TW200303238A - Molecular sieve compositions, catalysts thereof, their making and use in conversion processes - Google Patents

Molecular sieve compositions, catalysts thereof, their making and use in conversion processes Download PDF

Info

Publication number
TW200303238A
TW200303238A TW092103144A TW92103144A TW200303238A TW 200303238 A TW200303238 A TW 200303238A TW 092103144 A TW092103144 A TW 092103144A TW 92103144 A TW92103144 A TW 92103144A TW 200303238 A TW200303238 A TW 200303238A
Authority
TW
Taiwan
Prior art keywords
oxide
molecular sieve
catalyst composition
metal oxide
patent application
Prior art date
Application number
TW092103144A
Other languages
Chinese (zh)
Other versions
TWI306780B (en
Inventor
James C Vartuli
Doron Levin
Original Assignee
Exxonmobil Chem Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/215,511 external-priority patent/US6906232B2/en
Application filed by Exxonmobil Chem Patents Inc filed Critical Exxonmobil Chem Patents Inc
Publication of TW200303238A publication Critical patent/TW200303238A/en
Application granted granted Critical
Publication of TWI306780B publication Critical patent/TWI306780B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • C10G50/02Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation of hydrocarbon oils for lubricating purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/095Catalytic reforming characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • C10G45/54Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • C10G49/08Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/10Magnesium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/83Aluminophosphates (APO compounds)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/84Aluminophosphates containing other elements, e.g. metals, boron
    • C07C2529/85Silicoaluminophosphates (SAPO compounds)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

The invention relates to a catalyst composition, a method of making the same and its use in the conversion of a feedstock, preferably an oxygenated feedstock, into one or more olefin(s), preferably ethylene and/or propylene The catalyst composition comprises a molecular sieve and at least one oxide of a metal selected from Group 3 of the Periodic Table of Elements, the Lanthanide series of elements and the Actinide series of elements.

Description

r200303238 (1) 玖、發明說明 相關申請案的對照 本案爲2002年8月9日申請的美國申請案序號 10/2 15, 511的部分連續案,及與同時申請之美國申請案序 號 60/3 60,963 (Attorney Docket 2002B010)及美國申請案序 號 60/3 60963(Attorney Docket 2002B 05 7)有關,該等申請 案的整個內容倂入本文作爲參考。 【發明所屬之技術領域】 本發明係關於分子篩組成物及含有彼之觸媒,此組成 物及觸媒的合成,及此組成物及觸媒應用在製備烯烴之轉 換方法的用途。 【先前技術】 烯烴係藉由觸媒或蒸氣裂解方法由石油進料以傳統方 式予以製備。這些裂解方法,特別是蒸氣裂解,從各種烴 進料產生輕烯烴,例如乙烯及/或丙烯。乙烯及丙烯是用 於製備塑膠及其他化學化合物的各種方法的重要石油化學 商品。 含氧物,特別是醇類,轉換成輕烯烴在石油化學工業 上有名一段時間。有許多技術應用於製備含氧物,該含氧 物包括發酵或合成氣體的反應,該合成氣體源自天然氣、 石油液體或含煤的碳物質、回收的塑膠、地方廢料或任何 其他有機物質。通常,合成氣體的製備包括天然氣(大多 -6 - (2) (2)200303238 爲甲烷)與氧來源的燃燒反應成氫、一氧化碳及/或二氧化 碳。其他已知的合成氣體的製備方法包括慣用的蒸氣重整 、自熱重整或其組合。 甲醇,供製備輕烯烴的較佳醇類,典型地在甲醇反應 器中及在多相觸媒存在下,氫、一氧化碳及/或二氧化碳 的催化反應予以製備。例如,在一合成方法中,甲醇係在 水冷管狀甲醇反應器中,使用銅/鋅氧化物觸媒予以製備 的。轉換含有曱醇之進料成一或多種烯烴(主要爲乙烯及/ 或丙烯)之較佳方法包含,使進料與分子篩觸媒組成物接 觸。 分子篩爲具有不同大小孔洞的多孔固體,例如沸石或 沸石型分子篩、碳及氧化物。石油及石油化學工業上最常 用的分子篩是沸石,例如矽酸鋁鹽分子篩。沸石通常具有 1-、2-或3維結晶孔洞結構,該結構具有均勻大小孔洞的 分子尺寸,其選擇性吸附可進入孔洞的分子,及排除太大 的分子。 已知多種類型的分子篩用於轉換進料,特別是包括含 氧物的進料,成一或多種烯烴。例如,US 5,3 67, 1 00描述 使用沸石(ZSM-5)將甲醇轉換成烯烴;US 4,062,905討論 使用結晶的矽酸鋁鹽沸石,例如沸石T、ZK5、毛沸石 (erionite)及菱沸石(chabazite),將甲醇或其他含氧物轉換 成乙烯及丙烯;US 4,079,095描述使用 ZSM-34將甲醇轉 換成烴產物,例如乙烯及丙烯;及US 4,3 1 0,4 40描述使用 結晶磷酸鋁鹽,通常標示爲aipo4,由醇類製備輕烯烴。 (3) (3)200303238 供甲醇轉換成烯烴的一些最有用的分子篩爲矽鋁磷酸 鹽分子篩。烯鋁磷酸鹽(SAP 0)分子篩包括分享四面體單 元的[Si04]、[Al〇4]及[P〇4]角的3維微孔結晶骨架結構。 SAPO合成被描述在US 4,44 0,871,其完全倂入本文作爲 參考。SAP Ο分子篩通常藉由矽-、鋁-、及磷來源,及至 少一種樣板劑的反應混合物的熱水結晶作用予以合成。 SAPO分子篩的合成、其調配成SAPO觸媒及其用於轉換 烴進料惟烯烴之用途,特別是進料是甲醇,揭示於US 4,499,327、4,677,242、4,677,243、4,8 73,3 90 > 5,095,1 63 、5,7 1 4,662及6,1 66,282,其皆完全倂入本文作爲參考。 典型地,分子篩被調配成分子篩觸媒組成物以改善其 在工業轉換方法上的耐久性。這些分子篩觸媒組成物係藉 由通常在黏著劑存在下混合分子篩及基質物質。黏著劑的 目的是使基質物質(通常爲黏土)與分子篩黏結。 雖然使用黏著劑及基質物質形成供含氧物轉換成烯烴 之分子篩觸媒組成物是已知的,這些黏著劑及基質物質典 型僅適宜提供欲得之物理特性至觸媒組成物。因此,具有 較佳轉換率、改善烴選擇性及較長的壽命的經改善的分子 篩觸媒組成物是欲得的。 US 4,465,8 89描述觸媒組成物,其包括充滿了钍、鉻 或鈦金屬氧化物矽酸鹽分子篩’其係用於使甲醇、二甲醚 或其混合物轉換成富含異C4化合物之烴產物。 US 6,1 80,82 8討論使用經改良的分子篩從甲醇及氨製 備甲胺,例如矽鋁磷酸鹽分子篩混合一或多種改良劑’例 -8- (4) (4)200303238 如氧化鍩、氧化鈦、氧化釔、蒙脫土或高嶺土。 US 5,4 1 7,949係關於使用分子篩及金屬氧化物黏著劑 轉換存在於在含氧流出物之有毒氮氧化物爲氮及水之方法 ,較佳的黏著劑爲二氧化鈦,及分子篩爲矽酸鋁鹽。 EP-A-3 1298 1揭示使用在含矽石載體物質上之觸媒組 成物裂解含釩之烴進料流之方法,該組成物包括嵌進無機 耐火基質物質中的沸石及至少一種鈹、鎂、鈣、緦、鋇或 鑭之氧化物。 Φr200303238 (1) 对照 Contrast of related applications of invention description This case is part of consecutive US application No. 10/2 15, 511 filed on August 9, 2002, and US application No. 60/3 applied at the same time 60,963 (Attorney Docket 2002B010) and US application serial number 60/3 60963 (Attorney Docket 2002B 05 7), the entire contents of these applications are incorporated herein by reference. [Technical field to which the invention belongs] The present invention relates to a molecular sieve composition and a catalyst containing the same, the synthesis of the composition and the catalyst, and the use of the composition and the catalyst in a conversion method for preparing an olefin. [Prior art] Olefins are prepared in a conventional manner from a petroleum feed by a catalyst or a steam cracking method. These cracking methods, particularly steam cracking, produce light olefins, such as ethylene and / or propylene, from various hydrocarbon feeds. Ethylene and propylene are important petrochemical commodities for various processes used to make plastics and other chemical compounds. The conversion of oxygenates, especially alcohols, to light olefins has been well known in the petrochemical industry for some time. There are a number of techniques applied to the preparation of oxygenates, which include reactions of fermentation or synthesis gas derived from natural gas, petroleum liquids or coal-containing carbon materials, recycled plastic, local waste or any other organic material. Generally, the synthesis gas synthesis involves the combustion reaction of natural gas (mostly -6-(2) (2) 200303238 is methane) with an oxygen source to generate hydrogen, carbon monoxide and / or carbon dioxide. Other known synthesis gas preparation methods include conventional steam reforming, autothermal reforming, or a combination thereof. Methanol, the preferred alcohol for the production of light olefins, is typically prepared in a methanol reactor and in the presence of a heterogeneous catalyst by a catalytic reaction of hydrogen, carbon monoxide and / or carbon dioxide. For example, in a synthetic method, methanol is prepared in a water-cooled tubular methanol reactor using a copper / zinc oxide catalyst. A preferred method of converting a methanol-containing feed to one or more olefins (mainly ethylene and / or propylene) comprises contacting the feed with a molecular sieve catalyst composition. Molecular sieves are porous solids with pores of different sizes, such as zeolites or zeolite-type molecular sieves, carbon and oxides. The most commonly used molecular sieves in the petroleum and petrochemical industries are zeolites, such as aluminum silicate molecular sieves. Zeolites usually have a 1-, 2-, or 3-dimensional crystalline pore structure with a molecular size of pores of uniform size, which selectively adsorb molecules that can enter the pores, and exclude molecules that are too large. Various types of molecular sieves are known for converting feeds, particularly feeds including oxygenates, to one or more olefins. For example, US 5,3 67,100 describes the conversion of methanol to olefins using zeolite (ZSM-5); US 4,062,905 discusses the use of crystalline aluminosilicate zeolites such as zeolite T, ZK5, erionite, and chabazite (Chabazite) to convert methanol or other oxygenates to ethylene and propylene; US 4,079,095 describes the use of ZSM-34 to convert methanol to hydrocarbon products such as ethylene and propylene; and US 4,3 1 0,4 40 describes the use of crystalline phosphoric acid Aluminum salts, usually labeled aipo4, make light olefins from alcohols. (3) (3) 200303238 Some of the most useful molecular sieves for converting methanol to olefins are silicoaluminophosphate molecular sieves. The enoaluminophosphate (SAP 0) molecular sieve includes a three-dimensional microporous crystalline skeleton structure sharing [Si04], [Al〇4], and [P04] corners of a tetrahedral unit. SAPO synthesis is described in US 4,44 0,871, which is fully incorporated herein by reference. SAP O molecular sieves are usually synthesized by hot-water crystallization of a reaction mixture of silicon-, aluminum-, and phosphorus sources, and at least one template agent. The synthesis of SAPO molecular sieves, its formulation into SAPO catalysts, and its use for converting hydrocarbon feeds to olefins, especially the feed is methanol, are disclosed in US 4,499,327, 4,677,242, 4,677,243, 4,8 73,3 90 > 5,095 , 1 63, 5,7 1 4,662 and 6,1 66,282, all of which are fully incorporated herein by reference. Molecular sieves are typically formulated with molecular sieve catalyst compositions to improve their durability in industrial conversion methods. These molecular sieve catalyst compositions are obtained by mixing a molecular sieve and a matrix substance usually in the presence of an adhesive. The purpose of the adhesive is to bind the matrix material (usually clay) with the molecular sieve. Although it is known to use adhesives and matrix materials to form molecular sieve catalyst compositions for conversion of oxygenates to olefins, these adhesives and matrix materials are typically only suitable to provide the desired physical properties to the catalyst composition. Therefore, an improved molecular sieve catalyst composition having better conversion, improved hydrocarbon selectivity, and longer life is desired. US 4,465,8 89 describes a catalyst composition comprising a rhenium, chromium or titanium metal oxide silicate molecular sieve 'which is used to convert methanol, dimethyl ether or a mixture thereof to a hydrocarbon rich in isoC4 compounds product. US 6,1 80,82 8 discusses the use of modified molecular sieves to prepare methylamine from methanol and ammonia, such as silicoaluminophosphate molecular sieves mixed with one or more modifiers' Example -8- (4) (4) 200303238 such as hafnium oxide, Titanium oxide, yttrium oxide, montmorillonite or kaolin. US 5,4 1 7,949 is a method of using molecular sieves and metal oxide adhesives to convert the toxic nitrogen oxides present in the oxygen-containing effluent to nitrogen and water. The preferred adhesive is titanium dioxide, and the molecular sieve is aluminum silicate. salt. EP-A-3 1298 1 discloses a method for cracking a vanadium-containing hydrocarbon feed stream using a catalyst composition on a silica-containing carrier material, the composition comprising a zeolite embedded in an inorganic refractory matrix material and at least one beryllium, Oxides of magnesium, calcium, scandium, barium or lanthanum. Φ

Kang 及 Inui, Effects of decrease in number of acid sites located on the external surface of Ni-SAPO-34 crystalline catalyst by the mechanochemical method, Catalyst Letters 53,pages 171-176 (1998)揭示在經由 Ni-SAPO-34使甲醇轉換成乙烯中,形狀選擇性可被增加 ,及焦炭的形成被減緩,該Ni-SAPO-34係藉由以在微球 形無孔砂石上之MgO、CaO、BaO或Cs2〇硏磨觸媒,以 BaO爲最佳。 # WO 98/293 70揭示經由小孔非沸石型分子篩使含氧物 轉換成烯烴,該分子篩包括選自鑭系元素、輻射線元素、 銃 '釔、第4族金屬、第5族金屬或其混合物之金屬。 【發明內容】 在一觀點,本發明在於含有分子篩及至少一種選自元 素週期表之第3族、鑭系元素及锕系元素之金屬的氧化物 之觸媒組成物,其中該金屬氧化物的二氧化碳的攝入値在 -9- (5) (5)200303238 100°C時至少爲〇.〇3mg/m2金屬氧化物,及典型至少爲 0.04mg/m2金屬氧化物。 觸媒組成物亦包括不同於該金屬氧化物的至少一種黏 著劑及基質物質。 觸媒組成物亦包括選自元素週期表的第2及3族金屬的 氧化物。在一實施例中,第4族金屬氧化物包括氧化鉻, 及第2族及/或第3族金屬氧化物包括一或多種選自氧化鈣 、氧化鋇、氧化鑭、氧化釔及氧化銃的氧化物。 分子篩合宜地包括一含有至少兩個四面體單元之架構 ,例如矽鋁磷酸鹽,該單元選自[si〇4]、[aio4]及[P04]單 元。 在另一觀點中,本發明在於分子篩組成物,其包括第 3族金屬氧化物及/或鑭系或锕系元素的氧化物、黏著劑、 基質物質及矽鋁磷酸鹽分子篩。 在另一觀點中,本發明在於製備觸媒組成物之方法, 該方法包括使含有分子篩的第一粒子與含有至少一種選自 元素週期表中第3族、鑭系元素及锕系元素之金屬之氧化 物的第二粒子完全混合,其中該金屬氧化物的二氧化碳的 攝入値在l〇〇°C時至少爲0.03mg/m2金屬氧化物粒子。 在一實施例中,分子篩、黏著劑及基質物質被製備成 一經配製的分子篩組成物,該組成物之後與活潑第3族金 屬氧化物及/或鑭系或锕系元素之活潑氧化物接觸、混合 、組合、噴霧乾燥或等等。 在另一觀點中,本發明在於製備觸媒組成物之方法, (6) (6)200303238 該方法包括: (i) 由反應混合物合成分子篩,該混合物包括至少一種 樣板劑及矽來源、磷來源及鋁來源中至少兩者;及 (ii) 回收(i)中所合成的分子篩; (iii) 藉由從一含有該金屬離子來源的溶液中沉澱,以 形成選自元素週期表中第3族、鑭系元素及锕系元素之金 屬之氧化物的水合前驅物; (iv) 回收(iii)中所形成的水合前驅物; (v) 鍛燒(iv)中所回收的水合前驅物,以形成受鍛燒的 第4族金屬氧化物,該金屬氧化物的二氧化碳的攝入値在 l〇〇°C時至少爲0.03mg/m2金屬氧化物;及 (vi) 完全混合(i)中所回收的分子篩及(v)中所製備的受 鍛燒的金屬氧化物。 在另一觀點中,本發明係關於製備烯烴之方法,其係 藉由在任何上述分子篩組成/或分子篩或經配製的分子篩 觸媒組成物存在下,轉換進料,例如含氧物,合宜爲醇類 ,例如甲醇。 在另一觀點中,本發明係關於製備一或多種烯烴之整 合方法,該整合方法包括: (a) 使烴進料通過合成氣體產生區域以產生合成氣體 物流; (b) 使合成氣體物流與觸媒接觸,形成含氧進料;及 (c) 使含氧進料在分子篩觸媒組成物存在下轉換成該 一或多種烯烴,該組成物包括分子篩及至少一種選自元素 (7) (7)200303238 週期表中第3族或鑭或锕系元素之金屬的氧化物。 在一實施例中,觸媒組成物的壽命增加指數(LEI)大 於1,例如大於1. 5。LEI在此定義爲觸媒組成物的壽命對 無活潑金屬氧化物之相同觸媒組成物的壽命比値。 【實施方式】 實施例的詳細敘述 介紹 鲁 本發明係關於分子篩觸媒組成物及其用於轉換烴進料 ,特別是氧化的進料,成烯烴之用途。已發現,混合分子 篩與來自元素週期表中第3族(使用描述於CRC Handbook of Chemistry and Physics,7 8th Edition, CRC Press, Boca Raton,Florida [1 997]的IUPAC形式)及/或鑭或锕系元素 的活潑金屬氧化物,得到具有增加烯烴產率及/或較長壽 命之觸媒組成物,當用於轉換進料,例如含氧物,更特別 的是甲醇,成烯烴時。此外,得到的觸媒組成物傾向於對 ® 丙烯較具選擇性,及傾向於產生較少量的不欲的乙烷及丙 烷及其他不欲之化合物,例如醛類及酮類,特別是乙醛。 分子篩 分子官芾已經由 Structure Commission of the International Zeolite Association 依據 IUPAC Commission on Zeolite Nomenclature予以分類。依據此分類,架構型 沸石及沸石型分子篩,其結構已被確認,被分配到3個字 -12- (8) 200303238 母及被描述在 Atlas of Zeolite Framework Types,5th edition,Elsevier,London,England (200 1),其倂入本文作 爲參考。 結晶分子篩皆具有共享角[T04]四面體的3維、4相連 的骨架結構,其中Τ爲任何四面體配爲的陽離子。分子篩 典型地以定義孔洞的環大小予以描述,其中大小是以環中 Τ原子的數目計算。其他架構型特色包括形成籠的環的排 列,及,當存在時,通道的大小,及籠間的空間。參考 van Bekkum,et al., Introduction to Zeolite Science and Practice, Second Completely Revised and Expanded Edition,Volumne 137,pages 1-67,Elsevier Science, B. V.,Amsterdam, Netherlands (2001). 分子篩的非限制性範例小孔洞的分子篩、AEI、AFT 、APC、ATN、ATT、ATV、AWW、BIK、CAS、CHA、Kang and Inui, Effects of decrease in number of acid sites located on the external surface of Ni-SAPO-34 crystalline catalyst by the mechanochemical method, Catalyst Letters 53, pages 171-176 (1998) revealed that the use of Ni-SAPO-34 In the conversion of methanol to ethylene, the shape selectivity can be increased, and the formation of coke can be slowed. The Ni-SAPO-34 is made by grinding the catalyst with MgO, CaO, BaO or Cs2〇 BaO is the best. # WO 98/293 70 discloses the conversion of oxygenates to olefins through a small pore non-zeolitic molecular sieve, the molecular sieve comprising a member selected from the group consisting of lanthanides, radiation elements, scandium yttrium, group 4 metals, group 5 metals, or Mixture of metals. SUMMARY OF THE INVENTION In one aspect, the present invention resides in a catalyst composition containing a molecular sieve and an oxide of at least one metal selected from Group 3 of the periodic table, lanthanides and actinides, wherein the Carbon dioxide intake: -9- (5) (5) 200303238 at 100 ° C is at least 0.03 mg / m2 metal oxide, and typically at least 0.04 mg / m2 metal oxide. The catalyst composition also includes at least one adhesive and matrix material different from the metal oxide. The catalyst composition also includes oxides of metals selected from Groups 2 and 3 of the periodic table. In an embodiment, the Group 4 metal oxide includes chromium oxide, and the Group 2 and / or Group 3 metal oxide includes one or more selected from the group consisting of calcium oxide, barium oxide, lanthanum oxide, yttrium oxide, and hafnium oxide. Oxide. Molecular sieves desirably include a framework containing at least two tetrahedral units, such as silicoaluminophosphates, the unit being selected from the group consisting of [sio4], [aio4], and [P04] units. In another aspect, the invention resides in a molecular sieve composition comprising a Group 3 metal oxide and / or a lanthanide or actinide oxide, a binder, a matrix material, and a silicoaluminophosphate molecular sieve. In another aspect, the present invention resides in a method for preparing a catalyst composition, the method comprising combining first particles containing a molecular sieve with at least one metal selected from Group 3, lanthanide and actinide in the periodic table. The second particles of the oxide are completely mixed, and the carbon dioxide intake of the metal oxide is at least 0.03 mg / m2 metal oxide particles at 100 ° C. In one embodiment, the molecular sieve, adhesive and matrix material are prepared into a formulated molecular sieve composition, which is then contacted with an active Group 3 metal oxide and / or an active oxide of a lanthanide or actinide, Mix, combine, spray dry or more. In another aspect, the invention resides in a method for preparing a catalyst composition. (6) (6) 200303238 The method includes: (i) synthesizing a molecular sieve from a reaction mixture, the mixture including at least one sample agent and a source of silicon and a source of phosphorus And at least two of aluminum sources; and (ii) recovering the molecular sieve synthesized in (i); (iii) forming a group selected from Group 3 of the periodic table by precipitating from a solution containing the metal ion source Hydration precursors of metal oxides of lanthanides and actinides; (iv) recovery of hydrated precursors formed in (iii); (v) hydration precursors recovered in calcination (iv) to Form a calcined Group 4 metal oxide whose carbon dioxide uptake is at least 0.03 mg / m2 metal oxide at 100 ° C; and (vi) completely mixed with (i) The recovered molecular sieve and the calcined metal oxide prepared in (v). In another aspect, the present invention relates to a method for preparing an olefin, which is performed by switching a feed, such as an oxygenate, in the presence of any of the above molecular sieve compositions and / or molecular sieves or formulated molecular sieve catalyst compositions, suitably Alcohols, such as methanol. In another aspect, the invention is an integrated process for preparing one or more olefins, the integrated process comprising: (a) passing a hydrocarbon feed through a synthesis gas generation zone to produce a synthesis gas stream; (b) passing the synthesis gas stream to Contacting the catalyst to form an oxygen-containing feed; and (c) converting the oxygen-containing feed to the one or more olefins in the presence of a molecular sieve catalyst composition comprising a molecular sieve and at least one selected from the elements (7) ( 7) 200303238 An oxide of a metal of Group 3 or lanthanum or actinide in the periodic table. In one embodiment, the catalyst composition has a lifetime increase index (LEI) greater than 1, such as greater than 1.5. LEI is defined herein as the ratio of the lifetime of the catalyst composition to the lifetime of the same catalyst composition without active metal oxides. [Embodiment] Detailed description of the embodiment Introduction Lu This invention relates to a molecular sieve catalyst composition and its use for converting a hydrocarbon feed, especially an oxidized feed, to an olefin. It has been found that mixed molecular sieves with IUPAC form from Group 3 of the Periodic Table of the Elements (using the IUPAC format described in CRC Handbook of Chemistry and Physics, 7 8th Edition, CRC Press, Boca Raton, Florida [1 997]) and / or An active metal oxide of a series element to obtain a catalyst composition having an increased olefin yield and / or a longer lifespan when used for a conversion feed such as an oxygenate, more specifically methanol, to an olefin. In addition, the resulting catalyst composition tends to be more selective for propylene, and tends to produce smaller amounts of unwanted ethane and propane and other unwanted compounds, such as aldehydes and ketones, especially ethyl aldehyde. Molecular sieves Molecular officials have been classified by the Structure Commission of the International Zeolite Association based on the IUPAC Commission on Zeolite Nomenclature. According to this classification, the structure type zeolite and zeolite molecular sieve have been confirmed and assigned to 3 words -12- (8) 200303238 parent and described in Atlas of Zeolite Framework Types, 5th edition, Elsevier, London, England (200 1), which is incorporated herein by reference. Crystal molecular sieves all have a three-dimensional, four-connected skeleton structure with a shared angle [T04] tetrahedron, where T is a cation coordinated by any tetrahedron. Molecular sieves are typically described in terms of ring sizes that define pores, where size is calculated as the number of T atoms in the ring. Other architectural features include the arrangement of the rings that form the cage, and, when present, the size of the aisle, and the space between the cages. See van Bekkum, et al., Introduction to Zeolite Science and Practice, Second Completely Revised and Expanded Edition, Volumene 137, pages 1-67, Elsevier Science, BV, Amsterdam, Netherlands (2001). Non-limiting examples of molecular sieves Small holes Molecular sieves, AEI, AFT, APC, ATN, ATT, ATV, AWW, BIK, CAS, CHA,

