계를 포함하는 촉매 조성물의 제조 방법에 관한 것이다.In another embodiment, the present invention comprises at least one oxide of a metal selected from Group 3, lanthanide and actinium-based elements of the Periodic Table of Elements, wherein the metal oxide is 0.03 mg (carbon dioxide) / m 2 (metal oxide) at 100 ° C. And a second particle having an adsorption amount of carbon dioxide or more, and a first particle including a molecular sieve.

바람직하게는, 상기 금속 산화물의 수화된 전구체를 상기 금속의 이온을 함유하는 용액으로부터 침전시키고, 수화된 전구체를 80℃ 이상의 온도에서 10일 이하 동안 열수적으로(hydrothermally) 처리한 후, 400 내지 900℃ 범위의 온도에서 수화된 전구체를 하소시켜 상기 제 2 입자를 제조한다.Preferably, the hydrated precursor of the metal oxide is precipitated from a solution containing ions of the metal, and the hydrated precursor is hydrothermally treated at a temperature of 80 ° C. or higher for up to 10 days, and then 400 to 900 The second particles are prepared by calcining the hydrated precursor at a temperature in the range of ° C.

다른 양태에서, 본 발명은, 원소 주기율표의 3족, 란탄계 원소 및 악티늄계 원소중에서 선택된 금속의 산화물 1종 이상 및 분자 체를 포함하고, 상기 금속 산화물이 100℃에서 0.03mg(이산화탄소)/㎡(금속 산화물) 이상의 이산화탄소의 흡착량을 갖는 촉매 조성물의 존재하에서 원료, 예컨대 산소화물, 편리하게는 알콜, 예컨대 메탄올을 1종 이상의 올레핀(들)으로 전환시켜 올레핀(들)을 제조하는 방법에 관한 것이다.In another embodiment, the present invention comprises at least one oxide of a metal selected from Group 3, lanthanide and actinium-based elements and a molecular sieve of the Periodic Table of the Elements, wherein the metal oxide is 0.03 mg (carbon dioxide) / m 2 at 100 ° C. A method for preparing olefin (s) by converting a raw material, such as an oxygenate, conveniently an alcohol, such as methanol, into one or more olefin (s) in the presence of a catalyst composition having an adsorption amount of carbon dioxide above (metal oxide). will be.

다른 실시양태에서, 촉매 조성물은 1보다 큰, 예컨대 1.5 보다 큰 수명 증진 지수(LEI)를 갖는다. 본원에서 LEI는 촉매 활성 금속 산화물의 부존재하에 동일한 촉매 조성물의 수명에 대한 촉매 조성물의 수명의 비로서 정의된다.In other embodiments, the catalyst composition has a lifetime enhancement index (LEI) of greater than 1, such as greater than 1.5. LEI is defined herein as the ratio of the lifetime of the catalyst composition to the lifetime of the same catalyst composition in the absence of catalytically active metal oxides.

본 발명은 분자 체 촉매 조성물, 및 탄화수소 원료, 특히 산소화된 원료를 올레핀(들)으로 전환시키는 공정에서의 이들의 용도에 관한 것이다. 분자 체를 원소 주기율표의 3족(문헌[CRC Handbook of Chemistry and Physics, 78th Edition, CRC Press, Boca Raton, Florida(1997)]에 기술된 IUPAC 형식을 이용함) 및/또는 란탄계 또는 악티늄계 원소의 산화물중에서 선택된 1종 이상의 활성 금속 산화물과 조합시키는 것에 의해, 산소화물, 보다 구체적으로는 메탄올과 같은 원료를 올레핀(들)으로 전환시키는 공정에 사용시에 증진된 올레핀 수득 및/또는 보다 연장된 수명을 갖는 촉매 조성물이 생성됨이 밝혀졌다. 또한, 생성된 촉매 조성물은 보다 높은 프로필렌 선택도를 갖고, 적은 양의 원치 않는 에탄 및 프로판과 기타 바람직하지 않은 화합물, 예컨대 알데히드 및 케톤, 구체적으로는 아세트알데히드와 함께 수득되는 경향이 있다.The present invention relates to molecular sieve catalyst compositions and their use in the process of converting hydrocarbon feedstocks, especially oxygenated feedstocks, to olefin (s). Molecular sieves can be prepared from Group 3 of the Periodic Table of Elements (using the IUPAC format described in CRC Handbook of Chemistry and Physics, 78th Edition, CRC Press, Boca Raton, Florida (1997)) and / or of lanthanide or actinium-based elements. By combining with at least one active metal oxide selected from the oxides, enhanced olefin yield and / or longer lifespan can be obtained in use in the process of converting oxygenates, more particularly raw materials such as methanol, to olefin (s). It was found that a catalyst composition having was produced. The resulting catalyst composition also has higher propylene selectivity and tends to be obtained with small amounts of unwanted ethane and propane and other undesirable compounds such as aldehydes and ketones, specifically acetaldehyde.

분자 체Molecular sieve

분자 체는 제올라이트 명명법에 대한 IUPAC 위원회의 규칙에 따라 국제 제올라이트 협회의 구조 위원회에 의해 분류되어 왔다. 이 분류에 따르면, 구조가 정립되어진 골격형 제올라이트 및 제올라이트형 분자 체에 3문자 코드가 부여되고, 전체로서 본원에 참고로 인용되는 문헌[the Atlas of Zeolite Framework Types, 5th edition, Elsevier, London, England (2001)]에 기술되어 있다.Molecular sieves have been classified by the Structural Committee of the International Zeolite Association in accordance with the IUPAC Committee's rules for zeolite nomenclature. According to this classification, the three-letter code is assigned to framework-structured zeolite and zeolite molecular sieves and is incorporated herein by reference in its entirety, the Atlas of Zeolite Framework Types, 5th edition, Elsevier, London, England (2001).

특히 산소화물을 함유하는 원료를 올레핀(들)으로 전환시키는 용도에서 바람직한 분자 체의 비제한적 예는 골격형 AEL, AEI, BEA, CHA, EDI, FAU, FER, GIS, LTA, LTL, MER, MFI, MOR, MTT, MWW, TAM 및 TON이다. 바람직한 실시양태에서, 본 발명의 촉매 조성물에 사용된 분자 체는 AEI 토폴로지(topology) 또는 CHA 토폴로지이거나 이들의 조합을 갖고, 가장 바람직하게는 CHA 토폴로지를 갖는다.Non-limiting examples of preferred molecular sieves, particularly for the use of oxygenates containing raw materials to olefin (s), are skeletal AEL, AEI, BEA, CHA, EDI, FAU, FER, GIS, LTA, LTL, MER, MFI , MOR, MTT, MWW, TAM and TON. In a preferred embodiment, the molecular sieve used in the catalyst composition of the present invention has an AEI topology or a CHA topology or a combination thereof, most preferably has a CHA topology.

결정성 분자 체 물질은 코너-공유 [TO4] 사구체(여기서 T는 4구적으로 배위된 임의의 양이온이다), 예컨대 [SiO4], [AlO4] 및/또는 [PO4] 사구 유닛의 3차원적 4-연결 골격 구조를 갖는다. 본 발명에 유용한 분자 체는 [AlO4] 및 [PO4] 사구 유닛, 즉 알루미노포스페이트(AIPO) 분자 체, 또는 [SiO4], [AlO4] 및 [PO4] 사구 유닛, 즉 실리코알루미노포스페이트(SAPO) 분자 체를 포함하는 골격을 간편하게 포함한다. 가장 바람직하게는, 본원에 유용한 분자 체는 실리코알루미노포스페이트(SAPO) 분자 체 또는 치환된, 바람직하게는 금속 치환된 SAPO 분자 체이다. 적당한 금속 치환기의 예는 란탄계 원소: 란탄, 세륨, 프라세오다이뮴, 네오다이뮴, 사마륨, 유로퓸, 가돌리늄, 에르븀, 다이스프로슘, 홀뮴, 툴륨, 이터븀 및 루테튬; 스칸듐 또는 이트륨, 원소 주기율표의 4족 내지 12족 전이 금속, 또는 이들 금속 종 중 임의의 혼합물을 포함하는, 원소 주기율표의 1족 알칼리 금속, 원소 주기율표의 2족 알칼리 토금속, 원소 주기율표의 3족 희토 금속이다.The crystalline molecular sieve material is a corner-covalent [TO 4 ] glomerulus where T is any quaternary coordinated cation, such as 3 of [SiO 4 ], [AlO 4 ] and / or [PO 4 ] glomerular units. It has a four-dimensional skeletal structure. Molecular sieves useful in the present invention are [AlO 4 ] and [PO 4 ] glomerular units, ie aluminophosphate (AIPO) molecular sieves, or [SiO 4 ], [AlO 4 ] and [PO 4 ] glomerular units, ie silicoalumi It simply includes a backbone comprising nophosphate (SAPO) molecular sieve. Most preferably, molecular sieves useful herein are silicoaluminophosphate (SAPO) molecular sieves or substituted, preferably metal substituted SAPO molecular sieves. Examples of suitable metal substituents include lanthanide elements: lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, erbium, dysprosium, holmium, thulium, ytterbium and lutetium; Group 1 alkali metals of the periodic table of elements, group 2 alkaline earth metals of the periodic table of elements, group 3 rare earth metals of the periodic table of elements, including scandium or yttrium, group 4 to 12 transition metals of the periodic table of elements, or any mixture of these metal species to be.

바람직하게는, 본원에 사용된 분자 체는 [TO4] 사구의 8원 고리에 의해 정의되는 공극 시스템을 갖으며, 5Å 미만, 예컨대 3Å 내지 5Å의 범위, 예컨대 3Å 내지 4.5Å 및 특히 3.5Å 내지 4.2Å의 평균 공극 크기를 갖는다.Preferably, the molecular sieve as used herein has a pore system defined by an 8 membered ring of [TO 4 ] glomerulus and has a range of less than 5 ms, such as in the range of 3 ms to 5 ms, such as 3 ms to 4.5 ms and especially 3.5 ms to It has an average pore size of 4.2 mm 3.

본원에 유용한 SAPO 및 AIPO 분자 체의 비제한적 예는 SAPO-5, SAPO-8, SAPO-11, SAPO-16, SAPO-17, SAPO-18, SAPO-20, SAPO-31, SAPO-34, SAPO-35, SAPO-36, SAPO-37, SAPO-40, SAPO-41, SAPO-42, SAPO-44 (미국 특허 제 6,162,415 호), SAPO-47, SAPO-56, A1PO-5, AlPO-11, AlPO-18, A1PO-31, A1PO-34, AlPO-36, A1PO-37, AlPO-46, 및 이들의 금속 함유 분자 체 중 하나 또는 이들의 조합물을 포함한다. 당연히, 특히 유용한 분자 체는 SAPO-18, SAPO-34, SAPO-35, SAPO-44, SAPO-56, A1PO-18 및 A1PO-34 및 이들의 금속 함유 분자 체 중 하나 또는 이들의 조합물, 예컨대 SAPO-18, SAPO-34, AlPO-34 및 A1PO-18 및 이들의 금속 함유 분자 체 중 하나 또는 이들의 조합물, 특히 SAPO-34 및 A1PO-18 및 이들의 금속 함유 분자 체 중 하나 또는 이들의 조합물을 포함한다.Non-limiting examples of SAPO and AIPO molecular sieves useful herein include SAPO-5, SAPO-8, SAPO-11, SAPO-16, SAPO-17, SAPO-18, SAPO-20, SAPO-31, SAPO-34, SAPO -35, SAPO-36, SAPO-37, SAPO-40, SAPO-41, SAPO-42, SAPO-44 (US Pat. No. 6,162,415), SAPO-47, SAPO-56, A1PO-5, AlPO-11, AlPO-18, A1PO-31, A1PO-34, AlPO-36, A1PO-37, AlPO-46, and metal-containing molecular sieves thereof, or combinations thereof. Of course, particularly useful molecular sieves are SAPO-18, SAPO-34, SAPO-35, SAPO-44, SAPO-56, A1PO-18 and A1PO-34 and their metal-containing molecular sieves or combinations thereof, such as One or a combination of SAPO-18, SAPO-34, AlPO-34 and A1PO-18 and their metal containing molecular sieves, in particular one or their SAPO-34 and A1PO-18 and their metal containing molecular sieves Combinations.

실시양태에서, 분자 체는 하나의 분자 체 조성물 내에 둘 이상의 구별되는 결정 상을 갖는 연정(intergrowth) 물질이다. 특히, 연정 분자 체는 전체로서 본원에 참고로 인용된 미국 특허 출원 공개 제 2002-0165089 호 및 1998년 4월 16일에 국제 공개 제 WO 98/15496 호에 기술되어 있다. 예컨대, SAPO-18, AIPO-18 및 RUW-18은 AEI 구조 유형을 갖고, SAPO-34는 CHA 골격형을 갖는다. 따라서, 본원에서 사용된 분자 체는 특히 미국 특허 출원 공개 제 2002-0165089 호에 기술된 DIFFaX법에 의해 측정되는 CHA 골격형 대 AEI 골격형의 비가 1:1 보다 큰, AEI 및 CHA 골격형의 연정 상 하나 이상을 포함할 수 있다.In an embodiment, the molecular sieve is an intergrowth material having two or more distinct crystal phases in one molecular sieve composition. In particular, coalescing molecular sieves are described in US Patent Application Publication Nos. 2002-0165089 and International Publication No. WO 98/15496, issued April 16, 1998, which are hereby incorporated by reference in their entirety. For example, SAPO-18, AIPO-18 and RUW-18 have an AEI structure type, and SAPO-34 has a CHA skeleton. Thus, the molecular sieves used herein provide for the association of AEI and CHA skeletons, in particular the ratio of the CHA skeleton to the AEI skeleton determined by the DIFFaX method described in US Patent Application Publication No. 2002-0165089. It may include one or more phases.

바람직하게는, 분자 체가 실리코알루미노포스페이트인 경우, 분자 체는 0.65 이하, 예컨대 0.65 내지 0.10, 바람직하게는 0.40 내지 0.10, 보다 바람직하게는 0.32 내지 0.10, 가장 바람직하게는 0.32 내지 0.15의 Si/Al 비를 갖는다.Preferably, if the molecular sieve is silicoaluminophosphate, the molecular sieve is Si / Al of 0.65 or less, such as 0.65 to 0.10, preferably 0.40 to 0.10, more preferably 0.32 to 0.10, most preferably 0.32 to 0.15. Have rain.