CHI、DAC、DDR、EDI、ERI、GOO、KFI、LEV、LOV、 LTA、MON、PAU、PHI、RHO、ROG、THO 及其經取代 的形式;中間孔洞分子篩、AFO、AEL、EUO、HEU、 FER、MEL、MFI、MTW、MTT、TON及其經取代的形式 :及大孔洞分子篩、EMT、FAU及其經取代的形式。其他 分子篩包括 ANA、BEA、CFI、CLO、DON、GIS、LTL、 Μ E R、Μ O R、M W W及S 0 D。較佳分子飾的非限制性範例 ,特別是供轉換包括含氧物之進料成烯烴,包括AEL、 AFY、ΑΕΙ、BEA、CHA、EDI、FAU、FER、GIS、LTA、 LTL、MER、MFI、MOR、MTT、MWW、ΤΑΜ 及 TON。在 -13- (9) (9)200303238 一較佳實施例中,本發明的分子篩具有 ΑΕΙ拓撲學或 CHA拓撲學、或其組合,最佳爲CHA拓撲學。 小、中間、大孔洞分子篩具有從4-環至12-環或較大 的架構型。在一較佳實施例中,沸石分子篩具有8-、10-或12-環結構,及平均孔洞大小範圍從約3Α至15Α。在一 更佳實施例中,分子篩,較佳爲矽鋁磷酸鹽分子篩,具有 8-環及平均孔洞大小小於約5Α,例如在範圍從3Α至約5Α ,例如從3 Α至4.5Α,及特別從3.5Α至約4.2Α。 分子篩具有一分子架構,其共享1,較佳爲2或多個, 角[T04]四面體單元,更佳爲2或多個[Si04]、[Al〇4]及/或 [p〇4]四面體單元,及最佳爲[si〇4]、[aio4]及/或[P04]四 面體單元。這些以矽、鋁及磷爲主的分子篩及其含有金屬 的衍生物已詳細地被描述在數種刊物,該刊物包括,例如 US 4,4567,029 (MeAPO 其中 Me 爲 Mg、Μη、Zn 或 Co)、 US 4,440,87 1 (SAPO)、EP-A-0 1 59624 (ELAPSO 其中 El 爲 As、B e、B、Cr、C o、Ga、Ge、F e、Li、Mg、Μη、Ti 或 Zn)、US 4,5 54,1 43 (FeAPO)、US 4,822,478、4,683,2 1 7、 4,744,885 (FeAPSO) 、 EP-A-0 1 5 897 5 及 US 4,93 5,2 1 6CHI, DAC, DDR, EDI, ERI, GOO, KFI, LEV, LOV, LTA, MON, PAU, PHI, RHO, ROG, THO and their substituted forms; intermediate hole molecular sieve, AFO, AEL, EUO, HEU, FER, MEL, MFI, MTW, MTT, TON and their substituted forms: and macroporous molecular sieves, EMT, FAU and their substituted forms. Other molecular sieves include ANA, BEA, CFI, CLO, DON, GIS, LTL, M E R, M OR, M W W and SO D. Non-limiting examples of better molecular decorations, especially for conversion of feeds including oxygenates to olefins, including AEL, AFY, AEI, BEA, CHA, EDI, FAU, FER, GIS, LTA, LTL, MER, MFI , MOR, MTT, MWW, TAM, and TON. In a preferred embodiment of -13- (9) (9) 200303238, the molecular sieve of the present invention has an AEI topology or a CHA topology, or a combination thereof, and is most preferably a CHA topology. Small, intermediate, and large-pore molecular sieves are available in 4-ring to 12-ring or larger structures. In a preferred embodiment, the zeolite molecular sieve has an 8-, 10-, or 12-ring structure, and the average pore size ranges from about 3A to 15A. In a more preferred embodiment, molecular sieves, preferably silicoaluminophosphate molecular sieves, have 8-rings and an average pore size of less than about 5A, such as in a range from 3A to about 5A, such as from 3 A to 4.5A, and particularly From 3.5A to about 4.2A. Molecular sieves have a molecular structure that shares 1, preferably 2 or more, corner [T04] tetrahedral units, more preferably 2 or more [Si04], [Al〇4], and / or [p〇4] Tetrahedral elements, and most preferably [si〇4], [aio4] and / or [P04] tetrahedral elements. These silicon, aluminum and phosphorus-based molecular sieves and their metal-containing derivatives have been described in detail in several publications including, for example, US 4,4567,029 (MeAPO where Me is Mg, Mη, Zn or Co), US 4,440,87 1 (SAPO), EP-A-0 1 59624 (ELAPSO where El is As, Be, B, Cr, Co, Ga, Ge, F e, Li, Mg, Mη, Ti Or Zn), US 4,5 54,1 43 (FeAPO), US 4,822,478, 4,683,2 1 7, 4,744,885 (FeAPSO), EP-A-0 1 5 897 5 and US 4,93 5,2 1 6

(ZnAPSO) 、EP-A-0161489 (CoAPSO) 、EP-A-0158976 (ELAPO 其 中EL爲 C o、F e 、Mg、Mn 、Ti 或 Zn)、 US 4,3 10,440 (A1P04)、 EP-A 0158350 (SENAPO)、 US 4,973,460 (LiAPSO) 、US 4,789,535 (LiAPO)、 US 4,992,250 (GeAPSO) 、US 4,888,167 (GeAPO)、 US 5,057,295 (BAPSO) 、US 4,73 8,83 7 (CrAPSO)、 US (10) 200303238 4,75 9,9 1 9及 4,851,106 (CrAPO)、US 4,758,4 1 9、4,8 82,03 8 、5,43 4,326 及 5,47 8,78 7 (MgAPSO) 、 US 4,5 54.1 43 (FeAPO) 、 US 4,894,2 1 3 (AsAPSO) 、 US 4,913,888 (AsAPO) 、 US 4,686,092 ' 4,8 4 6,9 5 6 及 4,7 9 3,8 3 3(ZnAPSO), EP-A-0161489 (CoAPSO), EP-A-0158976 (ELAPO where EL is Co, Fe, Mg, Mn, Ti or Zn), US 4,3 10,440 (A1P04), EP-A 0158350 (SENAPO), US 4,973,460 (LiAPSO), US 4,789,535 (LiAPO), US 4,992,250 (GeAPSO), US 4,888,167 (GeAPO), US 5,057,295 (BAPSO), US 4,73 8,83 7 (CrAPSO), US (10 ) 200303238 4,75 9,9 1 9 and 4,851,106 (CrAPO), US 4,758,4 1 9,4,8 82,03 8, 5,43 4,326 and 5,47 8,78 7 (MgAPSO), US 4,5 54.1 43 (FeAPO), US 4,894,2 1 3 (AsAPSO), US 4,913,888 (AsAPO), US 4,686,092 '4, 8 4 6, 9 5 6 and 4, 7 9 3, 8 3 3

(MnAPSO)、US 5,3 4 5,0 1 1 及 6,1 5 6,9 3 1 (Μη AP O)、U S 4,73 7,3 5 3 (BeAPSO) 、 US 4,940,570 (BeAPO) 、 US(MnAPSO), US 5,3 4 5,0 1 1 and 6, 1 5 6,9 3 1 (Μη AP O), US 4,73 7,3 5 3 (BeAPSO), US 4,940,570 (BeAPO), US

4,80 1,3 09 ' 4,684,6 1 7 及 4,880,520 (TiAPSO) 、 US4,80 1,3 09 '4,684,6 1 7 and 4,880,520 (TiAPSO), US

4.5 00,65 1 、 4,551,23 6 及 4,605 、 492 (TiAPO) 、 US 4.824.5 54 、 4,744,970 (CoAPSO) 、 US 4,73 5,8 06 (GaAPSO)、EP-A-0293 93 7 (QAPSO 其中 Q 爲架構氧化物 單元[Q〇2]),及 us 4,567,029、4,686,093、4,781,814、 4,793,984、4,801,3 64、4,8 53,197、4,9 17,876、4,952,3 84 、4,95 6,164 、 4,956,165 、 4,973,785 、 5,241,093 、 5,493,066及5,675,05 0,其皆倂入本文作爲參考。4.5 00,65 1, 4,551, 23 6 and 4,605, 492 (TiAPO), US 4.824.5 54, 4,744,970 (CoAPSO), US 4,73 5,8 06 (GaAPSO), EP-A-0293 93 7 (QAPSO Where Q is a framework oxide unit [Q〇2]), and us 4,567,029, 4,686,093, 4,781,814, 4,793,984, 4,801,3 64, 4,8 53, 53,197, 4,9 17,876, 4,952,3 84, 4 ,, 95 6,164, 4,956,165, 4,973,785, 5,241,093, 5,493,066, and 5,675,05 0, all of which are incorporated herein by reference.

其他分子舖包括該等描述於R. Szostal,Handbook of Molecular Sieves,Van No strand Reinhold, New York,New York (1992),其倂入本文作爲參考。 更佳的分子篩包括磷酸鋁鹽(A1PO)分子篩及矽鋁磷酸 鹽(SAPO)分子篩及經取代,較佳爲經金屬取代,A1PO及 SAPO分子篩。最佳的分子篩爲SAPO分子篩,及經金屬 取代的SAPO分子篩。在一實施例中,金屬爲元素週期表 中第1族鹼金屬、元素週期表中第2族鹼土金屬、元素週期 表中第3族稀土金屬,該稀土金屬包括鑭系元素:鑭、鈽 、鐯、鈸、釤、銪、、铽、鏑、鈥、餌、錶、鏡及餾; -15- (11) (11)200303238 及統或纟乙、兀素週期表中第4至12族之過渡金屬、或任何 這些金屬種類的混合物。在一較佳實施例中’金屬係選自 Co、Cr、Cu、Fe、Ga、Ge、Mg、Μη、Ni、Sn、Ti、Zn 及Zr,及其混合物。在另一較佳實施例中,上面所討論 的這些金屬原子透過四面體單元,例如[Me02],被插入至 分子篩的架構,及視金屬取代基的價電狀態而帶有淨電荷 。例如,在一實施例中,當金屬取代基具有+2、+3、+4 、+5或+6之價電狀態,四面體單元的淨電荷介於-2及+2間 〇 在一實施例中,分子篩,如上面所述之US專利案所 描述,以無水之實驗式表示: mR:(MxAlyPz)〇2 其中R表示至少一種樣板劑,較佳爲有機樣板劑;m 爲R相對於每莫耳(MxAlyPz)〇2的莫耳數,及從〇至1,較 佳爲〇至0.5,及最佳從0至0.3; X、y及z表示充當四面體 氧化物的Al、P及Μ的莫耳分率,其中μ爲一種金屬, 其係選自元素週期表中第1、2、3、4、5、6、7、8、9、 10、η、12、13、14族及鑭系,較佳地,Μ係選自si、 Co、Cr、Cu、Fe、Ga、Ge、Mg、Μη、Ni、Sn、Ti、Zn 及Zr中之一者。在一實施例中,m大於或等於〇2,x、y 及z大於或等於0.01。在另一實施例中,m大於〇.;[至約1 ,X大於〇至約〇. 2 5,y的範圍從〇 4至〇. 5,及z的範圍從 0.25至 0.5,更佳地,m 從 〇·ΐ5 至 0.7,X 從 〇.〇1 至 〇.2,y 從 0.4 至 0.5,及 z 從 0.3 至 0.5。 -16 - (12) 200303238Other molecular stores include those described in R. Szostal, Handbook of Molecular Sieves, Van No strand Reinhold, New York, New York (1992), which is incorporated herein by reference. More preferred molecular sieves include aluminum phosphate (A1PO) molecular sieves and silicon aluminum phosphate (SAPO) molecular sieves and substituted, preferably metal-substituted, A1PO and SAPO molecular sieves. The best molecular sieves are SAPO molecular sieves and metal-substituted SAPO molecular sieves. In one embodiment, the metal is a Group 1 alkali metal in the periodic table, a group 2 alkaline earth metal in the periodic table, and a group 3 rare earth metal in the periodic table. The rare earth metal includes lanthanides: lanthanum, thorium,鐯, 钹, 钐, 铕, 铽, 镝, 鈥, bait, watch, mirror, and distillate; -15- (11) (11) 200303238 and Tong or Biao, Wusu Group 4 to 12 of the periodic table Transition metals, or a mixture of any of these metal species. In a preferred embodiment, the 'metal system is selected from the group consisting of Co, Cr, Cu, Fe, Ga, Ge, Mg, Mn, Ni, Sn, Ti, Zn, and Zr, and mixtures thereof. In another preferred embodiment, the metal atoms discussed above are inserted into the framework of the molecular sieve through a tetrahedral unit, such as [Me02], and have a net charge depending on the valence state of the metal substituent. For example, in one embodiment, when the metal substituent has a valence state of +2, +3, +4, +5 or +6, the net charge of the tetrahedral unit is between -2 and +2. In the example, molecular sieves, as described in the above-mentioned US patent case, are expressed in an anhydrous experimental formula: mR: (MxAlyPz) 〇2 where R represents at least one template agent, preferably an organic template agent; m is the ratio of R relative to Molars per mole (MxAlyPz) 02, and from 0 to 1, preferably 0 to 0.5, and most preferably 0 to 0.3; X, y, and z represent Al, P, and Mo's fraction of M, in which μ is a metal, which is selected from Groups 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 10, η, 12, 13, 14 in the periodic table of elements And the lanthanide series, preferably, the M series is selected from one of si, Co, Cr, Cu, Fe, Ga, Ge, Mg, Mn, Ni, Sn, Ti, Zn, and Zr. In one embodiment, m is greater than or equal to 02, and x, y, and z are greater than or equal to 0.01. In another embodiment, m is greater than 0; [to about 1, X is greater than 0 to about 0.25, y ranges from 0.4 to 0.5, and z ranges from 0.25 to 0.5, more preferably , M is from 0.5 to 0.7, X is from 0.001 to 0.2, y is from 0.4 to 0.5, and z is from 0.3 to 0.5. -16-(12) 200303238

本文中所用之SAPO及A1PO分子篩的非限制性範例 包括 SAPO-5、SAPO-8、SAPO-1 1、SAPO-16、SAPO-17、 SAPO-18、SAPO-20、SAPO-31、SAPO-34、SAPO-35、 SAPO-36、SAPO-37、SAPO-40、SAPO-41、SAPO-42、 SAPO-44 (US 6,162,415)、SAPO-47、SAPO-56、A1PO-5 、A1PO-11、A1PO-1 8、A1PO-3 1、A1PO-34、A1PO-36、 A1PO-37、A1PO-46及其含有金屬之分子篩中之一者或組 合。這些當中特別有用的分子篩爲SAP0-18、SAP0-34、 SAPO-35、SAPO-44、SAPO-56、A1P0-1 8 及 A1PO-34 及其 含有金屬之衍生物中之一者或組合,例如,SAPO-18、 SAPO-34、A1PO-34及 A1P0-1 8及其含有金屬之衍生物中 之一者或組合,且特別是,SAPO-34及A1P0-18及其含有 金屬之衍生物中之一者或組合。Non-limiting examples of SAPO and A1PO molecular sieves used in this article include SAPO-5, SAPO-8, SAPO-1 1, SAPO-16, SAPO-17, SAPO-18, SAPO-20, SAPO-31, SAPO-34 , SAPO-35, SAPO-36, SAPO-37, SAPO-40, SAPO-41, SAPO-42, SAPO-44 (US 6,162,415), SAPO-47, SAPO-56, A1PO-5, A1PO-11 , A1PO-1 8, A1PO-3 1, A1PO-34, A1PO-36, A1PO-37, A1PO-46 and one or a combination of metal-containing molecular sieves. Particularly useful molecular sieves are one or a combination of SAP0-18, SAP0-34, SAPO-35, SAPO-44, SAPO-56, A1P0-1 8 and A1PO-34 and their metal-containing derivatives, such as One or a combination of SAPO-18, SAPO-34, A1PO-34 and A1P0-1 8 and their metal-containing derivatives, and in particular, SAPO-34 and A1P0-18 and their metal-containing derivatives One or a combination.

在一實施例中,分子篩爲在一分子篩組成物內具有2 或多種明確結晶相交互生長的物質。特別地,交互生長的 分子篩被描述於200 1年8月7日申請的美國專利案申請序號 09/924,016及1998年4月16日公開的W0 98/15496,兩者皆 倂入本文作爲參考。例如,SAPO-18、A1P0-18及RUW-18 具有AEI架構,及SAPO-34具有CHA架構。因此,用於 本文中之分子篩包括至少一種交互生長相的 AEI及CHA 架構,特別是CHA架構對AEI架構的比値大於1 : 1,其係 藉由200 1年8月7日申請的美國專利案申請序號09/924,0 1 6 中所描述的DIFFaX方法予以測量。 -17- (13) (13)200303238 分子筛合成 分子篩的合成被描述在上面所討論的多數資料中。通 常,分子篩係藉由一或多種鋁來源、磷來源、矽來源及樣 板劑,例如含氮的有機化合物,予以合成。典型地,砂、 鋁及磷來源隨意地與一或多種樣板劑的組合在結晶作用壓 力及溫度下被置於密封的壓力瓶及受熱,該壓力瓶隨意地 以惰性塑膠,例如聚四氟乙烯,當襯裡,直到結晶物質被 形成,之後藉由過濾、離心機及倒出方式予以回收。 ® 矽來源的非限制性範例包括矽酸鹽、煙矽石,例如購 自 Degussa Inc·,New York, New York 的 Aerosil-200及 CAB-O-SIL M-5,有機矽化合物,例如四烷基原矽酸酯( 如四甲基原矽酸酯(TMOS)及四乙基原矽酸酯(TEOS)),膠 體矽石或其水性懸浮液,例如購自 E.I. du Pont de Nemours,Wilmington,Delaware 的 Ludox HS-40溶膠,5夕 酸或其任何組合。 鋁來源的非限制性範例包括鋁醇鹽,例如異丙醇鋁, ® 磷酸鋁鹽、氫氧化鋁、鋁酸鈉、僞水鋁土、三水鋁礦及三 氯化鋁,或其任何組合。鋁的便利來源爲僞水鋁土,特別 是當製備矽鋁磷酸鹽分子篩。 磷來源的非限制性範例,其亦可包括含鋁之磷組成物 ’包括磷酸、有機磷酸酯,例如三乙基磷酸酯,及結晶型 或非結晶型的磷酸銘鹽,例如A1P 0 4,磷鹽、或其組合。 磷的便利來源爲磷酸,特別當製備矽鋁磷酸鹽。 樣板劑通常是包含元素週期表中第15族元素,特別是 -18- (14) (14)200303238 氮、磷、砷及銻,之化合物。典型的樣板劑亦包括至少一 種烷基或芳基基團,例如具有1至10個碳原子的烷基或芳 基,例如1至8個碳原子。較佳的樣板劑通常爲含氮之化合 物’例如胺、四級銨化合物及其組合。適合的四級銨化合 物爲通式IUN+,其中R爲氫或烴基或經取代的烴基,較 佳爲具有1至10個碳原子的烷基或芳基。 樣板劑的非限制性範例包括四烷基銨化合物及其鹽類 ,例如似甲基銨化合物、四乙基銨化合物、四丙基銨化合 物、及四丁基銨化合物、環己基胺、嗎啉、二正丙基胺 (DPA)、四丙基胺、三乙基胺(TEA)、三乙醇胺、哌啶、 環己基胺、2-甲基吡啶、N,N_二甲基苄基胺、膽鹼、 N,N’-二甲基哌嗪、1,4-二氮雜雙環(2,2,2)辛烷、 >1’,:^’,!^,>^四甲基(1,6)己烷二胺、1^甲基二乙醇胺、〜甲 基-乙醇胺、N-甲基哌啶、3 -甲基-哌啶、N-甲基環己基胺 、3 -甲甲基吡啶、4 -甲基-吡啶、喹嚀環、N,N,-二甲基-I,4-二氮雜雙環(2,2,2)辛烷離子、二正丁基胺、新戊基胺 、二正戊基胺、異丙基胺、特丁基胺、乙二胺、吡咯烷及 2-咪唑烷酮。 含有最小量的矽-、鋁-及/或磷組成物及樣板劑的合成 混合物的pH的範圍通常爲2至10,例如從4至9,例如從5 至8 0 通常’上述之合成混合物被密封在容器中,較佳是在 自壓下’受熱至溫度範圍從約80 t:至約2 5 0 °C,例如從約 1 〇 〇 °C至約2 5 0 °C,例如從約! 2 5 °C至約2 2 5 °C ,例如從約 (15) (15)200303238 1 5 0 °C 至約 1 8 0 °C。 在一實施例中,分子篩的合成係藉由來自另一分子篩 或相,同架構類型的分子篩的種子予以幫助。 形成結晶產物的時間通常視溫度而定,及可能從立即 至數星期的多樣化。典型地,結晶時間從約3 〇分鐘至約2 星期,例如從約45分鐘至約240小時,例如從約1小時至約 12 0小時。熱液結晶作用可被實施,不論有無搖動或攪動 〇 一旦結晶分子篩產物被形成,通常爲漿狀,其可藉由 此領域已知的任何標準技術,例如藉由離心或過濾,予以 回收。所回收的結晶產物之後可被淸洗,例如以水淸洗, 及之後被乾燥,例如在空氣中乾燥。 一結晶方法包含製備含有過量樣板劑之水性反應混合 物’在熱液條件下對混合物施予結晶作用,建立分子篩形 成及溶解間的平衡,及之後移除一些過量的樣板劑及/或 有機鹼,以抑制分子篩溶解。參考,例如US 5,296,208, 其倂入本文作爲參考。 合成分子篩或改良分子篩的其他方法被描述於US 5,8 79,65 5 (控制樣板劑對磷的比例)、US 6,005,155 (使用 無鹽的改良劑)、US 5,47 5,182 (酸萃取)、US 5,962,762 ( 以過渡金屬處理)、US 5,925,586及6,1 5 3,5 52 (磷改良)、In one embodiment, the molecular sieve is a substance having two or more distinct crystal phases in a molecular sieve composition. In particular, inter-growth molecular sieves are described in U.S. Patent Application Serial No. 09 / 924,016, filed August 7, 2001, and WO 98/15496, published April 16, 1998, both of which are incorporated herein by reference. For example, SAPO-18, A1P0-18, and RUW-18 have AEI architecture, and SAPO-34 has CHA architecture. Therefore, the molecular sieves used in this article include at least one AEI and CHA structure with interactive growth phases, especially the ratio of CHA structure to AEI structure is greater than 1: 1, which is based on the US patent filed on August 7, 2001. It was measured using the DIFFaX method described in Application Serial No. 09 / 924,0 1 6. -17- (13) (13) 200303238 Synthesis of molecular sieves The synthesis of molecular sieves is described in most of the materials discussed above. Generally, molecular sieves are synthesized from one or more aluminum sources, phosphorus sources, silicon sources, and template agents, such as nitrogen-containing organic compounds. Typically, a combination of sand, aluminum, and phosphorus sources is optionally combined with one or more template agents and placed in a sealed pressure bottle and heated under crystallization pressure and temperature. The pressure bottle is optionally made of an inert plastic such as polytetrafluoroethylene When lining, until the crystalline material is formed, it is then recovered by filtration, centrifuge and decantation. Non-limiting examples of silicon sources include silicates, fumed silicas, such as Aerosil-200 and CAB-O-SIL M-5, available from Degussa Inc., New York, New York, organic silicon compounds, such as tetraalkane Based orthosilicates (such as tetramethylorthosilicate (TMOS) and tetraethylorthosilicate (TEOS)), colloidal silica or aqueous suspensions thereof, such as those available from EI du Pont de Nemours, Wilmington, Delaware's Ludox HS-40 Sol, Acetic Acid or any combination thereof. Non-limiting examples of aluminum sources include aluminum alkoxides, such as aluminum isopropoxide, ® aluminum phosphate, aluminum hydroxide, sodium aluminate, pseudo bauxite, gibbsite, and aluminum trichloride, or any combination thereof . A convenient source of aluminum is pseudo bauxite, especially when making silicoaluminophosphate molecular sieves. Non-limiting examples of phosphorus sources, which may also include aluminum-containing phosphorus compositions' including phosphoric acid, organic phosphates, such as triethyl phosphate, and crystalline or non-crystalline phosphate salts, such as A1P 0 4, A phosphate salt, or a combination thereof. A convenient source of phosphorus is phosphoric acid, especially when making silicoaluminophosphates. Prototype agents are usually compounds containing Group 15 elements in the periodic table, especially -18- (14) (14) 200303238 nitrogen, phosphorus, arsenic and antimony. Typical model agents also include at least one alkyl or aryl group, such as an alkyl or aryl group having 1 to 10 carbon atoms, such as 1 to 8 carbon atoms. The preferred template is usually a nitrogen-containing compound ' such as an amine, a quaternary ammonium compound, and combinations thereof. Suitable quaternary ammonium compounds are of the general formula IUN +, where R is hydrogen or a hydrocarbon group or a substituted hydrocarbon group, preferably an alkyl or aryl group having from 1 to 10 carbon atoms. Non-limiting examples of model agents include tetraalkylammonium compounds and salts thereof, such as methylammonium compounds, tetraethylammonium compounds, tetrapropylammonium compounds, and tetrabutylammonium compounds, cyclohexylamine, morpholine , Di-n-propylamine (DPA), tetrapropylamine, triethylamine (TEA), triethanolamine, piperidine, cyclohexylamine, 2-methylpyridine, N, N-dimethylbenzylamine, Choline, N, N'-dimethylpiperazine, 1,4-diazabicyclo (2,2,2) octane, > 1 ',: ^',! ^, ≫ ^ tetramethyl (1,6) Hexanediamine, 1 ^ methyldiethanolamine, ~ methyl-ethanolamine, N-methylpiperidine, 3-methyl-piperidine, N-methylcyclohexylamine, 3-methylformamidine Pyridine, 4-methyl-pyridine, quinone ring, N, N, -dimethyl-I, 4-diazabicyclo (2,2,2) octane ion, di-n-butylamine, neopentyl Methylamine, di-n-pentylamine, isopropylamine, t-butylamine, ethylenediamine, pyrrolidine and 2-imidazolidone. The pH range of synthetic mixtures containing a minimum amount of silicon-, aluminum- and / or phosphorus composition and template is usually from 2 to 10, such as from 4 to 9, such as from 5 to 80, and generally the synthetic mixture described above is Sealed in a container, preferably under self-pressure, 'heated to a temperature ranging from about 80 t: to about 250 ° C, such as from about 100 ° C to about 250 ° C, such as from about! 25 ° C to about 2 2 5 ° C, for example from about (15) (15) 200303238 1 50 ° C to about 180 ° C. In one embodiment, the synthesis of molecular sieves is assisted by seeds from another molecular sieve or phase, molecular sieve of the same structural type. The time to form a crystalline product usually depends on the temperature and may vary from immediate to several weeks. Typically, the crystallization time is from about 30 minutes to about 2 weeks, such as from about 45 minutes to about 240 hours, such as from about 1 hour to about 120 hours. Hydrothermal crystallization can be performed with or without shaking or agitation. Once the crystalline molecular sieve product is formed, usually in the form of a slurry, it can be recovered by any standard technique known in the art, such as by centrifugation or filtration. The recovered crystalline product can then be rinsed, for example with water, and then dried, for example in air. A crystallization method includes preparing an aqueous reaction mixture containing an excess amount of template agent, subjecting the mixture to crystallization under hydrothermal conditions, establishing a balance between molecular sieve formation and dissolution, and thereafter removing some excess sample agent and / or organic base, To inhibit the dissolution of molecular sieves. References, such as US 5,296,208, which is incorporated herein by reference. Other methods of synthesizing or improving molecular sieves are described in US 5,8 79,65 5 (controlling the ratio of sample agent to phosphorus), US 6,005,155 (using a salt-free modifier), US 5,47 5,182 ( Acid extraction), US 5,962,762 (transition metal treatment), US 5,925,586 and 6, 1 5 3,5 52 (phosphorus modification),

US 5,925,800 (經石材支撐)、US 5,93 2,5 1 2 (氟處理)、US 6,046,3 73 (電磁波處理或改良)、US 6,051,746 (多核芳香 族改良劑)、U S 6,2 2 5,2 5 4 (加熱樣板劑)、2 0 0 1年3月2 5日 (16) (16)200303238 公開的PCT WO 0 1/3 63 29 (界面活性劑合成)、2001年4月 12日公開的PCT WO 01/25151 (階段性酸加成作用)、20〇1 年8月23日公開的PCT WO 0 1/60746 (矽油)、200 1年8月15 日申請的美國專利案序號09/929949(冷卻分子篩)、2000年 7月13日申請的美國專利案序號09/615,526(包括銅的金屬 浸漬)、2000年928日申請的美國專利案序號〇9/672,469(傳 導的微過濾器)、及2001年1月4日申請的美國專利序號 09/75 4 8 1 2(冷凍乾燥分子篩),其皆倂入本文作爲參考。 樣板劑被用於分子篩的合成,保留在產物中的任何樣 板劑可在結晶之後藉由數種已知技術,例如鍛燒,予以移 除。鍛燒包含在任何欲得之濃度及足以部份或完全移除樣 板劑之高溫下,使含有樣板劑的分子篩與氣體接觸,較佳 是含有氧之氣體。 矽酸鋁鹽及矽鋁磷酸鹽分子篩具有矽(Si)對鋁(A1)之 高比値或矽(Si)對鋁(A1)之低比値,然而對SAPO合成合 成而S ’低S i / A1比値是較佳的。在一^實施例中,分子飾 的 Si/A1比値小於0.65,例如小於0.40,例如小於0.32, 及特別是小於0.20 :在另一實施例中,分子篩的Si/Al比 値範圍從約0.6 5至約0 . 1 0、例如從約〇 . 4 0至約0 . 1 0,例如 從約0.3 2至約0.10,及特別是從約0.3 2至約0.15。 第3族金屬氧化物及鑭或鋼系的氧化物 用於本文的金屬氧化物爲第3族金屬及鑭及锕系金屬 的氧化物,其二氧化碳的攝入値在10CTC時至少爲 -21 - (17) (17)200303238 0.03mg/m2金屬氧化物,例如至少〇.〇4mg/m2金屬氧化物。 雖然金屬氧化物的二氧化碳攝入値的上限並非關鍵性的, 通常,用於本文的金屬氧化物的二氧化碳在100 °C時將會 小於1 0 m g / m2金屬氧化物,例如小於5 m g / m 2金屬氧化物。 典型地,用於本文的金屬氧化物的二氧化碳的攝入値爲 0.05至lmg/m2金屬氧化物。當混合使用分子篩,該活潑金 屬氧化物有利於觸媒轉換方法,特別是含氧物轉換成烯烴 〇 爲了測量金屬氧化物的二氧化碳攝入値,下面的步驟 被採用。金屬氧化物的樣品經由在流動空氣中受熱到約 200°C至5 00 °c予以脫水到不變的重量,得到“乾燥重量” 。之後樣品的溫度被下降至100 °c,二氧化碳通過樣品, 不論是連續或是脈衝,再次直到得到不變的重量。樣品重 量的增加,以樣品的乾燥重量計算及以mg/mg樣品表示 ,爲吸附二氧化碳的量。 在下面所描述的樣品中,二氧化碳的吸附是在周圍壓 力下使用 Mettler TGA/SDTA 851熱重分析系統予以測量 。金屬氧化物樣品在流動空氣中及約5 0 0 °C下脫水1小時。 樣品的溫度之後在流動氨氣下被下降到欲得之吸附溫度 1 00 °C。樣品在1〇〇 °C及流動氦氣下達到平衡,樣品被施予 含有10重量%二氧化碳及剩餘者爲氨氣的氣體混合物的20 個個別脈衝(約12秒/脈衝)。吸附氣體的每一脈衝之後金屬 氧化物樣品以流動氨氣沖洗3分鐘。樣品重量的增加,以 在5 00°C處理之後吸附劑重量計算及以mg/mg吸附劑表示 (18) (18)200303238 ,爲吸附二氧化碳的量。樣品的表面積係依照ASTM D 3663公開的 Brunauer,Emmett,and Teller(BET)方法予以 測量,提供二氧化碳攝入,以mg二氧化碳/m2金屬氧化物 較佳的第3族金屬氧化物包括銃、釔及鑭的氧化物, 鑭或锕系金屬的較佳氧化物包括鈽、鐯、鈸、釤、銪、釓 、铽、鏑、鈥、餌、錶、鏡、鍇及钍的氧化物。最佳的活 潑金屬氧化物爲氧化銃、氧化鑭、氧化釔、氧化鈽、氧化 鐯、氧化銨及其混合物,特別是氧化鑭及氧化鈽的混合物 在一實施例中,有用的金屬氧化物爲該等第3族金屬 及/或鑭及锕系金屬之氧化物,當與觸媒組成物中的分子 篩混合使用時,其有效延伸觸媒組成物的使用壽命。延長 觸媒組成物壽命的定量藉由下式所定義的壽命增加指數 (LEI)予以測定: LEI 一混有活潑金屬氧化物之觸媒壽命 觸麵命 其中觸媒或觸媒組成物的壽命,在相同的方法中及相 同的條件下予以測量,及爲加工進料的累積量/每克觸媒 組成物,直到經由觸媒組成物的進料轉換下降至低於某些 明確的水平,例如1 0%。非活潑金屬氧化物對觸媒組成物 的壽命將不具有影響,或是將會縮短觸媒組成物的壽命, 及因此LEI將會小於或等於1。因此,本發明的活潑金屬 (19) (19)200303238 氧化物爲該等第3族金屬氧化物,包括鑭及锕系的氧化物 ,當與分子篩混合使用時,提供具有LEI大於1的分子篩 觸媒組成物。明顯地,未與活潑金屬氧化物混合的分子篩 觸媒組成物的LEI將等於1。 發現觸媒組成物可藉由包括混合分子篩的活潑第3族 金屬氧化物及/或鑭或锕系活潑氧化物予以製備,其LEI 的範圍從大於1至50,例如從約1.5至約20。典型地,本發 明的觸媒組成物顯示出LEI値大於1 . 1,例如範圍從約1.2 至1 5,及更特別地,大於1 . 3,例如大於1 . 5,例如大於1 . 7 ,例如大於2。 在一實施例中,當與觸媒組成物中的分子篩混合時, 活潑第3族金屬氧化物及/或鑭或锕系的活潑氧化物增加觸 媒組成物在含有甲醇之進料轉換成一或多種烯烴中的壽命 用於本文中的活潑金屬氧化物可使用各種方法予以製 備。較佳的是,活潑金屬氧化物是從活潑金屬氧化物前驅 物,例如金屬鹽,例如鹵化物、硝酸鹽、硫酸鹽或乙酸鹽 ,予以製備。金屬氧化物的其他適合來源包括在鍛燒期間 形成金屬氧化物的化合物,例如氯氧化物及硝酸鹽。烷氧 化物亦包括第3族金屬氧化物的適合來源,例如正丙醇釔 鹽〇 在一實施例中,第3族金屬氧化物或鑭或锕系的氧化 物在包括溫度至少80 °C,較佳至少100 °C,的條件被熱液 處理。熱液處理可發生在密封的容器中及大於大氣壓力下 -24- (20) (20)200303238 。然而,處理的較佳模式包含在迴流條件下使用開口容器 。第3族金屬氧化物或鑭或锕系的氧化物在液體介質中攪 動,例如藉由迴流液體及/或攪拌,促進水合氧化物與液 體介質的有效相互作用。水合氧化物與液態介質的接觸時 間合宜地爲至少1小時,例如至少8小時。供該處理的液態 介質的pH値約6或更大,例如8或更大。適宜的液態介質 的非限制性範例包括水、氫氧化物溶液(包括NH4+、Na + 、K+、Mg2 +及Ca2 +的氫氧化物)、碳酸鹽及碳酸氫鹽溶液( 包括NH4+、Na+、K+、Mg2 +及Ca2 +的碳酸鹽及碳酸氫鹽) 、吡啶及其衍生物、及烷基/羥基胺。 在另一實施例中,活潑第3族金屬氧化物或鑭或锕系 的活潑氧化物,係藉由使液體溶液,例如含有金屬離子( 例如金屬鹽)來源的水溶液,歷經足以產生固體氧化物物 質的水合前驅物的沉澱物,例如,將沉澱劑加至溶液中, 的條件而予以製備的。合宜地,沉澱作用是在pH大於7 予以實施的。例如,沉澱劑可爲鹼,例如,氫氧化鈉或氫 氧化銨。 溫度通常低於約200 °C,例如,在範圍從約〇 t:至約 2 〇 〇 °C,沉澱期間,液態介質被維持在該溫度。供沉澱的 特別溫度範圍爲從約2 0 °C至約1 0 0 °C。得到的凝膠之後較 佳在80 °C,較佳爲至少100t,予以水合處理。水合處理 典型地在容器中及在大氣壓下發生。在一實施例中,凝膠 被水合處理持續高達10天,例如高達5天,例如高達3天。 金屬氧化物的水合前驅物之後被回收,例如,藉由過 (21) (21)200303238 濾或離心,及淸洗及乾燥。得到的物質之後可被鍛燒,例 如在氧化氣氛下,及在溫度至少4 0 (TC,例如至少5 0 (TC, 例如從約600°C至約900°C,及特別從約65 0 °C至約800°C, 形成固體氧化物物質。鍛燒時間典型高達4 8小時,例如持 續0.5至24小時,例如持續約1.0至1〇小時。在一實施例中 ,鍛燒是在約70 (TC實施約1至約3小時。 觸媒組成物 · 本發明的觸媒組成物包括前述之任何一種分子篩,及 上述之一或多種第3族金屬氧化物,及/或上述鑭或锕系元 素之一或多種氧化物,隨意地與不同於活潑金屬氧化物的 黏著劑及/或基質物質。典型地,在觸媒組成物中,分子 篩對活潑金屬氧化物的重量比範圍從5重量%至8 00重量% ,例如從10重量%至60 0重量%,特別從20重量%至5 00重 量%,及更特別從30重量%至4 00重量%。 有各種的黏著劑用於形成觸媒組成物。黏著劑的非限 ® 制性範例包括各種類型的水合氧化鋁、矽石及/或其他無 機氧化物溶膠,該黏著劑可單獨或混合使用。一種含有氧 化鋁的較佳溶膠爲鹼式氯化鋁。無機氧化物溶膠像膠水使 合成的分子篩與其他物質,例如基質,黏結在一起,特別 是在熱處理之後。藉由加熱,無機氧化物溶膠,較佳地是 具有低黏性,被轉換成無機氧化物黏著劑成分。例如,熱 處理之後,氧化鋁溶膠將轉換成氧化鋁黏著劑。 鹼式氯化鋁(含有氯平衡離子的氫氧化鋁爲主的溶膠) -26- (22) (22)200303238 具有通式AUO^OHKClj^xdO),其中m爲1至20,η爲1 至8,〇爲5至40,ρ爲2至15,及X爲0至30。在一實施例 中,黏著劑爲 A11304(0H)24C17M2(H20),其被描述於 G.M. Wolterman, et. al.5 Stud. Surf. Sci. and Catal.? 76, pages 105-144 (1993),其倂入本文作爲參考。在另一實 施例,一或多種黏著劑與一或多種其他非限制性範例的氧 化銘物質,例如氧氫氧化銘(aluminum oxyhydroxide)、γ-氧化鋁、水鋁土、水鋁石,及過渡性的氧化鋁,例如α -氧 化鋁、β-氧化鋁、γ-氧化鋁、δ-氧化鋁、ε-氧化鋁、1<:_氧 化鋁及Ρ-氧化鋁,三氫氧化鋁,例如三水鋁礦、拜三水鋁 土(bayerite)、諾三水絕土(nordstrandite)、doyelite ' 及 其混合物相混合。 在另一實施例中,黏著劑爲氧化鋁溶膠,其優勢地包 括氧化鋁,隨意地包括矽石。在另一實施例中,黏著劑爲 膠溶的氧化鋁,其係藉由用酸,較佳爲不含鹵素的酸,處 理氧化鋁水合物(例如僞水鋁土)製備溶膠或鋁離子溶液, 而予以製得的。市售可得的膠體氧化鋁溶膠的非限制性範 例包括可購自 Nalco Chemical Co.,Naperville,Illinois 的 Nalco 8676及可購自的 Nyacol nano Technologies,Inc., Ashland,Massachussetts 的 Nyacol AL20DW o 觸媒組成物包括基質物質,該基質物質較佳地不同於 金屬氧化物及任何黏著劑。基質物質典型地有效減低觸媒 總成本,充當熱槽以幫助觸媒組成物,例如再生期間,遮 蔽熱,硬化觸媒組成物及增加觸媒強度,例如抗碎強度及 -27- (23) (23)200303238 抗磨耗性。 基質物質的非限制性範例包括一或多種非活潑金屬氧 化物,該非活潑金屬氧化物包括氧化鋇、石英、矽石或溶 膠、及其混合物,例如矽石-氧化鎂、矽石-氧化銷、矽 石-氧化鈦、矽石-氧化鋁及矽石-氧化鋁-氧化钍。在一實 施例中,基質物質爲天然黏土,例如該等來自蒙脫土及高 嶺土族系者。這些天然黏土包括次皂土及該等有名的高嶺 土,例如Dixie、M cNamee、喬治亞及佛羅里達黏土。其 他基質物質的非限制性範例包括haloysitte、高嶺土、迪 開石(dickite)、珍珠陶土(nacrite)或蠕陶土。基質物質, 例如黏土,可被施予已知的改良加工,例如鍛燒及/或酸 處理及/或化學處理。 在一較佳的施實例中,基質物質爲黏土或黏土類型的 組成物,特別是具有低含量鐵或二氧化鈦的黏土或黏土類 型的組成物,及最佳地,基質物質爲高嶺土。已發現高嶺 土會形成可泵抽的、高固體含量的漿料、及具有低新鮮的 表面積、及由於其平板結構而容易壓縮在一起。基質物質 (最佳爲高嶺土)的較佳平均顆粒大小是從約0. 1 μιη至約 0.6 μ m,且D 9 ο顆粒大小分布小於1 μ m。 觸媒組成物包括黏著劑或基質物質,觸媒組成物典型 地包括從約1重量%至約8 0重量%,例如從約5重量%至約 60重量% ’及特別從約5重量%至50重星% ’的分子鋪,以 觸媒組成物總重計算。 觸媒組成物包括黏著劑及基質物質,黏著劑對基質物 -28- (24) (24)200303238 質的重量比典型地從1 : 1 5至1 : 5,例如從1 : 1 0至1 ·· 4, 及特別從1 : 6至1 : 5。黏著劑的含量典型地從約2重量% 至約30重量%,例如從約5重量%至約20重量%,及特別從 約7重量%至約1 5重量%,以黏著劑、分子篩及基質物質的 總重計算。已發現,高分子篩含量及低基質物質含量會增 加篩觸媒組成物的性能,然而低分子篩含量及高基質物質 含量會改善組成物的抗磨耗性。 觸媒組成物密度的典型範圍從0.5g/cc至5g/cc,例如 從0.6g/cc至5g/cc,例如從〇.7g/cc至4g/cc,特別是從 0.8g/cc 至 3g/cco 製備觸媒組成物的方法 在製備觸媒組成物中,分子篩先被形成,之後與活潑 第3族金屬氧化物,或鑭或锕系元素之活潑氧化物,較佳 地以實質上乾燥、經乾燥或經鍛燒狀態,完全混合。最佳 地,分子篩及活潑金屬氧化物以其經鍛燒狀態完全混合。 未受任何特別理論限制,令人咸信,分子篩及一或多種活 潑金屬氧化物的緊密混合改善使用本發明分子篩組成物及 觸媒組成物的轉換方法。緊密混合可經由此領域中任何已 知方法,例如以混合硏磨器方式的混合、鼓式混合器、螺 條/漿式摻和器、捏合器或諸如此類者,予以達成。分子 篩及金屬氧化物間的化學反應是不必要的,及通常是不被 喜歡的。 觸媒組成物包括基質及/或黏著劑,分子篩與基質及/ -29- (25) (25)200303238 或黏著劑合宜地先被調配成觸媒先質,之後活潑金屬氧化 與經調配的先質混合。活潑金屬氧化物可以未經承載的顆 粒方式被加入或以與載體(例如黏著劑或基質)混合方式加 入。得到的觸媒組成物之後可藉由已知技術,例如噴霧乾 燥、九化、擠壓及諸如此類者,形成有用的形狀及大小的 顆粒。 在一實施例中,分子篩組成物及基質物質,隨意地與 黏著劑,用液體混合形成漿料,之後混合,較佳地激烈混 合,產生一含有分子篩組成物的實質上均質的混合物。適 合的液體的非限制性範例包括水、醇+酮、醛及/或酯之一 者或混合。最佳的液體爲水。在一實施例中,漿料被膠體 硏磨一段時間,足以產生欲得之漿料組織、次顆粒大小及 /或次顆粒大小分布。 分子篩組成物及基質物質及隨意的黏著劑可以在相同 或不同的液體中混合,及可以任何次序、一起、同時、連 續或其組合方式混合。在一較佳實施例中,使用相同的液 體,較佳者爲水。分子篩組成物、基質物質及隨意的黏著 劑以固體、實質上乾燥或經乾燥的形式,或以漿料方式, 一起或個別方式,在液體中被混合。假如固體一起以乾燥 或實質上乾燥的固體方式被加入,較佳的是,加入受限制 量的及/或經控制量的液體。 在一實施例中,分子篩組成物、黏著劑及基質物質的 漿料被混合或硏磨,以得到一分子篩觸媒組成物次顆粒的 充分均勻的漿料,其之後被餵入至產生分子篩觸媒組成物 -30 - (26) (26)200303238 之形成單元。在一較佳實施例中,形成單元爲噴霧乾燥器 。典型地,形成單元被維持在一溫度,該溫度足以從漿料 及從得到的分子篩觸媒組成物中移除大部分的液體。當m 媒組成物係以該方式形成時,所得到的觸媒組成物爲微_ 粒形式。 當使用噴霧乾燥器作爲形成單元時,典型地,分子宫帘 組成物及基質物質及隨意的黏著劑的漿料被饌至有乾燥氣 體的噴霧乾燥容器中,其平均入口溫度範圍從20CTC至約 _ 5 5 0 °C,及出口溫度範圍從100°C至約225 °C。在一實施例 中,噴霧乾燥所形成的觸媒組成物的平均直徑爲從,約 4 0 μ m至約3 0 0 μ m,例如從約5 0 μ m至約2 5 0 μ m,例如從約 50μπι至約200μηι,及合宜地從約65μιη至約90μιη。 供形成分子篩觸媒組成物的其他方法被描述在2〇〇〇年 7月17日申請的美國專利申請案序號09/617,714中(使用經 回收的分子篩觸媒組成物噴霧乾燥),其倂入本文作爲參 考。 # 一旦分子篩觸媒組成物以實質上乾燥或經乾燥狀態方 式形成,爲了進一步硬化及/或活化所形成的觸媒組成物 ,通常在高溫實施熱處理,例如鍛燒。典型的鍛燒溫度範 圍從約400°C至約1500 0 °C,例如從約50(TC至約800°C,例 如從約55 0 °C至約700 °C。典型的鍛燒環境爲空氣(其可包 括少量的水蒸氣)、氮、氦、煙道氣體(貧氧的燃燒產物) 或其任何組合。 在一較佳實施例中,觸媒組成物在氮氣中及溫度從約 -31 - (27) (27)200303238 60 〇°C至約700 °C下受熱。加熱被持續一段時間,典型地從 3 〇分鐘至1 5小時,例如從1小時至約1 〇小時,例如從約1小 時至約5小時,及特別是從約2小時至約4小時。 使用分子篩觸媒組成物的方法 上述之觸媒組成物係用於各種方法,該方法包括裂解 ,例如石腦油進料裂解成輕烯烴類(US 6,3 00,5 3 7)或較大 分子量(MW)烴裂解成較小MW烴;氫裂解,例如重石油 及/或環狀進料的氫裂解;異構化作用,例如芳香族(如二 甲苯)的異構化;聚合作用,例如一或多種烯烴類聚合產 生聚合物產物;重整;氫化作用;脫氫作用;脫鱲,例如 烴類的脫蠟以移除直鏈烷烴;吸收作用,例如烷基芳香族 化合物吸收以分離出其異構物;烷基化作用,例如芳香族 烴(如苯及烷基苯)隨意地以丙烯烷基化產生枯烯,或長鏈 烯烴類;烷基移轉作用,例如芳香族及多烷基芳香族烴的 組合的烷基移轉;脫烷基作用;加氫去環化作用;歧化作 用,例如甲苯的歧化作用以製備苯及對二甲苯;寡聚合作 用’例如直鏈及支鏈烯烴的寡聚合作用;及脫氫環化作用 〇 較佳的方法包括使石腦油轉換成高芳香族混合物的方 法;使輕烯烴類轉換成汽油、餾出物及潤滑油的方法;使 含氧物轉換成烯烴類的方法;使輕鏈烷烴轉換成烯烴類及 /或芳香族的方法;使不飽和烴(乙烯及/或乙炔)轉換成供 轉換成醇、酸及酯之醛的方法。 -32- (28) (28)200303238 本發明的最佳方法是關於使進料轉換成一或多種烯烴 類的方法。典型地’進料包括一或多種含脂肪族之化合物 ,該脂肪族部分包括從1至50個碳原子,例如從1至20個碳 原子’例如從1至10個碳原子,及特別地從1至4個碳原子 〇 含脂肪族之化合物的非限制性範例包括醇類,例如甲 醇及乙醇,烷硫醇,如甲硫醇及乙硫醇,硫醚,例如二甲 硫,烷基胺,例如甲胺,烷醚,例如二甲醚、二乙醚及甲 乙醚,烷基鹵化物,例如甲基氯及乙基氯,烷基酮,例如 二甲酮、甲醛,及各種酸,例如乙酸。 在本發明的較佳實施例中,進料包括一或多種含氧物 ,更詳而言之,一或多種含有至少一個氧原子的有機化合 物。在本發明的最佳實施例中,進料中的含氧物是一或多 種醇類,較佳爲脂肪族的醇,醇類中的脂肪族部分具有從 1至20個碳原子,較佳從1至1〇個碳原子,及最佳從1至4個 碳原子。充當本發明方法之進料的醇類包括低級直鏈及支 鏈的脂肪族的醇及其不飽和的相似物(counterpart)。 含氧物的非限制性範例包括甲醇、乙醇、正丙醇、異 丙醇、甲乙醚、二甲醚、二乙醚、二異丙醚、甲醛、二甲 基碳酸酯、二甲酮、乙酸及其混合物。 在最佳實施例中,進料係選自一或多種甲醇、乙醇、 二甲醚、二乙醚或其組合,更佳地係是甲醇及二甲醚,及 最佳地是甲醇。 上面所討論的各種進料,特別是含有含氧物之進料, -33- (29) 200303238 更特別的是含有醇的進料,主要被轉換成一或多種烯烴類 。由進料所製備的烯烴類典型地具有從2至30個碳原子, 較佳2至8個碳原子,更佳2至6個碳原子,更佳2至4個碳原 子,及最佳爲乙烯及/或丙烯。US 5,925,800 (supported by stone), US 5,93 2,5 1 2 (fluorinated), US 6,046,3 73 (electromagnetic wave treatment or modification), US 6,051,746 (multi-core aromatic modifier), US 6,2 2 5, 2 5 4 (Heating sample), PCT WO 0 1/3 63 29 (Synthesis of surfactants) published on March 25, 2001 (16) (16) 200303238, April 2001 PCT WO 01/25151 (phased acid addition) published on December 12, PCT WO 0 1/60746 (silicone oil) published on August 23, 2001, and U.S. patent application filed on August 15, 2001 Serial No. 09/929949 (Cooled Molecular Sieve), US Patent Application Serial No. 09 / 615,526 (including metal impregnation of copper) filed on July 13, 2000, US Patent Application Serial No. 09 / 672,469 (conductive, filed on 928) Microfilter), and US Patent No. 09/75 4 8 1 2 (freeze-dried molecular sieve) filed on January 4, 2001, all of which are incorporated herein by reference. Templates are used in the synthesis of molecular sieves, and any template remaining in the product can be removed after crystallization by several known techniques, such as calcination. Calcining involves contacting a molecular sieve containing a sample agent with a gas, preferably a gas containing oxygen, at any desired concentration and at a temperature high enough to partially or completely remove the sample agent. Aluminum silicate and silicon aluminophosphate molecular sieves have a high ratio of silicon (Si) to aluminum (A1) or a low ratio of silicon (Si) to aluminum (A1), but S 'low S i for SAPO synthesis / A1 is better than 値. In one embodiment, the Si / A1 ratio 分子 of the molecular decoration is less than 0.65, such as less than 0.40, such as less than 0.32, and in particular less than 0.20: In another embodiment, the Si / Al ratio 分子 of the molecular sieve ranges from about 0.6 5 to about 0.10, such as from about 0.4 to about 0.10, such as from about 0.32 to about 0.10, and especially from about 0.32 to about 0.15. Group 3 metal oxides and lanthanum or steel-based oxides The metal oxides used herein are oxides of group 3 metals and lanthanum and actinide metals, and their carbon dioxide intake is at least -21 at 10CTC- (17) (17) 200303238 0.03 mg / m2 metal oxide, such as at least 0.04 mg / m2 metal oxide. Although the upper limit of carbon dioxide uptake by metal oxides is not critical, in general, the carbon dioxide of metal oxides used herein will be less than 10 mg / m2 metal oxides at 100 ° C, such as less than 5 mg / m2 2 metal oxide. Typically, the carbon dioxide uptake of the metal oxides used herein is between 0.05 and 1 mg / m2 metal oxide. When molecular sieves are used in combination, the active metal oxide is favorable for catalyst conversion methods, especially the conversion of oxygenates to olefins. To measure the carbon dioxide uptake of metal oxides, the following steps are used. Samples of metal oxides are dehydrated to a constant weight by heating in a flowing air to about 200 ° C to 500 ° C to obtain a "dry weight". The temperature of the sample was then reduced to 100 ° C, and carbon dioxide passed through the sample, either continuously or pulsed, again until a constant weight was obtained. The increase in sample weight, calculated as the dry weight of the sample and expressed as mg / mg sample, is the amount of carbon dioxide adsorbed. In the samples described below, the adsorption of carbon dioxide was measured under ambient pressure using a Mettler TGA / SDTA 851 thermogravimetric analysis system. The metal oxide sample was dehydrated in flowing air at about 500 ° C for 1 hour. The temperature of the sample was then lowered to 100 ° C, the desired adsorption temperature under flowing ammonia. The sample was equilibrated at 100 ° C and flowing helium. The sample was given 20 individual pulses (about 12 seconds / pulse) of a gas mixture containing 10% by weight of carbon dioxide and the remainder ammonia. After each pulse of adsorbed gas, the metal oxide sample was flushed with flowing ammonia for 3 minutes. The increase in sample weight is calculated as the weight of the adsorbent after treatment at 500 ° C and expressed in mg / mg adsorbent (18) (18) 200303238, which is the amount of carbon dioxide adsorbed. The surface area of the sample was measured in accordance with the Brunauer, Emmett, and Teller (BET) method disclosed in ASTM D 3663 to provide carbon dioxide uptake. The preferred Group 3 metal oxides in mg carbon dioxide / m2 metal oxides include scandium, yttrium, and Oxides of lanthanum, preferred oxides of lanthanum or actinide series metals include rhenium, osmium, rhenium, osmium, osmium, osmium, osmium, osmium, rhenium, bait, surface, mirror, osmium, and osmium. The most preferred active metal oxides are erbium oxide, lanthanum oxide, yttrium oxide, ytterbium oxide, erbium oxide, ammonium oxide, and mixtures thereof, especially a mixture of lanthanum oxide and ytterbium oxide. In one embodiment, a useful metal oxide is The oxides of these Group 3 metals and / or lanthanum and actinide metals, when mixed with the molecular sieve in the catalyst composition, effectively extend the service life of the catalyst composition. The quantification of the life of the catalyst composition is measured by the Life Increasing Index (LEI) defined by the following formula: LEI The life of a catalyst mixed with active metal oxides is the life of the catalyst or catalyst composition. Measured in the same method and under the same conditions, and for the cumulative amount of processing feed per gram of catalyst composition, until the feed conversion via the catalyst composition drops below some definite level, such as 10%. The inactive metal oxide will have no effect on the life of the catalyst composition or will shorten the life of the catalyst composition, and therefore the LEI will be less than or equal to one. Therefore, the active metal (19) (19) 200303238 oxides of the present invention are these Group 3 metal oxides, including lanthanum and actinide oxides. When used in combination with molecular sieves, they provide molecular sieve with LEI greater than 1. MEDIA COMPOSITION. Obviously, the LEI of the molecular sieve catalyst composition not mixed with the active metal oxide will be equal to one. It was found that the catalyst composition can be prepared by including an active Group 3 metal oxide and / or a lanthanum or actinide active oxide including a mixed molecular sieve, and the LEI thereof ranges from more than 1 to 50, for example, from about 1.5 to about 20. Typically, the catalyst composition of the present invention exhibits a LEI 値 greater than 1.1, such as ranging from about 1.2 to 15, and more particularly, greater than 1.3, such as greater than 1.5, such as greater than 1.7, For example, greater than 2. In one embodiment, when mixed with the molecular sieve in the catalyst composition, the active Group 3 metal oxide and / or the lanthanum or actinide-based active oxide increase the conversion of the catalyst composition into The active metal oxides used in this article for various olefin lifetimes can be prepared using a variety of methods. Preferably, the active metal oxide is prepared from a precursor of an active metal oxide, such as a metal salt, such as a halide, nitrate, sulfate or acetate. Other suitable sources of metal oxides include compounds that form metal oxides during calcination, such as chlorine oxides and nitrates. Alkoxides also include suitable sources of Group 3 metal oxides, such as yttrium n-propanol. In one embodiment, Group 3 metal oxides or lanthanum or actinide oxides include at least 80 ° C, The conditions are preferably at least 100 ° C, treated with hydrothermal fluids. Hydrothermal treatment can occur in sealed containers and under atmospheric pressure -24- (20) (20) 200303238. However, a preferred mode of processing involves the use of open containers under reflux conditions. Group 3 metal oxides or lanthanum or actinide oxides are agitated in a liquid medium, such as by refluxing the liquid and / or agitating, to promote effective interaction of the hydrated oxide with the liquid medium. The contact time of the hydrated oxide with the liquid medium is desirably at least 1 hour, such as at least 8 hours. The pH of the liquid medium for this treatment is about 6 or more, such as 8 or more. Non-limiting examples of suitable liquid media include water, hydroxide solutions (including hydroxides of NH4 +, Na +, K +, Mg2 +, and Ca2 +), carbonate and bicarbonate solutions (including NH4 +, Na +, K + , Carbonates and bicarbonates of Mg2 + and Ca2 +), pyridine and its derivatives, and alkyl / hydroxyamines. In another embodiment, an active Group 3 metal oxide or an active oxide of lanthanum or actinide is sufficient to produce a solid oxide by making a liquid solution, such as an aqueous solution containing a source of metal ions (such as a metal salt), a solid oxide. Precipitates of hydrated precursors of the substance are prepared, for example, by adding a precipitating agent to the solution. Conveniently, the precipitation is carried out at a pH greater than 7. For example, the precipitating agent may be a base, such as sodium hydroxide or ammonium hydroxide. The temperature is usually below about 200 ° C, for example, in the range from about 0 °: to about 2000 ° C, during which the liquid medium is maintained at this temperature. The special temperature range for precipitation is from about 20 ° C to about 100 ° C. The gel obtained is preferably at 80 ° C, preferably at least 100t, and is hydrated. Hydration treatment typically occurs in a container and at atmospheric pressure. In one embodiment, the gel is hydrated for up to 10 days, such as up to 5 days, such as up to 3 days. The hydrated precursor of the metal oxide is then recovered, for example, by filtration or centrifugation through (21) (21) 200303238, and washing and drying. The obtained material can then be calcined, for example, under an oxidizing atmosphere, and at a temperature of at least 40 ° C., such as at least 50 ° C., such as from about 600 ° C to about 900 ° C, and particularly from about 65 ° C C to about 800 ° C, forming a solid oxide material. The calcination time is typically as high as 48 hours, such as for 0.5 to 24 hours, such as for about 1.0 to 10 hours. In one embodiment, the calcination is at about 70 (TC implementation takes about 1 to about 3 hours. Catalyst composition · The catalyst composition of the present invention includes any one of the aforementioned molecular sieves, and one or more of the above-mentioned Group 3 metal oxides, and / or the above-mentioned lanthanum or actinide One or more oxides of the element, optionally with an adhesive and / or matrix material different from the active metal oxide. Typically, in the catalyst composition, the weight ratio of the molecular sieve to the active metal oxide ranges from 5% by weight To 80% by weight, for example from 10% to 60% by weight, particularly from 20% to 5,000% by weight, and more particularly from 30% to 4,000% by weight. There are various adhesives for forming contacts Vehicle composition. Non-limiting examples of adhesives include various Type of hydrated alumina, silica and / or other inorganic oxide sols, the adhesive can be used alone or in combination. A preferred sol containing alumina is basic aluminum chloride. Inorganic oxide sols like glue make synthetic Molecular sieves adhere to other substances, such as substrates, especially after heat treatment. By heating, the inorganic oxide sol, which preferably has a low viscosity, is converted into an inorganic oxide adhesive component. For example, after heat treatment The alumina sol will be converted into an alumina adhesive. Basic aluminum chloride (alumina-based sol containing chlorine counterions) -26- (22) (22) 200303238 has the general formula AUO ^ OHKClj ^ xdO) , Where m is 1 to 20, η is 1 to 8, 0 is 5 to 40, ρ is 2 to 15, and X is 0 to 30. In one embodiment, the adhesive is A11304 (0H) 24C17M2 (H20) , Which is described in GM Wolterman, et. Al. 5 Stud. Surf. Sci. And Catal.? 76, pages 105-144 (1993), which is incorporated herein by reference. In another embodiment, one or more adhesives Agents and one or more other non-limiting examples of oxidizing substances such as oxygen Aluminum hydroxide (aluminum oxyhydroxide), γ-alumina, bauxite, gibbsite, and transitional alumina, such as α-alumina, β-alumina, γ-alumina, δ-alumina, ε -Alumina, 1 <: alumina and p-alumina, aluminum trihydroxide, such as gibbsite, bayerite, nordstrandite, doyelite 'and mixtures thereof Phase mixing. In another embodiment, the adhesive is an alumina sol, which advantageously includes alumina, optionally silica. In another embodiment, the adhesive is a peptized alumina, which is prepared by treating an alumina hydrate (such as pseudo-alumina) with an acid, preferably a halogen-free acid, to prepare a sol or aluminum ion solution And made it. Non-limiting examples of commercially available colloidal alumina sols include Nalco 8676 commercially available from Nalco Chemical Co., Naperville, Illinois, and Nyacol AL20DWo catalyst commercially available from Nyacol nano Technologies, Inc., Ashland, Massachusetts. The composition includes a matrix material, which is preferably different from the metal oxide and any adhesive. The matrix material typically effectively reduces the total catalyst cost, acts as a heat sink to assist the catalyst composition, such as shielding heat during regeneration, hardening the catalyst composition, and increasing catalyst strength, such as crush strength and -27- (23) (23) 200303238 Abrasion resistance. Non-limiting examples of matrix materials include one or more non-reactive metal oxides including barium oxide, quartz, silica or sol, and mixtures thereof, such as silica-magnesia, silica-oxide, Silica-titanium oxide, silica-alumina and silica-alumina-hafnium oxide. In one embodiment, the matrix material is natural clay, such as those from the montmorillonite and kaolin families. These natural clays include bentonite and such well-known kaolin clays as Dixie, McNamee, Georgia, and Florida clays. Non-limiting examples of other matrix materials include halositte, kaolin, dickite, nacrite, or vermiculite. The matrix material, such as clay, may be subjected to known improvements such as calcination and / or acid treatment and / or chemical treatment. In a preferred embodiment, the matrix material is a clay or clay type composition, especially a clay or clay type composition with a low content of iron or titanium dioxide, and most preferably, the matrix material is kaolin. Kaolin has been found to form a pumpable, high solids slurry, has a low fresh surface area, and is easily compressed together due to its flat structure. The preferred average particle size of the matrix material (most preferably kaolin) is from about 0.1 μm to about 0.6 μm, and the D 9 ο particle size distribution is less than 1 μm. The catalyst composition includes an adhesive or a matrix substance, and the catalyst composition typically includes from about 1% to about 80% by weight, such as from about 5% to about 60% by weight, and particularly from about 5% to about 60% by weight. Molecular weight of 50% by weight, calculated as total weight of catalyst composition. The catalyst composition includes an adhesive and a matrix substance, and the weight ratio of the adhesive to the matrix -28- (24) (24) 200303238 is typically from 1:15 to 1: 5, for example, from 1:10 to 1 ·· 4, and especially from 1: 6 to 1: 5. The content of the adhesive is typically from about 2% to about 30% by weight, such as from about 5% to about 20% by weight, and particularly from about 7% to about 15% by weight, with the adhesive, molecular sieve, and matrix Calculation of the total weight of the substance. It has been found that a high molecular sieve content and a low matrix material content increase the performance of the sieve catalyst composition, while a low molecular sieve content and a high matrix material content improve the abrasion resistance of the composition. Typical density of the catalyst composition ranges from 0.5 g / cc to 5 g / cc, such as from 0.6 g / cc to 5 g / cc, such as from 0.7 g / cc to 4 g / cc, especially from 0.8 g / cc to 3 g / cco Method for preparing the catalyst composition In the preparation of the catalyst composition, the molecular sieve is first formed, and then the active group 3 metal oxide, or the active oxide of lanthanum or actinide, is preferably substantially dried. , After being dried or calcined, completely mixed. Optimally, the molecular sieve and the active metal oxide are completely mixed in their calcined state. Without being bound by any particular theory, it is believed that the intimate mixing of the molecular sieve and one or more active metal oxides improves the conversion method using the molecular sieve composition and catalyst composition of the present invention. Intimate mixing can be achieved by any method known in the art, such as mixing in the form of a mixing honer, drum mixer, ribbon / pulp blender, kneader, or the like. Chemical reactions between molecular sieves and metal oxides are unnecessary and generally not preferred. The catalyst composition includes a matrix and / or an adhesive, and the molecular sieve and the matrix and / -29- (25) (25) 200303238 or an adhesive are suitably firstly formulated as a catalyst precursor, and then the active metal oxidation and the formulated first质 混。 Quality mixed. The active metal oxide can be added as unsupported particles or as a mixture with a carrier such as an adhesive or matrix. The resulting catalyst composition can then be formed into particles of useful shape and size by known techniques, such as spray drying, curing, extrusion, and the like. In one embodiment, the molecular sieve composition and the matrix material are optionally mixed with an adhesive to form a slurry with a liquid, followed by mixing, preferably vigorously mixing, to produce a substantially homogeneous mixture containing the molecular sieve composition. Non-limiting examples of suitable liquids include one or a combination of water, alcohol + ketone, aldehyde and / or ester. The best liquid is water. In one embodiment, the slurry is honed by the colloid for a period of time sufficient to produce the desired slurry structure, secondary particle size, and / or secondary particle size distribution. The molecular sieve composition, the matrix material, and the optional adhesive may be mixed in the same or different liquids, and may be mixed in any order, together, simultaneously, continuously, or a combination thereof. In a preferred embodiment, the same liquid is used, preferably water. The molecular sieve composition, matrix material, and optional adhesive are mixed in a liquid in a solid, substantially dry or dried form, or as a slurry, together or individually. If the solids are added together as a dry or substantially dry solid, it is preferred to add a limited and / or controlled amount of liquid. In one embodiment, the slurry of the molecular sieve composition, the adhesive and the matrix material is mixed or honed to obtain a sufficiently uniform slurry of the secondary particles of the molecular sieve catalyst composition, which is then fed to the molecular sieve Media composition -30-(26) (26) 200303238 forming unit. In a preferred embodiment, the forming unit is a spray dryer. Typically, the forming unit is maintained at a temperature sufficient to remove most of the liquid from the slurry and from the resulting molecular sieve catalyst composition. When the m-catalyst composition is formed in this manner, the obtained catalyst composition is in the form of fine particles. When a spray dryer is used as the forming unit, typically, a slurry of the uterine curtain composition and the matrix material and an optional adhesive is scooped into a spray drying container with a drying gas, and its average inlet temperature ranges from 20CTC to about _ 5 5 0 ° C, and outlet temperature range from 100 ° C to about 225 ° C. In one embodiment, the average diameter of the catalyst composition formed by spray drying is from about 40 μm to about 300 μm, such as from about 50 μm to about 250 μm, such as From about 50 μm to about 200 μm, and suitably from about 65 μm to about 90 μm. Other methods for forming molecular sieve catalyst compositions are described in U.S. Patent Application Serial No. 09 / 617,714, filed July 17, 2000 (spray-dried using recovered molecular sieve catalyst compositions), which is incorporated This article is for reference. # Once the molecular sieve catalyst composition is formed in a substantially dry or dried state, in order to further harden and / or activate the formed catalyst composition, a heat treatment such as calcination is usually performed at a high temperature. Typical calcination temperatures range from about 400 ° C to about 15500 ° C, such as from about 50 ° C to about 800 ° C, such as from about 55 ° C to about 700 ° C. A typical calcination environment is air (Which may include a small amount of water vapor), nitrogen, helium, flue gas (oxygen-depleted combustion products), or any combination thereof. In a preferred embodiment, the catalyst composition is under nitrogen at a temperature from about -31 -(27) (27) 200303238 60 Heat at 0 ° C to about 700 ° C. Heating is continued for a period of time, typically from 30 minutes to 15 hours, such as from 1 hour to about 10 hours, such as from about 1 hour to about 5 hours, and especially from about 2 hours to about 4 hours. Method using molecular sieve catalyst composition The above-mentioned catalyst composition is used in various methods including cracking, such as a naphtha feed Cracking into light olefins (US 6,3 00,5 3 7) or larger molecular weight (MW) hydrocarbons into smaller MW hydrocarbons; hydrogen cracking, such as hydrogen cracking of heavy petroleum and / or ring feeds; isomerization Reaction, such as the isomerization of aromatics (such as xylene); polymerization, such as the polymerization of one or more olefins Products; reforming; hydrogenation; dehydrogenation; dehydration, such as dewaxing of hydrocarbons to remove linear paraffins; absorption, such as absorption of alkyl aromatic compounds to separate its isomers; alkylation For example, aromatic hydrocarbons (such as benzene and alkyl benzene) are optionally alkylated with propylene to produce cumene, or long-chain olefins; alkyl transfer, such as a combination of aromatic and polyalkyl aromatic hydrocarbons Radical transfer; dealkylation; hydrodecyclization; disproportionation, such as the disproportionation of toluene to produce benzene and para-xylene; oligomerization, such as oligomerization of linear and branched olefins; Hydrocyclization. Preferred methods include a method for converting naphtha into a highly aromatic mixture; a method for converting light olefins into gasoline, distillates and lubricants; a method for converting oxygenates to olefins ; Method for converting light paraffins into olefins and / or aromatics; Method for converting unsaturated hydrocarbons (ethylene and / or acetylene) into aldehydes for conversion into alcohols, acids and esters. -32- (28) ( 28) 200303238 The best method of the present invention is For converting a feed to one or more olefins. Typically 'the feed comprises one or more aliphatic-containing compounds, the aliphatic portion comprising from 1 to 50 carbon atoms, such as from 1 to 20 carbon atoms' For example, from 1 to 10 carbon atoms, and particularly from 1 to 4 carbon atoms. Non-limiting examples of aliphatic compounds include alcohols, such as methanol and ethanol, alkyl mercaptans, such as methyl mercaptan and ethyl sulfur Alcohols, thioethers, such as dimethylsulfide, alkylamines, such as methylamine, alkyl ethers, such as dimethyl ether, diethyl ether, and methyl ether, alkyl halides, such as methyl chloride and ethyl chloride, alkyl ketones, Examples include dimethyl ketone, formaldehyde, and various acids such as acetic acid. In a preferred embodiment of the present invention, the feed includes one or more oxygenates, and more specifically, one or more organic compounds containing at least one oxygen atom. Compound. In a preferred embodiment of the present invention, the oxygenate in the feed is one or more alcohols, preferably aliphatic alcohols, and the aliphatic portion of the alcohols has from 1 to 20 carbon atoms, preferably From 1 to 10 carbon atoms, and preferably from 1 to 4 carbon atoms. Alcohols that serve as a feed for the process of the present invention include lower straight and branched chain aliphatic alcohols and their unsaturated counterparts. Non-limiting examples of oxygenates include methanol, ethanol, n-propanol, isopropanol, methyl ether, dimethyl ether, diethyl ether, diisopropyl ether, formaldehyde, dimethyl carbonate, dimethyl ketone, acetic acid, and Its mixture. In a preferred embodiment, the feed is selected from one or more of methanol, ethanol, dimethyl ether, diethyl ether, or a combination thereof, more preferably methanol and dimethyl ether, and most preferably methanol. The various feeds discussed above, especially feeds containing oxygenates, (33) (29) 200303238, more particularly feeds containing alcohols, are mainly converted to one or more olefins. The olefins produced from the feed typically have from 2 to 30 carbon atoms, preferably from 2 to 8 carbon atoms, more preferably from 2 to 6 carbon atoms, more preferably from 2 to 4 carbon atoms, and most preferably Ethylene and / or propylene.