금속 산화물Metal oxide

본원에 유용한 금속 산화물은 100℃에서 이산화탄소 흡착량이 0.03 mg(이산화탄소)/㎡(금속 산화물) 이상, 예컨대 0.04 (이산화탄소)/㎡(금속 산화물) 이상인 3족 금속 및 란탄계 및 악티늄계 금속의 산화물이다. 금속 산화물의 이산화탄소 흡착량에서의 상한은 중요하지 않지만, 일반적으로 본원에 유용한 금속 산화물은 100℃에서 이산화탄소 흡착량이 10mg(이산화탄소)/㎡(금속 산화물) 미만, 예컨대 5mg(이산화탄소)/㎡(금속 산화물) 미만일 것이다. 전형적으로, 본원에 유용한 금속 산화물은 이산화탄소 흡착량이 0.05 내지 1mg(이산화탄소)/㎡(금속 산화물)이다. 분자 체와 조합하여 사용되는 경우, 이런 활성 금속 산화물은 촉매적 전환 공정에서, 특히 산소화물을 올레핀으로 전환시키는 것에서 잇점을 제공한다.Metal oxides useful herein are oxides of Group 3 metals and lanthanum and actinium metals with carbon dioxide adsorption at 100 ° C. of at least 0.03 mg (carbon dioxide) / m 2 (metal oxide), such as at least 0.04 (carbon dioxide) / m 2 (metal oxide). . Although the upper limit in the carbon dioxide adsorption amount of the metal oxide is not important, generally metal oxides useful herein have a carbon dioxide adsorption amount of less than 10 mg (carbon dioxide) / m 2 (metal oxide), such as 5 mg (carbon dioxide) / m 2 (metal oxide) at 100 ° C. Will be less than). Typically, metal oxides useful herein have a carbon dioxide adsorption amount of 0.05 to 1 mg (carbon dioxide) / m 2 (metal oxide). When used in combination with molecular sieves, such active metal oxides offer advantages in catalytic conversion processes, especially in the conversion of oxygenates to olefins.

금속 산화물의 이산화탄소 흡착량을 측정하기 위해, 다음의 절차가 채택된다. 일정한 중량, 즉 "건조 중량"이 수득될 때가지 유동 공기 중에서 200℃ 내지 500℃로 샘플을 가열시켜 금속 산화물의 샘플을 탈수시킨다. 그 다음 샘플의 온도를 100℃로 감소시키고, 일정한 중량이 수득될 때까지 반복하여 이산화탄소를 연속적으로 또는 단속적으로 샘플 위로 통과시킨다. 샘플의 건조 중량을 기준으로 샘플의 중량에서의 증가(mg)/샘플의 중량(mg)이 흡착된 이산화탄소의 양이다.In order to measure the carbon dioxide adsorption amount of the metal oxide, the following procedure is adopted. The sample of the metal oxide is dehydrated by heating the sample to 200 ° C. to 500 ° C. in flowing air until a constant weight, ie “dry weight” is obtained. The temperature of the sample is then reduced to 100 ° C. and the carbon dioxide is continuously or intermittently passed over the sample repeatedly until a constant weight is obtained. The increase in weight of the sample (mg) / weight of the sample (mg) based on the dry weight of the sample is the amount of carbon dioxide adsorbed.

아래 보고된 실시예에서, 이산화탄소 흡착량은 주변 압력 하에서 메틀러(Mettler) TGA/SDTA 851 열중량 분석 시스템을 이용하여 측정한다. 금속 산화물 샘플을 유동 공기에서 1시간 동안 500℃로 탈수시킨다. 그 다음 샘플의 온도를 유동 헬륨에서 100℃로 감소시킨다. 샘플의 온도가 유동 헬륨에서 희망 흡착 온도에 평형하게 된 후, 샘플에 대해 10 중량%의 이산화탄소와 잔량의 헬륨을 포함하는 기체 혼합물의 20회의 개별 펄스(약 12 초/펄스)를 가한다. 흡착 기체의 각 펄스 후에, 금속 산화물 샘플을 유동 헬륨으로 3분간 플러싱(flushing)한다. 500℃에서의 처리 후 흡착제 중량을 기준으로 흡착제 1mg 당 샘플의 중량(mg)의 증가가 흡착된 이산화탄소의 양이다. 샘플의 표면적은 ASTM D3663에 공개된 부루나우어(Brunauer), 엠멧(Emmett) 및 텔러(Teller)(BET)의 방법에 따라서 측정되어 이산화탄소(mg)/금속 산화물 면적(㎡)으로 표시되는 이산화탄소 흡착량을 제공한다.In the examples reported below, the carbon dioxide adsorption amount is measured using a Mettler TGA / SDTA 851 thermogravimetric system under ambient pressure. The metal oxide sample is dehydrated at 500 ° C. in flowing air for 1 hour. The temperature of the sample is then reduced to 100 ° C. in flowing helium. After the temperature of the sample is equilibrated to the desired adsorption temperature in the flowing helium, 20 individual pulses (about 12 seconds / pulse) of a gas mixture comprising 10% by weight of carbon dioxide and the remaining amount of helium are applied to the sample. After each pulse of adsorbent gas, the metal oxide sample is flushed with flowing helium for 3 minutes. The increase in weight (mg) of sample per mg of adsorbent based on adsorbent weight after treatment at 500 ° C. is the amount of carbon dioxide adsorbed. The surface area of the sample was measured according to the methods of Brunauer, Emmet and Teller (BET) as disclosed in ASTM D3663, and the carbon dioxide adsorption amount expressed in carbon dioxide (mg) / metal oxide area (m 2). To provide.

바람직한 3족 금속 산화물은 스칸듐, 이트륨 및 란탄의 산화물을 포함하고, 바람직한 란탄계 또는 악티늄계 금속의 산화물은 세륨, 프라세오다이뮴, 네오다이뮴, 사마륨, 유로퓸, 갈도리늄, 테르븀, 다이스프로슘, 홀뮴, 에르븀, 툴륨, 이터븀, 루테튬 및 토륨이다. 가장 바람직한 활성 금속 산화물은 산화 스칸듐, 산화란탄, 산화 이트륨, 산화 세륨, 산화 프라세오다이뮴, 산화 네오다이뮴 및 이들의 혼합물이고, 특히 산화 란탄 및 산화 세륨의 혼합물이다.Preferred Group 3 metal oxides include oxides of scandium, yttrium and lanthanum, and preferred oxides of lanthanum or actinium metals include cerium, praseodymium, neodymium, samarium, europium, galdorlinium, terbium, dyspro Calcium, holmium, erbium, thulium, ytterbium, lutetium and thorium. Most preferred active metal oxides are scandium oxide, lanthanum oxide, yttrium oxide, cerium oxide, praseodymium oxide, neodymium oxide and mixtures thereof, in particular mixtures of lanthanum oxide and cerium oxide.

한 실시양태에서, 유용한 금속 산화물은 3족 금속 및/또는 란탄계 및 악티늄계 금속의 산화물로서, 촉매 조성물에서 분자 체와 조합되어 사용되는 경우 촉매 조성물의 유효 수명의 연장에 효과적이다. 촉매 수명 연장의 정량(quantification)은 수학식 1에 의해 정의되는 수명 증진 지수(LEI)에 의해 측정된다:In one embodiment, useful metal oxides are oxides of Group 3 metals and / or lanthanum and actinium-based metals that are effective in extending the useful life of the catalyst composition when used in combination with molecular sieves in the catalyst composition. Quantification of catalyst life extension is measured by the Life Improvement Index (LEI) defined by Equation 1:

상기 식에서, 동일한 조건 하의 동일한 공정에서, 촉매 또는 촉매 조성물의 수명은 촉매 조성물에 의한 원료의 전환이 정해진 수준, 예건대 10% 아래로 약간 떨어질 때까지 촉매 조성물 1g 당 가공된 원료의 축적량이다. 비활성 금속 산화물은 촉매 조성물의 수명에 거의 또는 전혀 영향이 없거나, 촉매 조성물의 수명을 단축시키고, 따라서 1 이하의 LEI를 갖게 될 것이다. 본 발명의 활성 금속 산화물은 란탄계 및 악티늄계의 산화물을 포함하는 3족 금속 산화물로서, 분자 체와 조합하여 사용되는 경우, 1보다 큰 LEI를 갖는 분자 체 촉매 조성물을 제공하는 금속 산화물이다. 정의에 의해, 활성 금속 산화물과 조합되어지지 않는 분자 체 촉매 조성물은 1.0의 LEI를 갖게 될 것이다.In the above formula, in the same process under the same conditions, the lifetime of the catalyst or catalyst composition is the accumulation of processed raw material per gram of catalyst composition until the conversion of the raw material by the catalyst composition falls slightly below a predetermined level, eg 10%. Inert metal oxides have little or no effect on the life of the catalyst composition, or shorten the life of the catalyst composition and will therefore have an LEI of 1 or less. The active metal oxide of the present invention is a Group 3 metal oxide comprising lanthanum and actinium oxides, and when used in combination with a molecular sieve, it is a metal oxide that provides a molecular sieve catalyst composition having an LEI of greater than one. By definition, molecular sieve catalyst compositions that are not combined with active metal oxides will have an LEI of 1.0.

분자 체와 조합된 활성 금속 산화물을 포함시키는 경우, 촉매 조성물은 1 내지 50보다 큰, 예컨대 1.5 내지 20의 범위의 LEI를 갖는 촉매 조성물이 생성될 수있다는 것이 밝혀졌다. 전형적으로 본 발명에 따른 촉매 조성물은 1.1보다 큰 LEI 값, 예컨대 1.2 내지 15, 보다 구체적으로는 1.3보다 큰, 예컨대 1.5보다 큰, 예컨대 1.7보다 큰, 예컨대 2보다 큰 LEI 값을 보인다.When including active metal oxides in combination with molecular sieves, it has been found that catalyst compositions can be produced having LEIs greater than 1-50, such as in the range of 1.5-20. Typically the catalyst composition according to the invention exhibits LEI values greater than 1.1, such as 1.2 to 15, more specifically greater than 1.3, such as greater than 1.5, such as greater than 1.7, such as greater than 2.

활성 금속 산화물(들)은 다양한 방법을 이용하여 제조될 수 있다. 활성 금속 산화물은 활성 금속 산화물 전구체, 예컨대 금속 염, 예컨대 할라이드, 나이트레이트, 설페이트 또는 아세테이트로부터 제조되는 것이 바람직하다. 금속 산화물의 다른 적당한 공급원은 하소 중에 금속 산화물을 형성하는 화합물, 예컨대 옥시클로라이드 및 나이트레이트를 포함한다. 또한, 알콕사이드는 3족 금속 산화물, 예컨대 이트륨 n-프로폭사이드의 적당한 공급원이다.The active metal oxide (s) can be prepared using various methods. Active metal oxides are preferably prepared from active metal oxide precursors such as metal salts such as halides, nitrates, sulfates or acetates. Other suitable sources of metal oxides include compounds that form metal oxides during calcination, such as oxychloride and nitrate. Alkoxides are also suitable sources of Group 3 metal oxides, such as yttrium n-propoxide.

한 실시양태에서, 3족 금속 산화물 또는 란탄계 또는 악티늄계의 산화물은 80℃ 이상, 바람직하게는 100℃ 이상의 온도를 포함하는 조건 하에서 열수적으로 처리된다. 열수적 처리는 전형적으로 대기압 보다 큰 압력에서 밀봉된 용기에서 일어날 수 있다. 그러나, 바람직한 처리 모드는 환류 조건 하에서 개방 용기를 사용하는 것을 포함한다. 예컨대 액체 환류 및/또는 교반의 운동에 의해 액체 매질에서 3족 금속 산화물 또는 란탄계 또는 악티늄계의 산화물을 교반하는 것은 수화된 산화물과 액체 매질의 유효한 상호작용을 증진한다. 수화된 산화물과 액체 매질의 접촉 기간은 편리하게는 1시간 이상, 예컨대 8시간 이상이다. 이런 처리를 위한 액체 매질은 전형적으로 약 6 이상, 예컨대 8 이상의 pH를 갖는다. 적당한 액체 매질의 비제한적 예는 물, 수산화물 용액(NH4 +, Na+, K+, Mg+및 Ca2+의 수산화물을 포함), 탄산염 및 중탄산염 용액(NH4 +, Na+, K+, Mg+및 Ca2+의 탄산염 및 중탄산염을 포함), 피리딘 및 그의 유도체, 알킬/하이드록실 아민을 포함한다.In one embodiment, the Group 3 metal oxide or the lanthanum or actinium-based oxides are hydrothermally treated under conditions comprising a temperature of at least 80 ° C, preferably at least 100 ° C. Hydrothermal treatment can typically take place in a sealed vessel at a pressure greater than atmospheric pressure. However, preferred modes of treatment include using open containers under reflux conditions. Stirring Group III metal oxides or lanthanide or actinium based oxides in the liquid medium, eg by the movement of liquid reflux and / or agitation, promotes effective interaction of the hydrated oxide with the liquid medium. The contact period of the hydrated oxide with the liquid medium is conveniently at least 1 hour, such as at least 8 hours. The liquid medium for this treatment typically has a pH of at least about 6, such as at least 8. Non-limiting examples of suitable liquid media include water, hydroxide solutions (including hydroxides of NH 4 + , Na + , K + , Mg + and Ca 2+ ), carbonate and bicarbonate solutions (NH 4 + , Na + , K + , Carbonates and bicarbonates of Mg + and Ca 2+ ), pyridine and derivatives thereof, alkyl / hydroxyl amines.

다른 실시양태에서, 액체 용액, 예컨대 금속 염과 같은 금속 이온의 공급원을 포함하는 수용액을 고체 산화물 물질의 수화된 전구체의 침전을 일으키기에 충분한 조건으로 처리하여, 예컨대 용액에 침전제를 첨가시켜 활성 3족 금속 산화물 또는 란탄계 또는 악티늄계의 산화물이 제조된다. 편리하게는, 침전은 7을 초과하는 pH에서 수행된다. 예컨대, 침전제는 수산화나트륨 또는 수산화암모늄과 같은 염기일 수 있다.In another embodiment, a liquid solution, such as an aqueous solution comprising a source of metal ions, such as a metal salt, is treated under conditions sufficient to cause precipitation of the hydrated precursor of the solid oxide material, such as by adding a precipitant to the solution to activate the active group III. Metal oxides or oxides of lanthanum or actinium are prepared. Conveniently, precipitation is carried out at a pH above 7. For example, the precipitant may be a base such as sodium hydroxide or ammonium hydroxide.