本發明的觸媒組成物特別用於通常稱爲氣體轉換成烯 烴(GTO)的方法或是甲醇轉換成烯烴(MTO)的方法。在該 方法中,受充氧的進料,最佳爲含甲醇的進料,在分子篩 觸媒組成物存在下被轉換成一或多種嫌烴類,較佳及優勢 地爲乙烯及/或丙烯。 /The catalyst composition of the present invention is particularly used in a method commonly referred to as a gas-to-olefin (GTO) conversion method or a methanol-to-olefin (MTO) conversion method. In this method, the oxygenated feed, preferably a methanol-containing feed, is converted into one or more hydrocarbons in the presence of a molecular sieve catalyst composition, preferably and advantageously ethylene and / or propylene. /

使用本發明觸媒組成物以轉換進料,較佳爲含有一或 多種含氧物之進料,所產生的烯烴類的含量,以所產生的 烴類的總重計算,大於5 0重量。/〇,典型地大於6 0重量%, 例如大於7 〇重量%,及較佳地大於8 0重量%。此外,所產 生的乙烯及/或丙烯的含量,以所產生的烴類產物的總重 計算,大於4 0重量%,典型地大於5 0重量%,例如大於6 5 重量%,及較佳地大於7 8重量%。典型地,所產生的乙烯 的含量,以所產生的烴類產物的總重計算,大於2 0重量% ,例如大於3 0重量%,例如大於4 0重量%。此外,所產生 的丙烯的含量,以所產生的烴類產物的總重計算,典型地 大於20重量%,例如大於25重量%,例如大於30重量%, 較佳地大於3 5重量%。 發現與無活潑金屬氧化物成分之相似觸媒組成物在相 同轉換條件相比,使用本發明觸媒組成物使含有甲醇及二 甲醚之進料轉換成乙烯及丙烯,產生的乙烷及丙烷被減至 -34- (30) (30)200303238 大於10%,例如大於20%,例如大於30%,及特別是在範 圍從約3 0 %至4 0 %。 除了含氧物成分之外,例如甲醇,進料可包括一或多 種稀釋劑,該稀釋劑通常對進料或分子篩觸媒組成物無β 應性,及典型地被用於減低進料的濃度。稀釋劑的非限制 性範例包括氨、Μ、氮、一氧化碳、二氧化碳、水、實質 上無反反應性的鏈烷烴(特別是烷類,例如甲烷、乙院及 丙烷)、實質上無反應性的芳香族化合物,及其混合物。 最佳的稀釋劑爲水及氮,以水爲特別佳著。 稀釋劑,例如水,可以液態或蒸氣形式或其組合型是 被使用。稀釋劑可直接被加至輸入反應器中的進料,或直 接被加至反應器中,或與分子篩觸媒組成物一起被加入。 本發明方法可被實施於一寬廣的溫度範圍內,例如範 圍從約2 0 0 °C至約1 0 0 0 °C,例如從約2 5 0 °c至約8 0 0 °c,包 括從約2 5 0 °C至約7 5 0 °C,合宜地從約3 0 0 °C至約6 5 0 °C,典Using the catalyst composition of the present invention to switch the feed, preferably a feed containing one or more oxygenates, the content of olefins produced is greater than 50 weight based on the total weight of the hydrocarbons produced. / 〇, typically greater than 60% by weight, such as greater than 70% by weight, and preferably greater than 80% by weight. In addition, the content of ethylene and / or propylene produced is greater than 40% by weight, typically greater than 50% by weight, such as greater than 65% by weight, and preferably based on the total weight of the hydrocarbon products produced. More than 78% by weight. Typically, the content of ethylene produced is greater than 20% by weight, such as greater than 30% by weight, such as greater than 40% by weight, based on the total weight of the hydrocarbon products produced. In addition, the content of propylene produced is typically greater than 20% by weight, such as greater than 25% by weight, such as greater than 30% by weight, and preferably greater than 35% by weight, based on the total weight of the hydrocarbon products produced. It was found that compared with similar catalyst compositions without active metal oxide components under the same conversion conditions, the catalyst composition of the present invention was used to convert a feed containing methanol and dimethyl ether to ethylene and propylene to produce ethane and propane Is reduced to -34- (30) (30) 200303238 is greater than 10%, such as greater than 20%, such as greater than 30%, and particularly in a range from about 30% to 40%. In addition to the oxygenate component, such as methanol, the feed may include one or more diluents that are generally non-beta-responsive to the feed or molecular sieve catalyst composition and are typically used to reduce the concentration of the feed . Non-limiting examples of diluents include ammonia, M, nitrogen, carbon monoxide, carbon dioxide, water, paraffinic hydrocarbons that are substantially non-reactive (especially alkanes such as methane, ethyl and propane), and substantially non-reactive Aromatic compounds, and mixtures thereof. The best diluents are water and nitrogen, with water being particularly preferred. Diluents, such as water, can be used in liquid or vapor form or combinations thereof. The diluent can be added directly to the feed to the reactor, or directly into the reactor, or added with the molecular sieve catalyst composition. The method of the present invention can be carried out over a wide temperature range, such as from about 200 ° C to about 100 ° C, such as from about 250 ° C to about 80 ° C, including from About 2 5 0 ° C to about 7 5 0 ° C, suitably from about 3 0 0 ° C to about 6 5 0 ° C, typical

型地從約3 5 0°C至約600°C,及特別地從約3 5 0°C至約5 5 0°C 〇 同樣地,本發明方法可被實施於一寬廣的壓力範圍內 ’該壓力範圍包括自生壓力。典型地,方法中所使用的進 料(不包括其中任何稀釋劑)的分壓範圍從約O.lkPaa至約 5Mpaa,例如從約5kPaa至約IMpaa,及合宜地從約20kPaa 至約 500kPaa ° 重量時空速度(WHS V),被定義爲排除任何稀釋劑的 進料的總重/小時/觸媒組成物中分子篩的重,典型範圍從 -35- (31) (31)200303238 約lhr-1至約5 00 0hr-l,例如從約2hr-l至約3 000hr-l,例如 從約5hr-l至約1 5 00hr-l,及合宜地從約iohr-ΐ至約i 000hr-1。在一實施例中,WHSV大於20hr-l,及範圍從約2〇hr-l 至約3〇Ohr-l,其中進料包括甲醇及/或二甲醚。 該方法是在流體化床中實施,進料的表面氣體速度 (SGV)爲至少O.lm/sec,例如大於〇.5m/sec,例如大於 lm/sec,例如大於2m/sec,合宜地大於3m/sec,及典型地 大於4m/seC,該進料包括在反應器系統內,特別是在上升 管反應器,的稀釋劑及反應產物。參考2000年11月8日申 請的美國專利申請案序號〇9/708,753,其倂入本文作爲參 考。 本發明方法合宜地以固定床方法,或更典型地以流體 化床方法(包括湍動床方法),例如連續流體化床方法,及 特別是連續高速流體化床方法,實施。 該方法可發生在各種催化反應器,例如混合反應器, 該混合反應器具有緊密床或固定床反應區域及/或快速流 體化床反應區域連接在一起,循環流體化床反應器、上升 管反應器及諸如此類者。適合的反應器類型被描述在,例 如 US 4,076,796、US 6,287,522(雙重上升管)及 Fluidization Engineering, D. Kunii and 0· Levenspiel, Robert E. Krieger Published Company, New York,New York 1 977,其皆倂入本文作爲參考。 較佳的反應器類型爲上升管反應器,該上升管反應器 通常被描述於 Riser Reactor,Fluidization and Fluid- (32) (32)200303238Type from about 350 ° C to about 600 ° C, and particularly from about 350 ° C to about 5500 ° C. Similarly, the method of the present invention can be carried out over a wide range of pressures' This pressure range includes autogenous pressure. Typically, the partial pressure of the feed (excluding any diluent therein) used in the process ranges from about 0.1 kPaa to about 5 Mpaa, such as from about 5 kPaa to about IMpaa, and suitably from about 20 kPaa to about 500 kPaa ° Weight Space-time velocity (WHS V) is defined as the total weight of the feed excluding any diluent / hour / weight of the molecular sieve in the catalyst composition, typically ranging from -35- (31) (31) 200303238 to about lhr-1 to About 50,000 hr-l, such as from about 2 hr-l to about 3,000 hr-l, such as from about 5 hr-l to about 1500 hr-l, and suitably from about iohr-hr to about 10,000 hr-1. In one embodiment, the WHSV is greater than 20 hr-1, and ranges from about 20 hr-1 to about 300 hr-1, where the feed includes methanol and / or dimethyl ether. The method is carried out in a fluidized bed, and the surface gas velocity (SGV) of the feed is at least 0.1 lm / sec, such as greater than 0.5 m / sec, such as greater than lm / sec, such as greater than 2 m / sec, suitably greater than 3 m / sec, and typically greater than 4 m / seC, the feed includes diluents and reaction products within the reactor system, particularly in the riser reactor. Reference is made to U.S. Patent Application Serial No. 09 / 708,753, filed November 8, 2000, which is incorporated herein by reference. The method of the present invention is suitably implemented as a fixed bed method, or more typically as a fluidized bed method (including a turbulent bed method), such as a continuous fluidized bed method, and particularly a continuous high-speed fluidized bed method. The method can occur in various catalytic reactors, such as a hybrid reactor, which has a tight or fixed bed reaction zone and / or a fast fluidized bed reaction zone connected together, a circulating fluidized bed reactor, a riser reaction Devices and the like. Suitable reactor types are described in, for example, US 4,076,796, US 6,287,522 (dual riser) and Fluidization Engineering, D. Kunii and 0 · Levenspiel, Robert E. Krieger Published Company, New York, New York 1 977, all of which are described below. This article is incorporated by reference. The preferred reactor type is a riser reactor, which is usually described in Riser Reactor, Fluidization and Fluid- (32) (32) 200303238

Particle System, pages 48 to 59, F.A. Zenz and D.F. Othmo,Reinhold Publishing Corporation,New york,1 960, 及US 6,1 66,282(快速流體化床反應器),及2000年5月4曰 申請的美國專利申請案序號09/5 64,6 1 3,其皆倂入本文作 爲參考。 在一實際實施例中,該方法以流體化床方法或高速流 體化床,利用反應器系統、再生系統及回收系統,予以實 施。 在此方法中,反應器系統合宜地包括流體化床反應器 系統,該反應器系統具有在一或多個上升管反應器內的第 一反應區域,及在至少一個分離容器內的第二反應區域, 典型地包括一或多個旋風分離機。在一實施例中,一或多 個上升管反應器及分離容器被包含在單一反應容器內。新 鮮進料,較佳地含有一或多種含氧物,隨意地有一或多種 稀釋劑,被餵至該一或多個上升管反應器,分子篩觸媒組 成物或其焦結版被導入至該上升管反應器。在一實施例中 ’分子篩觸媒組成物或其焦結版在被導入至該上升管反應 器之前,與液體及/或氣體接觸,該液體較佳爲水或曱醇 ,該氣體例如爲惰性氣體,例如氮。 在一實施例中,以液體及/或蒸氣方式進入反應器系 統的新鮮進料的含量範圍從約〇. 1重量%至約8 5重量%,例 如從約1重量%至約7 5重量。/〇,更典型地從約5重量%至約 6 5重量%,以含有在其中的任何稀釋劑的進料的總重計算 。液體及蒸氣進料可爲相同組成物,或可包括各種比例的 -37- (33) (33)200303238 相同或不同進料,該進料具有相同或不同的稀釋劑。 輸入反應器系統的進料在第一反應區域部份或完全地 較佳地被轉換爲氣體流出物,該流出物隨同焦結的觸媒組 成物進入分離容器。在較佳實施例中,在分離容器內提供 旋風分離機以在分離容器內從含有一或多種嫌烴類之氣體 流出物中分離出焦結的觸媒組成物。雖然旋風分離機是較 佳的’在分離容器內重力效應亦可被應用於從氣體流出物 分離出觸媒組成物。從氣體流出物分離出觸媒組成物的其 他方法包括使用板、罩、彎頭及諸如此類者。 在一實施例中,分離容器包括典型地在分離容器的下 游部份中的汽提區域。在汽提區域中,焦結的觸媒組成物 與氣體,較佳爲物流、甲烷、二氧化碳、一氧化碳、輕或 惰性氣體(例如氬)中之一者或其組合,較佳爲氣體,相接 觸,以移除來自焦結的觸媒組成物的受吸附的烴類,該觸 媒組成物之後被導入至再生系統。 焦結的觸媒組成物從分離容器中移除,及被導入至再 生系統。再生系統包括再生器,於再生器中,焦結的觸媒 組成物在慣用的溫度、壓力及滯留時間的再生條件下與再 生介質,較佳爲含有氧的氣體,相接觸。 適合的再生介質的非限制性範例包括一或多種的氧、 03' S03、N2 0、NO、N0 2、N2 05、空氣、用氮或二氧化 碳稀釋的空氣、氧、及水(US 6,245,703)、一氧化碳及/或 氫。適合的再生條件爲該等具有燃燒來自焦結的觸媒組成 物的焦炭能力者,較佳地燃燒該焦炭至低於0.5重量%的程 (34) (34)200303238 度,以輸入至再生系統之焦結的分子篩觸媒組成物的總重 計算。例如,再生溫度可在範圍從約20CTC至約1 500 °C, 例如從約3 0 0 °C至約1 〇 〇 〇 t,例如從約4 5 0 °C至約7 5 0 °C, 及合宜地從約5 50 °C至約700 °C。再生壓力可在範圍從約 15psia(103kPaa)至約 500psia(3448kPaa),例如從約 20psia(138kPaa)至約 250psia(1 724kPaa),包括從約 25psia(172kPaa)至約 150psia( 1 03 4kPaa),及合宜地從約 30psia(207kPaa)至約 60psia(414kPaa)。 觸媒組成物於再生器中的滞留時間可在範圍從約1分 鐘至數小時,例如從約1分鐘至100分鐘,及於再生作用中 氧的容積可在範圍從約0.01莫耳%至約5莫耳%,以氣體的 總容積計算。 於再生步驟中焦炭的燃燒是放熱反應,及在一實施例 中,再生系統內的溫度藉由領域中各種技術予以控制,該 技術包括以批次、連續或部分連續模式或其組合方式,將 經冷卻的氣體餵入至再生器容器中。較佳的技術包含從再 春 生系統中移出經再生的觸媒組成物,及使經再生的觸媒組 成物通過觸媒冷卻器,形成經冷卻的再生觸媒組成物。在 一實施例中,觸媒冷卻器爲熱交換器,熱交換器位於再生 系統的內部或外部。操作再生系統的其他方法被描述於 US 6,290,916(控制溼氣),其倂入本文作爲參考。 從再生系統,較佳地從觸媒冷卻器,移出的再生觸媒 組成物與新鮮的分子篩觸媒組成物及/或循環分子篩觸媒 組成物及/或進料及/或新鮮氣體或液體相混合,及被送回 -39 - (35) (35)200303238 至上升管反應器。在一實施例中,從再生系統移出的再生 觸媒組成物直接地,較佳地是在通過觸媒冷卻器之後,被 送回至上升管反應器。可以部分連續或連續方式使用載體 ,例如惰性氣體、進料蒸氣、氣體及諸如此類者,以幫助 使再生觸媒組成物導入至反應器系統,較佳地至一或多個 上升管反應器。 藉由控制來自再生系統的再生觸媒組成物或經冷卻的 再生觸媒組成物流通至反應器系統,維持在輸入至反應器 之分子篩觸媒組成物上焦炭的最理想程度。控制觸媒組成 物流動的多種技術被描述在Michael Louge,Experimental Techniques, Circulating Fluidized Beds, Grace, Avi d an and Knowlton,eds·,Blackie, 1 9 9 7 (336-337),其倂入本 文作爲參考。 觸媒組成物上焦炭程度係藉由從轉換方法中移出觸媒 組成物及測定其碳含量而予以測量的。再生作用之後,在 分子篩觸媒組成物上焦炭的典型程度在範圍從0.0 1重量% 至約1 5重量%,例如從約〇. 1重量%至約1 0重量%,例如從 約0 · 2重量%至約5重量%,及合宜地從約0.3重量%至約2重 量%,以分子飾重量計算。 氣體流出物從分離容器中移出,及通過回收系統。多 種已知的回收系統、技術及程序用於從氣體流出物中分離 出烯烴類及純化烯烴類。回收系統通常包括各種分離作用 、分餾及/或蒸餾塔、管柱、分離機或機組、反應系統, 例如乙苯的製造(US 5,476,97 8)及其他衍生方法,例如醛 (36) (36)200303238 、_及酯的製造(US 5,675,04 1 ),及其他組合設備,例如各 種冷凝管、熱交換器、冷凍系統或冷卻機組、壓縮機、分 離鼓或鍋、泵及諸如此類者中之一或多種或其組合。 這些單獨或是組合使用的塔、管柱、分離機或機組的 非限制性範例包括一或多種的甲烷餾除器(較佳爲高溫甲 院飽除器)、乙院餾除器、丙院簡除器、淸洗塔(通常爲驗 性淸洗塔及/或驟冷塔)、吸收器、吸附器、膜、乙烯(C2) 分離機、丙烯(C3)分離機、丁烯(C4)分離機及諸如此類者 用於優先回收烯烴(較佳爲輕烯烴,例如乙烯、丙烯 及/或丁烯)的各種回收系統被描述於US 5,960,643(第二富 含乙烯物流)、US 5,019,143、5,452,5 8 1 及 5,082,48 1 (膜分 離)、US 5,672,197(依賴壓力吸附劑)、US 6,069,288(氫移 除)、US 5,90 4,88 0(在單一步驟中,回收的甲醇被轉換成 氫及二氧化碳)、US 5,927,〇63(回收的甲醇被轉換成氣體 渦輪發電廠)及 US 6,121,5〇4(直接產物驟冷)、US 6,121,503 (無超精餾的高純化烯烴類)及US 6,293,998(壓 力轉換吸附作用),其皆倂入本文作爲參考。 含有純化系統(例如烯烴類的純化)的其他回收系統被 描 述 於 Kirk-Othmer Encyclopedia of Chemical Technology, 4th Edition, Volume 9, John Wiley & Sons, 1996 pages 249-271 and 894-899,其倂入本文作爲參考。 純化系統亦被描述於,例如US 6,271,428(二烯烴物流的 純化)、US 6,293,999(從丙烷分離出丙烯)及2000年10月20 -41 - (37) (37)200303238 曰申§靑的美國專利申請案序號09/689,363(使用水合觸媒的 淸洗物流),其皆倂入本文作爲參考。 通常,伴隨大部分的回收系統是額外的產物、副產物 及/或污染物與較佳的主產物的製備、產生或累積。較佳 的主產物,輕烯烴,例如乙烯及丙烯,典型地被純化,以 用於衍生物製造方法,例如聚合方法。因此,在回收系統 的最佳實施例中,回收系統亦包括純化系統。例如,特別 於MTO方法所產生的輕烯烴通過純化系統,該純化系統 移除低程度的副產物或污染物。 污染物及副產物的非限制性範例通常包括極性化合物 ,例如水、醇類、羧酸類、醚類、碳氧化物類、硫化合物 ,例如硫化氫、硫化羰及硫醇類,氨及其他氮化合物、胂 、磷化氫及氯化物。其他污染物或副產物包括氫及烴,例 如乙炔、甲基乙炔、丙二烯、丁二烯及丁炔。 典型地,在轉換一或多種含氧物成具有2或3個碳原子 的燒烴類中,次量的烴,特別是具有4或多個碳原子的嫌 烴亦被產生。+烴的含量通常小於2〇重量%,例如小於 1 0重量% ’例如小於5重量%,及特別小於2重量%,以從 方法中移出的流出氣體總重計算,排除水。典型地,回收 系統因此可包括一或多種反應系統,以轉換C 4 +不純物成 有用的產物。 此反應系統的非限制性範例被描述於US 5,95 5,640( 轉換4個碳原子產物成丁 -1-烯)、US 4,774,375(異丁院及 丁 - 2-烯被轉換成烷化汽油)、US 6,(H9,017(正丁燒的二聚 (38) (38)200303238 合作用)、US 4,287,3 69及5,763,678(較高級烯烴用二氧化 碳羰基化或醛化製造羰基化合物)、US 4,542,252(多階段 絕熱方法)、US 5,63 4,3 54(烯烴-氫回收)及Cosyns,J. et. al·, Process for Upgrading C3, C4 and C5 Olefinic Streams,Pet· & Coal,Vol. 37,No. 4 ( 1 995)(二聚合或寡 聚合丙烯、丁烯及戊烯),其皆倂入本文作爲參考。 藉由上述方法中任一者所製備的較佳輕烯烴爲高純淨 主要烯烴產物,該產物包括含量大於8 0重量%,例如大於 9 0重量。/。,例如大於9 5重量。/〇,例如至少約9 9重量°/。的單 一碳原子數的烯烴,以烯烴的總重計算。 在一實際實施例中,本發明方法形成整合方法的一部 份’該整合方法用於從烴進料,較佳爲氣體烴進料,特別 爲甲烷及/或乙烷,製備輕烯烴。在該方法的第一步驟使 氣體進料,較佳是混有水物流,通過合成氣體產生區域, 製備合成氣體物流,典型地包括二氧化碳、一氧化碳及氫 。合成氣體產物是已知的,及典型的合成氣體溫度在範圍 從約700°C至約1 200°C,及合成氣體壓力在範圍從約2MPa 至約10 0MP a。合成氣體物流是由天然氣、石油液體及含 碳物質,例如煤、回收的塑膠、都市廢棄物或任何其他有 機材料製備的。較佳地,合持氣體物流是經由天然氣的重 組物流製備的。 在該方法的下一步驟包含使合成氣體物流與多相觸媒 ’典型爲以銅爲底質的觸媒,相接觸製備含有含氧物的物 i'ili ’通吊與水混合。在一'貫施例中’接觸的步驟是在溫度 -43- (39) (39)200303238 範圍從約150°C至約450 °C及壓力範圍從約5MPa至約 lOMPa時予以實施的0 該含有含氧物的物流或粗甲醇,典型地包括醇類產物 及各種其他成分,例如醚類、特別是二甲醚,酮類、醛類 、經溶解的氣體,例如氫、甲烷、碳氧化物、及氮、及燃 料油。在一較佳實施例中,含有含氧物之物流,粗甲醇, 通過已知純化方法、蒸觀、分離及分餾,得到經純化的含 氧物之物流,例如,商業等級A及AA甲醇。 含有含氧物之物流或經純化的含有含氧物之物流,隨 意地與一或多種稀釋劑,之後可充當方法中的進料,製備 輕烯烴,例如乙烯及/或丙烯。該整合方法的非限制性範 例被描述於EP-B-0933345,其倂入本文作爲參考。 在另一更完全的整合方法中,其隨意地與上述整合方 法相組合,在一實施例中,所製得的烯烴類係針對供製備 各種聚燃類之一或多種聚合方法。(參考,例如,2000年7 月I3日申請的美國專利申請案序號09/615,376,其倂入本 文作爲參考)。 聚合方法包括溶液、氣相、漿相及高壓方法,或其組 合。特別佳者爲一或多種烯烴類之氣相或漿相聚合,該烯 烴之至少一者爲乙烯或丙烯。這些聚合方法利用聚合觸媒 ,該聚合觸媒可包括上面所討論的分子篩觸媒中之任一者 或其組合,然而,較佳的聚合觸媒爲齊格-納塔、飛利浦 型、茂金屬、茂金屬型及前聚合觸媒,及其混合物。 在較佳實施例中,整合方法包括在聚合觸媒系統存在 (40) (40)200303238 於聚合反應器中聚合一或多種烯烴類製備一或多種聚合產 物之方法,其中該一或多種烯烴類已藉由使用上述分子篩 觸媒組成物轉換醇類,特別是甲醇,予以製得。較佳的聚 合方法是氣相聚合方法,及烯烴類中至少一者爲乙烯或丙 嫌’及較佳地,聚合觸媒系統爲經支撐的茂金屬觸媒系統 。在此實施例中,經支撐的茂金屬觸媒系統包括載體、茂 金屬或茂金屬型化合物及活化劑,較佳地,活化劑爲非配 位的陰離子或鋁氧烷,或其組合,及最佳地,活化劑爲鋁 氧烷。 上述聚合方法所製得的聚合物包括線性低密度聚乙烯 、彈性體、塑料、高密度聚乙烯、低密度聚乙烯、聚丙烯 及聚丙烯共聚物。藉由聚合方法所製得之以丙烯爲底質的 聚合物包括雜排聚丙烯、同排聚丙烯、對排聚丙烯、及丙 嫌雜亂、嵌段或碰撞共聚物。 【實施方式】 實施例 提供下面實施例,以使本發明,包括其代表性優點, 獲得較佳了解。 在實施例中,LEI被定義爲含有活潑金屬氧化物分子 篩觸媒組成物的壽命對LEI定義爲1之無金屬氧化物的相 同分子篩的壽命的比値。爲了測定LEI,壽命被定義爲被 轉換的含氧物的累積含量(較佳爲轉換成一或多種燃烴類 )/g分子篩’直到轉換率下降至約其初始値的〗〇%。若實 -45- (41) (41)200303238 驗結束時轉換未被下降至其初始値的10%,壽命藉由以實 驗最後2個數據計算轉換下降比率的線性外插法予以計算 。爲了測定下面實施例的LEI,在一較佳的含氧物轉換方 法中,甲醇在475 °C、25psig(172kPag)及甲醇的重量時空 速度爲l〇〇h-l時被轉換成一或多種烯烴類。 “主要烯烴”爲對乙烯及丙烯選擇性的總合。 “C2 = /C3 = ”比値爲乙烯對丙烯加權選擇性的比値。“C3純 度”係藉由丙烯選擇性除以丙烯及丙烷選擇性的總合予以 計算而得。對甲烷、乙烯、乙烷、丙烯、丙烷、C4,s及 C5 + ’s選擇性是平均加權選擇性。C5 + ’s只由C55s、C6’s 及C7’s構成。表中的選擇性値的總合不等於100%,因爲 其已對焦炭校正,其爲已知。 實施例A 分子篩的製備 矽鋁磷酸鹽分子篩,SAP0-34,被稱爲MSA,在充當 有機結構指向劑或樣板劑之四乙基氫氧化銨(R1)及二丙胺 (R2)存在下結晶。具有下面莫耳比例組成的混合物: 2Si〇2/Al2〇3/P2〇5/〇.9Rl/1.5R2/50H2〇 係藉由混合Condea Pural SB與去離子水形成發料予 以製備。將磷酸(85%)加至該漿料中。攪拌這些加成物形 成均質混合物。該均質混合物被加入 Ludox -46- (42) (42)200303238 AS40(4 0%SiO2),接著被加入R1,混合形成均質混合物。 該均質混合物被加入R2。該均質混合物之後在不鏽鋼壓 力鍋中攪動受熱至170t持續40小時予以結晶。此提供結 晶分子篩的漿料。結晶體之後經由過濾從母液中分離出來 。分子篩結晶體之後與黏著劑及基質物質混合,及經由噴 霧乾燥形成顆粒。 實施例B · 轉換方法 使用微流動反應器,得到所有催化或轉換數據,該反 應器由位於爐內之不鏽鋼反應器(1/4英吋(0.64cm)外直徑) 構成,蒸氣甲醇被餵至微流動反應器。反應器被維持在溫 度475它及壓力25?以8(172.41^&§)。甲醇的流速爲致使甲 醇的重量/g分子篩的流速,亦稱爲重量時空速度(WHS V) ,爲100h-l。從反應器出來的產物氣體被收集,及使用氣 體層析法予以分析。每一實驗所負荷的觸媒爲50mg,及 ® 反應器床用石英予以稀釋,以最小化反應器內的熱點。特 別地,對本發明觸媒組成物而言,實施例A的MSA分子 篩與活潑金屬氧化物的物理狀態混合物被使用。負荷的總 觸媒組成物保持50mg,及當反應器床內分子篩的含量經 由加入混合的金屬氧化物而減低,甲醇流速被調整,致使 甲醇的WHSV爲100h-l,以反應器床內分子篩的含量計算 實施例1 -47- (43) (43)200303238Particle System, pages 48 to 59, FA Zenz and DF Othmo, Reinhold Publishing Corporation, New York, 1 960, and US 6,1 66,282 (fast fluidized bed reactor), and U.S. patents filed on May 4, 2000 Application No. 09/5 64,6 1 3, all of which are incorporated herein by reference. In a practical embodiment, the method is implemented by a fluidized bed method or a high-speed fluidized bed using a reactor system, a regeneration system, and a recovery system. In this method, the reactor system suitably comprises a fluidized bed reactor system having a first reaction zone in one or more riser reactors and a second reaction in at least one separation vessel The zone typically includes one or more cyclones. In one embodiment, one or more riser reactors and separation vessels are contained within a single reaction vessel. Fresh feed, preferably containing one or more oxygenates, optionally one or more diluents, is fed to the one or more riser reactors, and the molecular sieve catalyst composition or its coking plate is introduced into the Rising tube reactor. In one embodiment, the 'molecular sieve catalyst composition or its coking plate is brought into contact with a liquid and / or a gas before being introduced into the riser reactor. The liquid is preferably water or methanol, and the gas is, for example, inert. Gas, such as nitrogen. In one embodiment, the amount of fresh feed that enters the reactor system in a liquid and / or vapor manner ranges from about 0.1% to about 85% by weight, such as from about 1% to about 75% by weight. / 〇, more typically from about 5% to about 65% by weight, based on the total weight of the feed containing any diluent therein. The liquid and vapor feeds may be of the same composition, or may include various ratios of -37- (33) (33) 200303238 same or different feeds with the same or different diluents. The feed to the reactor system is preferably partially or completely converted to a gaseous effluent in the first reaction zone, which effluent enters the separation vessel with the coked catalyst composition. In a preferred embodiment, a cyclone is provided in the separation container to separate the coked catalyst composition from the gas effluent containing one or more hydrocarbons in the separation container. Although the cyclone is better, the gravity effect in the separation container can also be applied to separate the catalyst composition from the gas effluent. Other methods of separating the catalyst composition from the gas effluent include the use of plates, covers, elbows, and the like. In one embodiment, the separation vessel includes a stripping area typically in a downstream portion of the separation vessel. In the stripping area, the coked catalyst composition is in contact with a gas, preferably one of a stream, methane, carbon dioxide, carbon monoxide, a light or inert gas (such as argon), or a combination thereof, preferably a gas. To remove the adsorbed hydrocarbons from the coked catalyst composition, which is then introduced into the regeneration system. The scorched catalyst composition is removed from the separation container and is introduced into the regeneration system. The regeneration system includes a regenerator. In the regenerator, the coked catalyst composition is brought into contact with a regeneration medium, preferably a gas containing oxygen, under conventional regeneration conditions of temperature, pressure, and residence time. Non-limiting examples of suitable regeneration media include one or more of oxygen, 03 'S03, N2 0, NO, N0 2, N2 05, air, air diluted with nitrogen or carbon dioxide, oxygen, and water (US 6,245,703), Carbon monoxide and / or hydrogen. Suitable regeneration conditions are those who have the ability to burn coke from the coking catalyst composition, and preferably burn the coke to a range of less than 0.5% by weight (34) (34) 200303238 degrees to input to the regeneration system Calculation of the total weight of the scorched molecular sieve catalyst composition. For example, the regeneration temperature may range from about 20 CTC to about 1,500 ° C, such as from about 300 ° C to about 1,000 t, such as from about 450 ° C to about 750 ° C, and Conveniently from about 5 50 ° C to about 700 ° C. The regeneration pressure may range from about 15 psia (103 kPaa) to about 500 psia (3448 kPaa), such as from about 20 psia (138 kPaa) to about 250 psia (1 724 kPaa), including from about 25 psia (172 kPaa) to about 150 psia (1 03 4 kPaa), and Conveniently from about 30 psia (207 kPaa) to about 60 psia (414 kPaa). The residence time of the catalyst composition in the regenerator can range from about 1 minute to several hours, such as from about 1 minute to 100 minutes, and the volume of oxygen during regeneration can range from about 0.01 mole% to about 5 mol%, calculated as the total volume of the gas. The combustion of coke in the regeneration step is an exothermic reaction, and in one embodiment, the temperature in the regeneration system is controlled by various techniques in the field, which include batch, continuous or partial continuous mode, or a combination thereof. The cooled gas is fed into the regenerator container. The preferred technique includes removing the regenerated catalyst composition from the re-spring system and passing the regenerated catalyst composition through a catalyst cooler to form a cooled regenerated catalyst composition. In one embodiment, the catalyst cooler is a heat exchanger, which is located inside or outside the regeneration system. Other methods of operating a regeneration system are described in US 6,290,916 (moisture control), which is incorporated herein by reference. Regenerated catalyst composition removed from the regeneration system, preferably from the catalyst cooler, and fresh molecular sieve catalyst composition and / or recycled molecular sieve catalyst composition and / or feed and / or fresh gas or liquid phase Mix and return -39-(35) (35) 200303238 to the riser reactor. In one embodiment, the regeneration catalyst composition removed from the regeneration system is returned to the riser reactor directly, preferably after passing through the catalyst cooler. The carrier may be used in a partially continuous or continuous manner, such as inert gas, feed vapor, gas, and the like, to help introduce the regeneration catalyst composition into the reactor system, preferably to one or more riser reactors. By controlling the regeneration catalyst composition from the regeneration system or the cooled regeneration catalyst composition to flow to the reactor system, the optimal level of coke on the molecular sieve catalyst composition input to the reactor is maintained. Various techniques for controlling the flow of catalyst composition are described in Michael Louge, Experimental Techniques, Circulating Fluidized Beds, Grace, Avi d an and Knowlton, eds ·, Blackie, 1 9 9 7 (336-337), which are incorporated herein as reference. The degree of coke on the catalyst composition was measured by removing the catalyst composition from the conversion method and measuring its carbon content. After regeneration, the typical degree of coke on the molecular sieve catalyst composition ranges from 0.01% by weight to about 15% by weight, such as from about 0.1% by weight to about 10% by weight, such as from about 0.2% by weight. % By weight to about 5% by weight, and expediently from about 0.3% to about 2% by weight, based on molecular weight. The gas effluent is removed from the separation vessel and passed through a recovery system. Various known recovery systems, techniques and procedures are used to separate and purify olefins from gaseous effluents. Recovery systems usually include various separations, fractionation and / or distillation columns, columns, separators or units, reaction systems, such as the production of ethylbenzene (US 5,476,97 8) and other derivatization methods, such as aldehydes (36) (36 ) 200303238, and the manufacture of esters (US 5,675,04 1), and other combined equipment, such as various condensing pipes, heat exchangers, refrigeration systems or cooling units, compressors, separation drums or pots, pumps and the like One or more or a combination thereof. Non-limiting examples of these towers, tubing columns, separators, or units used alone or in combination include one or more methane distillers (preferably high-temperature A-house deaerators), B-house distillers, C-house Deaerator, decontamination tower (usually appreciative decontamination tower and / or quench tower), absorber, adsorber, membrane, ethylene (C2) separator, propylene (C3) separator, butene (C4) Separator and various recovery systems for the priority recovery of olefins (preferably light olefins such as ethylene, propylene and / or butene) are described in US 5,960,643 (second ethylene-rich stream), US 5,019,143, 5,452,5 8 1 and 5,082,48 1 (membrane separation), US 5,672,197 (dependent on pressure adsorbent), US 6,069,288 (hydrogen removal), US 5,90 4,88 0 (in a single step, the recovered Methanol is converted to hydrogen and carbon dioxide), US 5,927,063 (recovered methanol is converted to a gas turbine power plant) and US 6,121,504 (direct product quenching), US 6,121,503 (none Ultra-rectified high-purity olefins) and US 6,293,998 (pressure conversion adsorption), which are all incorporated herein as reference. Other recovery systems containing purification systems (such as the purification of olefins) are described in Kirk-Othmer Encyclopedia of Chemical Technology, 4th Edition, Volume 9, John Wiley & Sons, 1996 pages 249-271 and 894-899, which are incorporated into This article is for reference. Purification systems are also described in, for example, US 6,271,428 (purification of a diolefin stream), US 6,293,999 (separation of propylene from propane), and October 20-41-(37) (37) 200303238 U.S. Patent Application Serial No. 09 / 689,363 (washing streams using hydrated catalysts), all of which are incorporated herein by reference. Generally, most recovery systems are accompanied by the production, production, or accumulation of additional products, by-products, and / or contaminants and preferred main products. The preferred main products, light olefins, such as ethylene and propylene, are typically purified for use in derivative manufacturing processes, such as polymerization processes. Therefore, in the preferred embodiment of the recovery system, the recovery system also includes a purification system. For example, light olefins, particularly those produced by the MTO process, pass through a purification system that removes low levels of by-products or contaminants. Non-limiting examples of pollutants and by-products typically include polar compounds such as water, alcohols, carboxylic acids, ethers, carbon oxides, sulfur compounds such as hydrogen sulfide, carbonyl sulfide and thiols, ammonia and other nitrogen Compounds, rhenium, phosphine and chloride. Other pollutants or by-products include hydrogen and hydrocarbons, such as acetylene, methylacetylene, propadiene, butadiene, and butyne. Typically, in converting one or more oxygenates to burned hydrocarbons having 2 or 3 carbon atoms, minor amounts of hydrocarbons, especially hydrocarbons having 4 or more carbon atoms, are also produced. The content of + hydrocarbons is usually less than 20% by weight, such as less than 10% by weight ', such as less than 5% by weight, and particularly less than 2% by weight, calculated as the total weight of the effluent gas removed from the method, excluding water. Typically, the recovery system may therefore include one or more reaction systems to convert C 4 + impurities into useful products. Non-limiting examples of this reaction system are described in US 5,95 5,640 (conversion of 4 carbon atoms to but-1-ene), US 4,774,375 (isobutane and but-2-ene are converted to alkylated gasoline) , US 6, (H9,017 (dimerization of n-butane (38) (38) 200303238), US 4,287,3 69 and 5,763,678 (carbon dioxide carbonylation or aldehyde formation of higher olefins to produce carbonyl compounds), US 4,542,252 (multi-stage adiabatic method), US 5,63 4,3 54 (olefin-hydrogen recovery) and Cosyns, J. et. Al ·, Process for Upgrading C3, C4 and C5 Olefinic Streams, Pet · & Coal, Vol 37, No. 4 (1 995) (dimerized or oligomeric propylene, butene, and pentene), all of which are incorporated herein by reference. The preferred light olefins prepared by any of the above methods are high A pure primary olefin product, the product comprising olefins having a single carbon number greater than 80% by weight, such as greater than 90% by weight, such as greater than 95% by weight, such as at least about 99% by weight, Calculated based on the total weight of olefins. In a practical embodiment, the method of the present invention forms part of an integrated method. The integration method is used to prepare light olefins from a hydrocarbon feed, preferably a gaseous hydrocarbon feed, especially methane and / or ethane. In the first step of the method, the gaseous feed is preferably mixed with a water stream, A synthesis gas stream is prepared through the synthesis gas generation zone, typically including carbon dioxide, carbon monoxide, and hydrogen. Synthesis gas products are known, and typical synthesis gas temperatures range from about 700 ° C to about 1 200 ° C, and the synthesis Gas pressures range from about 2 MPa to about 100 MP a. Syngas streams are made from natural gas, petroleum liquids, and carbonaceous materials such as coal, recycled plastic, municipal waste, or any other organic material. Preferably, the The holding gas stream is prepared via a recombined stream of natural gas. In the next step of the method, the synthetic gas stream is contacted with a heterogeneous catalyst, typically a copper-based catalyst, to produce an oxygenate-containing substance. i'ili 'is suspended and mixed with water. In a' constant embodiment 'the step of contacting is at a temperature of -43- (39) (39) 200303238 ranging from about 150 ° C to about 450 ° C and pressure ranging from about 5MPa to about 10 0 to be implemented at MPa The oxygenate-containing stream or crude methanol typically includes alcohol products and various other components, such as ethers, especially dimethyl ether, ketones, aldehydes, dissolved gases, such as Hydrogen, methane, carbon oxides, and nitrogen, and fuel oil. In a preferred embodiment, a stream containing oxygenates, crude methanol, is obtained by a known purification method, distillation, separation, and fractionation to obtain a purified product. Oxygenate streams, such as commercial grade A and AA methanol. An oxygenate-containing stream or a purified oxygenate-containing stream, optionally with one or more diluents, can then be used as a feed in a process to produce light olefins such as ethylene and / or propylene. A non-limiting example of this integration method is described in EP-B-0933345, which is incorporated herein by reference. In another more complete integration method, which is optionally combined with the above integration method, in one embodiment, the olefins produced are directed to one or more polymerization methods for preparing various types of poly-combustion. (Reference, for example, US Patent Application Serial No. 09 / 615,376, filed July 13, 2000, which is incorporated herein by reference). Polymerization methods include solution, gas phase, slurry phase, and high pressure methods, or a combination thereof. Particularly preferred is the gas-phase or slurry-phase polymerization of one or more olefins, at least one of which is ethylene or propylene. These polymerization methods utilize polymerization catalysts, which may include any or a combination of the molecular sieve catalysts discussed above, however, preferred polymerization catalysts are Zieg-Natta, Philips-type, metallocene , Metallocene-type and pre-polymerization catalysts, and mixtures thereof. In a preferred embodiment, the integration method includes the presence of a polymerization catalyst system (40) (40) 200303238 polymerizing one or more olefins in a polymerization reactor to prepare one or more polymerization products, wherein the one or more olefins It has been prepared by using the above molecular sieve catalyst composition to convert alcohols, particularly methanol. The preferred polymerization method is a gas phase polymerization method, and at least one of the olefins is ethylene or propylene, and preferably, the polymerization catalyst system is a supported metallocene catalyst system. In this embodiment, the supported metallocene catalyst system includes a carrier, a metallocene or metallocene compound and an activator. Preferably, the activator is a non-coordinating anion or alumoxane, or a combination thereof, and Most preferably, the activator is alumoxane. The polymers prepared by the above polymerization methods include linear low density polyethylene, elastomers, plastics, high density polyethylene, low density polyethylene, polypropylene, and polypropylene copolymers. The propylene-based polymers prepared by the polymerization method include hetero-row polypropylene, co-row polypropylene, counter-row polypropylene, and propylene random, block or collision copolymers. [Embodiments] Examples The following examples are provided to enable the present invention, including its representative advantages, to obtain a better understanding. In the examples, LEI is defined as the ratio of the lifetime of the active metal oxide molecular sieve catalyst composition to the lifetime of the same molecular sieve without metal oxide defined as LEI. To determine LEI, life is defined as the cumulative content of converted oxygenates (preferably converted to one or more hydrocarbon-burning species) / g molecular sieve 'until the conversion rate drops to about 0% of its initial value. If the actual -45- (41) (41) 200303238 conversion does not drop to 10% of its initial value at the end of the test, the life is calculated by a linear extrapolation method that calculates the conversion reduction ratio using the last 2 data of the experiment. In order to determine the LEI of the following examples, in a preferred oxygenate conversion method, methanol is converted to one or more olefins at 475 ° C, 25 psig (172 kPag), and a weight space-time velocity of 100 h-1. "Main olefin" is the sum of selectivity to ethylene and propylene. The "C2 = / C3 =" ratio 値 is the ratio of ethylene to propylene weighted selectivity 値. "C3 purity" is calculated by dividing propylene selectivity by the sum of propylene and propane selectivity. The selectivity to methane, ethylene, ethane, propylene, propane, C4, s and C5 + 's is the average weighted selectivity. C5 + 's consists only of C55s, C6's, and C7's. The sum of the selective radon in the table is not equal to 100% because it is coke corrected and it is known. Example A Preparation of molecular sieves Silicoaluminophosphate molecular sieves, SAP0-34, known as MSA, crystallize in the presence of tetraethylammonium hydroxide (R1) and dipropylamine (R2), which serve as organic structure directing agents or model agents. A mixture having the following mole ratio: 2Si2 / Al2O3 / P205 / 0.9R1 / 1.5R2 / 50H2O was prepared by mixing Condea Pural SB with deionized water to form a hair preparation. Phosphoric acid (85%) was added to the slurry. These adducts are stirred to form a homogeneous mixture. The homogeneous mixture was added to Ludox -46- (42) (42) 200303238 AS40 (40% SiO2), then R1 was added and mixed to form a homogeneous mixture. This homogeneous mixture was added to R2. This homogeneous mixture was then stirred and heated in a stainless steel pressure cooker to 170 t for 40 hours to crystallize. This provides a slurry of crystalline molecular sieve. The crystals were then separated from the mother liquor by filtration. The molecular sieve crystals are then mixed with the binder and matrix material and dried by spraying to form particles. Example B · The conversion method uses a micro-flow reactor to obtain all catalytic or conversion data. The reactor consists of a stainless steel reactor (1 / 4-inch (0.64 cm) outside diameter) located in a furnace. Vapor methanol is fed to Micro flow reactor. The reactor was maintained at a temperature of 475 ° C and a pressure of 25 ° to 8 ° (172.41 ^ & §). The flow rate of methanol is the flow rate that causes the weight of methanol / g molecular sieve, also known as the weight space-time velocity (WHS V), to be 100 h-l. The product gas from the reactor is collected and analyzed using gas chromatography. The catalyst loaded in each experiment was 50 mg, and the reactor bed was diluted with quartz to minimize hot spots in the reactor. In particular, for the catalyst composition of the present invention, a physical state mixture of the MSA molecular sieve and the active metal oxide of Example A was used. The loaded total catalyst composition was maintained at 50 mg, and when the content of molecular sieves in the reactor bed was reduced by adding mixed metal oxides, the methanol flow rate was adjusted so that the WHSV of methanol was 100 h-l. Content calculation example 1 -47- (43) (43) 200303238