침전 중에 용액이 유지하는 온도는 일반적으로 200℃ 이하, 예컨대 0℃에서 200℃의 범위이다. 침전을 위한 구체적인 온도 범위는 20℃ 내지 100℃이다. 그 후 생성된 겔은 80℃ 이상, 바람직하게는 100℃ 이상의 온도에서 열수적으로 처리된다. 열수적 처리는 전형적으로 대기압에서 일어난다. 한 실시양태에서 겔은 10일 이하, 예컨대 5일 이하, 예컨대 3일 이하 동안 열수적으로 처리된다.The temperature the solution maintains during precipitation is generally in the range of 200 ° C. or lower, such as 0 ° C. to 200 ° C. The specific temperature range for precipitation is 20 ° C. to 100 ° C. The resulting gel is then hydrothermally treated at a temperature of at least 80 ° C., preferably at least 100 ° C. Hydrothermal treatment typically takes place at atmospheric pressure. In one embodiment the gel is hydrothermally treated for up to 10 days, such as up to 5 days, such as up to 3 days.

그 다음 금속 산화물(들)의 수화된 전구체는 예컨대 여과 또는 원심분리에 의해 회수되고, 세척되고, 건조된다. 그 다음 생성된 물질은 예컨대 산화 분위기에서, 400℃ 이상, 예컨대 500℃ 이상, 예컨대 600℃ 내지 900℃, 및 특히 650℃ 내지 800℃의 온도에서 하소되어 활성 금속 산화물 또는 활성 혼합 금속 산화물을 형성할 수 있다. 하소 시간은 전형적으로 48시간 이하, 예컨대 0.5 내지 24시간, 예컨대 1.0 내지 10 시간이다. 한 실시양태에서, 하소는 약 700℃에서 1시간 내지3시간 동안 실시된다.The hydrated precursor of the metal oxide (s) is then recovered, washed and dried, for example by filtration or centrifugation. The resulting material is then calcined at temperatures of at least 400 ° C., such as at least 500 ° C., such as 600 ° C. to 900 ° C., and especially 650 ° C. to 800 ° C., in an oxidizing atmosphere, for example, to form active metal oxides or active mixed metal oxides. Can be. The calcination time is typically 48 hours or less, such as 0.5 to 24 hours, such as 1.0 to 10 hours. In one embodiment, the calcination is conducted at about 700 ° C. for 1 to 3 hours.

촉매 조성물Catalyst composition

본 발명의 촉매 조성물은 이전에 기술된 분자 체 중 임의의 1종 및 상기 기술된 활성 금속 산화물 중 1종 이상을, 임의적으로는 활성 금속 산화물(들)과 상이한 결합제 및/또는 매트릭스 물질과 함께 포함한다. 전형적으로, 촉매 조성물 중 활성 금속 산화물에 대한 분자 체의 중량 비는 5 중량% 내지 800 중량%, 바람직하게는 10 중량% 내지 600 중량%, 보다 바람직하게는 20 중량% 내지 500 중량%, 가장 바람직하게는 30 중량% 내지 400 중량%의 범위이다.The catalyst composition of the present invention comprises any one of the molecular sieves previously described and one or more of the active metal oxides described above, optionally with a binder and / or matrix material different from the active metal oxide (s). do. Typically, the weight ratio of molecular sieve to active metal oxide in the catalyst composition is 5% to 800% by weight, preferably 10% to 600% by weight, more preferably 20% to 500% by weight, most preferably Preferably in the range of 30% to 400% by weight.

본 발명의 촉매 조성물의 형성에 유용한 많은 여러 가지 결합제가 있다. 단독형 또는 조합 형태로 유용한 결합제의 비제한적인 예는 다양한 유형의 수화된 알루미나, 실리카 및/또는 기타 무기 산화물 졸을 포함한다. 한 바람직한 알루미나 함유 졸은 알루미늄 클로로하이드롤이다. 무기 산화물 졸이 합성된 분자 체 및 기타 물질을, 예컨대 매트릭스와 함께, 특히 열 처리 후에, 결합하는 접착제(glue)와 같이 작용한다. 가열 시에, 바람직하게는 저 점도를 갖는 무기 산화물 졸이 무기 산화물 결합제 성분으로 전환된다. 예컨대, 알루미나 졸은 열 처리 후에 산화 알루미늄 결합제로 전환될 것이다.There are many different binders useful for forming the catalyst composition of the present invention. Non-limiting examples of binders useful in singular or combination form include various types of hydrated alumina, silica and / or other inorganic oxide sol. One preferred alumina containing sol is aluminum chlorohydrol. The molecular sieves and other materials from which the inorganic oxide sol has been synthesized act as glue, for example together with the matrix, in particular after heat treatment. Upon heating, the inorganic oxide sol, which preferably has a low viscosity, is converted to the inorganic oxide binder component. For example, the alumina sol will be converted to aluminum oxide binder after heat treatment.

알루미늄 클로로하이드롤, 클로라이드 반대 이온을 함유하는 하이드록실화된 알루미늄계 졸은 화학식 AlmOn(OH)oClp·x(H2O){이 식에서, m은 1 내지 20이고, n은 1 내지 8이고, o는 5 내지 40이고, p는 2 내지 15이고, x는 0 내지 30이다}을 갖는다. 한 실시양태에서, 결합제는 문헌[G. M.Wolterman, et al. , Stud. Surf. Sci. and Catal. , 76, pages 105- 144 (1993)]에 기술된 바와 같은 Al13O4(OH)24Cl7·12(H2O)이다. 다른 실시양태에서, 1종 이상의 결합제는 산화 알루미늄, γ-알루미나, 보에마이트, 다이아스포 및 전이 알루미나 예컨대 α-알루미나, β-알루미나, γ-알루미나, δ-알루미나, ε-알루미나, κ-알루미나, ρ-알루미나, 삼수산화 알루미늄 예컨대 깁사이트, 바이어라이트, 노르드스트란다이트, 도엘라이트 및 이들의 혼합물과 같은 기타 알루미나 물질 1종 이상과 조합될 수 있다.The hydroxylated aluminum sol containing aluminum chlorohydrol, chloride counter ion has the formula Al m O n (OH) o Cl p x (H 2 O) {wherein m is 1-20 and n is 1 to 8, o is 5 to 40, p is 2 to 15 and x is 0 to 30}. In one embodiment, the binder is described in GMWolterman, et al. , Stud. Surf. Sci. and Catal. , 76, pages 105-144 (1993), Al 13 O 4 (OH) 24 Cl 7 .12 (H 2 O). In other embodiments, the one or more binders are aluminum oxide, γ-alumina, boehmite, diaspora and transitional aluminas such as α-alumina, β-alumina, γ-alumina, δ-alumina, ε-alumina, κ-alumina , ρ-alumina, aluminum trihydroxide such as one or more other alumina materials such as gibbsite, vialite, nordrandite, doelite and mixtures thereof.

상업적으로 이용가능한 콜로이드 알루미나 졸의 비제한적인 예는 날코 케미칼 코포레이션(일리노이주 나퍼빌)으로부터 입수가능한 Nalco 8676 및 나이아콜 나노 테크놀로지사(메사추세스 애쉬랜드)로부터 입수가능한 Nyacol AL20DW을 포함한다.Non-limiting examples of commercially available colloidal alumina sol include Nalco 8676 available from Nalco Chemical Corp., Naperville, Ill. And Nyacol AL20DW, available from Niacol Nano Technologies, Massachusetts Ashland.

촉매 조성물이 매트릭스 물질을 함유하는 경우, 이는 활성 금속 산화물 및 임의의 결합제와 상이한 것이 바람직하다. 전형적으로 매트릭스 물질은 전체적인 촉매 비용의 감소, 재생 도중 열 싱크(thermal sink)로서의 작용, 촉매 조성물의 고밀화(densifying), 촉매의 물리적 성질 예컨대 압입(crush) 강도 및 내마멸성의 증가에 효과적이다.If the catalyst composition contains a matrix material, it is preferably different from the active metal oxide and any binder. Typically the matrix material is effective in reducing the overall catalyst cost, acting as a thermal sink during regeneration, densifying the catalyst composition, increasing the physical properties of the catalyst such as crush strength and wear resistance.

본원에 유용한 매트릭스 물질의 비제한적인 예는 베릴리아, 석영, 실리카 또는 졸, 및 이들의 혼합물, 예컨대 실리카-마그네시아, 실리카-지르코니아, 실리카-티타니아, 실리카-알루미나 및 실리카-알루미나-토리아를 포함하는 1종 이상의 비활성 금속 산화물을 포함한다. 실시양태에서, 매트릭스 물질은 몬트모릴로나이트 및 고령토의 부류의 것들과 같은 천연 점토이다. 이들 천연 점토는 서브벤토나이트 및 예컨대 딕시(Dixie), 맥나미(McNamee), 조지아 및 플로리다 점토로 알려진 고령토류를 포함한다. 기타 매트릭스 물질의 비제한적인 예는 할로이사이트, 카올리나이트, 딕카이트, 나크라이트, 또는 아녹사이트를 포함한다. 점토와 같은 매트릭스 물질은 하소 및/또는 산 처리 및/또는 화학적 처리와 같은 공지된 개질 가공으로 처리될 수 있다.Non-limiting examples of matrix materials useful herein include beryllia, quartz, silica or sol, and mixtures thereof, such as silica-magnesia, silica-zirconia, silica-titania, silica-alumina, and silica-alumina-toria. At least one inert metal oxide. In an embodiment, the matrix material is natural clay, such as those of the montmorillonite and kaolin class. These natural clays include subbentonites and kaolin, known for example Dixie, McNamee, Georgia and Florida clays. Non-limiting examples of other matrix materials include halosite, kaolinite, dickite, nacrite, or anoxite. Matrix materials such as clays may be treated by known reforming processes such as calcination and / or acid treatment and / or chemical treatment.

바람직한 실시양태에서, 매트릭스 물질은 특히 저 철 또는 티타니아 함량을 갖는 점토 또는 점토형 조성물이고, 가장 바람직하게는 고령토이다. 고령토는 펌프가능한 높은 고체 함량의 슬러리를 형성하고, 낮은 새로운(fresh) 표면적을 갖고, 판상 구조 때문에 용이하게 함께 뭉쳐지는 것으로 알려져 있다. 매트릭스 물질, 가장 바람직하게는 고령토의 바람직한 평균 입자 크기는 0.1 ㎛ 내지 0.6 ㎛이고, D90입자 크기 분포는 1 ㎛ 미만이다.In a preferred embodiment, the matrix material is in particular clays or claylike compositions having a low iron or titania content, most preferably kaolin. Kaolin is known to form a high solids content pumpable slurry, have a low fresh surface area, and easily coalesce together due to the plate-like structure. The preferred average particle size of the matrix material, most preferably kaolin, is 0.1 μm to 0.6 μm and the D 90 particle size distribution is less than 1 μm.

촉매 조성물이 결합제 또는 매트릭스 물질을 함유하는 경우, 촉매 조성물은 전형적으로 촉매 조성물의 총 중량을 기준으로 1 중량% 내지 80 중량%, 바람직하게는 5 중량% 내지 60 중량%, 보다 바람직하게는 5 중량% 내지 50 중량%의 분자 체를 함유한다.When the catalyst composition contains a binder or matrix material, the catalyst composition is typically 1% to 80% by weight, preferably 5% to 60% by weight, more preferably 5% by weight based on the total weight of the catalyst composition % To 50% by weight of molecular sieve.

촉매 조성물이 결합제 및 매트릭스 물질을 함유하는 경우, 전형적으로 결합제 대 매트릭스 물질의 중량 비는 1:15 내지 1:5, 예컨대 1:10 내지 1:4, 특히 1:6내지 1:5이다. 전형적으로 결합제의 양은 결합제, 분자 체 및 매트릭스 물질의 총 중량을 기준으로 약 2 중량% 내지 약 30 중량%, 예컨대 약 5 중량% 내지 약 20 중량%, 특히 약 7 중량% 내지 약 15 중량%이다.When the catalyst composition contains binder and matrix material, the weight ratio of binder to matrix material is typically from 1:15 to 1: 5, such as from 1:10 to 1: 4, in particular from 1: 6 to 1: 5. Typically the amount of binder is from about 2% to about 30% by weight, such as from about 5% to about 20% by weight, in particular from about 7% to about 15% by weight, based on the total weight of the binder, molecular sieve and matrix material .

전형적으로 촉매 조성물은 0.5 g/cc 내지 5 g/cc, 예컨대 0.6 g/cc 내지 5 g/cc, 예컨대 0.7 g/cc 내지 4 g/cc, 특히 0.8 g/cc 내지 3 g/cc의 범위의 밀도를 갖는다.Typically the catalyst composition is in the range of 0.5 g / cc to 5 g / cc, such as 0.6 g / cc to 5 g / cc, such as 0.7 g / cc to 4 g / cc, especially 0.8 g / cc to 3 g / cc. Has a density.

촉매 조성물 배합Catalyst composition formulation

촉매 조성물의 제조에서, 분자 체를 먼저 합성한 후, 바람직하게는 건조한, 건조된 또는 하소된 상태에서 활성 금속 산화물과 물리적으로 혼합한다. 가장 바람직하게는 분자 체 및 활성 금속 산화물은 이들의 하소된 상태에서 물리적으로 혼합된다. 긴밀한 물리적 혼합은 당업계에 공지된 임의의 방법, 예컨대 믹서 분쇄기(muller), 드럼 믹서, 리본/패들 블렌더, 반죽기(kneader) 등을 이용한 혼합에 의해 수행될 수 있다. 분자 체와 금속 산화물(들) 사이의 화학적 반응은 불필요하고, 일반적으로 바람직하지 않다.In the preparation of the catalyst composition, the molecular sieves are first synthesized and then physically mixed with the active metal oxide, preferably in a dry, dried or calcined state. Most preferably the molecular sieve and active metal oxide are physically mixed in their calcined state. Intimate physical mixing can be performed by any method known in the art, such as mixing using a mixer muller, drum mixer, ribbon / paddle blender, kneader, and the like. Chemical reactions between the molecular sieve and the metal oxide (s) are unnecessary and generally undesirable.

촉매 조성물이 매트릭스 및/또는 결합제를 함유하는 경우, 분자 체는 편리하게는 초기에 매트릭스 및/또는 결합제와 촉매 전구체로 배합된 후, 활성 금속 산화물을 배합된 전구체와 조합시킨다. 활성 금속 산화물은 지지되지 않은 입자로서 첨가될 수 있거나, 지지체, 예컨대 결합제 또는 매트릭스 물질과 조합되어 첨가될 수 있다. 그 다음 생성된 촉매 조성물은 분무 건조, 펠렛화, 압출 등과 같은 공지 기술에 의해 유용한 모양 및 크기의 입자로 형성될 수 있다.If the catalyst composition contains a matrix and / or a binder, the molecular sieve is conveniently initially formulated with the matrix and / or binder with the catalyst precursor and then the active metal oxide is combined with the formulated precursor. The active metal oxide can be added as unsupported particles or can be added in combination with a support such as a binder or matrix material. The resulting catalyst composition can then be formed into particles of a shape and size useful by known techniques such as spray drying, pelletization, extrusion, and the like.