La(N03)3 · xH2〇(Aldrich Chemical Company)樣品在 空氣中及在700 °C鍛燒3小時,產生氧化鑭。 實施例2 50克的 La(N〇3)3 · xH2〇(Aldrich Chemical Company) 被攪拌溶解於500ml的蒸餾水中。pH經由加入濃氫氧化 銨被調整至約9。此漿料之後被放入聚丙烯瓶中及置於氣 流盒(l〇〇°C ) 72小時。所形成的產物經由過濾被回收,用 過量的水淸洗,及在85 °C乾燥隔夜。此觸媒的一部份在流 動空氣中被段燒至600 °C持續3小時,以製備氧化鑭 (La2〇3)。 實施例3 5 0克的Y(N03)3 · 6H20被攪拌溶解於5 00ml的蒸餾水 中。pH經由加入濃氫氧化銨被調整至約9。此漿料之後被 放入聚丙烯瓶中及置於氣流盒(1 0 0 °C ) 72小時。所形成的 產物經由過濾被回收,用過量的水淸洗,及在8 5 °C乾燥隔 夜。此觸媒的一部份在流動空氣中被段燒至600 °C持續3小 時,以製備氧化釔(Y2〇3)。 實施例4La (N03) 3.xH2O (Aldrich Chemical Company) samples were calcined in air at 700 ° C for 3 hours to produce lanthanum oxide. Example 2 50 g of La (NO3) 3.xH2O (Aldrich Chemical Company) was dissolved in 500 ml of distilled water with stirring. The pH was adjusted to about 9 by adding concentrated ammonium hydroxide. This slurry was then placed in a polypropylene bottle and placed in an air box (100 ° C) for 72 hours. The formed product was recovered by filtration, washed with excess water, and dried overnight at 85 ° C. Part of this catalyst was burned in flowing air to 600 ° C for 3 hours to prepare lanthanum oxide (La203). Example 3 50 g of Y (N03) 3.6H20 was stirred and dissolved in 500 ml of distilled water. The pH was adjusted to about 9 by adding concentrated ammonium hydroxide. This slurry was then placed in a polypropylene bottle and placed in an air flow box (100 ° C) for 72 hours. The formed product was recovered by filtration, washed with excess water, and dried overnight at 85 ° C. Part of this catalyst was burned to 600 ° C for 3 hours in flowing air to prepare yttrium oxide (Y203). Example 4

Sc(N〇3)3 · xH2〇(Aldrich Chemical Company)樣品在 空氣中及在700°C鍛燒3小時,產生氧化銃(Sc203)。 實施例5 -48- (44) (44)200303238 50克的Ce(N03)3· 6H20被攪拌溶解於500ml的蒸餾 水中。pH經由加入濃氫氧化銨被調整至約8。此漿料之後 被放入聚丙烯瓶中及置於氣流盒(100°C )72小時。所形成 的產物經由過濾被回收,用過量的水淸洗,及在8 5 °C乾燥 隔夜。此觸媒的一部份在流動空氣中被段燒至600 °C持續3 小時,以製備氧化鈽(Ce203)。 實施例6 # 50克的Pr(N03)3· 6H20被攪拌溶解於5 00ml的蒸餾 水中。pH經由加入濃氫氧化銨被調整至約8。此漿料之後 被放入聚丙烯瓶中及置於氣流盒(100 °C )72小時。所形成 的產物經由過濾被回收,用過量的水淸洗,及在8 5 °C乾燥 隔夜。此觸媒的一部份在流動空氣中被段燒至6 0 0 °C持續3 小時,以製備氧化鐯(Pr203)。 實施例7 50克的Nd(N03)3· 6H20被攪拌溶解於5 00ml的蒸餾 水中。pH經由加入濃氫氧化銨被調整至約9。此漿料之後 被放入聚丙烯瓶中及置於氣流盒(1 0 0 °C ) 7 2小時。所形成 的產物經由過濾被回收,用過量的水淸洗,及在8 5 t乾燥 隔夜。此觸媒的一部份在流動空氣中被段燒至6 0 (TC持續3 小時,以製備氧化鈸(Nd203)。 實施例8 39 克的 Ce(N03)3· 6H20 及 7.0克的 La(N03)3· 6H20 -49- (45) (45)200303238 被攪拌溶解於5 00ml的蒸餾水中。製備另一含有20克濃氫 氧化銨及5 00ml蒸餾水的溶液。這兩溶液使用噴嘴混合器 以速率5 〇 m 1 / m i η混合。最終混合物的p Η經由加入濃氫氧 化銨被調整至約9。此漿料之後被放入聚丙烯瓶中及置於 氣流盒(100 °C )72小時。所形成的產物經由過濾被回收, 用過量的水淸洗,及在8 5 °C乾燥隔夜。此觸媒的一部份在 流動空氣中被段燒至700 °C持續3小時,以製備含有5重量 %鑭之混合金屬氧化物,以混合金屬氧化物的最終重量計 算。 實施例9 9克的 Ce(N03)3 · 6H20 及 30.0克的 La(N03)3 · 6H20 被攪拌溶解於5 00ml的蒸餾水中。製備另一含有20克濃氫 氧化銨及500ml蒸餾水的溶液。這兩溶液使用噴嘴混合器 以速率50ml/miη混合。最終混合物的pH經由加入濃氫氧 化銨被調整至約9。此漿料之後被放入聚丙烯瓶中及置於 氣流盒(1〇〇 °C ) 72小時。所形成的產物經由過濾被回收, 用過量的水淸洗,及在8 5 °C乾燥隔夜。此觸媒的一部份在 流動空氣中被段燒至700 °C持續3小時,以製備含有5重量 %鈽之混合金屬氧化物,以混合金屬氧化物的最終重量計 算0 實施例1 〇 實施例1至9之氧化物的二氧化碳攝入値在周圍壓力下 -50- (46) 200303238 使用 Mettler TGA/SDTA 851熱重分析系統予以測量。金 屬氧化物樣品在流動空氣中及約5 00 °C下脫水1小時,$彳彡 在1 〇 0 °C測量二氧化碳的攝入値。樣品的表面積係依照 Brunauer,Emmett,and Teller(BET)方法予以測量,提供 二氧化碳攝入値,以mg二氧化碳/m2金屬氧化物表示,如 表1所示。 實施例 觸媒乾燥 吸附的 表面積 C 0 2攝入値 重量(mg) C〇2(mg) (m2/g) (mfi/m2) 1 22 0.1846 40 0.210 2 3 1 0.6487 3 8 0.551 3 24 0.3 296 80 0.172 4 20 0.0490 33 0.074 5 143 0.7714 57 0.095 6 50 0.3 136 24 0.26 1 7 4 1 0.6491 18 0.880 8 130 0.8407 5 1 0.127 9 42 1.2542 46 0.649A sample of Sc (NO3) 3.xH2O (Aldrich Chemical Company) was calcined in air at 700 ° C for 3 hours to produce scandium oxide (Sc203). Example 5 -48- (44) (44) 200303238 50 grams of Ce (N03) 3.6H20 was stirred and dissolved in 500 ml of distilled water. The pH was adjusted to about 8 by adding concentrated ammonium hydroxide. This slurry was then placed in a polypropylene bottle and placed in an airflow box (100 ° C) for 72 hours. The formed product was recovered by filtration, washed with excess water, and dried overnight at 85 ° C. Part of this catalyst was burned to 600 ° C for 3 hours in flowing air to prepare thorium oxide (Ce203). Example 6 # 50 g of Pr (N03) 3.6H20 was stirred and dissolved in 500 ml of distilled water. The pH was adjusted to about 8 by adding concentrated ammonium hydroxide. This slurry was then placed in a polypropylene bottle and placed in an airflow box (100 ° C) for 72 hours. The formed product was recovered by filtration, washed with excess water, and dried overnight at 85 ° C. Part of this catalyst was burned to 600 ° C for 3 hours in flowing air to prepare thorium oxide (Pr203). Example 7 50 g of Nd (N03) 3.6H20 was stirred and dissolved in 500 ml of distilled water. The pH was adjusted to about 9 by adding concentrated ammonium hydroxide. This slurry was then placed in a polypropylene bottle and placed in an air flow box (100 ° C) for 7 2 hours. The formed product was recovered by filtration, washed with excess water, and dried overnight at 8 5 t. Part of this catalyst was partially burned to 60 in flowing air (TC for 3 hours to prepare hafnium oxide (Nd203). Example 8 39 g of Ce (N03) 3.6H20 and 7.0 g of La ( N03) 3 · 6H20 -49- (45) (45) 200303238 was stirred and dissolved in 500 ml of distilled water. Another solution containing 20 g of concentrated ammonium hydroxide and 500 ml of distilled water was prepared. The two solutions were sprayed with a nozzle mixer to Mixing at a rate of 50 m 1 / mi η. The p 的 of the final mixture was adjusted to about 9 by adding concentrated ammonium hydroxide. This slurry was then placed in a polypropylene bottle and placed in an air flow box (100 ° C) for 72 hours The formed product was recovered by filtration, washed with excess water, and dried overnight at 85 ° C. A part of this catalyst was partially burned in flowing air to 700 ° C for 3 hours to prepare Mixed metal oxide containing 5% by weight of lanthanum, calculated based on the final weight of the mixed metal oxide. Example 9 9 g of Ce (N03) 3 · 6H20 and 30.0 g of La (N03) 3 · 6H20 were stirred and dissolved in 5 00 ml of distilled water. Prepare another solution containing 20 g of concentrated ammonium hydroxide and 500 ml of distilled water. Use these two solutions. The mouth mixer is mixed at a rate of 50 ml / miη. The pH of the final mixture is adjusted to about 9 by adding concentrated ammonium hydroxide. This slurry is then placed in a polypropylene bottle and placed in an air flow box (100 ° C) 72 Hours. The formed product was recovered by filtration, washed with excess water, and dried overnight at 85 ° C. Part of this catalyst was partially burned to 700 ° C in flowing air for 3 hours. Preparation of mixed metal oxides containing 5% by weight of rhenium, calculated based on the final weight of the mixed metal oxide. Example 1 〇 Carbon dioxide intake of the oxides of Examples 1 to 9 -50 Under ambient pressure -50- (46) 200303238 Measurements were performed using a Mettler TGA / SDTA 851 thermogravimetric analysis system. Metal oxide samples were dehydrated in flowing air at approximately 500 ° C for 1 hour, and $ 彳 彡 was measured for carbon dioxide uptake at 100 ° C. The surface area is measured in accordance with the Brunauer, Emmett, and Teller (BET) method, and provides carbon dioxide uptake 値, expressed as mg carbon dioxide / m2 metal oxide, as shown in Table 1. Example Catalyst surface area for dry adsorption C 0 2 Into the weight (Mg) C0 (mg) (m2 / g) (mfi / m2) 1 22 0.1846 40 0.210 2 3 1 0.6487 3 8 0.551 3 24 0.3 296 80 0.172 4 20 0.0490 33 0.074 5 143 0.7714 57 0.095 6 50 0.3 136 24 0.26 1 7 4 1 0.6491 18 0.880 8 130 0.8407 5 1 0.127 9 42 1.2542 46 0.649

比較實施例1 1 在這比較實施例ll(Cex. 11)中,實施例A所製備的分 子篩觸媒組成物係在實施例B方法中使用5 Omg無活潑金 屬氧化物之分子篩觸媒組成物予以測試。測試結果顯示在 -51 - (47) (47)200303238 表2及表3。 實施例1 2 在這實施例中,實施例A所製備的分子鋪觸媒組成 物係在實施例B方法中使用4 0 m g分子鋪觸媒組成物予以 測試,該分子飾觸媒組成物具有1 0mg的La2〇3 ’該La203 經由在實施例1中之硝化分解予以製得的。組成份被混合 ,之後用砂稀釋,形成反應器床。測試結果顯示在表2及3 ,說明La203,活潑第3族金屬氧化物的加入增加149%壽 命。對乙烷的選擇性減低3 6%,及對丙烷的選擇性減低 3 2%,暗示氫轉換反應顯著地減低。 實施例1 3 在這實施例中,實施例A所製備的分子篩觸媒組成 物係在實施例B方法中使用40mg分子篩觸媒組成物予以 測試,該分子篩觸媒組成物具有10mg的La203,且經由 在實施例2中之沉澱作用予以製得的。組成份被混合,之 後用砂稀釋,形成反應器床。測試結果顯示在表2及3,說 明經由沉澱作用所製得之La203,活潑第3族金屬氧化物 的加入增加34〇%壽命。對乙烷的選擇性減低55%,及對丙 烷的選擇性減低44%,暗示氫轉換反應顯著地減低。 實施例1 4 在迫貫施例1 4中’實施例Α所製備的分子餘觸媒組 -52- (48) (48)200303238 成物係在實施例B方法中使用40mg分子篩觸媒組成物予 以測試,該分子篩觸媒組成物具有l〇mg實施例3所製得之 Y2〇3。組成份被混合,之後用砂稀釋,形成反應器床。測 試結果顯示在表2及3,說明Υ2〇3,活潑第3族金屬氧化物 的加入增加1 090%壽命。對乙烷的選擇性減低45%,及對 丙烷的選擇性減低2 8 %,暗示氫轉換反應顯著地減低。 實施例1 5 · 在這實施例1 5中,實施例Α所製備的分子篩觸媒組 成物係在實施例B方法中使用40mg分子篩觸媒組成物予 以測試,該分子篩觸媒組成物具有lOmg實施例4所製得之 S C 2 〇 3。組成份被混合,之後用砂稀釋,形成反應器床。 測試結果顯示在表2及3,說明Sc203,活潑第3族金屬氧 化物的加入增加167%壽命。對乙烷的選擇性減低27%,及 對丙烷的選擇性減低2 1 %,暗示氫轉換反應顯著地減低。 實施例1 6 在這實施例1 6中,實施例A所製備的分子篩觸媒組 成物係在實施例B方法中使用4〇mg分子篩觸媒組成物予 以測試,該分子篩觸媒組成物具有1 〇mg實施例5所製得之 C e 2 0 3。組成份被混合,之後用砂稀釋,形成反應器床。 測試結果顯示在表2及3,說明Ce203 ’活潑鑭金屬氧化物 的加入增加63 0%壽命。對乙烷的選擇性減低5 0% ’及對丙 烷的選擇性減低3 4%,暗示氫轉換反應顯著地減低。 -53- (49) (49)200303238 實施例1 7 在這實施例1 7中,實施例A所製備的分子篩觸媒組 成物係在實施例B方法中使用40mg分子篩觸媒組成物予 以測試,該分子篩觸媒組成物具有1 〇mg實施例6所製得之 Pr203。組成份被混合,之後用砂稀釋,形成反應器床。 測試結果顯示在表2及3,說明Pr203,活潑鑭金屬氧化物 的加入增加640%壽命。對乙烷的選擇性減低51%,及對丙 烷的選擇性減低3 8%,暗示氫轉換反應顯著地減低。 實施例1 8 在這實施例1 8中,實施例A所製備的分子篩觸媒組 成物係在實施例B方法中使用40mg分子篩觸媒組成物予 以測試,該分子篩觸媒組成物具有l〇rng實施例7所製得之 Nd203。組成份被混合,之後用砂稀釋,形成反應器床。 測試結果顯示在表2及3,說明Nd203,活潑鑭金屬氧化物 的加入增加3 40%壽命。對乙烷的選擇性減低49%,及對丙 烷的選擇性減低3 4 %,暗示氫轉換反應顯著地減低。 實施例1 9 在這實施例1 9中,實施例A所製備的分子篩觸媒組 成物係在實施例B方法中使用4〇mg分子篩觸媒組成物予 以測試,該分子篩觸媒組成物具有1 0mg實施例8所製得之 混合金屬氧化物。組成份被混合,之後用砂稀釋’形成反 -54- (50) 4 (50) 4200303238 應器床。測試結果顯示在表2及3,說明La0x/Ce203,經 由第3族氧化物改良的活潑鑭金屬氧化物的加入增加4 5 0% 壽命。對乙烷的選擇性減低47%,及對丙烷的選擇性減低 3 7%,暗示氫轉換反應顯著地減低。 實施例20 在這實施例20中,實施例A所製備的分子篩觸媒組 成物係在實施例B方法中使用40mg分子篩觸媒組成物予 以測試,該分子篩觸媒組成物具有l〇mg實施例9所製得之 混合金屬氧化物。組成份被混合,之後用砂稀釋,形成反 應器床。測試結果顯示在表2及3 ’說明5%Ce0x/La203, 經鑭系氧化物改良的活潑第3族金屬氧化物的加入增加 2 6 0%壽命。對乙烷的選擇性減低56%,及對丙烷的選擇性 減低4 5 %,暗示氫轉換反應顯著地減低。Comparative Example 1 1 In this Comparative Example 11 (Cex. 11), the molecular sieve catalyst composition prepared in Example A was used in the method of Example B. 5 Omg of the molecular sieve catalyst composition without active metal oxide was used. Be tested. The test results are shown in Tables 2 and 3 of -51-(47) (47) 200303238. Example 1 2 In this example, the molecular catalyst catalyst composition prepared in Example A was tested in the method of Example B using 40 mg of the molecular catalyst catalyst composition. The molecular catalyst catalyst composition has 10 mg of La203 This La203 was prepared by the nitration decomposition in Example 1. The components are mixed and then diluted with sand to form a reactor bed. The test results are shown in Tables 2 and 3, indicating that La203, the addition of active Group 3 metal oxides increased the life by 149%. The selectivity to ethane was reduced by 3 6%, and the selectivity to propane was reduced by 32%, suggesting a significant reduction in the hydrogen shift reaction. Example 1 3 In this example, the molecular sieve catalyst composition prepared in Example A was tested using the 40 mg molecular sieve catalyst composition in the method of Example B. The molecular sieve catalyst composition had 10 mg of La203, and It was prepared by the precipitation in Example 2. The components are mixed and then diluted with sand to form a reactor bed. The test results are shown in Tables 2 and 3, which indicate that the La203 produced by the precipitation effect, the addition of active Group 3 metal oxides increased the life span by 34%. A 55% reduction in selectivity to ethane and a 44% reduction in selectivity to propane suggest a significant reduction in the hydrogen shift reaction. Example 14 The molecular residue catalyst group -52- (48) (48) 200303238 prepared in Example 14 in the forced Example 14 was used in the method of Example B using a 40 mg molecular sieve catalyst composition Tested, the molecular sieve catalyst composition has 10 mg of Y203 obtained in Example 3. The components are mixed and then diluted with sand to form a reactor bed. The test results are shown in Tables 2 and 3, which shows that Υ203, the addition of active Group 3 metal oxides increased the lifetime by 1,090%. A 45% reduction in selectivity to ethane and a 28% reduction in selectivity to propane suggest a significant reduction in the hydrogen shift reaction. Example 15 · In this Example 15, the molecular sieve catalyst composition prepared in Example A was tested using the 40 mg molecular sieve catalyst composition in the method of Example B. The molecular sieve catalyst composition has a 10 mg implementation. SC 2 03 obtained in Example 4. The components are mixed and then diluted with sand to form a reactor bed. The test results are shown in Tables 2 and 3, indicating that Sc203, the addition of active Group 3 metal oxides increased the lifetime by 167%. A 27% reduction in selectivity to ethane and a 21% reduction in selectivity to propane suggest a significant reduction in the hydrogen shift reaction. Example 16 In this Example 16, the molecular sieve catalyst composition prepared in Example A was tested in the method of Example B using 40 mg of the molecular sieve catalyst composition, and the molecular sieve catalyst composition had 1 0 mg of C e 203 obtained in Example 5. The components are mixed and then diluted with sand to form a reactor bed. The test results are shown in Tables 2 and 3, indicating that the addition of Ce203 'active lanthanum metal oxide increases the life of 63 0%. A 50% reduction in selectivity to ethane and a 34% reduction in selectivity to propane suggest a significant reduction in the hydrogen shift reaction. -53- (49) (49) 200303238 Example 17 In this Example 17, the molecular sieve catalyst composition prepared in Example A was tested using the 40 mg molecular sieve catalyst composition in the method of Example B. The molecular sieve catalyst composition has 10 mg of Pr203 prepared in Example 6. The components are mixed and then diluted with sand to form a reactor bed. The test results are shown in Tables 2 and 3, indicating that the addition of active lanthanum metal oxide increases the life of 640% by Pr203. A 51% reduction in selectivity to ethane and a 38% reduction in selectivity to propane suggest a significant reduction in the hydrogen shift reaction. Example 18 In this Example 18, the molecular sieve catalyst composition prepared in Example A was tested in the method of Example B using 40 mg of the molecular sieve catalyst composition. The molecular sieve catalyst composition had 10 rng. Nd203 obtained in Example 7. The components are mixed and then diluted with sand to form a reactor bed. The test results are shown in Tables 2 and 3, showing that Nd203, the addition of active lanthanum metal oxides increased the life span by 3 40%. A 49% reduction in selectivity to ethane and a 34% reduction in selectivity to propane suggest a significant reduction in the hydrogen shift reaction. Example 19 In this Example 19, the molecular sieve catalyst composition prepared in Example A was tested in the method of Example B using 40 mg of the molecular sieve catalyst composition. The molecular sieve catalyst composition has 1 0 mg of the mixed metal oxide prepared in Example 8. The components are mixed and then diluted with sand ’to form an inverse -54- (50) 4 (50) 4200303238 reactor bed. The test results are shown in Tables 2 and 3, showing that La0x / Ce203, the addition of active lanthanum metal oxide modified by Group 3 oxides increased the life expectancy by 45%. A 47% reduction in selectivity to ethane and a 37% reduction in selectivity to propane suggest a significant reduction in the hydrogen shift reaction. Example 20 In this Example 20, the molecular sieve catalyst composition prepared in Example A was tested in the method of Example B using 40 mg of the molecular sieve catalyst composition, and the molecular sieve catalyst composition had 10 mg of the example. 9 The mixed metal oxide prepared. The ingredients are mixed and then diluted with sand to form a reactor bed. The test results are shown in Tables 2 and 3 ', indicating that 5% Ce0x / La203, the addition of active Group 3 metal oxides modified with lanthanide oxides increased the lifespan by 260%. A 56% reduction in selectivity to ethane and a 45% reduction in selectivity to propane suggest a significant reduction in the hydrogen shift reaction.

-55- (51) i 200303238 (51) i-55- (51) i 200303238 (51) i

cslm C3純度 (%) 1—H r-H VD On 96.9 96.0 95.5 CO MD ON 96.6 96.3 96.4 ON MD On a u 0.90 oq 0.74 0.76 t H oq 0.69 0.72 r-H 0.73 r-H 卜· 主要烯烴 (%) 72.99 73.84 73.78 73.68 1 1 73.74 70.51 72.37 72.57 70.64 70.52 壽命增加指數(LEI) p 3 CTS CO 寸· 寸· VO Ό cn 反應器床組成物 100%MSA 80%MSA/20%La2〇3 80%MSA/20%La2〇3 80%MSA/20%Y2〇3 80%MSA/20%Sc2〇3 80%MSA/20%Ce2〇3 i 80%MSA/20%Pr2〇3 80%MSA/20%Nd2〇3 80%MSA/20%La〇x/Ce2〇3 80%MSA/20%Ce〇x/La2〇3 實施例 比較例11 Oj cn 2 OO On -56- (52)200303238 t CO r-H uo r-H to uo &gt;〇 CO oo vd VO MD v〇 csi ON oo T—Η VO ON CO l〇 r-H ON 5 i〇 r-H (N CO wS cn r-H vrj VO oo yr 9 ζ} Η vq r-H ^-H r-H v〇 S r-H CO l〇 r-H r—H II 〇6 CO ON S l〇 cn οά CO oq r-H o (N MD r—H 2 oi ΟΊ oj 〇 VO CO r-H u 〇〇 o CO 〇 〇 ίο o as cn O cn 导 O r-H c5 荠 c5 u un CO cn t—H CO oo 1—H CO oo CO CO as oo oo CN oo r-H Οί s 豸 vo τ—H as CSI u S 〇j r—H oo CO H ON CO r-H v〇 ! &lt; S o5 ι—Η s r—H s c4 CO 追 S| 〇 r &lt; ro (N &lt; GO g r-^ rs &lt; ί ro &lt;s 1 00 s 沴 ro Oi 1 oo s 虔 〇 &lt;N 00 承 1 CO s 承 s 2 1 00 rs CD o ►3 | OQ m CNJ c3 CO s § 辑 U τ—Η r—Η 鎰 λλ m tn v〇 oo On -57- (53) (53)200303238 當經由特別實施例描述及說明本發明時,熟習該項技 術者將瞭解,本發明適於變化,無須在此說明。例如,預 期的是,混合使用活塞式流動、固定床或流動床方法,特 別是在單一或多重反應器系統中的不同反應區域。亦預期 的是,本文中所述之分子篩組成物充當吸收劑、吸附劑、 氣體分離劑、去污劑、水純化劑及用於各種用途,例如農 學及園藝。將一或多種活潑第3族金屬氧化物加至合成混 合物中,製備上述之分子篩,是在本發明之範圍內。同樣 地,預期的是,一或多種分子篩被用於觸媒組成物。爲此 理由,爲決定本發明之真實範圍之目的,僅參考所附之申 請專利範圍。 -58-cslm C3 purity (%) 1-H rH VD On 96.9 96.0 95.5 CO MD ON 96.6 96.3 96.4 ON MD On au 0.90 oq 0.74 0.76 t H oq 0.69 0.72 rH 0.73 rH Bu major olefins (%) 72.99 73.84 73.78 73.68 1 1 73.74 70.51 72.37 72.57 70.64 70.52 Life increase index (LEI) p 3 CTS CO inch · inch · VO Ό cn reactor bed composition 100% MSA 80% MSA / 20% La2 03 3 80% MSA / 20% La 2 0 3 80 % MSA / 20% Y2〇3 80% MSA / 20% Sc2〇3 80% MSA / 20% Ce2 03 i 80% MSA / 20% Pr2 033 80% MSA / 20% Nd2 033 80% MSA / 20 % La〇x / Ce2〇3 80% MSA / 20% Ce〇x / La2〇3 Example Comparative Example 11 Oj cn 2 OO On -56- (52) 200303238 t CO rH uo rH to uo &gt; 〇CO oo vd VO MD v〇csi ON oo T—Η VO ON CO l〇rH ON 5 i〇rH (N CO wS cn rH vrj VO oo yr 9 ζ) Η vq rH ^ -H rH v〇S rH CO l〇rH r—H II 〇6 CO ON S l〇cn οά CO oq rH o (N MD r—H 2 oi 〇Ί oj 〇VO CO rH u 〇〇o CO 〇〇ίο o as cn O cn guide O rH c5 荠 c5 u un CO cn t—H CO oo 1—H CO oo CO CO as oo oo CN oo rH Οί s vo τ—H as CSI u S 〇jr—H oo CO H ON CO r- H v〇! &Lt; S o5 ι—Η sr—H s c4 CO chase S | 〇r &lt; ro (N &lt; GO g r- ^ rs &lt; ί ro &lt; s 1 00 s 沴 ro Oi 1 oo s 〇〇 <N 00 Cheng 1 CO s Cheng s 2 1 00 rs CD o ►3 | OQ m CNJ c3 CO s § U τ—Η r—Η 镒 λλ m tn v〇oo On -57- (53 ) (53) 200303238 When the present invention is described and illustrated through a specific embodiment, those skilled in the art will understand that the present invention is suitable for variations and need not be described here. For example, it is expected that a mixed-flow, fixed-bed or fluid-bed approach will be used, especially in different reaction zones in a single or multiple reactor system. It is also contemplated that the molecular sieve compositions described herein serve as absorbents, adsorbents, gas separation agents, detergents, water purifying agents, and for various uses, such as agriculture and horticulture. It is within the scope of the present invention to add one or more active Group 3 metal oxides to the synthetic mixture to prepare the aforementioned molecular sieves. Likewise, it is expected that one or more molecular sieves are used for the catalyst composition. For this reason, for the purpose of determining the true scope of the invention, only the scope of the appended patent application is referred to. -58-

Claims (1)