한 실시양태에서, 분자 체 조성물 및 매트릭스 물질은, 임의적으로 결합제와 함께, 액체와 조합되어 슬러리를 형성한 후, 혼합되어 분자 체 조성물을 함유하는 실질적으로 균질한 혼합체를 생성할 수 있다. 적당한 액체의 비제한적인 예는 물, 알콜, 케톤, 알데히드 및/또는 에스터를 포함한다. 가장 바람직한 액체는 물이다. 그 다음 분자 체 조성물, 결합제 및 매트릭스 물질의 슬러리는 미세구와 같은 요구되는 형상으로 촉매 조성물을 형성하는 형성 단위, 예컨대 분무 건조기로 공급된다.In one embodiment, the molecular sieve composition and the matrix material may be combined with the liquid to form a slurry, optionally together with a binder, and then mixed to create a substantially homogeneous mixture containing the molecular sieve composition. Non-limiting examples of suitable liquids include water, alcohols, ketones, aldehydes and / or esters. The most preferred liquid is water. The slurry of molecular sieve composition, binder and matrix material is then fed to a forming unit, such as a spray dryer, which forms the catalyst composition in the desired shape, such as microspheres.

일단 분자 체 촉매 조성물이 실질적으로 건조한 또는 건조된 상태로 형성되면, 형성된 촉매 조성물을 추가로 경화(harden) 및/또는 활성화시키기 위해, 하소와 같은 열 처리가 통상적으로 실시된다. 전형적인 하소 온도는 400℃ 내지 1,000℃, 바람직하게는 500℃ 내지 800℃, 보다 바람직하게는 550℃ 내지 700℃의 범위의 온도이다. 전형적인 하소 환경은 공기(이는 소량의 수증기를 포함할 수 있음), 질소, 헬륨, 연도(flue) 기체(산소가 부족한 연소 생성물) 또는 이들의 임의의 조합물이다.Once the molecular sieve catalyst composition is formed in a substantially dry or dried state, heat treatment, such as calcination, is typically carried out to further harden and / or activate the formed catalyst composition. Typical calcination temperatures are in the range of 400 ° C to 1,000 ° C, preferably 500 ° C to 800 ° C, more preferably 550 ° C to 700 ° C. Typical calcination environments are air (which may include small amounts of water vapor), nitrogen, helium, flue gas (oxygen-depleted combustion products), or any combination thereof.

바람직한 실시양태에서, 촉매 조성물은 질소에서 600℃ 내지 700℃의 온도에서 일정 기간동안, 전형적으로는 30분 내지 15시간, 바람직하게는 1시간 내지 약 10시간, 보다 바람직하게는 약 1시간 내지 약 5시간, 가장 바람직하게는 약 2시간 내지 4시간 동안 가열된다.In a preferred embodiment, the catalyst composition is in nitrogen for a period of time, typically from 30 minutes to 15 hours, preferably from 1 hour to about 10 hours, more preferably from about 1 hour to about Heated for 5 hours, most preferably about 2 to 4 hours.

촉매 조성물의 용도Use of catalyst composition

상기의 촉매 조성물은 예컨대 나프타 공급물로부터 저급 올레핀(들)으로의크래킹(미국 특허 제 6,300,537 호) 또는 높은 분자량(MW)의 탄화수소로부터 낮은 분자량의 탄화수소로의 크래킹; 예컨대 중유 및/또는 고리형 원료의 하이드로크래킹; 예컨대 자일렌과 같은 방향족의 이성질화; 예컨대 1종 이상의 올레핀(들)을 중합해서 중합체 제품을 생성; 재형성; 수소화; 탈수소화; 예컨대 직쇄 파라핀을 제거하기 위한 탄화수소의 디왁싱(dewaxing); 예컨대 이성질체를 분리해내기 위한 알킬 방향족 화합물의 흡수; 예컨대 벤젠 및 알킬벤젠과 같은 방향족 탄화수소의 알킬화; 예컨대 방향족 및 폴리알킬방향족 탄화수소 조합물의 트랜스알킬화; 탈알킬화; 하이드로디사이클리제이션(hydrodecylization); 예컨대 벤젠 및 자일렌을 제조하기 위한 톨루엔의 불균형화(disporportionation); 예컨대 직쇄 및 분지쇄 올레핀(들)의 올리고머화; 및 디하이드로디사이클리제이션(dehydrodecylization)을 포함하는 다양한 공정에 유용하다.Such catalyst compositions include, for example, cracking from naphtha feed to lower olefin (s) (US Pat. No. 6,300,537) or cracking from high molecular weight (MW) hydrocarbons to low molecular weight hydrocarbons; For example hydrocracking of heavy oil and / or cyclic raw materials; Isomerization of aromatics such as for example xylene; For example polymerizing one or more olefin (s) to produce a polymer product; Reformation; Hydrogenation; Dehydrogenation; Dewaxing of hydrocarbons such as to remove straight chain paraffins; Absorption of alkyl aromatic compounds, such as to separate isomers; Alkylation of aromatic hydrocarbons such as, for example, benzene and alkylbenzenes; Transalkylation of aromatic and polyalkylaromatic hydrocarbon combinations, for example; Dealkylation; Hydrodecylization; Disporportionation of toluene, for example to produce benzene and xylene; Oligomerization of, for example, straight and branched chain olefin (s); And dehydrodecylization.

바람직한 공정은 나프타를 고급 방향족 혼합물로 전환; 저급 올레핀(들)을 가솔린, 증류액(distillate) 및 윤활유로 전환; 산소화물을 올레핀(들)로 전환; 저급 파라핀을 올레핀 및/또는 방향족으로 전환; 및 알콜, 산 및 에스터로의 전환을 위해 불포화 탄화수소(에틸렌 및/또는 아세틸렌)를 알데히드로 전환시키는 공정을 포함한다.Preferred processes include converting naphtha into a higher aromatic mixture; Conversion of the lower olefin (s) to gasoline, distillate and lubricating oil; Converting oxygenates to olefin (s); Conversion of lower paraffins to olefins and / or aromatics; And converting unsaturated hydrocarbons (ethylene and / or acetylene) to aldehydes for conversion to alcohols, acids and esters.

본 발명의 가장 바람직한 공정은 원료를 1종 이상의 올레핀(들)으로 전환시키는 것이다. 전형적으로, 원료는 예컨대 지방족 잔기가 1 내지 약 50의 탄소 원자, 바람직하게는 1 내지 약 20의 탄소 원자, 보다 바람직하게는 1 내지 약 10의 탄소 원자, 가장 바람직하게는 1 내지 4의 탄소 원자를 함유하는 1종 이상의 지방족-함유 화합물, 및 바람직하게는 1종 이상의 산소화물을 함유한다.The most preferred process of the present invention is to convert the raw material into one or more olefin (s). Typically, the raw material has, for example, an aliphatic moiety of 1 to about 50 carbon atoms, preferably 1 to about 20 carbon atoms, more preferably 1 to about 10 carbon atoms, most preferably 1 to 4 carbon atoms At least one aliphatic-containing compound containing, and preferably at least one oxygenate.

적당한 지방족-함유 화합물의 비제한적 예는 알콜, 예컨대 메탄올 및 에탄올, 알킬 머캅탄, 예컨대 메틸 머캅탄 및 에틸 머캅탄, 알킬 설파이드, 예컨대 메틸 설파이드, 알킬아민, 예컨대 메틸아민, 알킬 에테르, 예컨대 다이메틸 에테르, 다이에틸 에테르 및 메틸에틸 에테르, 알킬 할라이드, 예컨대 염화메틸 및 염화에틸, 알킬 케톤, 예컨대 다이메틸 케톤, 포름알데히드 및 다양한 산, 예컨대 아세트산을 포함한다. 바람직하게는, 원료는 메탄올, 에탄올, 다이메틸 에테르, 다이에틸 에테르 또는 이들의 조합물, 보다 바람직하게는 메탄올 및/또는 다이메틸 에테르, 가장 바람직하게는 메탄올을 포함한다.Non-limiting examples of suitable aliphatic-containing compounds include alcohols such as methanol and ethanol, alkyl mercaptans such as methyl mercaptan and ethyl mercaptan, alkyl sulfides such as methyl sulfide, alkylamines such as methylamine, alkyl ethers such as dimethyl Ethers, diethyl ether and methylethyl ether, alkyl halides such as methyl chloride and ethyl chloride, alkyl ketones such as dimethyl ketone, formaldehyde and various acids such as acetic acid. Preferably, the raw material comprises methanol, ethanol, dimethyl ether, diethyl ether or combinations thereof, more preferably methanol and / or dimethyl ether, most preferably methanol.

상기 언급된 다양한 원료, 특히 산소화물, 예컨대 알콜을 함유하는 원료를 이용하는 것은, 본 발명의 촉매 조성물이 원료를 주로 1종 이상의 올레핀(들)으로 전환시키는데 효과적이다. 생성된 올레핀(들)은 전형적으로 2 내지 30의 탄소원자, 바람직하게는 2 내지 8의 탄소원자, 보다 바람직하게는 2 내지 6의 탄소원자, 보다 더 바람직하게는 2 내지 4의 탄소원자를 갖고, 가장 바람직하게는 에틸렌 및/또는 프로필렌이다.The use of the various raw materials mentioned above, in particular raw materials containing oxygenates, such as alcohols, is effective for the catalyst composition of the invention to convert the raw materials into mainly one or more olefin (s). The resulting olefin (s) typically have 2 to 30 carbon atoms, preferably 2 to 8 carbon atoms, more preferably 2 to 6 carbon atoms, even more preferably 2 to 4 carbon atoms, Most preferably ethylene and / or propylene.

전형적으로, 본 발명의 촉매 조성물은 1종 이상의 산소화물을 함유하는 원료를 생성물 중의 탄화수소의 총 중량을 기준으로 50 중량%를 초과, 전형적으로 60 중량%를 초과, 예컨대 70 중량%를 초과, 바람직하게는 80 중량%를 초과하는 올레핀(들)을 함유하는 생성물로 전환시키는데 효과적이다. 또한, 생성물 중의 탄화수소의 총 중량을 기준으로 생성된 에틸렌 및/또는 프로필렌의 양은 전형적으로 40 중량%를 초과, 예컨대 50 중량%를 초과, 바람직하게는 65 중량%를 초과, 보다 바람직하게는 78 중량%를 초과한다. 전형적으로, 생성된 생성물 중의 탄화수소의 총 중량을 기준으로, 생성된 에틸렌의 양(중량%)은 30 중량%를 초과, 예컨대 35 중량%를 초과, 예컨대 40 중량%를 초과한다. 또한, 생성된 생성물 중의 탄화수소의 총 중량을 기준으로, 생성된 프로필렌의 양(중량%)은 20 중량%를 초과, 예컨대 25 중량%를 초과, 예컨대 30 중량%를 초과, 바람직하게는 35 중량%를 초과한다.Typically, the catalyst composition of the present invention comprises a raw material containing at least one oxygenate of more than 50%, typically more than 60%, such as more than 70% by weight, based on the total weight of hydrocarbons in the product. Preferably effective for conversion to products containing greater than 80% by weight of olefin (s). In addition, the amount of ethylene and / or propylene produced, based on the total weight of hydrocarbons in the product, is typically greater than 40% by weight, such as greater than 50% by weight, preferably greater than 65% by weight, more preferably 78% by weight. Exceeds% Typically, the amount (wt%) of ethylene produced is greater than 30 wt%, such as greater than 35 wt%, such as greater than 40 wt%, based on the total weight of hydrocarbons in the resulting product. Also, based on the total weight of hydrocarbons in the resulting product, the amount (wt%) of propylene produced is greater than 20 wt%, such as greater than 25 wt%, such as greater than 30 wt%, preferably 35 wt% Exceeds.

메탄올 및 다이메틸에테르를 포함하는 원료를 에틸렌 및 프로필렌으로 전환시키는데 본 발명의 촉매 조성물을 사용하는 것은, 활성 금속 산화물 성분(들) 없이 동일한 전환 조건에서의 유사한 촉매 조성물과 비교 시에 에탄 및 프로판의 생성이 10% 초과, 예컨대 20% 초과, 예컨대 30% 초과하게, 특히 30% 내지 40%의 범위로 감소됨이 밝혀졌다.The use of the catalyst composition of the present invention to convert raw materials comprising methanol and dimethyl ether into ethylene and propylene is not compatible with ethane and propane as compared to similar catalyst compositions at the same conversion conditions without active metal oxide component (s). It has been found that production is reduced by more than 10%, such as more than 20%, such as more than 30%, in particular in the range of 30% to 40%.

메탄올과 같은 산소화물 성분 외에도, 원료는 일반적으로 원료 또는 분자 체 촉매 조성물에 대해 비활성이고, 전형적으로 원료의 농도를 감소시키기 위해 사용되는 희석제 1종 이상을 함유할 수 있다. 희석제의 비제한적인 예는 헬륨, 아르곤, 질소, 일산화탄소, 이산화탄소, 물, 본질적으로는 비활성 파라핀(특히, 알칸 예컨대 메탄, 에탄 및 프로판), 본질적으로는 비활성 방향족 화합물, 및 이들의 혼합물을 포함한다. 가장 바람직한 희석제는 물 및 질소이고, 물이 특히 바람직하다.In addition to the oxygenate component such as methanol, the feedstock is generally inert to the feedstock or molecular sieve catalyst composition and may contain one or more diluents typically used to reduce the concentration of the feedstock. Non-limiting examples of diluents include helium, argon, nitrogen, carbon monoxide, carbon dioxide, water, essentially inert paraffins (especially alkanes such as methane, ethane and propane), essentially inert aromatic compounds, and mixtures thereof . Most preferred diluents are water and nitrogen, with water being particularly preferred.

본 공정은 넓은 범위의 온도, 예컨대 200℃ 내지 1000℃, 예컨대 250℃ 내지 800℃, 250℃ 내지 750℃을 포함하며, 편리하게는 300℃ 내지 650℃, 바람직하게는350℃ 내지 600℃, 보다 바람직하게는 350℃ 내지 550℃에서 수행될 수 있다.The process includes a wide range of temperatures, such as 200 ° C. to 1000 ° C., such as 250 ° C. to 800 ° C., 250 ° C. to 750 ° C., and conveniently 300 ° to 650 ° C., preferably 350 ° C. to 600 ° C., more Preferably it may be carried out at 350 ℃ to 550 ℃.

유사하게, 본 공정은 자연발생적(autogenous) 압력을 포함하는 넓은 범위의 압력에서 실시될 수 있다. 전형적으로, 공정에서 사용된 어떠한 희석제도 제외된 원료의 분압은 0.1 kPaa 내지 5 MPaa, 바람직하게는 5 kPaa 내지 1 MPaa, 보다 바람직하게는 20 kPaa 내지 500 kPaa의 범위이다.Similarly, the process can be carried out at a wide range of pressures, including autogenous pressures. Typically, the partial pressure of the raw materials excluding any diluent used in the process is in the range of 0.1 kPaa to 5 MPaa, preferably 5 kPaa to 1 MPaa, more preferably 20 kPaa to 500 kPaa.

촉매 조성물 중 분자 체의 시간당 중량당 원료(어떠한 희석제도 포함 안됨)의 총 중량으로 정의된 중량 시간 공간 속도(WHSV)는 1 hr-1내지 5000 hr-1, 바람직하게는 2 hr-1내지 3000 hr-1, 보다 바람직하게는 5 hr-1내지 1500 hr-1, 가장 바람직하게는 10 hr-1내지 1000 hr-1의 범위일 수 있다. 한 실시양태에서, WHSV는 20 hr-1이상이고, 원료가 메탄올 및/또는 다이메틸 에테르를 함유하는 경우 20 hr-1내지 300 hr-1이다.The weight time space velocity (WHSV), defined as the total weight of raw material (no diluent) per hour of molecular sieve in the catalyst composition, is between 1 hr -1 and 5000 hr -1 , preferably between 2 hr -1 and 3000 hr -1 , more preferably 5 hr -1 to 1500 hr -1 , most preferably 10 hr -1 to 1000 hr -1 . In one embodiment, the WHSV is at least 20 hr −1 and 20 hr −1 to 300 hr −1 when the feed contains methanol and / or dimethyl ether.

본 발명의 공정은 고정 상(fixed bed) 공정으로, 보다 전형적으로는 유동 상(fluidized bed) 공정(터불런트 베드 공정 포함)으로, 연속적 유동 상 공정으로, 특히 연속적 고속 유동 상 공정으로 편리하게 수행된다.The process of the present invention is conveniently carried out as a fixed bed process, more typically as a fluidized bed process (including turbulent bed processes), as a continuous fluidized bed process, in particular as a continuous high speed fluidized bed process. do.

실용적인 한 실시양태에서, 본 공정은 반응기 시스템, 재생 시스템 및 회수 시스템을 이용하는 유동 상 공정으로 수행된다. 이런 공정에서, 임의적으로 1종 이상의 희석제(들)를 갖는 새로운 원료는 분자 체 촉매 조성물과 함께 반응기 시스템의 하나 이상의 라이저(riser) 반응기(들)에 공급된다. 라이저 반응기(들)에서원료는 코킹된 촉매 조성물을 따라 반응 시스템의 분리 용기(disengaging vessel)로 들어가는 기체 유출물로 전환된다. 코킹된 촉매 조성물은 분리 용기 내에서 전형적으로 사이클론의 도움으로 기체 유출물로부터 분리된 후, 전형적으로 분리 용기의 하부에 있는 스트리핑(stripping) 구역에 공급된다. 스트리핑 구역에서, 코킹된 촉매 조성물은 기체, 예컨대 스팀, 메탄, 이산화탄소, 일산화탄소, 수소, 및/또는 불활성 기체 예컨대 아르곤과, 바람직하게는 스팀과 접촉되어 흡수된 탄화수소를, 후에 재생 시스템으로 도입되는 코킹된 촉매 조성물로부터 회수한다.In one practical embodiment, the process is carried out in a fluid bed process using a reactor system, a regeneration system and a recovery system. In this process, fresh raw material, optionally having one or more diluent (s), is fed together with the molecular sieve catalyst composition to one or more riser reactor (s) of the reactor system. In the riser reactor (s) the raw material is converted along the caulked catalyst composition into a gas effluent that enters the dispensing vessel of the reaction system. The caulked catalyst composition is separated from the gas effluent, typically with the help of a cyclone, in a separation vessel and then fed to a stripping zone, typically at the bottom of the separation vessel. In the stripping zone, the caulked catalyst composition is a coking in which gas, such as steam, methane, carbon dioxide, carbon monoxide, hydrogen, and / or an inert gas such as argon, and hydrocarbons adsorbed in contact with steam, is subsequently introduced into the regeneration system. From the resulting catalyst composition.

재생 시스템에서, 코킹된 촉매 조성물은 재생 시스템으로 들어가는 코킹된 분자 체 촉매 조성물의 총 중량으로 기준으로 바람직하게는 0.5 중량% 미만의 수준으로 코킹된 촉매 조성물로부터 코크를 태울 수 있는 재생 조건 하에서, 재생 매질, 바람직하게는 산소를 함유하는 기체와 접촉된다. 예컨대, 재생 조건은 450℃ 내지 750℃, 바람직하게는 550℃ 내지 700℃의 온도 범위를 포함할 수 있다.In the regeneration system, the coked catalyst composition is regenerated under regeneration conditions, which can burn coke from the coked catalyst composition to a level of preferably less than 0.5% by weight based on the total weight of the caulked molecular sieve catalyst composition entering the regeneration system. Contact with a medium, preferably a gas containing oxygen. For example, the regeneration conditions may include a temperature range of 450 ° C to 750 ° C, preferably 550 ° C to 700 ° C.

재생 시스템으로부터 나온 재생된 촉매 조성물은 새로운 분자 체 촉매 조성물 및/또는 재순환된 분자 체 촉매 조성물 및/또는 원료 및/또는 새로운 기체 또는 액체와 접촉되고, 라이저 반응기(들)로 되돌아 온다.The regenerated catalyst composition from the regeneration system is contacted with the fresh molecular sieve catalyst composition and / or recycled molecular sieve catalyst composition and / or raw material and / or fresh gas or liquid and returned to the riser reactor (s).

기체 유출물은 분리 시스템으로부터 나와서 기체 유출물로부터 저급 올레핀(들), 특히 에틸렌 및 프로필렌을 분리 및 정제하기 위한 회수 시스템을 통해 통과된다.The gas effluent exits the separation system and is passed through a recovery system for separating and purifying the lower olefin (s), in particular ethylene and propylene, from the gas effluent.

실용적인 한 실시양태에서, 본 발명의 공정은 탄화수소 원료, 특히 메탄 및/또는 에탄으로부터 저급 올레핀(들)을 생성하는 통합 공정의 일부를 형성한다. 공정에서 제 1 단계는 기체 원료를, 바람직하게는 물 스트림과 조합하여 합성기체 생성 구역으로 통과시켜 전형적으로 이산화탄소, 일산화탄소 및 수소를 포함하는 합성 기체 스트림을 생성한다. 그 다음 합성 기체 스트림은 일반적으로 150℃ 내지 450℃의 범위의 온도 및 5 MPa 내지 10 MPa의 범위의 압력에서 불균질(heterogeneous) 촉매, 전형적으로 구리계 촉매와의 접촉에 의해 산소화물을 함유하는 스트림으로 전환된다. 정제 후, 산소화물 함유 스트림은 저급 올레핀(들), 예컨대 에틸렌 및/또는 프로필렌을 생성하기 위한 상기 공정에서 원료로서 사용될 수 있다. 이런 통합 공정의 비제한적인 예는 전체로서 본원에 참고로 인용된 EP-B-0 933 345 호에 기술되어 있다.In one practical embodiment, the process of the present invention forms part of an integrated process for producing lower olefin (s) from hydrocarbon raw materials, in particular methane and / or ethane. The first step in the process passes a gaseous feedstock, preferably in combination with a water stream, to a synthesis gas production zone to produce a synthesis gas stream, typically comprising carbon dioxide, carbon monoxide and hydrogen. The synthesis gas stream then contains oxygenates by contact with heterogeneous catalysts, typically copper-based catalysts, at temperatures ranging from 150 ° C. to 450 ° C. and pressures ranging from 5 MPa to 10 MPa. Switch to the stream. After purification, the oxygenate containing stream can be used as a raw material in the process for producing lower olefin (s) such as ethylene and / or propylene. Non-limiting examples of such integration processes are described in EP-B-0 933 345, which is incorporated herein by reference in its entirety.

보다 완전히 통합된 다른 공정, 상기 통합 공정과 임의적으로 조합된 공정에서, 생성된 올레핀(들)은 다양한 폴리올레핀을 생성하기 위한 하나 이상의 중합 공정으로 향한다.In another more fully integrated process, optionally in combination with the integrated process, the resulting olefin (s) is directed to one or more polymerization processes to produce various polyolefins.

본 발명의 대표적인 장점을 포함하는 본 발명의 용이한 이해를 제공하기 위해 다음의 실시예가 제공된다.The following examples are provided to provide an easy understanding of the present invention including representative advantages of the present invention.

실시예에서, LEI는 금속 산화물(들)이 결여된 동일한 분자 체 촉매 조성물의 수명(LEI가 1로 정의됨)과 비교된 활성 금속 산화물(들)을 함유하는 분자 체 촉매 조성물의 수명의 비로서 정의된다. LEI를 측정하기 위해, 수명은 전환 속도가 초기 값의 약 10%로 떨어질 때까지 분자 체 1 그램 당 바람직하게는 1종 이상의 올레핀(들)으로 전환된 산소화물의 축적량으로 정의된다. 실험의 종기까지 전환이 초기 값의 10%로 떨어지지 않으면, 수명은 실험에서 최종 두 데이터 지점에 대한 전환 감소 속도에 기초한 선형 외삽법에 의해 산정된다.In an embodiment, LEI is the ratio of the lifetime of the molecular sieve catalyst composition containing the active metal oxide (s) compared to the lifetime of the same molecular sieve catalyst composition lacking the metal oxide (s) (LEI defined as 1). Is defined. To measure LEI, life is defined as the accumulation of oxygenates, preferably converted to one or more olefin (s) per gram of molecular sieve, until the conversion rate drops to about 10% of its initial value. If the conversion does not drop to 10% of the initial value by the end of the experiment, the lifetime is estimated by linear extrapolation based on the rate of conversion reduction for the last two data points in the experiment.

"프라임(prime) 올레핀"은 에틸렌 및 프로필렌에 대한 선택도의 합이다. 비 "C2 =/C3 ="는 수행시 가중 에틸렌 대 프로필렌 선택도의 비이다. "C3순도"는 프로필렌 및 프로판 선택도의 합으로 프로필렌 선택도를 나누어 계산된다. 메탄, 에틸렌, 에탄, 프로필렌, 프로판, C4's 및 C5+'s에 대한 선택도는 수행시 가중 평균 선택도이다. C5+'s는 오직 C5's, C6's, 및 C7's만으로 구성됨을 주지해야 한다. 공지된 바와 같이 이들은 코크에 대해 보정되어졌기 때문에, 선택도 값은 표에서 합이 100%가 되지 않는다."Prime olefin" is the sum of the selectivities for ethylene and propylene. The ratio "C 2 = / C 3 = " is the ratio of weighted ethylene to propylene selectivity in performance. "C 3 purity" is calculated by dividing propylene selectivity by the sum of propylene and propane selectivity. The selectivity for methane, ethylene, ethane, propylene, propane, C 4 's and C 5 +' s is the weighted average selectivity in performance. Note that C 5 + 's consist only of C 5 ' s, C 6 's, and C 7 ' s. As they are known, they are corrected for coke, so the selectivity values do not add up to 100% in the table.

실시예 AExample A

분자 체의 제조Preparation of Molecular Sieves

유기 구조 지시제 또는 주형화제(templating agent)로서의 테트라에틸 암모늄 하이드록사이드(R1) 및 다이프로필아민(R2)의 존재하에서 MSA로 지정된 실리코알루미노포스페이트 분자 체, SAPO-34를 결정화시켰다. 먼저 소정량의 콘데아 푸럴(Condea Pural) SB를 탈이온수와 혼합하여 슬러리를 형성시켜 다음과 같은 몰 비의 혼합물을 제조하였다: 0.2 SiO2/ Al2O3/ P2O5/ 0.9 R1/ 1.5 R2/ 50 H2O. 이 슬러리에 소정량의 인산(85%)을 첨가하였다. 이런 첨가는 교반 하에서 수행되어 균일한혼합물을 형성하였다. 이런 균일한 혼합물에 Ludox AS40(40%의 SiO2)를 첨가한 후, R1을 혼합하면서 첨가하여 균일한 혼합물을 형성하였다. 이런 균일한 혼합물에 R2를 첨가한 후, 생성 혼합물을 스테인레스강 오토클레이브에서 170℃로 40시간 동안 교반하면서 가열하여 결정화시켰다. 이로써 결정성 분자 체의 슬러리가 제공되었다. 그 후, 결정을 여과에 의해 모액(mother liquor)으로부터 분리했다. 그 다음 분자 체 결정을 결합제 및 매트릭스 물질과 혼합하여 분무 건조에 의해 입자로 형성시켰다.In the presence of tetraethyl ammonium hydroxide (R1) and dipropylamine (R2) as an organic structural indicator or templating agent, the silicoaluminophosphate molecular sieve designated SAPA, SAPO-34, was crystallized. A predetermined amount of Condea Pural SB was first mixed with deionized water to form a slurry to prepare a mixture of the following molar ratios: 0.2 SiO 2 / Al 2 O 3 / P 2 O 5 / 0.9 R 1 / 1.5 R 2/50 H 2 O. A predetermined amount of phosphoric acid (85%) was added to this slurry. This addition was carried out under stirring to form a homogeneous mixture. Ludox AS40 (40% SiO 2 ) was added to this homogeneous mixture and then R1 was added with mixing to form a homogeneous mixture. After adding R2 to this homogeneous mixture, the resulting mixture was crystallized by heating with stirring at 170 ° C. for 40 hours in a stainless steel autoclave. This gave a slurry of crystalline molecular sieves. The crystals were then separated from the mother liquor by filtration. The molecular sieve crystals were then mixed with the binder and the matrix material to form particles by spray drying.

실시예 BExample B

전환 공정Conversion process

증기화된 메탄올이 공급되는 노(furnace)에 위치된 스테인레스강 반응기(1/4 인치(0.64cm)의 외부 직경)로 구성된 미세흐름 반응기를 사용하여 제시된 모든 전환 데이터를 수득했다. 475℃의 온도 및 25 psig(172.4 kPag)의 압력에서 반응기를 유지했다. 메탄올의 유량은 또한 중량 시간 공간 속도(WHSV)로도 알려진, 중량을 기준으로 분자 체 1그램 당 메탄올의 유량이 100h-1이 되도록 하는 것이다. 반응기를 나온 생성 기체를 수집하고 기체 크로마토그래피를 이용하여 분석하였다. 촉매 로드(load)는 50 mg이고, 촉매 상(bed)은 석영으로 희석되어 반응기의 열점을 최소화하였다.All conversion data presented were obtained using a microflow reactor consisting of a stainless steel reactor (outer diameter of 1/4 inch (0.64 cm)) placed in a furnace fed with vaporized methanol. The reactor was maintained at a temperature of 475 ° C. and a pressure of 25 psig (172.4 kPag). The flow rate of methanol is such that the flow rate of methanol per gram of molecular sieve, based on weight, also known as weight time space velocity (WHSV), is 100 h −1 . The product gas exiting the reactor was collected and analyzed using gas chromatography. The catalyst load was 50 mg and the catalyst bed was diluted with quartz to minimize the hot spot of the reactor.

실시예 1Example 1

La(NO3)3·xH2O(알드리치 케미칼 캄파니)의 샘플을 700℃에서 3시간 동안 공기 중에서 하소하여 산화 란탄을 생성하였다.A sample of La (NO 3 ) 3 .xH 2 O (Aldrich Chemical Company) was calcined at 700 ° C. in air for 3 hours to produce lanthanum oxide.

실시예 2Example 2

50g의 La(NO3)3·xH2O(알드리치 케미칼 캄파니)를 500ml의 증류수에서 교반하면서 용해시켰다. 농축 수산화암모늄을 첨가하여 최종 복합물의 pH를 약 9로 조정하였다. 그 다음 이 슬러리를 폴리프로필렌 보틀에 넣고 72시간 동안 스팀박스(100℃)에 놓았다. 형성된 생성물을 여과에 의해 회수하고, 과량의 물로 세척하고, 밤새 85℃에서 건조시켰다. 이 생성물의 일부를 유동 공기에서 3시간 동안 600℃로 하소하여 산화 란탄(La2O3)을 생성하였다.50 g of La (NO 3 ) 3 xH 2 O (Aldrich Chemical Company) was dissolved in 500 ml of distilled water with stirring. The pH of the final composite was adjusted to about 9 by addition of concentrated ammonium hydroxide. This slurry was then placed in a polypropylene bottle and placed in a steam box (100 ° C.) for 72 hours. The product formed was recovered by filtration, washed with excess water and dried at 85 ° C. overnight. A portion of this product was calcined at 600 ° C. in flowing air for 3 hours to produce lanthanum oxide (La 2 O 3 ).

실시예 3Example 3

50g의 Y(NO3)3·6H2O(알드리치 케미칼 캄파니)를 500ml의 증류수에서 교반하면서 용해시켰다. 농축 수산화암모늄을 첨가하여 최종 복합물의 pH를 약 9로 조정하였다. 그 다음 이 슬러리를 폴리프로필렌 보틀에 넣고 72시간 동안 스팀박스(100℃)에 놓았다. 형성된 생성물을 여과에 의해 회수하고, 과량의 물로 세척하고, 밤새 85℃에서 건조시켰다. 이 생성물의 일부를 유동 공기에서 3시간 동안 600℃로 하소하여 산화 이트륨(Y2O3)을 생성하였다.50 g of Y (NO 3 ) 3 .6H 2 O (Aldrich Chemical Company) was dissolved in 500 ml of distilled water with stirring. The pH of the final composite was adjusted to about 9 by addition of concentrated ammonium hydroxide. This slurry was then placed in a polypropylene bottle and placed in a steam box (100 ° C.) for 72 hours. The product formed was recovered by filtration, washed with excess water and dried at 85 ° C. overnight. A portion of this product was calcined at 600 ° C. in flowing air for 3 hours to produce yttrium oxide (Y 2 O 3 ).

실시예 4Example 4

Sc(NO3)3·xH2O(알드리치 케미칼 캄파니)의 샘플을 700℃에서 3시간 동안 공기 중에서 하소하여 산화 스칸듐(Sc2O3)을 생성하였다.A sample of Sc (NO 3 ) 3 .xH 2 O (Aldrich Chemical Company) was calcined at 700 ° C. in air for 3 hours to produce scandium oxide (Sc 2 O 3 ).

실시예 5Example 5

50g의 Ce(NO3)3·6H2O를 500ml의 증류수에서 교반하면서 용해시켰다. 농축 수산화암모늄을 첨가하여 최종 복합물의 pH를 약 8로 조정하였다. 그 다음 이 슬러리를 폴리프로필렌 보틀에 넣고 72시간 동안 스팀박스(100℃)에 놓았다. 형성된 생성물을 여과에 의해 회수하고, 과량의 물로 세척하고, 밤새 85℃에서 건조시켰다. 이 생성물의 일부를 유동 공기에서 3시간 동안 600℃로 하소하여 산화 세슘(Ce2O3)을 생성하였다.50 g of Ce (NO 3 ) 3 .6H 2 O was dissolved with stirring in 500 ml of distilled water. The pH of the final composite was adjusted to about 8 by addition of concentrated ammonium hydroxide. This slurry was then placed in a polypropylene bottle and placed in a steam box (100 ° C.) for 72 hours. The product formed was recovered by filtration, washed with excess water and dried at 85 ° C. overnight. A portion of this product was calcined at 600 ° C. in flowing air for 3 hours to produce cesium oxide (Ce 2 O 3 ).

실시예 6Example 6

50g의 Pr(NO3)3·6H2O를 500ml의 증류수에서 교반하면서 용해시켰다. 농축 수산화암모늄을 첨가하여 최종 복합물의 pH를 약 8로 조정하였다. 그 다음 이 슬러리를 폴리프로필렌 보틀에 넣고 72시간 동안 스팀박스(100℃)에 놓았다. 형성된 생성물을 여과에 의해 회수하고, 과량의 물로 세척하고, 밤새 85℃에서 건조시켰다. 이 생성물의 일부를 유동 공기에서 3시간 동안 600℃로 하소하여 산화 프라세오다이뮴(Pr2O3)을 생성하였다.50 g of Pr (NO 3 ) 3 .6H 2 O was dissolved with stirring in 500 ml of distilled water. The pH of the final composite was adjusted to about 8 by addition of concentrated ammonium hydroxide. This slurry was then placed in a polypropylene bottle and placed in a steam box (100 ° C.) for 72 hours. The product formed was recovered by filtration, washed with excess water and dried at 85 ° C. overnight. A portion of this product was calcined at 600 ° C. in flowing air for 3 hours to produce praseodymium oxide (Pr 2 O 3 ).

실시예 7Example 7

50g의 Nd(NO3)3·6H2O를 500ml의 증류수에서 교반하면서 용해시켰다. 농축 수산화암모늄을 첨가하여 최종 복합물의 pH를 약 9로 조정하였다. 그 다음 이 슬러리를 폴리프로필렌 보틀에 넣고 72시간 동안 스팀박스(100℃)에 놓았다. 형성된생성물을 여과에 의해 회수하고, 과량의 물로 세척하고, 밤새 85℃에서 건조시켰다. 이 생성물의 일부를 유동 공기에서 3시간 동안 600℃로 하소하여 산화 네오다이뮴(Nd2O3)을 생성하였다.50 g of Nd (NO 3 ) 3 .6H 2 O was dissolved with stirring in 500 ml of distilled water. The pH of the final composite was adjusted to about 9 by addition of concentrated ammonium hydroxide. This slurry was then placed in a polypropylene bottle and placed in a steam box (100 ° C.) for 72 hours. The formed product was recovered by filtration, washed with excess water and dried at 85 ° C. overnight. A portion of this product was calcined at 600 ° C. in flowing air for 3 hours to produce neodymium oxide (Nd 2 O 3 ).

실시예 8Example 8

39g의 Ce(NO3)3·6H2O 및 7.0g의 La(NO3)3·6H2O를 500ml의 증류수에서 교반하면서 용해시켰다. 20g의 농축 수산화암모늄 및 500ml의 증류수를 함유하는 다른 용액을 제조하였다. 노즐 혼합기를 이용하여 50ml/분의 속도로 이 두 용액을 조합하였다. 농축 수산화암모늄을 첨가하여 최종 복합물의 pH를 약 9로 조정하였다. 그 다음 이 슬러리를 폴리프로필렌 보틀에 넣고 72시간 동안 스팀박스(100℃)에 놓았다. 형성된 생성물을 여과에 의해 회수하고, 과량의 물로 세척하고, 밤새 85℃에서 건조시켰다. 이 생성물의 일부를 유동 공기에서 3시간 동안 700℃로 하소하여, 혼합 금속 산화물의 최종 중량을 기준으로 공칭 5 중량%의 란탄을 함유하는 활성 혼합 금속 산화물을 생성하였다.39 g of Ce (NO 3 ) 3 .6H 2 O and 7.0 g of La (NO 3 ) 3 .6H 2 O were dissolved with stirring in 500 ml of distilled water. Another solution was prepared containing 20 g of concentrated ammonium hydroxide and 500 ml of distilled water. These two solutions were combined at a rate of 50 ml / min using a nozzle mixer. The pH of the final composite was adjusted to about 9 by addition of concentrated ammonium hydroxide. This slurry was then placed in a polypropylene bottle and placed in a steam box (100 ° C.) for 72 hours. The product formed was recovered by filtration, washed with excess water and dried at 85 ° C. overnight. A portion of this product was calcined at 700 ° C. in flowing air for 3 hours to produce an active mixed metal oxide containing nominally 5% by weight of lanthanum based on the final weight of the mixed metal oxide.

실시예 9Example 9

9g의 Ce(NO3)3·6H2O 및 30.0g의 La(NO3)3·6H2O를 500ml의 증류수에서 교반하면서 용해시켰다. 20g의 농축 수산화암모늄 및 500ml의 증류수를 함유하는 다른 용액을 제조하였다. 노즐 혼합기를 이용하여 50ml/분의 속도로 이 두 용액을 조합하였다. 농축 수산화암모늄을 첨가하여 최종 복합물의 pH를 약 9로 조정하였다. 그 다음 이 슬러리를 폴리프로필렌 보틀에 넣고 72시간 동안 스팀박스(100℃)에 놓았다. 형성된 생성물을 여과에 의해 회수하고, 과량의 물로 세척하고, 밤새 85℃에서 건조시켰다. 이 생성물의 일부를 유동 공기에서 3시간 동안 700℃로 하소하여, 혼합 금속 산화물의 최종 중량을 기준으로 공칭 5 중량%의 세륨을 함유하는 활성 혼합 금속 산화물을 생성하였다.9 g of Ce (NO 3 ) 3 .6H 2 O and 30.0 g of La (NO 3 ) 3 .6H 2 O were dissolved in 500 ml of distilled water with stirring. Another solution was prepared containing 20 g of concentrated ammonium hydroxide and 500 ml of distilled water. These two solutions were combined at a rate of 50 ml / min using a nozzle mixer. The pH of the final composite was adjusted to about 9 by addition of concentrated ammonium hydroxide. This slurry was then placed in a polypropylene bottle and placed in a steam box (100 ° C.) for 72 hours. The product formed was recovered by filtration, washed with excess water and dried at 85 ° C. overnight. A portion of this product was calcined at 700 ° C. in flowing air for 3 hours to produce an active mixed metal oxide containing nominally 5% by weight of cerium based on the final weight of the mixed metal oxide.

실시예 10Example 10

주변 압력 하에서 메틀러(Mettler) TGA/SDTA 851 열중량 분석 시스템을 이용하여 실시예 1 내지 9의 산화물의 이산화탄소 흡착량을 측정하였다. 금속 산화물 샘플을 먼저 유동 공기에서 1시간 동안 500℃로 탈수한 후, 100℃에서 이산화탄소의 흡착량을 측정하였다. 샘플의 표면적은 부루나우어(Brunauer), 엠멧(Emmett) 및 텔러(Teller)(BET)의 방법에 따라서 측정되어 이산화탄소(mg)/금속 산화물 면적(㎡)으로 표시되는 표 1에 제공된 이산화탄소 흡착량을 제공한다.The carbon dioxide adsorption amount of the oxides of Examples 1 to 9 was measured using a Mettler TGA / SDTA 851 thermogravimetric system under ambient pressure. The metal oxide sample was first dehydrated at 500 ° C. in flowing air for 1 hour, and then the adsorption amount of carbon dioxide was measured at 100 ° C. The surface area of the sample was determined according to the method of Brunauer, Emmet and Teller (BET), to determine the amount of carbon dioxide adsorption provided in Table 1, expressed in carbon dioxide (mg) / metal oxide area (m 2). to provide.

실시예 11(비교예)Example 11 (comparative example)

이 비교예 11(CEx.11)에서, 실시예 A에서 생성된 분자 체 촉매 조성물을 활성 금속 산화물이 결여된 50g의 분자 체 촉매 조성물을 사용하여 실시예 B의 공정에서 시험하였다. 실시 결과를 표 2 및 3에 보고하였다.In this Comparative Example 11 (CEx. 11), the molecular sieve catalyst composition produced in Example A was tested in the process of Example B using 50 g of a molecular sieve catalyst composition lacking an active metal oxide. The results of the runs are reported in Tables 2 and 3.

실시예 12Example 12

이 실시예에서, 실시예 1에서 나이트레이트 분해를 통해 생성된 10mg의 La2O3와 40mg의 분자 체 촉매 조성물을 사용하여 실시예 B의 공정에서 실시예 A에서 생성된 분자 체 조성물을 시험하였다. 성분들을 잘 혼합한 후, 모래(sand)로 희석하여 반응 상(bed)을 형성하였다. 이 실험의 결과는 표 2 및 3에 도시되는데, 이는 활성 3족 금속 산화물인 La2O3의 첨가는 수명을 149% 증가시켰다. 에탄에 대한 선택도는 36% 감소하였고, 프로판에 대한 선택도는 32% 감소하였는데, 이는 수소 이동 반응이 상당히 감소되었음을 의미한다.In this example, the molecular sieve composition produced in Example A was tested in the process of Example B using 10 mg of La 2 O 3 and 40 mg of the molecular sieve catalyst composition produced through nitrate decomposition in Example 1. . The components were mixed well and then diluted with sand to form a reaction bed. The results of this experiment are shown in Tables 2 and 3, where the addition of active Group 3 metal oxides La 2 O 3 increased the lifetime by 149%. The selectivity for ethane was reduced by 36% and the selectivity for propane was reduced by 32%, which meant that the hydrogen transfer reaction was significantly reduced.

실시예 13Example 13

이 실시예에서, 실시예 2에서 침전을 통해 생성된 10mg의 La2O3와 40mg의 분자 체 촉매 조성물을 사용하여 실시예 B의 공정에서 실시예 A에서 생성된 분자 체 조성물을 시험하였다. 성분들을 잘 혼합한 후, 모래로 희석하여 반응 상(bed)을 형성하였다. 이 실험의 결과는 표 2 및 3에 도시되는데, 이는 침전을 통해 생성된 활성 3족 금속 산화물인 La2O3의 첨가는 수명을 340% 증가시켰다. 에탄에 대한 선택도는 55% 감소하였고, 프로판에 대한 선택도는 44% 감소하였는데, 이는 수소 이동 반응이 상당히 감소되었음을 의미한다.In this example, the molecular sieve composition produced in Example A was tested in the process of Example B using 10 mg of La 2 O 3 and 40 mg of the molecular sieve catalyst composition produced through precipitation in Example 2. The components were mixed well and then diluted with sand to form a reaction bed. The results of this experiment are shown in Tables 2 and 3, in which the addition of La 2 O 3 , an active Group 3 metal oxide produced through precipitation, increased the lifetime by 340%. The selectivity to ethane was reduced by 55% and the selectivity to propane was reduced by 44%, which meant that the hydrogen transfer reaction was significantly reduced.

실시예 14Example 14

이 실시예 14에서, 실시예 3에서 생성된 10mg의 Y2O3와 40mg의 분자 체 촉매 조성물을 사용하여 실시예 B의 공정에서 실시예 A에서 생성된 분자 체 조성물을 시험하였다. 성분들을 잘 혼합한 후, 모래로 희석하여 반응 상(bed)을 형성하였다. 이 실험의 결과는 표 2 및 3에 도시되는데, 이는 활성 3족 금속 산화물인 Y2O3의 첨가는 수명을 1090% 증가시켰다. 에탄에 대한 선택도는 45% 감소하였고, 프로판에 대한 선택도는 28% 감소하였는데, 이는 수소 이동 반응이 상당히 감소되었음을 의미한다.In this Example 14, the molecular sieve composition produced in Example A was tested in the process of Example B using 10 mg of Y 2 O 3 and 40 mg of the molecular sieve catalyst composition produced in Example 3. The components were mixed well and then diluted with sand to form a reaction bed. The results of this experiment are shown in Tables 2 and 3, where the addition of active Group 3 metal oxides Y 2 O 3 increased the lifetime by 1090%. The selectivity to ethane was reduced by 45% and the selectivity to propane was reduced by 28%, which meant that the hydrogen transfer reaction was significantly reduced.

실시예 15Example 15

이 실시예 15에서, 실시예 4에서 생성된 10mg의 Sc2O3와 40mg의 분자 체 촉매 조성물을 사용하여 실시예 B의 공정에서 실시예 A에서 생성된 분자 체 조성물을 시험하였다. 성분들을 잘 혼합한 후, 모래로 희석하여 반응 상(bed)을 형성하였다. 이 실험의 결과는 표 2 및 3에 도시되는데, 이는 활성 3족 금속 산화물인 Sc2O3의 첨가는 수명을 167% 증가시켰다. 에탄에 대한 선택도는 27% 감소하였고, 프로판에 대한 선택도는 21% 감소하였는데, 이는 수소 이동 반응이 상당히 감소되었음을 의미한다.In this Example 15, the molecular sieve composition produced in Example A was tested in the process of Example B using the 10 mg Sc 2 O 3 and 40 mg molecular sieve catalyst composition produced in Example 4. The components were mixed well and then diluted with sand to form a reaction bed. The results of this experiment are shown in Tables 2 and 3, where the addition of an active Group 3 metal oxide, Sc 2 O 3 , increased the lifetime by 167%. The selectivity to ethane was reduced by 27% and the selectivity to propane was reduced by 21%, which meant that the hydrogen transfer reaction was significantly reduced.

실시예 16Example 16

이 실시예 16에서, 실시예 5에서 생성된 10mg의 Ce2O3와 40mg의 분자 체 촉매 조성물을 사용하여 실시예 B의 공정에서 실시예 A에서 생성된 분자 체 조성물을시험하였다. 성분들을 잘 혼합한 후, 모래로 희석하여 반응 상(bed)을 형성하였다. 이 실험의 결과는 표 2 및 3에 도시되는데, 이는 활성 3족 금속 산화물인 Ce2O3의 첨가는 수명을 630% 증가시켰다. 에탄에 대한 선택도는 50% 감소하였고, 프로판에 대한 선택도는 34% 감소하였는데, 이는 수소 이동 반응이 상당히 감소되었음을 의미한다.In this Example 16, the molecular sieve composition produced in Example A was tested in the process of Example B using 10 mg of Ce 2 O 3 and 40 mg of the molecular sieve catalyst composition produced in Example 5. The components were mixed well and then diluted with sand to form a reaction bed. The results of this experiment are shown in Tables 2 and 3, where the addition of active Group 3 metal oxides Ce 2 O 3 increased the lifetime by 630%. The selectivity for ethane was reduced by 50% and the selectivity for propane was reduced by 34%, which meant that the hydrogen transfer reaction was significantly reduced.

실시예 17Example 17

이 실시예 17에서, 실시예 6에서 생성된 10mg의 Pr2O3와 40mg의 분자 체 촉매 조성물을 사용하여 실시예 B의 공정에서 실시예 A에서 생성된 분자 체 조성물을 시험하였다. 성분들을 잘 혼합한 후, 모래로 희석하여 반응 상(bed)을 형성하였다. 이 실험의 결과는 표 2 및 3에 도시되는데, 이는 활성 3족 금속 산화물인 Pr2O3의 첨가는 수명을 640% 증가시켰다. 에탄에 대한 선택도는 51% 감소하였고, 프로판에 대한 선택도는 38% 감소하였는데, 이는 수소 이동 반응이 상당히 감소되었음을 의미한다.In this Example 17, the molecular sieve composition produced in Example A was tested in the process of Example B using 10 mg of Pr 2 O 3 and 40 mg of the molecular sieve catalyst composition produced in Example 6. The components were mixed well and then diluted with sand to form a reaction bed. The results of this experiment are shown in Tables 2 and 3, where the addition of Pr 2 O 3 , an active Group 3 metal oxide, increased the lifetime by 640%. The selectivity to ethane was reduced by 51% and the selectivity to propane was reduced by 38%, which meant that the hydrogen transfer reaction was significantly reduced.

실시예 18Example 18

이 실시예 18에서, 실시예 7에서 생성된 10mg의 Nd2O3와 40mg의 분자 체 촉매 조성물을 사용하여 실시예 B의 공정에서 실시예 A에서 생성된 분자 체 조성물을 시험하였다. 성분들을 잘 혼합한 후, 모래로 희석하여 반응 상(bed)을 형성하였다. 이 실험의 결과는 표 2 및 3에 도시되는데, 이는 활성 3족 금속 산화물인Nd2O3의 첨가는 수명을 340% 증가시켰다. 에탄에 대한 선택도는 49% 감소하였고, 프로판에 대한 선택도는 34% 감소하였는데, 이는 수소 이동 반응이 상당히 감소되었음을 의미한다.In this Example 18, the molecular sieve composition produced in Example A was tested in the process of Example B using 10 mg of Nd 2 O 3 and 40 mg of the molecular sieve catalyst composition produced in Example 7. The components were mixed well and then diluted with sand to form a reaction bed. The results of this experiment are shown in Tables 2 and 3, where the addition of Nd 2 O 3 , an active Group 3 metal oxide, increased the lifetime by 340%. The selectivity to ethane was reduced by 49% and the selectivity to propane was reduced by 34%, which means that the hydrogen transfer reaction was significantly reduced.

실시예 19Example 19

이 실시예 19에서, 실시예 8에서 생성된 10mg의 혼합 금속 산화물과 40mg의 분자 체 촉매 조성물을 사용하여 실시예 B의 공정에서 실시예 A에서 생성된 분자 체 조성물을 시험하였다. 성분들을 잘 혼합한 후, 모래로 희석하여 반응 상(bed)을 형성하였다. 이 실험의 결과는 표 2 및 3에 도시되는데, 이는 3족 금속 산화물에 의해 개질된 활성 란탄계 금속 산화물인 5%의 LaOx/Ce2O3의 첨가는 수명을 450% 증가시켰다. 에탄에 대한 선택도는 47% 감소하였고, 프로판에 대한 선택도는 37% 감소하였는데, 이는 수소 이동 반응이 상당히 감소되었음을 의미한다.In this Example 19, the molecular sieve composition produced in Example A was tested in the process of Example B using 10 mg of the mixed metal oxide produced in Example 8 and 40 mg of the molecular sieve catalyst composition. The components were mixed well and then diluted with sand to form a reaction bed. The results of this experiment are shown in Tables 2 and 3, in which the addition of 5% LaO x / Ce 2 O 3 , an active lanthanide metal oxide modified by Group 3 metal oxides, increased the lifespan by 450%. The selectivity to ethane was reduced by 47% and the selectivity to propane was reduced by 37%, indicating that the hydrogen transfer reaction was significantly reduced.

실시예 20Example 20

이 실시예 20에서, 실시예 9에서 생성된 10mg의 혼합 금속 산화물과 40mg의 분자 체 촉매 조성물을 사용하여 실시예 B의 공정에서 실시예 A에서 생성된 분자 체 조성물을 시험하였다. 성분들을 잘 혼합한 후, 모래로 희석하여 반응 상(bed)을 형성하였다. 이 실험의 결과는 표 2 및 3에 도시되는데, 이는 란탄계 산화물에 의해 개질된 활성 3족 금속 산화물인 5%의 CeOx/La2O3의 첨가는 수명을 260% 증가시켰다. 에탄에 대한 선택도는 56% 감소하였고, 프로판에 대한 선택도는 45% 감소하였는데, 이는 수소 이동 반응이 상당히 감소되었음을 의미한다.In this Example 20, the molecular sieve composition produced in Example A was tested in the process of Example B using 10 mg of the mixed metal oxide produced in Example 9 and 40 mg of the molecular sieve catalyst composition. The components were mixed well and then diluted with sand to form a reaction bed. The results of this experiment are shown in Tables 2 and 3, in which the addition of 5% CeO x / La 2 O 3 , an active Group 3 metal oxide modified with lanthanide oxides, increased the lifetime by 260%. The selectivity to ethane was reduced by 56% and the selectivity to propane was reduced by 45%, which meant that the hydrogen transfer reaction was significantly reduced.

Claims (18)

원소 주기율표의 3족, 란탄계 원소 및 악티늄계 원소중에서 선택된 금속의 산화물 1종 이상 및 분자 체를 포함하고, 상기 금속 산화물이 100℃에서 0.03mg(이산화탄소)/㎡(금속 산화물) 이상의 이산화탄소 흡착량을 갖는 촉매 조성물.Carbon dioxide adsorption amount of at least 0.03 mg (carbon dioxide) / m 2 (metal oxide) of the metal oxide including at least one oxide of a metal selected from Group 3 of the periodic table of the elements, lanthanide elements and actinium elements, and molecular sieves; Catalyst composition having a. 제 1 항에 있어서,The method of claim 1, 상기 금속 산화물이 100℃에서 0.04mg(이산화탄소)/㎡(금속 산화물) 이상의 이산화탄소 흡착량을 갖는 촉매 조성물.The catalyst composition has a carbon dioxide adsorption amount of at least 0.04 mg (carbon dioxide) / m 2 (metal oxide) at 100 ° C. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 금속 산화물이 100℃에서 10mg(이산화탄소)/㎡(금속 산화물) 미만의 이산화탄소 흡착량을 갖는 촉매 조성물.The catalyst composition having a carbon dioxide adsorption amount of less than 10 mg (carbon dioxide) / m 2 (metal oxide) at 100 ° C. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3, 상기 금속 산화물과 상이한 결합제 및 매트릭스 물질 중 1종 이상을 추가로 포함하는 촉매 조성물.A catalyst composition further comprising at least one of a binder and a matrix material different from the metal oxide. 3족 금속 산화물 및/또는 란탄계 또는 악티늄계 원소의 산화물, 결합제, 매트릭스 물질 및 실리코알루미노포스페이트 분자 체를 포함하는 촉매 조성물.A catalyst composition comprising an oxide of a Group 3 metal oxide and / or a lanthanide or actinium based element, a binder, a matrix material and a silicoaluminophosphate molecular sieve. 제 4 항 또는 제 5 항에 있어서,The method according to claim 4 or 5, 결합제가 알루미나 졸이고 매트릭스 물질이 점토인 촉매 조성물.A catalyst composition wherein the binder is an alumina sol and the matrix material is clay. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 6, 금속 산화물이 산화 란탄, 산화 이트륨, 산화 스칸듐, 산화 세륨, 산화 프라세오다이뮴, 산화 네오다이뮴, 산화 사마륨, 산화 토륨 및 이들의 혼합물중에서 선택되는 촉매 조성물.A catalyst composition wherein the metal oxide is selected from lanthanum oxide, yttrium oxide, scandium oxide, cerium oxide, praseodymium oxide, neodymium oxide, samarium oxide, thorium oxide, and mixtures thereof. 제 1 항 내지 제 7 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 7, 상기 금속 산화물이 산화 이트륨인 촉매 조성물.The catalyst composition wherein the metal oxide is yttrium oxide. 제 1 항 내지 제 8 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 8, 분자 체가 알루미노포스페이트 또는 실리코알루미노포스페이트를 포함하는 촉매 조성물.A catalyst composition wherein the molecular sieve comprises aluminophosphate or silicoaluminophosphate. 제 9 항에 있어서,The method of claim 9, 분자 체가 CHA 골격형 분자 체 및/또는 AEI 골격형 분자 체를 포함하는 촉매 조성물.A catalyst composition wherein the molecular sieve comprises a CHA skeletal molecular sieve and / or an AEI skeletal molecular sieve. 원소 주기율표의 3족, 란탄계 원소 및 악티늄계 원소중에서 선택된 금속의 산화물 1종 이상을 포함하고 상기 금속 산화물이 100℃에서 0.03mg(이산화탄소)/㎡(금속 산화물 입자) 이상의 이산화탄소 흡착량을 갖는 제 2 입자와, 분자 체를 포함하는 제 1 입자를 물리적으로 혼합하는 것을 포함하는 촉매 조성물의 제조 방법.At least one oxide of a metal selected from Group 3, lanthanide and actinium-based elements of the Periodic Table of Elements, wherein the metal oxide has a carbon dioxide adsorption amount of at least 0.03 mg (carbon dioxide) / m 2 (metal oxide particles) at 100 ° C; A method for producing a catalyst composition comprising physically mixing two particles with a first particle comprising molecular sieves. 제 11 항에 있어서,The method of claim 11, 상기 제 1 입자가 실리코알루미노포스페이트 분자 체, 알루미나 졸을 포함하는 결합제, 및 점토를 포함하는 매트릭스 물질을 포함하는 방법.Wherein said first particle comprises a silicoaluminophosphate molecular sieve, a binder comprising an alumina sol, and a matrix material comprising clay. 제 11 항 또는 제 12 항에 있어서,The method according to claim 11 or 12, 상기 금속 산화물의 수화된 전구체를 상기 금속의 이온을 함유하는 용액으로부터 침전시키고, 수화된 전구체를 80℃ 이상의 온도에서 10일 이하 동안 열수적으로(hydrothermally) 처리한 후, 400℃ 내지 900℃의 온도 범위에서 수화된 전구체를 하소시킴에 의해 상기 제 2 입자를 제조하는 방법.A hydrated precursor of the metal oxide is precipitated from a solution containing ions of the metal, and the hydrated precursor is hydrothermally treated at a temperature of 80 ° C. or higher for up to 10 days, and then a temperature of 400 ° C. to 900 ° C. A method for producing the second particle by calcining a hydrated precursor in the range. 원소 주기율표의 3족, 란탄계 원소 및 악티늄계 원소중에서 선택된 금속의 산화물 1종 이상 및 분자 체를 포함하고, 상기 금속 산화물이 100℃에서 0.03mg(이산화탄소)/㎡(금속 산화물) 이상의 이산화탄소 흡착량을 갖는 촉매 조성물의 존재하에, 원료를 1종 이상의 올레핀(들)으로 전환시키는 방법.Carbon dioxide adsorption amount of at least 0.03 mg (carbon dioxide) / m 2 (metal oxide) of the metal oxide including at least one oxide of a metal selected from Group 3 of the periodic table of the elements, lanthanide elements and actinium elements, and molecular sieves; In the presence of a catalyst composition having a polymer; 제 14 항에 있어서,The method of claim 14, 촉매 조성물이 1보다 큰 수명 증진 지수(LEI)를 갖는 방법.Wherein the catalyst composition has a lifetime enhancement index (LEI) of greater than one. 제 14 항 또는 제 15 항에 있어서,The method according to claim 14 or 15, 분자 체가 실리코알루미노포스페이트인 방법.The molecular sieve is silicoaluminophosphate. 제 14 항 내지 제 16 항 중 어느 한 항에 있어서,The method according to any one of claims 14 to 16, 원료가 메탄올 및/또는 다이메틸에테르를 포함하는 방법.Wherein the raw material comprises methanol and / or dimethyl ether. 제 11 항 내지 제 13 항 중 어느 한 항의 방법에 의해 제조된 촉매 조성물의 존재하에 원료를 1종 이상의 올레핀(들)으로 전환시키는 방법.A process for converting a feedstock into at least one olefin (s) in the presence of a catalyst composition prepared by the method of any one of claims 11 to 13.
KR10-2004-7013378A 2002-02-28 2003-02-10 Catalyst compositions comprising molecular sieves, their preparation and use in conversion processes KR20040089679A (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US36096302P 2002-02-28 2002-02-28
US60/360,963 2002-02-28
US36601202P 2002-03-20 2002-03-20
US60/366,012 2002-03-20
US37469702P 2002-04-22 2002-04-22
US60/374,697 2002-04-22
US10/215,511 US6906232B2 (en) 2002-08-09 2002-08-09 Molecular sieve compositions, catalysts thereof, their making and use in conversion processes
US10/215,511 2002-08-09
PCT/US2003/004169 WO2003074177A2 (en) 2002-02-28 2003-02-10 Catalyst compositions comprising molecular sieves, their preparation and use in conversion processes

Publications (1)

Publication Number Publication Date
KR20040089679A true KR20040089679A (en) 2004-10-21

Family

ID=27792286

Family Applications (3)

Application Number Title Priority Date Filing Date
KR10-2004-7013377A KR20040091080A (en) 2002-02-28 2003-02-10 Catalyst compositions comprising molecular sieves, their preparation and use in conversion processes
KR10-2004-7013384A KR20040089680A (en) 2002-02-28 2003-02-10 Catalyst compositions comprising molecular sieves, their preparation and use in conversion processes
KR10-2004-7013378A KR20040089679A (en) 2002-02-28 2003-02-10 Catalyst compositions comprising molecular sieves, their preparation and use in conversion processes

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR10-2004-7013377A KR20040091080A (en) 2002-02-28 2003-02-10 Catalyst compositions comprising molecular sieves, their preparation and use in conversion processes
KR10-2004-7013384A KR20040089680A (en) 2002-02-28 2003-02-10 Catalyst compositions comprising molecular sieves, their preparation and use in conversion processes

Country Status (11)

Country Link
EP (3) EP1478464A2 (en)
JP (3) JP2005518929A (en)
KR (3) KR20040091080A (en)
CN (3) CN1327964C (en)
AU (3) AU2003212993A1 (en)
BR (1) BR0308011A (en)
CA (2) CA2477432A1 (en)
EA (3) EA007872B1 (en)
MY (2) MY139847A (en)
TW (3) TWI306780B (en)
WO (3) WO2003074175A2 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003212993A1 (en) * 2002-02-28 2003-09-16 Exxonmobil Chemical Patents Inc. Catalyst compositions comprising molecular sieves, their preparation and use in conversion processes
US7074739B2 (en) * 2002-11-19 2006-07-11 Exxonmobil Chemical Patents Inc. Multi-component molecular sieve catalyst compositions and their use in aromatics reactions
US6951830B2 (en) 2003-08-05 2005-10-04 Exxonmobil Chemical Patents Inc. Molecular sieve catalyst compositions, their production and use in conversion processes
US7404891B2 (en) * 2004-03-29 2008-07-29 Exxonmobil Chemical Patents Inc. Heat recovery technique for catalyst regenerator flue gas
US7166757B2 (en) 2004-07-30 2007-01-23 Exxonmobil Chemical Patents Inc. Conversion of oxygenates to olefins
WO2007021394A2 (en) * 2005-08-18 2007-02-22 Exxonmobil Chemical Patents Inc. Catalytic conversion of oxygenates to olefins
CN101003018A (en) * 2006-01-20 2007-07-25 中国石油天然气股份有限公司 Heterogeneous catalysis solid base catalyst and preparation method and application thereof
US7335621B2 (en) 2006-04-19 2008-02-26 Exxonmobil Chemical Patents Inc. Catalyst compositions and preparation thereof
JP4710744B2 (en) * 2006-07-18 2011-06-29 トヨタ自動車株式会社 Method for producing composite metal oxide
US7595275B2 (en) 2006-08-15 2009-09-29 Exxonmobil Chemical Patents Inc. Catalyst compositions and their synthesis
CN101239878B (en) * 2007-02-07 2010-05-19 中国石油化工股份有限公司 Method for increasing yield of ethylene and propylene from olefin with four carbon or above
CN101239866B (en) * 2007-02-07 2010-12-01 中国石油化工股份有限公司 Method for producing ethylene and propylene from oxygen-containing compounds
CA2578494A1 (en) * 2007-02-14 2008-08-14 Nova Chemicals Corporation Catalytic cracking of ethers to 1-olefins
EP2022565A1 (en) * 2007-07-06 2009-02-11 Casale Chemicals S.A. Process for preparing silicoaluminoposphate (SAPO) molecular sieves, catalysts containing said sieves and catalytic dehydration processes using said catalysts
WO2009021727A1 (en) * 2007-08-13 2009-02-19 Saudi Basic Industries Corporation Catalyst composition and process for converting aliphatic oxygenates to aromatics
DE102007059129A1 (en) * 2007-12-07 2009-06-10 Süd-Chemie AG Catalyst with increased olefin selectivity for the conversion of oxygenates to olefins
CA2719905A1 (en) * 2008-04-04 2009-10-08 Petr Vasiliev Zeolite catalyst zeolite secondary structure
JP5818133B2 (en) * 2011-05-20 2015-11-18 国立大学法人東京工業大学 Olefin production catalyst and olefin production method
CN102344328B (en) * 2011-07-25 2014-03-12 浙江大学 Semi-continuous method for converting methyl alcohol into propylene by using moving bed technology
JP6065014B2 (en) * 2012-10-15 2017-01-25 三菱瓦斯化学株式会社 Method for producing catalyst for producing methylamines and method for producing methylamines
RU2612975C1 (en) * 2013-05-07 2017-03-14 Синтос С.А. Method of producing 1,3-butadiene
CN107661774B (en) * 2016-07-27 2020-11-03 中国科学院大连化学物理研究所 Catalyst and method for preparing low-carbon olefin by directly converting synthesis gas
CN107661773B (en) * 2016-07-29 2020-08-04 中国科学院大连化学物理研究所 Method for preparing liquid fuel and co-producing low-carbon olefin by directly converting catalyst and synthesis gas
CN108568311B (en) * 2017-03-07 2021-03-23 中国科学院大连化学物理研究所 Catalyst and method for preparing ethylene by directly converting synthesis gas
WO2018195865A1 (en) * 2017-04-27 2018-11-01 中国科学院大连化学物理研究所 In-situ preparation method for catalyst for preparing at least one of toluene, p-xylene and low-carbon olefin, and reaction process
CN109939722B (en) * 2018-01-26 2021-05-25 中国科学院大连化学物理研究所 Organic base modified composite catalyst and method for preparing ethylene by hydrogenation of carbon monoxide
CN109939667B (en) * 2018-01-26 2021-01-05 中国科学院大连化学物理研究所 Catalyst and method for preparing low-carbon olefin by directly converting synthesis gas
KR20210068595A (en) * 2018-10-30 2021-06-09 엑손모빌 케미칼 패턴츠 인코포레이티드 Group 1 metal ion content of microporous molecular sieve catalysts
CN111346664B (en) * 2018-12-24 2022-11-15 中国石油化工股份有限公司 Modified vanadium-silicon molecular sieve, preparation method thereof and thioether oxidation method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4465889A (en) * 1982-07-02 1984-08-14 Summit Gas Systems Pte. Ltd. Catalytic conversion of methanol, dimethyl ether and mixtures thereof to a hydrocarbon product rich in iso-C4 compounds and new catalysts therefor
US4781816A (en) 1987-10-19 1988-11-01 Phillips Petroleum Company Cracking process
US6040264A (en) * 1996-04-04 2000-03-21 Exxon Chemical Patents Inc. Use of alkaline earth metal containing small pore non-zeolitic molecular sieve catalysts in oxygenate conversion
TW412510B (en) * 1996-12-31 2000-11-21 Exxon Chemical Patents Inc Oxygenate conversions using small pore non-zeolitic molecular sieve catalysts
US6423879B1 (en) * 1997-10-02 2002-07-23 Exxonmobil Oil Corporation Selective para-xylene production by toluene methylation
JP4221532B2 (en) * 1998-06-26 2009-02-12 三菱瓦斯化学株式会社 Methylamine production catalyst and method for producing methylamines using the catalyst
US6388156B1 (en) * 1999-05-14 2002-05-14 Exxonmobil Chemical Patents Inc. Direct selective synthesis of para-xylene by reacting an aromatic compound with a methylating agent formed from CO, Co2 and H2
WO2001064340A1 (en) * 2000-03-01 2001-09-07 Exxonmobil Chemical Patents Inc. Thorium-containing sapo molecular sieve for producing olefins
US6448197B1 (en) * 2000-07-13 2002-09-10 Exxonmobil Chemical Patents Inc. Method for making a metal containing small pore molecular sieve catalyst
WO2002005952A2 (en) * 2000-07-13 2002-01-24 Uop Llc Attrition resistant catalyst for light olefin production
CA2369318A1 (en) * 2002-01-28 2003-07-28 Universite Concordia Hybrid catalysts for the deep catalytic cracking of petroleum naphthas and other hydrocarbon feedstocks for the selective production of light olefins
AU2003212993A1 (en) * 2002-02-28 2003-09-16 Exxonmobil Chemical Patents Inc. Catalyst compositions comprising molecular sieves, their preparation and use in conversion processes

Also Published As

Publication number Publication date
EP1478462A2 (en) 2004-11-24
CN1298427C (en) 2007-02-07
AU2003212993A1 (en) 2003-09-16
EA007872B1 (en) 2007-02-27
EA200401102A1 (en) 2005-04-28
AU2003212993A8 (en) 2003-09-16
JP2005518928A (en) 2005-06-30
TW200303237A (en) 2003-09-01
CN1642648A (en) 2005-07-20
EA007871B1 (en) 2007-02-27
AU2003216248B2 (en) 2008-12-11
TWI265824B (en) 2006-11-11
MY140018A (en) 2009-11-30
WO2003074176A2 (en) 2003-09-12
WO2003074177A3 (en) 2003-12-31
MY139847A (en) 2009-11-30
TWI306780B (en) 2009-03-01
EA200401061A1 (en) 2005-04-28
EA200401101A1 (en) 2005-04-28
WO2003074175A3 (en) 2003-12-04
WO2003074175A2 (en) 2003-09-12
AU2003225560A1 (en) 2003-09-16
EP1478464A2 (en) 2004-11-24
KR20040091080A (en) 2004-10-27
TW200303238A (en) 2003-09-01
WO2003074176A3 (en) 2003-12-18
JP2005518929A (en) 2005-06-30
CA2477428A1 (en) 2003-09-12
KR20040089680A (en) 2004-10-21
CN1646221A (en) 2005-07-27
EA007873B1 (en) 2007-02-27
CA2477432A1 (en) 2003-09-12
WO2003074177A2 (en) 2003-09-12
CA2477428C (en) 2011-03-22
TWI265825B (en) 2006-11-11
BR0308011A (en) 2005-01-04
AU2003225560B2 (en) 2008-05-08
CN100335172C (en) 2007-09-05
JP2005518930A (en) 2005-06-30
TW200306890A (en) 2003-12-01
CN1638865A (en) 2005-07-13
AU2003216248A1 (en) 2003-09-16
EP1478461A2 (en) 2004-11-24
CN1327964C (en) 2007-07-25

Similar Documents

Publication Publication Date Title
AU2003216248B2 (en) Catalyst compositions comprising molecular sieves, their preparation and use in conversion processes
US6844291B2 (en) Molecular sieve compositions, catalyst thereof, their making and use in conversion processes
US7411106B2 (en) Molecular sieve compositions, catalyst thereof, their making and use in conversion processes
US6995111B2 (en) Molecular sieve compositions, catalysts thereof, their making and use in conversion processes
US7319178B2 (en) Molecular sieve compositions, catalysts thereof, their making and use in conversion processes
KR100886532B1 (en) Molecular sieve catalyst composition, its making and use in conversion processes
US7166757B2 (en) Conversion of oxygenates to olefins
WO2006023095A1 (en) Conversion of oxygenates to olefins
US7307196B2 (en) Molecular sieve compositions, catalyst thereof, their making and use in conversion processes
US7199277B2 (en) Pretreating a catalyst containing molecular sieve and active metal oxide
US7186875B2 (en) Conversion of oxygenates to olefins
ZA200406712B (en) Catalyst composition comprising molecular sieves, their preparation and use in conversion processes

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application