(1) (1)200303238 拾、申請專利範圍 1. 一種觸媒組成物,包括分子篩及至少一種選自元素 週期表之第3族金屬、鑭系元素及锕系元素的氧化物,其 中該金屬氧化物的二氧化碳的攝入値在100 °C時至少爲 0.03mg/m2金屬氧化物。 2. 如申請專利範圍第1項之觸媒組成物,其中該金屬 氧化物的二氧化碳的攝入値在100 °C時至少爲0.04 mg/m2金 屬氧化物。 3 .如申請專利範圍第1項之觸媒組成物,其中該金屬 氧化物的二氧化碳的攝入値在100°C時低於10mg/m2金屬氧 化物。 4.如申請專利範圍第1項之觸媒組成物,其中該金屬 氧化物的二氧化碳的攝入値在100°C時低於5mg/m2金屬氧 化物。 5 .如申請專利範圍第1項之觸媒組成物,亦包括不同 於該金屬氧化物的至少一種黏著劑及基質物質。 6. 如申請專利範圍第1項之觸媒組成物,亦包括黏著 劑及基質物質,其互爲不同且不同於該金屬氧化物。 7. 如申請專利範圍第6項之觸媒組成物,其中黏著劑 爲氧化鋁溶膠,及基質物質爲黏土。 8 .如申請專利範圍第1項之觸媒組成物,其中該金屬 氧化物係選自氧化鑭、氧化釔、氧化銃、氧化鈽、氧化鐯 、氧化钕、氧化釤、氧化钍及其混合物。 9 .如申請專利範圍第1項之觸媒組成物,其中該金屬 -59- (2) (2)200303238 氧化物爲氧化釔。 1 〇 ·如申請專利範圍第1項之觸媒組成物,其中分子篩 包括一含有至少兩個四面體單元之架構,該單元選自 [Si04]、[Al〇4]及[p〇4]單元。 1 1 .如申請專利範圍第1 〇項之觸媒組成物,其中分子 篩包括矽鋁磷酸鹽。 12.如申請專利範圍第10項之觸媒組成物,其中分子 篩包括CHA架構類型的分子篩。 1 3 ·如申請專利範圍第1 2項之觸媒組成物,其中分子 篩另外包括AEI架構類型的分子篩。 1 4.如申請專利範圍第〗項之觸媒組成物,其中分子篩 對金屬氧化物的重量比例範圍在5 %至8 0 0 %間。 15•一種分子篩觸媒組成物,包括第3族金屬氧化物及 /或鑭系或锕系元素的氧化物、黏著劑、基質物質及矽鋁 磷酸鹽分子篩。 1 6· —種製備觸媒組成物之方法,該方法包括使含有 分子篩的第一粒子與含有至少一種選自元素週期表中第3 族金屬、鑭系元素及鋼系元素的氧化物的第二粒子完全混 合’其中該金屬氧化物的二氧化碳的攝入値在100 °C時至 少爲0.03mg/m2金屬氧化物粒子。 17. 如申請專利範圍第16項之方法,其中至少該第一 及該第二粒子之一者亦包括黏著劑及基質物質中之至少一 者。 18. 如申請專利範圍第16項之方法,其中該第一粒子 -60- (3) (3)200303238 包括矽鋁磷酸鹽分子篩及/或鋁磷酸鹽分子舖。 1 9.如申請專利範圍第1 7項之方法,其中該第一粒子 包括砂鋁磷酸鹽分子篩、含有氧化銘溶膠的黏著劑及含有 黏土的基質物質。 2 0 ·如申請專利範圍第1 6項之方法,其中該金屬氧化 物爲氧化鑭、氧化釔、氧化鈽或其混合物。 21.—種製備觸媒組成物之方法,該方法包括: (i) 由反應混合物合成分子篩,該混合物包括至少一種 樣板劑及矽來源、磷來源及鋁來源中至少兩者;及 (ii) 回收(i)中所合成的分子篩; (iii) 藉由從一含有該金屬離子來源的溶液中沉澱,以 形成選自元素週期表中第3族金屬、鑭系元素及锕系元素 的氧化物的水合前驅物; (iv) 回收(iii)中所形成的水合前驅物; (v) 鍛燒(iv)中所回收的水合前驅物,以形成受鍛燒的 金屬氧化物,該金屬氧化物的二氧化碳的攝入値在1〇〇 °C 時至少爲〇.〇3mg/m2金屬氧化物;及 (vi) 完全混合(i)中所回收的分子篩及(v)中所製備的受 鍛燒的金屬氧化物。 22·如申請專利範圍第21項之方法,其中分子篩及/或 金屬氧化物在(vi)步驟之前先與黏著劑及/或基質物質混合 〇 23 .如申請專利範圍第2 1項之方法,其中分子篩對受 鍛燒的金屬氧化物的重量比範圍從30%至400%。 -61 - (4) (4)200303238 24.如申請專利範圍第21項之方法,其中分子篩在(vi) 之前基質物質及黏著劑進行噴霧乾燥。 2 5 .如申請專利範圍第24項之方法,其中分子篩爲矽 鋁磷酸鹽、黏著劑爲氧化鋁溶膠,及基質物質爲黏土。 2 6.如申請專利範圍第21項之方法,其中金屬氧化物 係選自氧化鑭、氧化銘、氧化銃、氧化鈽、氧化鐯、氧化 銨及其混合物。 2 7.如申請專利範圍第2 1項之方法,其中該沉澱作用 是在pH大於7時實施的。 28·如申請專利範圍第21項之方法,其中(iii)亦包括 在溫度至少80 °C熱液處理沉澱物持續高達10天。 29·如申請專利範圍第21項之方法,其中(v)是在溫度 範圍從約4 0 0 □至約9 0 0 °C內實施的。 3〇·—種在觸媒組成物存在下使進料轉化成一或多種 烯烴類之方法,該觸媒組成物包括分子篩及至少一種選自 元素週期表中第3族金屬、鑭系元素及锕系元素的氧化物 ,其中該金屬氧化物的二氧化碳的攝入値在100 °C時至少 爲0.03mg/m2金屬氧化物。 3 1 .如申請專利範圍第3 0項之方法,其中該金屬氧化 物的二氧化碳的攝入値在100°C時至少爲0.〇4mg/m2金屬氧 化物。 3 2 ·如申請專利範圍第3 0項之方法,其中該金屬氧化 物的二氧化碳的攝入値在1 0 0 °C時低於1 0 m g / m 2金屬氧化物 -62- (5) (5)200303238 3 3 .如申請專利範圍第3 2項之方法,其中該金屬氧化 物的二氧化碳的攝入値在1〇〇 °C時低於5mg/m2金屬氧化物 〇 3 4.如申請專利範圍第30項之方法,亦包括不同於該 金屬氧化物的至少一種黏著劑及基質物質。 3 5 .如申請專利範圍第3 0項之方法,其中該金屬氧化 物係選自氧化鑭、氧化釔、氧化銃、氧化鈽、氧化鐯、氧 化銨、氧化釤、氧化钍及其混合物。 3 6.如申請專利範圍第30項之方法,其中該金屬氧化 物爲氧化釔。 3 7.如申請專利範圍第3 0項之方法,亦包括黏著劑及 基質物質,其互爲不同且不同於該金屬氧化物。 3 8 .如申請專利範圍第3 7項之方法,其中黏著劑爲氧 化鋁溶膠。 39·如申請專利範圍第37項之方法,其中基質爲黏土 〇 4 〇.如申請專利範圍第3 0項之方法,其中觸媒組成物 的壽命增加指數(LEI)大於!。 4 1 .如申請專利範圍第3 0項之方法,其中分子篩由反 應混合物包括矽源、磷源及鋁源中至少兩者所合成的。 42.如申請專利範圍第3〇項之方法,其中分子篩爲矽 鋁磷酸鹽。 4 3 .如申請專利範圍第3 〇項之方法,其中進料包括甲 醇及/或二甲醚。 -63- (6) (6)200303238 44. 一種使進料在觸媒組成物存在下轉換成一或多種 烯烴之方法,該觸媒組成物係藉由如申請專利範圍第1 6項 之方法予以製備的。 45. —種使進料在觸媒組成物存在下轉換成一或多種 烯烴之方法,該觸媒組成物係藉由如申請專利範圍第2 1項 之方法予以製備的。 46· —種製備一或多種烯烴之方法,該方法包括: (a) 將含有至少一種含氧物之進料在觸媒組成物存下 導入反應器系統,該組成物包括分子篩、黏著劑、基質物 質及至少一種第3族元素及/或鑭系元素或锕系元素的氧化 物; (b) 從反應器系統排出含有一或多種燃烴之流出物物 流;及 (c) 使流出物物流通過回收系統;及 (d) 回收至少該一或多種烯烴。 47·如申請專利範圍第46項之方法,其中黏著劑爲氧 化鋁溶膠。 4 8 .如申請專利範圍第4 6項之方法,其中基質物質爲 黏土。 4 9.如申請專利範圍第46項之方法,其中分子篩爲石夕 鋁磷酸鹽分子篩及/或鋁磷酸鹽分子篩。 5〇.如申請專利範圍第46項之方法,其中金屬氧化物 爲氧化鑭或氧化釔或其混合物。 5 1 .如申請專利範圍第46項之方法,其中金屬氧化物 -64- (7) (7)200303238 的二氧化碳的攝入値在1〇〇它時至少爲〇 〇3mg/m2金屬氧化 物。 5 2 ·如申請專利範圍第4 6項之方法,其中進料包括甲 醇及/或二甲醚。 5 3 .如申請專利範圍第46項之方法,其中觸媒組成物 的LEI大於無活潑金屬氧化物的相同觸媒組成物的LEI。 5 4.如申請專利範圍第46項之方法,其中篩觸媒組成 物的LEI大於1.5。 55.—種製備一或多種烯烴之整合方法,該整合方法 包括= (d) 使烴進料通過合成氣體產生區域以產生合成氣體 物流; (e) 使合成氣體物流與觸媒接觸,形成含氧進料;及 (0使含氧進料在分子篩觸媒組成物存在下轉換成該 一或多種烯烴,該組成物包括分子篩及至少一種選自元素 週期表中第3族或鑭或锕系元素之金屬的氧化物。 5 6 ·如申請專利範圍第5 5項之整合方法,其中該方法 進一步包括(d)在聚合觸媒存在下使該~或多種燒烴聚合 成聚烯烴。 5 7·如申請專利範圍第55項之整合方法,其中含氧進 料包括甲醇,烯烴包括乙烯及丙烯。 5 8 ·如申請專利範圍第5 5項之整合方法,其中分子飾 爲矽鋁磷酸鹽分子篩。 -65- 200303238 陸、(一)、本案指定代表圖為··第_圖 (二)、本代表圖之元件代表符號簡單說明: 無(1) (1) 200303238 Patent application scope 1. A catalyst composition comprising a molecular sieve and at least one oxide selected from Group 3 metal, lanthanide and actinide of the periodic table, wherein the metal The intake of carbon dioxide by oxides is at least 0.03 mg / m2 metal oxides at 100 ° C. 2. The catalyst composition according to item 1 of the patent application scope, wherein the carbon dioxide intake of the metal oxide is at least 0.04 mg / m2 metal oxide at 100 ° C. 3. The catalyst composition according to item 1 of the patent application scope, wherein the carbon dioxide intake of the metal oxide is less than 10 mg / m2 metal oxide at 100 ° C. 4. The catalyst composition according to item 1 of the patent application scope, wherein the carbon dioxide intake of the metal oxide is less than 5 mg / m2 metal oxide at 100 ° C. 5. The catalyst composition according to item 1 of the patent application scope also includes at least one adhesive and matrix material different from the metal oxide. 6. For example, the catalyst composition of the scope of application for patent includes adhesive and matrix material, which are different from each other and different from the metal oxide. 7. For example, the catalyst composition according to item 6 of the application, wherein the adhesive is alumina sol and the matrix substance is clay. 8. The catalyst composition according to item 1 of the application, wherein the metal oxide is selected from the group consisting of lanthanum oxide, yttrium oxide, thorium oxide, thorium oxide, thorium oxide, neodymium oxide, thorium oxide, thorium oxide, and mixtures thereof. 9. The catalyst composition according to item 1 of the scope of patent application, wherein the metal -59- (2) (2) 200303238 oxide is yttrium oxide. 10. The catalyst composition according to item 1 of the scope of patent application, wherein the molecular sieve includes a framework containing at least two tetrahedral units, the unit being selected from [Si04], [Al〇4] and [p〇4] units . 11. The catalyst composition according to item 10 of the patent application scope, wherein the molecular sieve comprises silicoaluminophosphate. 12. The catalyst composition according to claim 10, wherein the molecular sieve includes a molecular structure of CHA structure type. 1 3 · The catalyst composition according to item 12 of the patent application scope, wherein the molecular sieve additionally includes molecular sieve of AEI structure type. 1 4. The catalyst composition according to the scope of the patent application, wherein the weight ratio of the molecular sieve to the metal oxide ranges from 5% to 800%. 15 • A molecular sieve catalyst composition comprising a Group 3 metal oxide and / or a lanthanide or actinide oxide, an adhesive, a matrix substance, and a silicoaluminophosphate molecular sieve. 16. A method for preparing a catalyst composition, the method comprising: first particles containing a molecular sieve; and first particles containing at least one oxide selected from Group 3 metals, lanthanides and steel elements in the periodic table. The two particles are completely mixed, wherein the carbon dioxide intake of the metal oxide is at least 0.03 mg / m2 metal oxide particles at 100 ° C. 17. The method of claim 16 in which at least one of the first and second particles also includes at least one of an adhesive and a matrix substance. 18. The method of claim 16 in which the first particle -60- (3) (3) 200303238 comprises a silicoaluminophosphate molecular sieve and / or an aluminophosphate molecular sieve. 19. The method according to item 17 of the scope of patent application, wherein the first particles include sand aluminophosphate molecular sieves, an adhesive containing oxidized sol, and a matrix material containing clay. 20 · The method according to item 16 of the patent application, wherein the metal oxide is lanthanum oxide, yttrium oxide, hafnium oxide, or a mixture thereof. 21. A method of preparing a catalyst composition, the method comprising: (i) synthesizing a molecular sieve from a reaction mixture, the mixture including at least one model agent and at least two of a silicon source, a phosphorus source, and an aluminum source; and (ii) Recovering the molecular sieve synthesized in (i); (iii) forming an oxide selected from Group 3 metals, lanthanides and actinides in the periodic table by precipitating from a solution containing the metal ion source (Iv) recovery of the hydrated precursor formed in (iii); (v) calcination of the hydrated precursor recovered in (iv) to form a calcined metal oxide, the metal oxide Intake of carbon dioxide: at least 0.003 mg / m2 metal oxide at 100 ° C; and (vi) completely mixing the molecular sieve recovered in (i) and the calcined product prepared in (v) Metal oxide. 22. The method of claim 21, wherein the molecular sieve and / or the metal oxide are mixed with the adhesive and / or the matrix material before step (vi). 23. The method of claim 21, The weight ratio of the molecular sieve to the calcined metal oxide ranges from 30% to 400%. -61-(4) (4) 200303238 24. The method according to item 21 of the patent application, wherein the molecular sieve is spray-dried before (vi) with the matrix substance and the adhesive. 25. The method of claim 24, wherein the molecular sieve is silicoaluminophosphate, the adhesive is alumina sol, and the matrix substance is clay. 26. The method of claim 21, wherein the metal oxide is selected from the group consisting of lanthanum oxide, oxide oxide, hafnium oxide, hafnium oxide, hafnium oxide, ammonium oxide, and mixtures thereof. 2 7. The method according to item 21 of the patent application range, wherein the precipitation is carried out at a pH greater than 7. 28. The method according to item 21 of the patent application, wherein (iii) also includes hydrothermally treating the precipitate at a temperature of at least 80 ° C for up to 10 days. 29. The method according to item 21 of the patent application range, wherein (v) is performed in a temperature range from about 400 ° to about 900 ° C. 30. A method for converting a feed into one or more olefins in the presence of a catalyst composition comprising a molecular sieve and at least one metal selected from Group 3 metals, lanthanides and thallium in the periodic table An oxide of a series element, in which the carbon dioxide intake of the metal oxide is at least 0.03 mg / m2 metal oxide at 100 ° C. 31. The method of claim 30, wherein the carbon dioxide intake of the metal oxide is at least 0.04 mg / m2 metal oxide at 100 ° C. 3 2 · The method according to item 30 of the scope of patent application, wherein the carbon dioxide intake of the metal oxide is less than 10 mg / m 2 at 100 ° C-62- (5) ( 5) 200303238 3 3. The method according to item 32 of the scope of patent application, wherein the carbon dioxide intake of the metal oxide is less than 5 mg / m2 metal oxide at 100 ° C. 4. If the patent is applied for The method of item 30 also includes at least one adhesive and matrix substance different from the metal oxide. 35. The method of claim 30, wherein the metal oxide is selected from the group consisting of lanthanum oxide, yttrium oxide, scandium oxide, scandium oxide, scandium oxide, ammonium oxide, scandium oxide, scandium oxide, and mixtures thereof. 36. The method of claim 30, wherein the metal oxide is yttrium oxide. 37. The method of claim 30 in the scope of patent application also includes an adhesive and a matrix substance, which are different from each other and different from the metal oxide. 38. The method according to item 37 of the scope of patent application, wherein the adhesive is an alumina sol. 39. The method according to item 37 of the scope of patent application, wherein the matrix is clay 〇 4 〇. The method according to item 30 of the scope of patent application, wherein the catalyst composition has a Lifetime Increase Index (LEI) greater than! . 41. The method of claim 30, wherein the molecular sieve is synthesized from a reaction mixture including at least two of a silicon source, a phosphorus source, and an aluminum source. 42. The method of claim 30, wherein the molecular sieve is aluminophosphate. 43. The method of claim 30, wherein the feed comprises methanol and / or dimethyl ether. -63- (6) (6) 200303238 44. A method for converting a feedstock into one or more olefins in the presence of a catalyst composition, which is applied by a method such as the 16th in the scope of patent application Prepared. 45. A method for converting a feedstock into one or more olefins in the presence of a catalyst composition, which is prepared by a method such as the item 21 of the scope of patent application. 46 · A method for preparing one or more olefins, the method comprising: (a) introducing a feed containing at least one oxygenate into a reactor system in the presence of a catalyst composition, the composition comprising a molecular sieve, an adhesive, Matrix material and at least one Group 3 element and / or lanthanide or actinide oxide; (b) discharge from the reactor system an effluent stream containing one or more hydrocarbons; and (c) allow the effluent stream Through a recovery system; and (d) recovering at least the one or more olefins. 47. The method of claim 46, wherein the adhesive is an alumina oxide sol. 48. The method according to item 46 of the patent application scope, wherein the matrix substance is clay. 49. The method according to item 46 of the patent application scope, wherein the molecular sieve is an aluminophosphate molecular sieve and / or an aluminophosphate molecular sieve. 50. The method of claim 46, wherein the metal oxide is lanthanum oxide or yttrium oxide or a mixture thereof. 51. The method according to item 46 of the scope of patent application, wherein the carbon dioxide intake of the metal oxide -64- (7) (7) 200303238 is at least 0.003 mg / m2 metal oxide at 1000 hours. 5 2 · The method according to item 46 of the patent application, wherein the feed comprises methanol and / or dimethyl ether. 53. The method of claim 46, wherein the LEI of the catalyst composition is greater than the LEI of the same catalyst composition without active metal oxides. 5 4. The method according to item 46 of the patent application scope, wherein the LEI of the sieve catalyst composition is greater than 1.5. 55. An integrated method for preparing one or more olefins, the integrated method includes: (d) passing a hydrocarbon feed through a synthesis gas generation area to generate a synthesis gas stream; (e) contacting the synthesis gas stream with a catalyst to form a Oxygen feed; and (0) convert the oxygen-containing feed to the one or more olefins in the presence of a molecular sieve catalyst composition comprising a molecular sieve and at least one selected from Group 3 or lanthanum or actinide in the periodic table of elements An oxide of an elemental metal. 5 6 · The integrated method as described in claim 55, wherein the method further includes (d) polymerizing the hydrocarbon burner or hydrocarbons to a polyolefin in the presence of a polymerization catalyst. 5 7 · If the integration method of the scope of patent application No. 55, the oxygen-containing feed includes methanol, olefins include ethylene and propylene. 5 8 · If the integration method of the scope of patent application No. 55, where the molecule is decorated with aluminophosphate molecular sieve -65- 200303238 Lu, (1), the designated representative figure in this case is ... Figure _ (2), the component representative symbols of this representative figure are simply explained: None 柒、本案若有化學式時,請揭示最能顯示發明特徵的化學 式: 無柒 If there is a chemical formula in this case, please disclose the chemical formula that can best show the characteristics of the invention: None -4--4-
TW092103144A 2002-02-28 2003-02-14 Molecular sieve compositions,catalysts thereof, their making and use in conversion processes. TWI306780B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US36096302P 2002-02-28 2002-02-28
US36601202P 2002-03-20 2002-03-20
US37469702P 2002-04-22 2002-04-22
US10/215,511 US6906232B2 (en) 2002-08-09 2002-08-09 Molecular sieve compositions, catalysts thereof, their making and use in conversion processes

Publications (2)

Publication Number Publication Date
TW200303238A true TW200303238A (en) 2003-09-01
TWI306780B TWI306780B (en) 2009-03-01

Family

ID=27792286

Family Applications (3)

Application Number Title Priority Date Filing Date
TW092103154A TWI265825B (en) 2002-02-28 2003-02-14 Molecular sieve compositions, catalyst thereof, their making and use in conversion processes
TW092103148A TWI265824B (en) 2002-02-28 2003-02-14 Molecular sieve compositions, catalyst thereof, their making and use in conversion processes
TW092103144A TWI306780B (en) 2002-02-28 2003-02-14 Molecular sieve compositions,catalysts thereof, their making and use in conversion processes.

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW092103154A TWI265825B (en) 2002-02-28 2003-02-14 Molecular sieve compositions, catalyst thereof, their making and use in conversion processes
TW092103148A TWI265824B (en) 2002-02-28 2003-02-14 Molecular sieve compositions, catalyst thereof, their making and use in conversion processes

Country Status (11)

Country Link
EP (3) EP1478464A2 (en)
JP (3) JP2005518930A (en)
KR (3) KR20040089680A (en)
CN (3) CN1298427C (en)
AU (3) AU2003225560B2 (en)
BR (1) BR0308011A (en)
CA (2) CA2477432A1 (en)
EA (3) EA007873B1 (en)
MY (2) MY139847A (en)
TW (3) TWI265825B (en)
WO (3) WO2003074175A2 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005518930A (en) * 2002-02-28 2005-06-30 エクソンモービル・ケミカル・パテンツ・インク Molecular sieve compositions, their catalysts, their production and use in conversion processes
US7074739B2 (en) 2002-11-19 2006-07-11 Exxonmobil Chemical Patents Inc. Multi-component molecular sieve catalyst compositions and their use in aromatics reactions
US6951830B2 (en) 2003-08-05 2005-10-04 Exxonmobil Chemical Patents Inc. Molecular sieve catalyst compositions, their production and use in conversion processes
US7404891B2 (en) 2004-03-29 2008-07-29 Exxonmobil Chemical Patents Inc. Heat recovery technique for catalyst regenerator flue gas
US7166757B2 (en) * 2004-07-30 2007-01-23 Exxonmobil Chemical Patents Inc. Conversion of oxygenates to olefins
WO2007021394A2 (en) * 2005-08-18 2007-02-22 Exxonmobil Chemical Patents Inc. Catalytic conversion of oxygenates to olefins
CN101003018A (en) * 2006-01-20 2007-07-25 中国石油天然气股份有限公司 Heterogenous catalysis solid alkali catalyst, and its preparing method and use
US7335621B2 (en) 2006-04-19 2008-02-26 Exxonmobil Chemical Patents Inc. Catalyst compositions and preparation thereof
JP4710744B2 (en) 2006-07-18 2011-06-29 トヨタ自動車株式会社 Method for producing composite metal oxide
US7595275B2 (en) 2006-08-15 2009-09-29 Exxonmobil Chemical Patents Inc. Catalyst compositions and their synthesis
CN101239866B (en) * 2007-02-07 2010-12-01 中国石油化工股份有限公司 Method for producing ethylene and propylene from oxygen-containing compounds
CN101239878B (en) * 2007-02-07 2010-05-19 中国石油化工股份有限公司 Method for increasing yield of ethylene and propylene from olefin with four carbon or above
CA2578494A1 (en) * 2007-02-14 2008-08-14 Nova Chemicals Corporation Catalytic cracking of ethers to 1-olefins
EP2022565A1 (en) * 2007-07-06 2009-02-11 Casale Chemicals S.A. Process for preparing silicoaluminoposphate (SAPO) molecular sieves, catalysts containing said sieves and catalytic dehydration processes using said catalysts
KR101548755B1 (en) * 2007-08-13 2015-08-31 사우디 베이식 인더스트리즈 코포레이션 Process for converting aliphatic oxygenates to aromatics
DE102007059129A1 (en) * 2007-12-07 2009-06-10 Süd-Chemie AG Catalyst with increased olefin selectivity for the conversion of oxygenates to olefins
WO2009123556A1 (en) * 2008-04-04 2009-10-08 Petr Vasiliev Zeolite catalyst zeolite secondary structure
JP5818133B2 (en) * 2011-05-20 2015-11-18 国立大学法人東京工業大学 Olefin production catalyst and olefin production method
CN102344328B (en) * 2011-07-25 2014-03-12 浙江大学 Semi-continuous method for converting methyl alcohol into propylene by using moving bed technology
CN104718025B (en) 2012-10-15 2017-05-10 三菱瓦斯化学株式会社 Method for producing catalyst for use in production of methylamine compound, and method for producing methylamine compound
KR101803051B1 (en) * 2013-05-07 2017-11-29 신도스 에스.에이. Process for the production of 1,3-butadiene
CN107661774B (en) * 2016-07-27 2020-11-03 中国科学院大连化学物理研究所 Catalyst and method for preparing low-carbon olefin by directly converting synthesis gas
CN107661773B (en) * 2016-07-29 2020-08-04 中国科学院大连化学物理研究所 Method for preparing liquid fuel and co-producing low-carbon olefin by directly converting catalyst and synthesis gas
CN108568311B (en) * 2017-03-07 2021-03-23 中国科学院大连化学物理研究所 Catalyst and method for preparing ethylene by directly converting synthesis gas
RU2747308C1 (en) * 2017-04-27 2021-05-04 Далянь Инститьют Оф Кемикал Физикс, Чайниз Академи Оф Сайенсиз In-situ method for obtaining catalyst for obtaining at least one of toluene, para-xylol and lower olefins as well as reaction process
CN109939722B (en) * 2018-01-26 2021-05-25 中国科学院大连化学物理研究所 Organic base modified composite catalyst and method for preparing ethylene by hydrogenation of carbon monoxide
CN109939667B (en) * 2018-01-26 2021-01-05 中国科学院大连化学物理研究所 Catalyst and method for preparing low-carbon olefin by directly converting synthesis gas
WO2020091969A1 (en) * 2018-10-30 2020-05-07 Exxonmobil Chemical Patents Inc. Group 1 metal ion content of microporous molecular sieve catalysts
CN111346664B (en) * 2018-12-24 2022-11-15 中国石油化工股份有限公司 Modified vanadium-silicon molecular sieve, preparation method thereof and thioether oxidation method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4465889A (en) * 1982-07-02 1984-08-14 Summit Gas Systems Pte. Ltd. Catalytic conversion of methanol, dimethyl ether and mixtures thereof to a hydrocarbon product rich in iso-C4 compounds and new catalysts therefor
US4781816A (en) 1987-10-19 1988-11-01 Phillips Petroleum Company Cracking process
US6040264A (en) * 1996-04-04 2000-03-21 Exxon Chemical Patents Inc. Use of alkaline earth metal containing small pore non-zeolitic molecular sieve catalysts in oxygenate conversion
TW412510B (en) * 1996-12-31 2000-11-21 Exxon Chemical Patents Inc Oxygenate conversions using small pore non-zeolitic molecular sieve catalysts
US6423879B1 (en) * 1997-10-02 2002-07-23 Exxonmobil Oil Corporation Selective para-xylene production by toluene methylation
JP4221532B2 (en) * 1998-06-26 2009-02-12 三菱瓦斯化学株式会社 Methylamine production catalyst and method for producing methylamines using the catalyst
US6388156B1 (en) * 1999-05-14 2002-05-14 Exxonmobil Chemical Patents Inc. Direct selective synthesis of para-xylene by reacting an aromatic compound with a methylating agent formed from CO, Co2 and H2
WO2001064340A1 (en) * 2000-03-01 2001-09-07 Exxonmobil Chemical Patents Inc. Thorium-containing sapo molecular sieve for producing olefins
US6448197B1 (en) * 2000-07-13 2002-09-10 Exxonmobil Chemical Patents Inc. Method for making a metal containing small pore molecular sieve catalyst
WO2002005952A2 (en) * 2000-07-13 2002-01-24 Uop Llc Attrition resistant catalyst for light olefin production
CA2369318A1 (en) * 2002-01-28 2003-07-28 Universite Concordia Hybrid catalysts for the deep catalytic cracking of petroleum naphthas and other hydrocarbon feedstocks for the selective production of light olefins
JP2005518930A (en) * 2002-02-28 2005-06-30 エクソンモービル・ケミカル・パテンツ・インク Molecular sieve compositions, their catalysts, their production and use in conversion processes

Also Published As

Publication number Publication date
EP1478462A2 (en) 2004-11-24
EA200401102A1 (en) 2005-04-28
CN1646221A (en) 2005-07-27
TW200306890A (en) 2003-12-01
KR20040091080A (en) 2004-10-27
CN1298427C (en) 2007-02-07
AU2003212993A1 (en) 2003-09-16
KR20040089679A (en) 2004-10-21
MY140018A (en) 2009-11-30
WO2003074176A2 (en) 2003-09-12
CN1642648A (en) 2005-07-20
WO2003074175A3 (en) 2003-12-04
WO2003074176A3 (en) 2003-12-18
EA007873B1 (en) 2007-02-27
CN1327964C (en) 2007-07-25
CN1638865A (en) 2005-07-13
AU2003225560B2 (en) 2008-05-08
CA2477428A1 (en) 2003-09-12
BR0308011A (en) 2005-01-04
AU2003216248B2 (en) 2008-12-11
AU2003225560A1 (en) 2003-09-16
CA2477428C (en) 2011-03-22
EA007872B1 (en) 2007-02-27
AU2003212993A8 (en) 2003-09-16
WO2003074175A2 (en) 2003-09-12
EP1478461A2 (en) 2004-11-24
CN100335172C (en) 2007-09-05
MY139847A (en) 2009-11-30
AU2003216248A1 (en) 2003-09-16
WO2003074177A3 (en) 2003-12-31
TWI265824B (en) 2006-11-11
KR20040089680A (en) 2004-10-21
CA2477432A1 (en) 2003-09-12
JP2005518930A (en) 2005-06-30
TWI265825B (en) 2006-11-11
EP1478464A2 (en) 2004-11-24
TWI306780B (en) 2009-03-01
JP2005518929A (en) 2005-06-30
WO2003074177A2 (en) 2003-09-12
EA200401061A1 (en) 2005-04-28
EA200401101A1 (en) 2005-04-28
TW200303237A (en) 2003-09-01
JP2005518928A (en) 2005-06-30
EA007871B1 (en) 2007-02-27

Similar Documents

Publication Publication Date Title
TWI265824B (en) Molecular sieve compositions, catalyst thereof, their making and use in conversion processes
US7411106B2 (en) Molecular sieve compositions, catalyst thereof, their making and use in conversion processes
US6995111B2 (en) Molecular sieve compositions, catalysts thereof, their making and use in conversion processes
US7319178B2 (en) Molecular sieve compositions, catalysts thereof, their making and use in conversion processes
US6844291B2 (en) Molecular sieve compositions, catalyst thereof, their making and use in conversion processes
US7160831B2 (en) Molecular sieve catalyst composition, its making and use in conversion processes
KR100991621B1 (en) Process for preparing olefins from oxygenates
US7511184B2 (en) Molecular sieve catalyst composition, its making and use in conversion processes
US7378563B2 (en) Molecular sieve compositions, catalysts thereof, their making and use in conversion processes
US7238845B2 (en) Molecular sieve catalyst compositions, their production and use in conversion processes
AU2002350150B2 (en) Molecular sieve catalyst composition, its making and use in conversion processes
US20060173228A1 (en) Molecular sieve catalyst composition, its making and use in conversion processes
US7307196B2 (en) Molecular sieve compositions, catalyst thereof, their making and use in conversion processes
US7199277B2 (en) Pretreating a catalyst containing molecular sieve and active metal oxide
CA2451280A1 (en) Molecular sieve catalyst composition, its making and use in conversion processes

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees