TW200303237A - Molecular sieve compositions, catalyst thereof, their making and use in conversion processes - Google Patents

Molecular sieve compositions, catalyst thereof, their making and use in conversion processes Download PDF

Info

Publication number
TW200303237A
TW200303237A TW092103148A TW92103148A TW200303237A TW 200303237 A TW200303237 A TW 200303237A TW 092103148 A TW092103148 A TW 092103148A TW 92103148 A TW92103148 A TW 92103148A TW 200303237 A TW200303237 A TW 200303237A
Authority
TW
Taiwan
Prior art keywords
metal oxide
catalyst composition
item
molecular sieve
patent application
Prior art date
Application number
TW092103148A
Other languages
Chinese (zh)
Other versions
TWI265824B (en
Inventor
Doron Levin
James C Vartuli
Original Assignee
Exxonmobil Chem Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/215,511 external-priority patent/US6906232B2/en
Application filed by Exxonmobil Chem Patents Inc filed Critical Exxonmobil Chem Patents Inc
Publication of TW200303237A publication Critical patent/TW200303237A/en
Application granted granted Critical
Publication of TWI265824B publication Critical patent/TWI265824B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • C10G50/02Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation of hydrocarbon oils for lubricating purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/095Catalytic reforming characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • C10G45/54Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • C10G49/08Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/10Magnesium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/83Aluminophosphates (APO compounds)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/84Aluminophosphates containing other elements, e.g. metals, boron
    • C07C2529/85Silicoaluminophosphates (SAPO compounds)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

The invention relates to a catalyst composition, a method of making the same and its use in the conversion of a feedstock, preferably an oxygenated feedstock, into one or more olefin(s), preferably ethylene and/or propylene The catalyst composition comprises a molecular sieve and at least one oxide of a metal from Group 4, optionally in combination with at least one metal from Groups 2 and 3, of the Periodic Table of Elements.

Description

200303237 (1) 玖、發明說明 相關申請案的對照 本案依據35 USC 120主張美國臨時申請案序號 6 0/3 6 0,96 3 (2002年2月28日申請)及美國臨時申請案序 號60/3 66,012(2002年3月20日申請)之優先權,及與同 時申請之美國申請案序號60/374,697(Attorney Docket 2002B05 7)及美國申請案序號 i〇/2i5,511(Attorney Docket 2〇02B 106)有關,該等申請案的整個內容倂入本文作爲參 考0 【發明所屬之技術領域】 本發明係關於分子篩組成物及含有彼之觸媒,此組成 物及觸媒的合成,及此組成物及觸媒應用在製備烯烴之轉 換方法的用途。 【先前技術】 細烴係藉由觸媒或黑氣裂解方法由石油進料以傳統方 式予以製備。這些裂解方法,特別是蒸氣裂解,從各種烴 進料產生輕烯烴’例如乙烯及/或丙烯。乙烯及丙燃是用 於製備塑膠及其他化學化合物的各種方法的重要石油化學 商品。 含氧物,特別是醇類,轉換成輕烯烴在石油化學工業 上有名一段時間。有許多技術應用於製備含氧物,該含氧 物包括發酵或合成氣體的反應,該合成氣體源自天然氣、 -6 - (2) 00303237 石油液體或含煤的碳物質、回收的塑膠、地方廢料或任何 其他有機物質。通常,合成氣體的製備包括天然氣(大多 爲甲烷)與氧來源的燃燒反應成氫、一氧化碳及/或二氧化 碳。其他已知的合成氣體的製備方法包括慣用的蒸氣重整 、自熱重整或其組合。 甲醇,供製備輕燃烴的較佳醇類,典型地在甲醇反應 器中及在多相觸媒存在下,氫、一氧化碳及/或二氧化碳 的催化反應予以製備。例如,在一合成方法中,甲醇係在 水冷管狀甲醇反應器中,使用銅/鋅氧化物觸媒予以製備 的。轉換含有甲醇之進料成一或多種烯烴(主要爲乙烯及/ 或丙烯)之較佳方法包含,使進料與分子篩觸媒組成物接 觸。 分子篩爲具有不同大小孔洞的多孔固體,例如沸石或 沸石型分子篩、碳及氧化物。石油及石油化學工業上最常 用的分子篩是沸石,例如矽酸鋁鹽分子篩。沸石通常具有 1 -、2 -或3維結晶孔洞結構,該結構具有均句大小孔洞的 分子尺寸,其選擇性吸附可進入孔洞的分子,及排除太大 的分子。 已知多種類型的分子篩用於轉換進料,特別是包括含 氧物的進料,成一或多種烯烴。例如,u S 5,3 6 7,1 0 0描述 使用沸石(ZSM-5)將甲醇轉換成烯烴;US 4,0 6 2,90 5討論 使用結晶的矽酸鋁鹽沸石,例如沸石T、Z K 5、毛沸石 卜1*!〇1^6)及薆沸石(〇1^6&2^),將甲醇或其他含氧物轉換 成乙烯及丙烯;US 4,0 7 9,09 5描述使用ZSM-34將甲醇轉 (3) (3)200303237 換成烴產物’例如乙烯及丙烯;及u S 4,3 1 ο,4 4 0描述使 用結晶鱗酸銘鹽’通常標不爲A1P 0 4,由醇類製備輕燒烴 〇 供甲醇轉換成烯烴的一些最有用的分子篩爲矽鋁磷酸 鹽分子飾。燃銘磷酸鹽(SAPO)分子筛包括分享四面體單 元的[Si〇4]、[ Al〇4]及[P〇4]角的3維微孔結晶骨架結構。 SAPO合成被描述在US 4,440,871,其完全倂入本文作爲 參考。SAPO分子篩通常藉由矽-、鋁_、及磷來源,及至 少一種樣板劑的反應混合物的熱水結晶作用予以合成。 S AP 0分子篩的合成、其調配成S ΑΡ Ο觸媒及其用於轉換 烴進料惟烯烴之用途,特別是進料是甲醇,揭示於U S 4,49 9,3 2 7、4,677,242、4,677,243、4,8 73,3 90、5,0 9 5,163 、5,7 1 4,6 6 2及6, 1 6 6,2 8 2,其皆完全倂入本文作爲參考。 典型地,分子篩被調配成分子篩觸媒組成物以改善其 在工業轉換方法上的耐久性。這些分子篩觸媒組成物係藉 由通常在黏著劑存在下混合分子篩及基質物質。黏著劑的 目的是使基質物質(通常爲黏土)與分子篩黏結。 雖然使用黏著劑及基質物質形成供含氧物轉換成烯烴 之分子篩觸媒組成物是已知的,這些黏著劑及基質物質典 型僅適宜提供欲得之物理特性至觸媒組成物。因此’具有 較佳轉換率、改善烴選擇性及較長的壽命的經改善的分子 鋪觸媒組成物是欲得的。 U S 4,4 6 5,8 8 9描述觸媒組成物,其包括充滿了钍、锆 或鈦金屬氧化物矽酸鹽分子篩,其係用於使甲醇、二甲醚 -8- (4) (4)200303237 或其混合物轉換成富含異C4化合物之烴產物。 US 6,1 8 0,8 2 8討論使用經改良的分子篩從甲醇及氨製 備甲胺,例如矽鋁磷酸鹽分子篩混合一或多種改良劑,例 如氧化鉻、氧化鈦、氧化釔、蒙脫土或高嶺土。 US 5,41 7,949係關於使用分子篩及金屬氧化物黏著劑 轉換存在於在含氧流出物之有毒氮氧化物爲氮及水之方法 ,較佳的黏著劑爲二氧化鈦,及分子篩爲矽酸鋁鹽。 EP-A-3 1 298 1揭示使用在含矽石載體物質上之觸媒組 成物裂解含釩之煙進料流之方法,該組成物包括嵌進無機 耐火基質物質中的沸石及至少一種鈹、鎂、鈣、緦、鋇或 鑭之氧化物。200303237 (1) (ii) Comparison of related applications of invention description This case claims 35 USC 120 for US provisional application serial number 6 0/3 6 0,96 3 (filed on February 28, 2002) and US provisional application serial number 60 / 3 66,012 (filed on March 20, 2002) priority, and US application serial number 60 / 374,697 (Attorney Docket 2002B05 7) and US application serial number i〇 / 2i 5,511 (Attorney Docket 2〇02B) 106) Related, the entire contents of these applications are incorporated herein by reference. [Technical field to which the invention belongs] The present invention relates to a molecular sieve composition and a catalyst containing the same, the composition of the composition and the catalyst, and the composition Use of catalysts and catalysts in conversion processes for the preparation of olefins. [Prior art] Fine hydrocarbons are prepared by conventional methods from petroleum feedstocks by catalyst or black gas cracking methods. These cracking methods, especially steam cracking, produce light olefins' such as ethylene and / or propylene from various hydrocarbon feeds. Ethylene and propane are important petrochemical commodities for various methods used to make plastics and other chemical compounds. The conversion of oxygenates, especially alcohols, to light olefins has been well known in the petrochemical industry for some time. There are many techniques used to prepare oxygenates, which include reactions of fermentation or synthesis gas derived from natural gas, -6-(2) 00303237 petroleum liquid or coal-containing carbon materials, recycled plastics, local Waste or any other organic substance. Generally, synthesis gas production involves the combustion reaction of natural gas (mostly methane) with an oxygen source to form hydrogen, carbon monoxide, and / or carbon dioxide. Other known synthesis gas preparation methods include conventional steam reforming, autothermal reforming, or a combination thereof. Methanol, the preferred alcohol for the production of lightly combusted hydrocarbons, is typically prepared in a methanol reactor and in the presence of a heterogeneous catalyst by a catalytic reaction of hydrogen, carbon monoxide and / or carbon dioxide. For example, in a synthetic method, methanol is prepared in a water-cooled tubular methanol reactor using a copper / zinc oxide catalyst. A preferred method of converting a methanol-containing feed to one or more olefins (mainly ethylene and / or propylene) comprises contacting the feed with a molecular sieve catalyst composition. Molecular sieves are porous solids with pores of different sizes, such as zeolites or zeolite-type molecular sieves, carbon and oxides. The most commonly used molecular sieves in the petroleum and petrochemical industries are zeolites, such as aluminum silicate molecular sieves. Zeolites usually have a 1-, 2-, or 3-dimensional crystalline pore structure with a molecular size of pores of uniform sentence size, which selectively adsorb molecules that can enter the pores, and exclude molecules that are too large. Various types of molecular sieves are known for converting feeds, particularly feeds including oxygenates, to one or more olefins. For example, u S 5,3 6,7,0 0 describes the use of zeolite (ZSM-5) to convert methanol to olefins; US 4,0 6,2,90 5 discusses the use of crystalline aluminosilicate zeolites, such as zeolite T, ZK 5, erionite (1 *! 〇1 ^ 6) and samarium zeolite (〇1 ^ 6 & 2 ^) to convert methanol or other oxygenates to ethylene and propylene; US 4,0 7 9,09 5 description ZSM-34 was used to convert methanol to (3) (3) 200303237 for hydrocarbon products 'such as ethylene and propylene; and u S 4,3 1 ο, 4 4 0 describes the use of crystalline phosphonic acid salt' is usually not labeled as A1P 0 4. Preparation of lightly burned hydrocarbons from alcohols. Some of the most useful molecular sieves for conversion of methanol to olefins are silicoaluminophosphate molecular trims. The flaming phosphate (SAPO) molecular sieve includes a three-dimensional microporous crystalline skeleton structure that shares [Si〇4], [Al〇4], and [P〇4] corners of a tetrahedral unit. SAPO synthesis is described in US 4,440,871, which is fully incorporated herein by reference. SAPO molecular sieves are usually synthesized by hot-water crystallization of a reaction mixture of silicon-, aluminum-, and phosphorus sources, and at least one template agent. Synthesis of S AP 0 molecular sieves, its deployment as S ΑΡ Ο catalyst, and its use to convert hydrocarbon feedstocks to olefins, especially the feedstock is methanol, disclosed in US 4,49 9,3 2 7, 4,677,242, 4,677,243 , 4,8 73,3 90, 5,0 9 5,163, 5,7 1 4,6 6 2 and 6, 1 6 6,2 8 2, all of which are fully incorporated herein by reference. Molecular sieves are typically formulated with molecular sieve catalyst compositions to improve their durability in industrial conversion methods. These molecular sieve catalyst compositions are obtained by mixing a molecular sieve and a matrix substance usually in the presence of an adhesive. The purpose of the adhesive is to bind the matrix material (usually clay) with the molecular sieve. Although it is known to use adhesives and matrix materials to form molecular sieve catalyst compositions for conversion of oxygenates to olefins, these adhesives and matrix materials are typically only suitable to provide the desired physical properties to the catalyst composition. Therefore, an improved molecular coating catalyst composition having a better conversion rate, improved hydrocarbon selectivity, and longer lifetime is desired. US 4,4 6 5,8 8 9 describes a catalyst composition comprising a molecular sieve filled with hafnium, zirconium or titanium metal oxide silicate, which is used to make methanol, dimethyl ether-8- (4) ( 4) 200303237 or a mixture thereof is converted into a hydrocarbon product rich in iso-C4 compounds. US 6,18 0,8 2 8 discusses the use of modified molecular sieves to prepare methylamine from methanol and ammonia, such as silicoaluminophosphate molecular sieves mixed with one or more modifiers such as chromium oxide, titanium oxide, yttrium oxide, montmorillonite Or kaolin. US 5,41 7,949 is a method for converting toxic nitrogen oxides present in oxygen-containing effluent to nitrogen and water using molecular sieves and metal oxide adhesives. The preferred adhesive is titanium dioxide and the molecular sieve is aluminum silicate. . EP-A-3 1 298 1 discloses a method for cracking a vanadium-containing smoke feed stream using a catalyst composition on a silica-containing carrier material, the composition comprising a zeolite and at least one beryllium embedded in an inorganic refractory matrix material , Magnesium, calcium, scandium, barium or lanthanum oxides.

Kang 及 Inui, Effects of decrease in number of acid sites located on the external surface of Ni-SAPO-34 crystalline catalyst by the mechanochemical method, Catalyst Letters 53,pages 171-176 (1998)揭示在經由 Ni-SAPO-34使甲醇轉換成乙烯中,形狀選擇性可被增加 ,及焦炭的形成被減緩,該Ni-SAPO-34係藉由以在微球 形無孔矽石上之MgO、CaO、BaO或Cs20硏磨觸媒,以 B a 0爲最佳。 W 0 9 8 /2 9 3 7 0揭示經由小孔非沸石型分子篩使含氧物 轉換成烯烴,該分子篩包括選自鑭系元素、锕系元素、銃 、釔、第4族金屬、第5族金屬或其混合物之金屬。 【發明內容】 -9 - (5) 200303237 槪述 在一觀點,本發明在於含有分子篩及至少一種選自元 素週期表之第4族金屬的氧化物之觸媒組成物,其中該金 屬氧化物的二氧化碳的攝入値在 loo r時至少爲 0.0 3mg/m2金屬氧化物,及典型至少爲〇 〇35mg/m2金屬氧 化物。 觸媒組成物亦包括不同於該金屬氧化物的至少一種黏 著劑及基質物質。 · 觸媒組成物亦包括選自元素週期表的第2及3族金屬 的氧化物。在一實施例中,第4族金屬氧化物包括氧化鉻 ,及第2族及/或第3族金屬氧化物包括一或多種選自氧 化耗、氧化鋇、氧化鑭、氧化紀及氧化銃的氧化物。 分子篩合宜地包括一含有至少兩個四面體單位之架構 ,例如矽鋁磷酸鹽,該單元選自[Si04]、[Al〇4]及[P04]單 位。 在另一觀點中,本發明在於分子篩組成物,其包括活 胃 潑的第4族金屬氧化物及第2族及/或第3族金屬氧化物 、黏著劑、基質物質及矽鋁磷酸鹽分子篩。 在另一觀點中,本發明在於製備觸媒組成物之方法, 該方法包括使含有分子篩的第一粒子與含有第4族金屬氧 化物的第二粒子完全混合,該第4族金屬氧化物的二氧化 碳的攝入値在100°C時至少爲0.03mg/m2金屬氧化物粒子 〇 在一實施例中,分子篩、黏著劑及基質物質被製備成 -10- (6) 200303237 一經配製的分子篩組成物,該組成物之後隨意地在第2族 及/或第3族金屬氧化物存在下,與活潑第4族金屬氧化 物,例如活潑的鉻金屬氧化物及/或活潑的給金屬氧化物 ,接觸、混合、組合、噴霧乾燥。 在另一觀點中,本發明在於製備觸媒組成物之方法, 該方法包括: (i)由反應混合物合成分子篩,該混合物包括至少一 種樣板劑及矽來源、磷來源及鋁來源中至少兩者;及 · (i i )回收(i )中所合成的分子筛; (iii) 藉由從一含有第4族金屬離子來源的溶液中沉 澱,以形成第4族金屬氧化物的水合前驅物; (iv) 回收(iii)中所形成的水合前驅物; (v) 鍛燒(iv)中所回收的水合前驅物,以形成受鍛燒 的第4族金屬氧化物,該金屬氧化物的二氧化碳的攝入値 在100°C時至少爲〇.〇3mg/m2金屬氧化物;及 (vi) 完全混合(〇中所回收的分子篩及(v)中所製備的 ® 受鍛燒的金屬氧化物。 在另一觀點中,本發明係關於製備烯烴之方法,其係 藉由在任何上述分子篩組成/或分子篩或經配製的分子篩 觸媒組成物存在下,轉換進料,例如含氧物,合宜爲醇類 ,例如甲醇。 在另一觀點中,本發明係關於使進料在分子篩觸媒組 成物存在下轉換成一或多種烯烴之方法,該組成物包括分 子篩、黏著劑、基質物質及不同於黏著劑及基質物質的金 -11 - (7) 200303237 屬氧化物的混合物。 在一實施例中,觸媒組成物的壽命增加指數(L EI)大 於1 ’例如大於1 . 5。LEI在此定義爲觸媒組成物的壽命對 無活潑金屬氧化物之相同觸媒組成物的壽命比値。 【實施方式】Kang and Inui, Effects of decrease in number of acid sites located on the external surface of Ni-SAPO-34 crystalline catalyst by the mechanochemical method, Catalyst Letters 53, pages 171-176 (1998) revealed that the use of Ni-SAPO-34 In the conversion of methanol to ethylene, the shape selectivity can be increased, and the formation of coke can be slowed. The Ni-SAPO-34 is made by honing the catalyst with MgO, CaO, BaO, or Cs20 on microsphere nonporous silica. B a 0 is the best. W 0 9 8/2 9 3 7 0 reveals the conversion of oxygenates to olefins through a small pore non-zeolitic molecular sieve, the molecular sieve comprising a member selected from the group consisting of lanthanides, actinides, samarium, yttrium, a Group 4 metal, a Group 5 Group metals or mixtures thereof. [Summary of the Invention] -9-(5) 200303237 It is stated that the present invention resides in a catalyst composition containing a molecular sieve and at least one oxide selected from the Group 4 metal of the periodic table, wherein the metal oxide The intake of carbon dioxide is at least 0.0 3 mg / m2 metal oxide at loo r, and typically at least 035 mg / m2 metal oxide. The catalyst composition also includes at least one adhesive and matrix material different from the metal oxide. • The catalyst composition also includes oxides of metals selected from Groups 2 and 3 of the periodic table. In an embodiment, the Group 4 metal oxide includes chromium oxide, and the Group 2 and / or Group 3 metal oxides include one or more selected from the group consisting of oxidation loss, barium oxide, lanthanum oxide, oxidized oxide, and hafnium oxide. Oxide. Molecular sieves desirably include a framework containing at least two tetrahedral units, such as silicoaluminophosphates, the unit being selected from [Si04], [AlO4], and [P04] units. In another aspect, the present invention resides in a molecular sieve composition comprising a lively and swollen Group 4 metal oxide and a Group 2 and / or Group 3 metal oxide, an adhesive, a matrix substance, and a silicoaluminophosphate molecular sieve . In another aspect, the present invention resides in a method for preparing a catalyst composition, the method comprising completely mixing a first particle containing a molecular sieve and a second particle containing a Group 4 metal oxide. Carbon dioxide intake: at least 0.03mg / m2 metal oxide particles at 100 ° C. In one embodiment, molecular sieves, adhesives and matrix substances are prepared as -10- (6) 200303237 once formulated molecular sieve composition The composition is then optionally contacted with a live Group 4 metal oxide, such as a live chromium metal oxide and / or a live donor metal oxide, in the presence of a Group 2 and / or Group 3 metal oxide. , Mixing, combining, spray drying. In another aspect, the invention resides in a method for preparing a catalyst composition, the method comprising: (i) synthesizing a molecular sieve from a reaction mixture, the mixture including at least one template agent and at least two of a silicon source, a phosphorus source, and an aluminum source ; And (ii) recovering the molecular sieve synthesized in (i); (iii) forming a group 4 metal oxide hydrated precursor by precipitating from a solution containing a source of a group 4 metal ion; (iv) ) Recovering the hydrated precursor formed in (iii); (v) calcining the hydrated precursor recovered in (iv) to form a Group 4 metal oxide which is subjected to calcination; Charge at least 0.03 mg / m2 metal oxide at 100 ° C; and (vi) completely mix (the molecular sieve recovered in 0 and the calcined metal oxide prepared in (v). In In another aspect, the present invention relates to a method for preparing an olefin, which is carried out by converting a feed, such as an oxygenate, suitably an alcohol, in the presence of any of the above molecular sieve compositions, or molecular sieves, or a formulated molecular sieve catalyst composition Class, such as methanol. In a viewpoint, the present invention relates to a method for converting a feedstock into one or more olefins in the presence of a molecular sieve catalyst composition, which composition includes a molecular sieve, an adhesive, a matrix material, and gold-11-which is different from the adhesive and the matrix material. (7) 200303237 is a mixture of oxides. In one embodiment, the lifetime increase index (L EI) of the catalyst composition is greater than 1 ', such as greater than 1.5. LEI is defined herein as The life ratio of the same catalyst composition of active metal oxides is 値.

實施例的詳細敘述 介紹Detailed description of the examples

本發明係關於分子篩觸媒組成物及其用於轉換烴進料 ,特別是氧化的進料,成烯烴之用途。已發現,混合分子 篩與一或多種活潑金屬氧化物得到具有增加烯烴產率及/ 或較長壽命之觸媒組成物,當用於轉換進料,例如含氧物 ,更特別的是甲醇,成烯烴時。此外,得到的觸媒組成物 傾向於對丙烯較具選擇性,及傾向於產生較少量的不欲的 乙烷及丙烷及其他不欲之化合物,例如醛類及酮類’特別 是乙酸。The present invention relates to a molecular sieve catalyst composition and its use for converting hydrocarbon feeds, especially oxidized feeds, to olefins. It has been found that mixing molecular sieves with one or more active metal oxides results in a catalyst composition having increased olefin yield and / or longer lifespan when used to switch feeds, such as oxygenates, and more specifically methanol, to Olefin. In addition, the resulting catalyst composition tends to be more selective for propylene, and tends to produce smaller amounts of unwanted ethane and propane and other unwanted compounds such as aldehydes and ketones', especially acetic acid.

較佳的活潑金屬氧化物爲該等具有來自元素週期表之 第4族金屬(例如鉻及給)之化合物’使用描述於CRC Handbook of Chemistry and Physics, 78th Edition, CRCPreferred active metal oxides are those compounds having a Group 4 metal from the Periodic Table of the Elements (e.g., Cr and G), as described in the CRC Handbook of Chemistry and Physics, 78th Edition, CRC

Press, Boca Raton,Florida ( 1 997)的 IUPAC 形式。有些情 形,發現當觸媒組成物亦包括至少一種選自元素週期表之 第2族及/或第3族金屬之氧化物時,得到改善的結果。 分子篩 -12- (8) 200303237 分子筛已經由 Structure Commission of the International Zeolite Association 依據 IUPAC Commission on Zeolite Nomenclature予以分類。依據此分類,架構型 沸石及沸石型分子篩,其結構已被確認,被分配到3個字 母及被描述在 Atlas of Zeolite Framework Types,5th edition,Elsevier,London,England (2001),其倂入本文作 爲參考。Press, Boca Raton, Florida (1 997) IUPAC format. In some cases, it has been found that improved results are obtained when the catalyst composition also includes an oxide of at least one metal selected from Group 2 and / or Group 3 of the periodic table. Molecular sieves -12- (8) 200303237 Molecular sieves have been classified by the Structure Commission of the International Zeolite Association based on the IUPAC Commission on Zeolite Nomenclature. Based on this classification, structural zeolites and zeolite molecular sieves whose structures have been identified, are assigned to three letters and are described in Atlas of Zeolite Framework Types, 5th edition, Elsevier, London, England (2001), which is incorporated herein. Reference.

結晶分子篩皆具有共享角[T04]四面體的3維、4相 連的骨架結構,其中Τ爲任何四面體配爲的陽離子。分子 篩典型地以定義孔洞的環大小予以描述,其中大小是以環 中Τ原子的數目計算。其他架構型特色包括形成籠的環的 排列,及,當存在時,通道的大小,及籠間的空間。參考 van Bekkum, et a 1., Introduction to Zeolite Science and Practice, Second Completely Revised and Expanded Edition, Volumne 137,pages 1-67,Elsevier Science, B. V.,Amsterdam, Netherlands (200 1 ). 分子篩的非限制性範例小孔洞的分子篩、AEI、AFT 、APC、ATN、ATT、ATV、AWW、BIK、CAS、CHA、 CHI、DAC、DDR、EDI、ERI、GOO、KFI、LEV、LOV、 LTA、MON、PAU、PHI、RHO、ROG、THO 及其經取代 的形式;中間孔洞分子舖、A F Ο、A E L、E U Ο、Η E U、 FER、MEL、MFI、MTW、MTT、TON及其經取代的形式 ;及大孔洞分子篩、EMT、FAU及其經取代的形式。其他 分子筛包括 ANA、BEA、CFI、CLO、DON、GIS、LTL、 -13- (9) (9)200303237 MER、MOR、MWW及SOD。較佳分子篩的非限制性範例 ,特別是供轉換包括含氧物之進料成烯烴’包括AEL ' AFY、ΑΕΙ、BEA、CHA、EDI、FAU、FER、GIS、LTA、 LTL、MER、MFI、MOR、MTT、MWW、TAM 及 TON ° 在 一較佳實施例中,本發明的分子篩具有 ΑΕΙ拓撲學或 CHA拓撲學、或其組合,最佳爲CHA拓撲學。 小、中間、大孔洞分子篩具有從心環至12-環或較大 的架構型。在一較佳實施例中,沸石分子篩具有8 -、1 0 -或12-環結構,及平均孔洞大小範圍從約3A至15A。在 一更佳實施例中,分子舖,較佳爲砂銘鱗酸鹽分子飾’具 有8-環及平均孔洞大小小於約5 A ’例如在範圍從3 A至 約5人,例如從3人至4.5人,及特別從3.5A至約4.2A。 分子舖具有一分子架構,其共享1,較佳爲2或多個 ,角[Τ04]四面體單元,更佳爲2或多個[Si04]、[Α1〇4]及 /或[Ρ04]四面體單元,及最佳爲[Si04]、[Α104]及/或[Ρ04] 四面體單元。這些以矽、鋁及磷爲主的分子篩及其含有金 屬的衍生物已詳細地被描述在數種刊物,該刊物包括,例 如 US 4,4567,029 (Me ΑΡΟ 其中 Me 爲 Mg、Μη、Ζη 或 Co) 、US 4,440,87 1 ( S AP Ο )、EP - A-0 1 5 9 6 2 4 (ELAPSO 其中 El 爲 A s、B e、B、C r、C o、G a、G e、F e、L i、M g、Μ η、T i 或 Zn) 、 US 4,5 5 4,1 4 3 (FeAPO) 、 US 4,8 22,4 7 8 ^ 4,6 8 3,2 1 7、4,744,8 8 5 (FeAPSO)、EP-A-0 1 5 89 7 5 及 US 4,9 3 5,2 1 6 (ZnAPSO)、EP-A-0 1 6 1 4 89 (CoAPSO)、EP-A-0 1 5 89 76 (ELAPO 其中 EL 爲 Co、Fe、Mg、Mn、Ti 或 Zn) (10) 200303237 (10)Crystal molecular sieves all have a three-dimensional, four-linked skeleton structure with a shared angle [T04] tetrahedron, where T is a cation coordinated by any tetrahedron. Molecular sieves are typically described in terms of ring sizes that define pores, where size is calculated as the number of T atoms in the ring. Other architectural features include the arrangement of the rings that form the cage, and, when present, the size of the aisle, and the space between the cages. See van Bekkum, et a 1., Introduction to Zeolite Science and Practice, Second Completely Revised and Expanded Edition, Volumne 137, pages 1-67, Elsevier Science, BV, Amsterdam, Netherlands (200 1). Non-limiting examples of molecular sieves Small pore molecular sieve, AEI, AFT, APC, ATN, ATT, ATV, AWW, BIK, CAS, CHA, CHI, DAC, DDR, EDI, ERI, GOO, KFI, LEV, LOV, LTA, MON, PAU, PHI , RHO, ROG, THO and their substituted forms; intermediate hole molecular shop, AF Ο, AEL, EU Ο, Η EU, FER, MEL, MFI, MTW, MTT, TON and their substituted forms; and large holes Molecular sieves, EMT, FAU and their substituted forms. Other molecular sieves include ANA, BEA, CFI, CLO, DON, GIS, LTL, -13- (9) (9) 200303237 MER, MOR, MWW and SOD. Non-limiting examples of preferred molecular sieves, especially for conversion of feeds including oxygenates to olefins 'including AEL' AFY, AEI, BEA, CHA, EDI, FAU, FER, GIS, LTA, LTL, MER, MFI, MOR, MTT, MWW, TAM, and TON ° In a preferred embodiment, the molecular sieve of the present invention has AEI topology or CHA topology, or a combination thereof, and most preferably is CHA topology. Small, middle, and large-pore molecular sieves are available in a range from heart rings to 12-rings or larger. In a preferred embodiment, the zeolite molecular sieve has an 8-, 10-, or 12-ring structure, and the average pore size ranges from about 3A to 15A. In a more preferred embodiment, the molecular slab, preferably a sarcosine molecular salt ornament, has '8-rings and an average pore size of less than about 5 A', such as in a range from 3 A to about 5 people, such as from 3 people. To 4.5 people, and especially from 3.5A to about 4.2A. The molecular store has a molecular structure that shares 1, preferably 2 or more, corner [T04] tetrahedral units, more preferably 2 or more [Si04], [Α1〇4], and / or [P04] tetrahedrons Body unit, and most preferably [Si04], [Α104] and / or [Ρ04] tetrahedron unit. These silicon, aluminum and phosphorus-based molecular sieves and their metal-containing derivatives have been described in detail in several publications including, for example, US 4,4567,029 (Me ΑΡΟ where Me is Mg, Mη, Zη Or Co), US 4,440,87 1 (S AP Ο), EP-A-0 1 5 9 6 2 4 (ELAPSO where El is A s, B e, B, C r, C o, G a, G e , F e, Li, M g, M η, Ti or Zn), US 4,5 5 4,1 4 3 (FeAPO), US 4,8 22,4 7 8 ^ 4,6 8 3,2 1 7, 4,744, 8 8 5 (FeAPSO), EP-A-0 1 5 89 7 5 and US 4, 9 3 5, 2 1 6 (ZnAPSO), EP-A-0 1 6 1 4 89 (CoAPSO) , EP-A-0 1 5 89 76 (ELAPO where EL is Co, Fe, Mg, Mn, Ti or Zn) (10) 200303237 (10)

、US 4,3 1 0,440 (AlP〇4)、EP-A-0 1 5 83 5 0 (SENAPO)、US 4,973,460 (LiAPSO)、 US 4,78 9,5 3 5 (Li APO)、 US 4,9 92,25 0 (GeAPSO)、 US 4,888, 167 (GeAPO) > US 5,057,295 (BAPSO)、 US 4,7 3 8,8 3 7 (CrAPSO)、 US 4,759,919 及 4,851,106 (CrAPO)、 US 4,75 8,4 1 9 \ 4,8 8 2,03 8 、5,43 4,3 26 及 5,4 7 8,78 7 (MgAPSO)、 US 4,554.143 (FeAPO)、 US 4,894,213 (AsAPSO)、 US 4,913,888 (AsAPO)、 US 4,6 8 6,092 、4,8 46,9 5 6 及 4,793,833 (MnAPSO)、US 5,3 4 5,0 1 1 及 6, 1 5 6,93 l(MnAPO) 、US 4,73 7,3 5 3 (BeAPSO) 、US 4,940,5 70 (BeAPO)、 US 4,8 0 1,3 09 、4,684,6 1 7 及 4,8 8 0,520 (TiAPSO)、 US 4,500,651 ' 4,5 5 1,23 6 及 4,60 5 > 492 (Ti APO)、 US 4,8 24,5 5 4 、 4,744,970 (CoAPSO)、 US 4,73 5,8 06 (GaAPSO)、EP-A-0293 93 7 (QAPSO 其中 Q 爲架構氧化物 單元[Q〇2]),及 US 4,567,029、4,686,093、4,781,814、 4,793,984、 4,801,364、 4,853,197、 4,917,876、 4,952,384 、4,9 5 6,1 64 ' 4,9 56,165 、 4,9 7 3,7 8 5 、 5,24 1,093 ', US 4,3 1 0,440 (AlP〇4), EP-A-0 1 5 83 5 0 (SENAPO), US 4,973,460 (LiAPSO), US 4,78 9,5 3 5 (Li APO), US 4, 9 92,25 0 (GeAPSO), US 4,888, 167 (GeAPO) > US 5,057,295 (BAPSO), US 4,7 3 8,8 3 7 (CrAPSO), US 4,759,919 and 4,851,106 (CrAPO), US 4 , 75 8,4 1 9 \ 4,8 8 2,03 8, 5,43 4,3 26 and 5,4 7 8,78 7 (MgAPSO), US 4,554.143 (FeAPO), US 4,894,213 (AsAPSO), US 4,913,888 (AsAPO), US 4,6 8 6,092, 4,8 46,9 5 6 and 4,793,833 (MnAPSO), US 5,3 4 5,0 1 1 and 6, 1 5 6,93 l (MnAPO), US 4,73 7,3 5 3 (BeAPSO), US 4,940,5 70 (BeAPO), US 4,8 0 1,3 09, 4,684,6 1 7 and 4,8 8 0,520 (TiAPSO), US 4,500,651 '4 , 5 5 1,23 6 and 4,60 5 > 492 (Ti APO), US 4,8 24,5 5 4, 4,744,970 (CoAPSO), US 4,73 5,8 06 (GaAPSO), EP-A -0293 93 7 (QAPSO where Q is a framework oxide unit [Q〇2]), and US 4,567,029, 4,686,093, 4,781,814, 4,793,984, 4,801,364, 4,853,197, 4,917,876, 4,952,384, 4,9 5 6, 1 64 '4,9 56,165, 4,9 7 3,7 8 5, 5,24 1,0 93 '

5,493,066及5,675,050,其皆倂入本文作爲參考。 其他分子篩包括該等描述於R. Szostal,Handbook of Molecular Sieves, Van Nostrand Reinhold, New York, New Y o r k ( 1 9 9 2 ),其倂入本文作爲參考。 更佳的分子篩包括磷酸鋁鹽(A1P 〇)分子篩及矽鋁磷酸 鹽(SAPO)分子篩及經取代,較佳爲經金屬取代,Α1ΡΟ及 S ΑΡ 0分子篩。最佳的分子篩爲s ΑΡ 0分子篩,及經金屬 -15- (11) (11)200303237 取代的S AP 0分子篩。在一實施例中,金屬爲元素週期表 中第1族鹼金屬、元素週期表中第2族鹼土金屬、元素週 期表中第3族稀土金屬,該稀土金屬包括鑭系元素:鑭、 鈽、鐯、鉸、釤、銪、釓、鉞、鏑、鈥、餌、錶、鏡及餾 ;及銃或釔、元素週期表中第4至1 2族之過渡金屬、或 任何這些金屬種類的混合物。在一較佳實施例中,金屬係 選自 C 〇、C r、C u、F e、Ga、Ge、M g、Μ η、N i、S η、T i 、Ζη及Zr,及其混合物。在另一較佳實施例中,上面所 討論的這些金屬原子透過四面體單元,例如[Me02],被插 入至分子篩的架構,及視金屬取代基的價電狀態而帶有淨 電荷。例如,在一實施例中,當金屬取代基具有+2、+3、 + 4、+5或+6之價電狀態,四面體單元的淨電荷介於-2及 + 2間。 在一實施例中,分子篩,如上面所述之U S專利案所 描述,以無水之實驗式表示: mR: (MxAlyPz)〇2 其中R表示至少一種樣板劑,較佳爲有機樣板劑;m 爲R相對於每莫耳(MxAlyPz)〇2的莫耳數,及從〇至1, 較佳爲〇至〇.5 ,及最佳從〇至0.3; x'y及Z表示充當四面體氧化 物的Al、P及Μ的莫耳分率’其中Μ爲一種金屬,其係 選自元素週期表中第】、2、3、4、5、6、7、8、9、10、 -16- (12) 200303237 1 1、1 2、1 3、1 4族及鑭系,較佳地,Μ係選自S i、C 〇、 C r、C u、F e、G a、Ge、M g、Μ η、N i、S η、T i、Ζ η 及 Zr 中之一者。在一實施例中,m大於或等於〇.2,x、y及z 大於或等於0.0 1。在另一實施例中,m大於〇. 1至約1,X 大於〇至約0.25,y的範圍從0.4至0.5,及ζ的範圍從 0.25 至 0,5,更佳地,m 從 0.15 至 0.7,X 從 〇.〇1 至 0.2 ,乂從 0.4 至 0.5,及 ζ 從 0.3 至 0.5。5,493,066 and 5,675,050, all of which are incorporated herein by reference. Other molecular sieves include those described in R. Szostal, Handbook of Molecular Sieves, Van Nostrand Reinhold, New York, New York (199.2), which is incorporated herein by reference. More preferred molecular sieves include aluminum phosphate (A1P 0) molecular sieves and silicon aluminum phosphate (SAPO) molecular sieves and substituted, preferably metal substituted, A1PO and S AP0 molecular sieves. The best molecular sieves are sAP 0 molecular sieves, and S AP 0 molecular sieves substituted with metal -15- (11) (11) 200303237. In one embodiment, the metal is a Group 1 alkali metal in the periodic table, a group 2 alkaline earth metal in the periodic table, and a group 3 rare earth metal in the periodic table. The rare earth metal includes lanthanides: lanthanum, thallium,鐯, hinge, 钐, 铕, 釓, 钺, 钺, 镝, bait, watch, mirror, and distillate; and 铳 or yttrium, transition metals of groups 4 to 12 of the periodic table, or a mixture of any of these metal types . In a preferred embodiment, the metal system is selected from the group consisting of C0, Cr, Cu, Fe, Ga, Ge, Mg, Mη, Ni, Sη, Ti, Zη, and Zr, and mixtures thereof. . In another preferred embodiment, the metal atoms discussed above are inserted into the structure of the molecular sieve through a tetrahedral unit, such as [Me02], and have a net charge depending on the valence state of the metal substituent. For example, in one embodiment, when the metal substituent has a valence state of +2, +3, +4, +5, or +6, the net charge of the tetrahedral unit is between -2 and +2. In one embodiment, the molecular sieve, as described in the aforementioned US patent case, is expressed in an anhydrous experimental formula: mR: (MxAlyPz) 〇 2 where R represents at least one template agent, preferably an organic template agent; m is R with respect to the number of moles per mole (MxAlyPz) 02, and from 0 to 1, preferably from 0 to 0.5, and most preferably from 0 to 0.3; x'y and Z represent acting as tetrahedral oxides Mo's fractions of Al, P, and M ', where M is a metal selected from the group consisting of elements in the periodic table], 2, 3, 4, 5, 6, 7, 8, 9, 10, -16- (12) 200303237 1 Groups 1, 1, 2, 1, 3, 1 and lanthanides, preferably, M is selected from Si, Co, Cr, Cu, Fe, Ga, Ge, Mg , M η, Ni, S η, T i, Z η, and Zr. In one embodiment, m is greater than or equal to 0.2, and x, y, and z are greater than or equal to 0.01. In another embodiment, m is greater than 0.1 to about 1, X is greater than 0 to about 0.25, y ranges from 0.4 to 0.5, and ζ ranges from 0.25 to 0.5, and more preferably, m ranges from 0.15 to 0.7, X from 0.01 to 0.2, 乂 from 0.4 to 0.5, and ζ from 0.3 to 0.5.

本文中所用之S APO及A1PO分子篩的非限制性範例 包括 SAPO-5、SAPO-8、SAPO-11、SAP 0-16、SAP 0-17、 S APO-1 8、SAPO-20、SAPO-31、SAPO-34、S APO-3 5、 SAPO-36、SAPO-37、SAPO-40、SAPO-41、SAPO-42、 SAPO-44 (US 6, 1 62,4 1 5)、S APO-47、S APO-56、A1P0-5 、A1P0-11、A1P0-1 8、A1P0-3 1、A1PO-34、A1P0-3 6、 A1PO-37、A1PO-46及其含有金屬之分子篩中之一者或組 合。這些當中特別有用的分子篩爲 SAP 0-18、SAP 0-34、Non-limiting examples of S APO and A1PO molecular sieves used in this article include SAPO-5, SAPO-8, SAPO-11, SAP 0-16, SAP 0-17, S APO-1 8, SAPO-20, SAPO-31 , SAPO-34, S APO-3 5, SAPO-36, SAPO-37, SAPO-40, SAPO-41, SAPO-42, SAPO-44 (US 6, 1 62, 4 1 5), S APO-47 , S APO-56, A1P0-5, A1P0-11, A1P0-1 8, A1P0-3 1, A1PO-34, A1P0-3 6, A1PO-37, A1PO-46 and one of metal-containing molecular sieves Or combination. Particularly useful molecular sieves are SAP 0-18, SAP 0-34,

S APO-3 5 ' SAPO-44、SAPO-56、A1P0-18 及 A1PO-34 及 其含有金屬之衍生物中之一者或組合,例如,SAPO-18、 SAPO-34、A1PO-34及A1P0-18及其含有金屬之衍生物中 之一者或組合,且特別是,SAPO-34及A1P0-18及其含有 金屬之衍生物中之一者或組合。 在一實施例中,分子篩爲在一分子篩組成物內具有2 或多種明確結晶相交互生長的物質。特別地,交互生長的 分子篩被描述於2〇〇1年8月7日申請的美國專利案申請 序號0 9 / 9 2 4,0 1 6及1 9 9 8年4月1 6日公開的W 0 9 8 / 1 5 4 9 6 -17- (13) 200303237 ,兩者皆倂入本文作爲參考。例如,SAPO-18、A1PO-18 及RUW-18具有ΑΕΙ架構,及SAPO-34具有CHA架構。 因此,用於本文中之分子筛包括至少一種交互生長相的 AEI及CHA架構,特別是CHA架構對AEI架構的比値大 於1:1,其係藉由200 1年8月7日申請的美國專利案申請 序號〇 9 / 9 2 4,0 1 6中所描述的D IF F a X方法予以測量。 分子篩 β 分子篩的合成被描述在上面所討論的多數資料中。通 常,分子篩係藉由一或多種鋁來源、磷來源、矽來源及樣 板劑,例如含氮的有機化合物,予以合成。典型地,矽、 鋁及磷來源隨意地與一或多種樣板劑的組合在結晶作用壓 力及溫度下被置於密封的壓力瓶及受熱,該壓力瓶隨意地 以惰性塑膠,例如聚四氟乙烯,當襯裡,直到結晶物質被 形成,之後藉由過濾、離心機及倒出方式予以回收。 矽來源的非限制性範例包括矽酸鹽、煙矽石,例如購 Φ 自 Degussa Inc.,New York,New York 的 Aerosil-200 及 CAB-O-SIL M-5,有機矽化合物,例如四烷基原矽酸酯( 如四甲基原矽酸酯(TM0S)及四乙基原矽酸酯(TEOS)),膠 體矽石或其水性懸浮液,例如購自 E.I. du Pont de Nemours, Wilmington,Delaware 的 Ludox HS-40 溶膠,石夕 酸或其任何組合。 鋁來源的非限制性範例包括鋁醇鹽,例如異丙醇鋁, 磷酸鋁鹽、氫氧化鋁、鋁酸鈉、僞水鋁土、三水鋁礦及三 -18- (14) 200303237 氯化銘’或其任何組合。鋁的便利來源爲僞水鋁土,特別 是當製備砂銘·酸鹽分子篩。 磷來源的非限制性範例,其亦可包括含鋁之磷組成物 ’包括磷酸、有機磷酸酯,例如三乙基磷酸酯,及結晶型 或非結晶型的磷酸鋁鹽,例如AlP〇4,磷鹽、或其組合。 磷的便利來源爲磷酸,特別當製備矽鋁磷酸鹽。S APO-3 5 'SAPO-44, SAPO-56, A1P0-18 and A1PO-34 and one or a combination of metal-containing derivatives thereof, such as SAPO-18, SAPO-34, A1PO-34 and A1P0 One or a combination of -18 and a metal-containing derivative thereof, and in particular, one or a combination of SAPO-34 and A1P0-18 and a metal-containing derivative thereof. In one embodiment, the molecular sieve is a substance having two or more distinct crystal phases in a molecular sieve composition. In particular, inter-growth molecular sieves are described in U.S. Patent Application Serial Nos. 0 9/9 2 4, 0 1 6 and 19 1 98 published on August 7, 2001. 0 9 8/1 5 4 9 6 -17- (13) 200303237, both of which are incorporated herein by reference. For example, SAPO-18, A1PO-18, and RUW-18 have AEI architecture, and SAPO-34 has CHA architecture. Therefore, the molecular sieves used in this article include at least one AEI and CHA structure with interactive growth phases, especially the ratio of CHA structure to AEI structure is greater than 1: 1, which is based on the US patent filed on August 7, 2001. The D IF F a X method described in application number 09/9 2 4, 0 16 was used for measurement. Molecular sieves Beta molecular sieves are synthesized in most of the sources discussed above. Generally, molecular sieves are synthesized from one or more aluminum sources, phosphorus sources, silicon sources, and template agents, such as nitrogen-containing organic compounds. Typically, the combination of silicon, aluminum, and phosphorus sources is optionally combined with one or more model agents and placed in a sealed pressure bottle and heated under crystallization pressure and temperature. The pressure bottle is optionally made of an inert plastic, such as polytetrafluoroethylene When lining, until the crystalline material is formed, it is then recovered by filtration, centrifuge and decantation. Non-limiting examples of silicon sources include silicates, fumed silicas, such as Aerosil-200 and CAB-O-SIL M-5, commercially available from Degussa Inc., New York, New York, organic silicon compounds such as tetraalkane Based orthosilicates (such as tetramethylorthosilicate (TM0S) and tetraethylorthosilicate (TEOS)), colloidal silica or aqueous suspensions thereof, such as those available from EI du Pont de Nemours, Wilmington, Delaware's Ludox HS-40 Sol, oxalic acid or any combination thereof. Non-limiting examples of aluminum sources include aluminum alkoxides, such as aluminum isopropoxide, aluminum phosphate, aluminum hydroxide, sodium aluminate, pseudo bauxite, gibbsite, and tri-18- (14) 200303237 chloride Ming 'or any combination thereof. A convenient source of aluminum is pseudo-alumina, especially when preparing smelters and acid salt molecular sieves. A non-limiting example of a source of phosphorus, which may also include an aluminum-containing phosphorus composition 'including phosphoric acid, organic phosphates, such as triethyl phosphate, and crystalline or non-crystalline aluminum phosphates, such as AlP04, A phosphate salt, or a combination thereof. A convenient source of phosphorus is phosphoric acid, especially when making silicoaluminophosphates.

樣板劑通常是包含元素週期表中第1 5族元素,特別 是氮、磷、砷及銻,之化合物。典型的樣板劑亦包括至少 一種院基或方基基團,例如具有〗至個碳原子的院基 或芳基’例如1至8個碳原子。較佳的樣板劑通常爲含氮 之化α物,例如胺、四級錢化合物及其組合。適合的四級 銨化合物爲通式R4N+,其中R爲氫或烴基或經取代的烴 基,較佳爲具有1至10個碳原子的烷基或芳基。Prototypes are usually compounds containing Group 15 elements from the periodic table, especially nitrogen, phosphorus, arsenic and antimony. A typical model agent also includes at least one radical or square radical, such as a radical or aryl 'having 1 to 8 carbon atoms, such as 1 to 8 carbon atoms. Preferred model agents are usually nitrogenated alpha compounds, such as amines, quaternary compounds, and combinations thereof. Suitable quaternary ammonium compounds are of the general formula R4N +, where R is hydrogen or a hydrocarbon group or a substituted hydrocarbon group, preferably an alkyl or aryl group having 1 to 10 carbon atoms.

樣板劑的非限制性範例包括四烷基銨化合物及其鹽類 ,例如似甲基銨化合物、四乙基銨化合物、四丙基銨化合 物及四丁基錢化合物、環己基胺、嗎啉、二正丙基胺 (DPA)、四丙基胺、三乙基胺(TEA)、三乙醇胺、哌啶、 環己基胺、2-甲基吡啶、N,N-二甲基苄基胺、膽鹼、 N,N’-二甲基哌嗪、〗,4_二氮雜雙環(2,2,2)辛烷、 化少’,札1四甲基(1,6)己烷二胺、〜甲基二乙醇胺、1甲 基-乙醇胺、N-甲基哌啶、3_甲基-暖啶、甲基環己基胺 、3-甲基吡啶、4_甲基_〇比啶、喹嚀環、n,n,_二甲基 二氮雜雙環(2,2,2)辛烷離子、二正丁基胺、新戊基胺、二 正戊基胺、異丙基胺、特丁基胺、乙二胺、吡咯烷及2_ -19- (15) 200303237 咪唑烷酮。 含有最小量的矽-、鋁-及/或磷組成物及樣板劑的合成 混合物的pH的範圍通常爲2至丨〇,例如從4至9,例如 從5至8。 通常’上述之合成混合物被密封在容器中,較佳是在 自壓下’受熱至溫度範圍從約8(TC至約25 (TC,例如從約 1 〇 〇 °C至約2 5 0 °C ’例如從約1 2 5 °C至約2 2 5 °C,例如從約 1 5 0 °c 至約 1 8 0 °c。 _ 在一實施例中,分子篩的合成係藉由來自另一分子篩 或相同架構類型的分子篩的種子予以幫助。 形成結晶產物的時間通常視溫度而定,及可能從立即 至數星期的多樣化。典型地,結晶時間從約3 0分鐘至約 2星期,例如從約4 5分鐘至約2 4 0小時,例如從約1小 時至約1 20小時。熱液結晶作用可被實施,不論有無搖動 或攪動。 一旦結晶分子篩產物被形成,通常爲漿狀,其可藉由 · 此領域已知的任何標準技術,例如藉由離心或過濾,予以 回收。所回收的結晶產物之後可被淸洗,例如以水淸洗, 及之後被乾燥,例如在空氣中乾燥。 一結晶方法包含製備含有過量樣板劑之水性反應混合 物,在熱液條件下對混合物施予結晶作用,建立分子篩形 成及溶解間的平衡,及之後移除一些過量的樣板劑及/或 有機鹼,以抑制分子篩溶解。參考,例如U S 5,2 9 6,2 0 8, 其倂入本文作爲參考。 -20- (16) 200303237Non-limiting examples of model agents include tetraalkylammonium compounds and their salts, such as methylammonium compounds, tetraethylammonium compounds, tetrapropylammonium compounds, and tetrabutylammonium compounds, cyclohexylamine, morpholine, Di-n-propylamine (DPA), tetrapropylamine, triethylamine (TEA), triethanolamine, piperidine, cyclohexylamine, 2-methylpyridine, N, N-dimethylbenzylamine, bile Base, N, N'-dimethylpiperazine, 4_diazabicyclo (2,2,2) octane, less hydrazine, 1 tetramethyl (1,6) hexanediamine, ~ Methyldiethanolamine, 1methyl-ethanolamine, N-methylpiperidine, 3-methyl-warmidine, methylcyclohexylamine, 3-methylpyridine, 4-methyl-〇thiopyridine, quinidine Ring, n, n, _dimethyldiazabicyclo (2,2,2) octane ion, di-n-butylamine, neopentylamine, di-n-pentylamine, isopropylamine, tert-butyl Amines, ethylenediamines, pyrrolidines and 2-19-19 (15) 200303237 imidazolidone. The pH of a synthetic mixture containing a minimum amount of silicon-, aluminum- and / or phosphorus composition and template is typically in the range of 2 to 0, such as from 4 to 9, such as from 5 to 8. Generally the 'synthetic mixture described above is sealed in a container, preferably under autoclave', to a temperature ranging from about 8 ° C to about 25 ° C, such as from about 1000 ° C to about 250 ° C 'For example from about 1 2 5 ° C to about 2 5 5 ° C, for example from about 150 ° C to about 180 ° C. _ In one embodiment, the synthesis of the molecular sieve is by Or the same structural type of molecular sieve seeds to help. The time to form crystalline products usually depends on the temperature, and may vary from immediate to several weeks. Typically, the crystallization time is from about 30 minutes to about 2 weeks, such as from From about 45 minutes to about 240 hours, such as from about 1 hour to about 120 hours. Hydrothermal crystallization can be performed with or without shaking or agitation. Once the crystalline molecular sieve product is formed, it is usually a slurry, which can be It is recovered by any standard technique known in the art, such as by centrifugation or filtration. The recovered crystalline product can then be rinsed, such as with water, and then dried, such as in air. A crystallization method includes preparing a sample containing excess Aqueous reaction mixtures of the agents, subjecting the mixture to crystallization under hydrothermal conditions, establishing a balance between the formation and dissolution of molecular sieves, and then removing some excess sample agents and / or organic bases to inhibit the dissolution of the molecular sieves. See, for example US 5, 2 9 6, 2 0 8 which is incorporated herein by reference. -20- (16) 200303237

合成分子篩或改良分子篩的其他方法被描述於U s 5,8 79,65 5 (控制樣板劑對磷的比例)、US 6,00 5,155 (使用 無鹽的改良劑)、US 5,47 5,182 (酸萃取)、US 5,962,7’62 ( 以過渡金屬處理)、US 5,9 2 5,5 8 6及6,1 5 3,5 5 2 (磷改良)、 US 5,925,800 (經石材支撐)、US 5,932,512 (氟處理)、US 6,046,3 73 (電磁波處理或改良)、US 6,051,74 6 (多核芳香 族改良劑)、US 6,22 5,2 5 4 (加熱樣板劑)、200 1年3月25 日公開的PCT WO 0 1 /3 63 29 (界面活性劑合成)、200 1年4 月1 2日公開的PCT WO 01/25 15 1 (階段性酸加成作用)、 2001 年 8 月 23 日公開的 PCT WO 01/60746 (矽油)、2001 年8月15日申請的美國專利案序號09/929949(冷卻分子 篩)、2000 年 7月 13日申請的美國專利案序號 09/615,526(包括銅的金屬浸漬)、2000年9月28日申請 的美國專利案序號09/6 72,4 69(傳導的微過濾器)、及200 1 年1月4日申請的美國專利序號09/7548 1 2(冷凍乾燥分子 篩),其皆倂入本文作爲參考。 樣板劑被用於分子篩的合成,保留在產物中的任何樣 板劑可在結晶之後藉由數種已知技術,例如鍛燒,予以移 除。鍛燒包含在任何欲得之濃度及足以部份或完全移除樣 板劑之高溫下,使含有樣板劑的分子篩與氣體接觸,較佳 是含有氧之氣體。 矽酸鋁鹽及矽鋁磷酸鹽分子篩具有矽(Si)對鋁(A1)之 高比値或矽(Si)對鋁(A1)之低比値,然而對SAPO合成合 成而g,低S i / A1比値是較佳的。在一貫施例中,分子鋪 -21 - (17) (17)200303237 的S i / A I比値小於0.6 5,例如小於0.4 0,例如小於0.3 2, 及特別是小於〇·2〇 :在另一實施例中,分子篩的Si/Al比 値範圍從約0.65至約〇. 1 〇、例如從約0.40至約0. 1 0,例 如從約0.3 2至約〇 . 1 〇,及特別是從約〇 . 3 2至約0 . 1 5。 活潑金屬氧化物 用予本文中的活潑金屬爲該等不同於典型的黏著劑及 /或基質物質之金屬氧化物,當與分子篩組合時,其有利 於催化性轉換方法。較佳的活潑金屬氧化物爲該等具有第 4族金屬氧化物,例如鉻及/或給之金屬氧化物,不論是單 獨或是混合第2族(例如鎂、鈣、緦及鋇)及/或第3族金屬 (包括鑭系及锕系元素)氧化物(例如釔、銃及鑭)。最佳的 活潑第4族金屬氧化物爲活潑的鉻金屬氧化物,不論是單 獨或是混合氧化鈣、氧化鋇、氧化鑭及/或氧化釔。通常 ’矽、鋁及其混合物的氧化物是不佳的。 在一實施例中,活潑金屬氧化物爲該等不同於典型的 黏著劑及/或基質物質的金屬氧化物,當與觸媒組成物中 的分子篩混合使用時,其有效延伸觸媒組成物的使用壽命 。延長觸媒壽命的定量藉由下式所定義的壽命增加指數 (LEI)予以測定: r % _混合活潑金屬氧化物觸媒的壽命 觸媒的壽命 其中觸媒或觸媒組成物的壽命,在相同的方法中及相同的 -22- 200303237 (18) 條件下,爲加工進料的累積量/每克觸媒組成物,直到經 .由觸媒組成物的進料轉換下降至低於某些明確的水平,例 如1 0%。非活潑金屬氧化物對觸媒組成物的壽命將不具有 影響,或是將會縮短觸媒組成物的壽命,及因此LEI將會 小於或等於1。因此,本發明的活潑金屬氧化物爲該等不 同於典型的黏著劑及/或基質物質的金屬氧化物,當與分 子篩混合使用時,提供具有LEI大於1的分子篩觸媒組成 物。明顯地,未與活潑金屬氧化物混合的分子篩觸媒組成 物的LEI將等於1。 發現觸媒組成物可藉由包括混合分子篩的活潑金屬氧 化物予以製備,其LEI的範圍從大於1至20,例如從約 1 . 5至約1 0。典型地,本發明的觸媒組成物顯示出LEI値 大於1 . 1,例如範圍從約1 .2至1 5,及更特別地,大於 1 . 3,例如大於1 . 5,例如大於1 . 7,例如大於2。 在一實施例中,當與觸媒組成物中的分子篩混合時, 活潑金屬氧化物增加觸媒組成物在含有甲醇之進料轉換成 一或多種烯烴中的壽命。 特別地,用於本文的金屬氧化物的二氧化碳的攝入値 在 1〇〇 t時至少爲 0.03mg/m2金屬氧化物,例如至少 〇 · 03 5 mg/m2金屬氧化物。金屬氧化物的二氧化碳攝入値 的上限並非關鍵性的,通常,用於本文的金屬氧化物的二 氧化碳在l〇〇°C時將會小於l〇mg/m2金屬氧化物,例如小 於5 _ m g / m2金屬氧化物。典型地,用於本文的金屬氧化物 的二氧化碳的攝入値爲0.04至0.2 mg/m2金屬氧化物。 -23- (19) 200303237 爲了測量金屬氧化物的二氧化碳攝入値,下面的步驟 被採用。金屬氧化物的樣品經由在流動空氣中受熱到約 2 0 0 C至5 0 0 C予以脫水到不變的重量,得到“乾燥重量,, 。之後樣品的溫度被下降至1 〇 〇 °C,二氧化碳通過樣品, 不論是連續或是脈衝,再次直到得到不變的重量。樣品重 量的增加’以樣品的乾燥重量計算及以mg/mg樣品表示 ,爲吸附二氧化碳的量。Other methods of synthesizing or improving molecular sieves are described in US 5,8 79,65 5 (controlling the ratio of sample agent to phosphorus), US 6,00 5,155 (using a salt-free modifier), US 5,47 5,182 (acid extraction), US 5,962,7'62 (treated with transition metal), US 5,9 2 5,5 8 6 and 6, 1 5 3,5 5 2 (phosphorus modification), US 5,925,800 (after Stone support), US 5,932,512 (fluorine treatment), US 6,046,3 73 (electromagnetic wave treatment or improvement), US 6,051,74 6 (multi-core aromatic modifier), US 6,22 5,2 5 4 (heating model agent) , PCT WO 0 1/3 63 29 (Synthesis of Surfactant) published on March 25, 2001, PCT WO 01/25 15 1 (Stepwise acid addition) published on April 12, 2001 , PCT WO 01/60746 (silicone oil) published on August 23, 2001, US patent case number 09/929949 (cooled molecular sieve) filed on August 15, 2001, and US patent case number filed on July 13, 2000 09 / 615,526 (including metal impregnation of copper), US Patent Serial No. 09/6 72,4 69 (conducting microfilter) filed on September 28, 2000, and those filed on January 4, 2001 U.S. Patent No. 12 09/7548 (freeze-dried molecular sieves), Merger of which are incorporated herein by reference. Templates are used in the synthesis of molecular sieves, and any template remaining in the product can be removed after crystallization by several known techniques, such as calcination. Calcining involves contacting a molecular sieve containing a sample agent with a gas, preferably a gas containing oxygen, at any desired concentration and at a temperature high enough to partially or completely remove the sample agent. Aluminum silicate and silicon aluminophosphate molecular sieves have a high ratio of silicon (Si) to aluminum (A1) or a low ratio of silicon (Si) to aluminum (A1). However, for SAPO synthesis, it has a low S i / A1 is better than 値. In a consistent embodiment, the S i / AI ratio 分子 of the molecular store -21-(17) (17) 200303237 is less than 0.6 5, such as less than 0.4 0, such as less than 0.3 2, and especially less than 0.2. In one embodiment, the Si / Al ratio of the molecular sieve ranges from about 0.65 to about 0.10, such as from about 0.40 to about 0.10, such as from about 0.32 to about 0.10, and especially from About 0.32 to about 0.15. Active metal oxides The active metals used herein are metal oxides other than typical binders and / or matrix materials which, when combined with molecular sieves, facilitate catalytic conversion methods. Preferred active metal oxides are those Group 4 metal oxides, such as chromium and / or given metal oxides, either alone or in combination with Group 2 (such as magnesium, calcium, scandium and barium) and / Or Group 3 metal (including lanthanide and actinide) oxides (such as yttrium, scandium and lanthanum). The most preferred active Group 4 metal oxide is an active chromium metal oxide, either alone or in combination with calcium oxide, barium oxide, lanthanum oxide, and / or yttrium oxide. Generally, the oxides of silicon, aluminum, and mixtures thereof are poor. In one embodiment, the active metal oxides are metal oxides different from typical adhesives and / or matrix materials. When mixed with the molecular sieve in the catalyst composition, it effectively extends the Service life. The quantification of the extended catalyst life is measured by the Life Increasing Index (LEI) defined by the following formula: r% _ The life of the mixed active metal oxide catalyst. The life of the catalyst is the life of the catalyst or catalyst composition. In the same method and under the same conditions of -22-200303237 (18), the cumulative amount of processing feed / per gram of catalyst composition is reduced until after the conversion of the feed from the catalyst composition is reduced to less than some A clear level, such as 10%. The inactive metal oxide will have no effect on the life of the catalyst composition or will shorten the life of the catalyst composition, and therefore the LEI will be less than or equal to one. Therefore, the active metal oxides of the present invention are metal oxides different from typical adhesives and / or matrix materials. When used in combination with molecular sieves, they provide molecular sieve catalyst compositions with LEIs greater than 1. Obviously, the LEI of the molecular sieve catalyst composition not mixed with the active metal oxide will be equal to one. It was found that the catalyst composition can be prepared by an active metal oxide including a mixed molecular sieve, and its LEI ranges from more than 1 to 20, for example, from about 1.5 to about 10. Typically, the catalyst composition of the present invention exhibits a LEI 値 greater than 1.1, such as ranging from about 1.2 to 15 and, more particularly, greater than 1.3, such as greater than 1.5, such as greater than 1. 7, such as greater than 2. In one embodiment, the active metal oxide, when mixed with a molecular sieve in a catalyst composition, increases the life of the catalyst composition in the conversion of a methanol-containing feed to one or more olefins. In particular, the carbon dioxide uptake of the metal oxides used herein is at least 0.03 mg / m2 metal oxide at 100 t, such as at least 0.35 mg / m2 metal oxide. The upper limit of carbon dioxide uptake by metal oxides is not critical. Generally, the carbon dioxide of metal oxides used herein will be less than 10 mg / m2 metal oxides at 100 ° C, such as less than 5 mg / m2 metal oxide. Typically, the carbon dioxide uptake of metal oxides used herein is 0.04 to 0.2 mg / m2 metal oxide. -23- (19) 200303237 To measure the carbon dioxide uptake of metal oxides, the following procedure is used. Samples of metal oxides are dehydrated to a constant weight by heating in flowing air to about 200 ° C to 500 ° C to obtain a "dry weight,". The temperature of the sample is then reduced to 100 ° C. Carbon dioxide passes through the sample, whether continuous or pulsed, again until a constant weight is obtained. The increase in sample weight is calculated as the dry weight of the sample and expressed in mg / mg sample as the amount of carbon dioxide adsorbed.

在下面所描述的樣品中,二氧化碳的吸附是在周圍壓 力下使用Mettler TGA/SDTA 851熱重分析系統予以測量 。金屬氧化物樣品在流動空氣中及約5 0 0 °C下脫水1小時 。樣品的溫度之後在流動氨氣下被下降到1 〇(TC。樣品在 欲得之吸附溫度及流動氦氣下達到平衡,樣品被施予含有 1 0重量%二氧化碳及剩餘者爲氦氣的氣體混合物的2 〇個 個別脈衝(約1 2秒/脈衝)。吸附氣體的每一脈衝之後金屬 執化物樣品以流動氣氣沖洗3分鐘。樣品重量的增加,以 在5 00°C處理之後吸附劑重量計算及以mg/mg吸附劑表示 ,爲吸附二氧化碳的量。樣品的表面積係依照ASTM D 3663 公開的 Brunauer,Emmett,and Teller(BET)方法予以 測量’提供二氧化碳攝入,以mg二氧化碳/m2金屬氧化 物計。 在一實施例中,活潑金屬氧化物的 BET表面積大於 1 0 m2/g,例如大於1 〇 m2/g至約3 0 0 m2/g。在另一實施例 中,活潑金屬氧化物的BET表面積大於2〇 πι2/g,例如從 2 0 m 2 / g至2 5 0 m 2 / g。在另一實施例中,活潑金屬氧化物 -24- (20) (20)200303237 的BET表面積大於25 m2/g,例如從25 m2/g至2 0 0 m2/g 。在一較佳實施例中,活潑金屬氧化物包括具有B E T表 面積大於 20 m2/g,例如大於 25 m2/g,及特gij大於 3〇 m2/g,的氧化锆。 用於本文中的活潑金屬氧化物可使用各種方法予以製 備。較佳的是,活潑金屬氧化物是從活潑金屬氧化物前驅 物,例如金屬鹽,例如鹵化物、硝酸鹽、硫酸鹽或乙酸鹽 ,予以製備。金屬氧化物的其他適合來源包括在鍛燒期間 形成金屬氧化物的化合物,例如氯氧化物及硝酸鹽。烷氧 化物亦包括第4族金屬氧化的適合來源,例如正丙醇鉻鹽 。第4族金屬氧化物的較佳來源爲水合的氧化锆。水合的 此表示方式,水合的氧化鉻,被打算暗示經由含有鉻原子 架橋氧原子共價連接至其他鉻原子及另外包括可使用的羥 基,的物質。 在一實施例中,水合的氧化錐在包括溫度至少8 0 °C ’較佳至少1 〇〇°c,的條件被熱液處理。熱液處理典型地 發生在密封的容器中及大於大氣壓力下。然而,處理的較 佳模式包含在迴流條件下使用開口容器。水合的第4族金 屬氧化物在液體介質中攪動,例如藉由迴流液體及/或攪 拌,促進水合氧化物與液體介質的有效相互作用。水合氧 化物與液態介質的接觸時間合宜地爲至少1小時,例如至 少8小時。供該處理的液態介質的pH値約6或更大,例 如8或更大。適宜的液態介質的非限制性範例包括水、氫 氧化物溶液(包括NH4+、Na+、K+、Mg2 +及Ca2 +的氫氧化 (21) 200303237 物)、碳酸鹽及碳酸氫鹽溶液(包括NH4+、Na+、K+、Mg2 + 及Ca2 +的碳酸鹽及碳酸氫鹽)、吡啶及其衍生物、及烷基/ 羥基胺。 在另一實施例中,活潑金屬氧化物,例如,係藉由使 含有第4族金屬離子來源的液態溶液(例如,水溶液)歷經 足以產生固體氧化物物質的水合前驅物的沉澱物,例如, 將沉澱劑加至溶液中,的條件而予以製備的。合宜地,沉 澱作用是在pH大於7予以實施的。例如,沉澱劑可爲鹼 ,例如,氫氧化鈉或氫氧化錢。 當第4族金屬氧化物與第2及/或3族金屬氧化物的 混合物欲被製備時,含有第4族金屬離子來源的第一種液 態溶液可與含有第2及/或3族金屬離子來源的第二種液 態溶液混合。兩種溶液的混合可在足以產生受混合氧化物 物質的共沉澱物(其爲來自液態介質的固體)的條件下發生 。或者,第4族金屬離子來源與第2及/或3族金屬離子 來源可合倂成單一溶液。該溶液之後可歷經足以產生固體 混合氧化物物質的水合前驅物的沉澱物,例如,將沉澱劑 加至溶液中,的條件。 溫度通常低於約2 0 0 °C,例如,在範圍從約〇。(:至約 2 〇 〇 °C ’沉澱期間:,液態介質被維持在該溫度。供沉澱的 特別溫度範圍爲從約2 0 °C至約1 0 0 °C。得到的凝膠之後較 佳在8 0 °C,較佳爲至少1 〇 〇 °C,予以水合處理。水合處理 典型地在容器中及在大氣壓下發生。在一實施例中,凝膠 被水合處理持續高達1 0天,例如高達5天,例如高達3 -26- (22) (22)200303237 天。 金屬氧化物的水合前驅物之後被回收,例如,藉由過 濾或離心,及淸洗及乾燥。得到的物質之後可被鍛燒,例 如在氧化氣氛下,及在溫度至少4 0 (TC,例如至少5 0 0 °C ,例如從約600°C至約90(TC,及特別從約650°C至約800 °C ’形成活潑金屬氧化物或活潑混合金屬氧化物。鍛燒時 間典型高達4 8小時,例如持續〇 · 5至2 4小時,例如持續 約1·〇至10小時。在一實施例中,鍛燒是在約7〇實施 約1至約3小時。 在一實施例中,第4族金屬氧化物及第2族及/或第3 族金屬氧化物個別製備,之後接觸在一起,形成混合的金 屬氧化物,之後與分子筛接觸。例如,第4族金屬氧化物 可在導入第2族及/或第3族金屬氧化物之前與分子篩接 觸,或是,第2族及/或第3族金屬氧化物可在導入第4 族金屬氧化物之前與分子篩接觸。 觸媒組成物包括弟4族金屬氧化物及第3族金屬氧化 物,第4族金屬氧化物對第3族金屬氧化物的莫耳比例可 在範圍從1 〇 〇 〇 : 1至1 ·· 1,例如從約5 0 0 : 1至2 : 1,例 如從約1 〇 〇 · 1至約3 · 1 ’例如從約7 5 : 1至約5 : 1,以 第4族及第3族金屬氧化物的總莫耳數計算。此外,觸媒 組成物可包含從1至2 5重量%,例如從1至2 〇重量%, 例如從1至1 5重量%,的第3族金屬,以混合金屬氧化 物的總重量計算,特別是’第3族金屬氧化物爲鑭或纟乙金 屬氧化物,及第4族金屬氧化物爲鉻金屬氧化物。 -27- 200303237 (23) 觸媒組成物包括第4族金屬氧化物及第2族金屬氧化 物,第4族金屬氧化物對第2族金屬氧化物的莫耳比例可 在範圍從1 〇 〇 〇 ·· 1至1 ·· 2,例如從約5 0 0 : 1至2 : 3,例 如從約1 00 : 1至約1 : 1,例如從約5 0 : 1至約2 : 1,以 第4族及第2族金屬氧化物的總莫耳數計算。此外,觸媒 組成物可包含從1至2 5重量%,例如從1至2 0重量%, 例如從1至1 5重量% ’的第2族金屬,以混合金屬氧化 物的總重量計算,特別是’第2族金屬氧化物爲氧化鈣, 及第4族金屬氧化物爲銷金屬氧化物。 觸媒組成物 本發明的觸媒組成物包括前述之任何一種分子篩,及 上述之一或多種活潑金屬氧化物,隨意地與不同於活潑金 屬氧化物的黏著劑及/或基質物質。典型地,在觸媒組成 物中,分子篩對活潑金屬氧化物的重量比範圍從5重量% 至8 0 0重量%,例如從1 0重量%至6 〇 〇重量%,特別從2 0 重量%至5 0 0重量%,及更特別從3 0重量%至4 0 0重量% 〇 有各種的黏著劑用於形成觸媒組成物。黏著劑的非限 制性範例包括各種類型的水合氧化鋁、矽石及/或其他無 機氧化物溶膠,該黏著劑可單獨或混合使用。一種含有氧 化鋁的較佳溶膠爲鹼式氯化鋁。無機氧化物溶膠像膠水使 合成的分子篩與其他物質,例如基質,黏結在一起,特別 是在熱處理之後。藉由加熱,無機氧化物溶膠,較佳地是 -28- (24) 200303237 具有低黏性’被轉換成無機氧化物黏著劑成分。例如,熱 處理之後’氧化鋁溶膠將轉換成氧化鋁黏著劑。In the samples described below, carbon dioxide adsorption was measured under ambient pressure using a Mettler TGA / SDTA 851 thermogravimetric analysis system. The metal oxide sample was dehydrated in flowing air at about 500 ° C for 1 hour. The temperature of the sample was then lowered to 10 ° C under flowing ammonia gas. The sample reached equilibrium at the desired adsorption temperature and flowing helium gas. The sample was given a gas containing 10% by weight of carbon dioxide and the remaining helium gas. 20 individual pulses of the mixture (approximately 12 seconds / pulse). After each pulse of the adsorbed gas, the metal oxide sample was rinsed with flowing gas for 3 minutes. The weight of the sample was increased to absorb the adsorbent after processing at 500 ° C Calculated by weight and expressed in mg / mg adsorbent, is the amount of carbon dioxide adsorbed. The surface area of the sample is measured in accordance with the Brunauer, Emmett, and Teller (BET) method disclosed in ASTM D 3663. Metal oxide meter. In one embodiment, the BET surface area of the active metal oxide is greater than 10 m2 / g, such as greater than 10 m2 / g to about 300 m2 / g. In another embodiment, the active metal oxide The BET surface area of the oxide is greater than 20 μm 2 / g, for example from 20 m 2 / g to 250 m 2 / g. In another embodiment, the active metal oxide-24- (20) (20) 200303237 BET surface area greater than 25 m2 / g, for example 25 m2 / g to 200 m2 / g. In a preferred embodiment, the active metal oxide includes having a BET surface area greater than 20 m2 / g, such as greater than 25 m2 / g, and particularly gij greater than 30 m2 / g. Zirconium oxide. The active metal oxides used herein can be prepared using various methods. Preferably, the active metal oxide is derived from a precursor of an active metal oxide, such as a metal salt, such as a halide, nitrate, Sulfates or acetates are prepared. Other suitable sources of metal oxides include compounds that form metal oxides during calcination, such as chlorine oxides and nitrates. Alkoxides also include suitable sources of Group 4 metal oxidation, Examples include chromium n-propoxide. A preferred source of Group 4 metal oxides is hydrated zirconia. This representation of hydration, hydrated chromium oxide, is intended to imply a covalent attachment to other chromium via a bridging oxygen atom containing chromium atoms Atoms and other materials including hydroxyl groups that can be used. In one embodiment, the hydrated oxide cone is hydrothermally treated under conditions including a temperature of at least 80 ° C 'preferably at least 100 ° C. Hydrothermal treatment typically occurs in sealed containers and at pressures greater than atmospheric pressure. However, a preferred mode of treatment involves the use of open containers under reflux conditions. Hydrated Group 4 metal oxides are agitated in a liquid medium, such as by Refluxing the liquid and / or stirring to promote effective interaction between the hydrated oxide and the liquid medium. The contact time of the hydrated oxide with the liquid medium is suitably at least 1 hour, such as at least 8 hours. The pH of the liquid medium for the treatment is approximately 6 or greater, such as 8 or greater. Non-limiting examples of suitable liquid media include water, hydroxide solutions (including NH4 +, Na +, K +, Mg2 +, and Ca2 + hydroxides (21) 200303237), carbonate and bicarbonate solutions (including NH4 +, (Na +, K +, Mg2 +, and Ca2 + carbonates and bicarbonates), pyridine and its derivatives, and alkyl / hydroxylamines. In another embodiment, the active metal oxide is, for example, by subjecting a liquid solution (eg, an aqueous solution) containing a Group 4 metal ion source to a precipitation sufficient to produce a hydrated precursor of a solid oxide material, such as, The precipitant is added to the solution under the conditions. Conveniently, the precipitation is carried out at a pH greater than 7. For example, the precipitating agent may be a base such as sodium hydroxide or sodium hydroxide. When a mixture of a Group 4 metal oxide and a Group 2 and / or 3 metal oxide is to be prepared, a first liquid solution containing a source of a Group 4 metal ion may be mixed with a group 2 and / or 3 metal ion The second liquid solution of the source is mixed. Mixing of the two solutions can occur under conditions sufficient to produce a co-precipitate of the mixed oxide species, which is a solid from a liquid medium. Alternatively, the Group 4 metal ion source and the Group 2 and / or 3 metal ion source may be combined into a single solution. This solution may then be subjected to conditions sufficient to produce a hydrated precursor of the solid mixed oxide material, e.g., the addition of a precipitating agent to the solution. The temperature is usually below about 200 ° C, for example, in the range from about 0. (: To about 2000 ° C 'during precipitation: the liquid medium is maintained at this temperature. A special temperature range for precipitation is from about 20 ° C to about 100 ° C. The obtained gel is preferably after Hydration treatment is performed at 80 ° C, preferably at least 100 ° C. Hydration treatment typically occurs in a container and at atmospheric pressure. In one embodiment, the gel is hydrated for up to 10 days, For example, up to 5 days, such as up to 3 -26- (22) (22) 200303237 days. The hydrated precursors of the metal oxides are then recovered, for example, by filtration or centrifugation, and rinsed and dried. The resulting material can then be Is calcined, for example, in an oxidizing atmosphere, and at a temperature of at least 40 ° C, such as at least 50 ° C, such as from about 600 ° C to about 90 ° C, and particularly from about 650 ° C to about 800 ° C 'forms an active metal oxide or an active mixed metal oxide. The calcination time is typically as high as 48 hours, such as lasting from 0.5 to 24 hours, such as lasting from about 1.0 to 10 hours. In one embodiment, forging Firing is performed at about 70 for about 1 to about 3 hours. In one embodiment, the Group 4 metal is oxidized And Group 2 and / or Group 3 metal oxides are prepared separately and then contacted together to form a mixed metal oxide and then contacted with a molecular sieve. For example, a Group 4 metal oxide can be introduced into Group 2 and / or The Group 3 metal oxide is contacted with the molecular sieve before, or the Group 2 and / or Group 3 metal oxide may be contacted with the molecular sieve before the introduction of the Group 4 metal oxide. The catalyst composition includes a Group 4 metal oxide And Group 3 metal oxides, the molar ratios of Group 4 metal oxides to Group 3 metal oxides can range from 1000: 1 to 1 ·· 1, such as from about 5 0 0: 1 To 2: 1, such as from about 100. 1 to about 3.1. For example, from about 75: 1 to about 5: 1, calculated as the total moles of Group 4 and Group 3 metal oxides. In addition, the catalyst composition may include a Group 3 metal from 1 to 25 wt%, such as from 1 to 20 wt%, such as from 1 to 15 wt%, based on the total weight of the mixed metal oxide, In particular, the Group 3 metal oxide is a lanthanum or samarium metal oxide, and the Group 4 metal oxide is a chromium metal oxide -27- 200303237 (23) The catalyst composition includes a Group 4 metal oxide and a Group 2 metal oxide, and the molar ratio of the Group 4 metal oxide to the Group 2 metal oxide may range from 1 〇 〇〇 ·· 1 to 1 ·· 2, such as from about 500: 1 to 2: 3, such as from about 100: 1 to about 1: 1, such as from about 50: 1 to about 2: 1, Calculated based on the total moles of Group 4 and Group 2 metal oxides. In addition, the catalyst composition may include from 1 to 25% by weight, such as from 1 to 20% by weight, such as from 1 to 15% by weight. % 'Group 2 metal is calculated based on the total weight of the mixed metal oxide, in particular,' Group 2 metal oxide is calcium oxide, and Group 4 metal oxide is pin metal oxide. Catalyst composition The catalyst composition of the present invention includes any one of the aforementioned molecular sieves, and one or more of the above-mentioned active metal oxides, optionally with an adhesive and / or matrix material different from the active metal oxides. Typically, in the catalyst composition, the weight ratio of the molecular sieve to the active metal oxide ranges from 5 wt% to 800 wt%, such as from 10 wt% to 600 wt%, especially from 20 wt% There are various adhesives for forming the catalyst composition to 500 wt%, and more specifically from 300 wt% to 400 wt%. Non-limiting examples of adhesives include various types of hydrated alumina, silica, and / or other inorganic oxide sols, which can be used alone or in combination. A preferred sol containing aluminum oxide is basic aluminum chloride. Inorganic oxide sols, like glue, bind synthetic molecular sieves to other substances, such as substrates, especially after heat treatment. By heating, the inorganic oxide sol, preferably -28- (24) 200303237, having low viscosity 'is converted into an inorganic oxide adhesive component. For example, the 'alumina sol will be converted into an alumina adhesive after heat treatment.

鹼式氯化鋁(含有氯平衡離子的氫氧化鋁爲主的溶膠) 具有通式 AlmOjOH^Clp · χ(Η20),其中 m 爲 1 至 20,η 爲1至8,〇爲5至40,ρ爲2至15,及X爲〇至30。在 一實施例中’黏著劑爲 A11304(0H)24C17 · 12(Η20),其被 描述於 G.M· Wolterman, et. al.,Stud. Surf. Sci. and C at al·,76,pages 105-144 (1993),其倂入本文作爲參考。 在另一實施例,一或多種黏著劑與一或多種其他非限制性 範例的氧化鋁物質,例如氧氫氧化鋁(aluminum ο X y h y d r* ο X i d e)、r —氧化鋁、水鋁土、水鋁石,及過渡性 的氧化鋁,例如α -氧化鋁、-氧化鋁、r 一氧化鋁、 5 -莉化銘、ε -氧化絕、/c —氧化銘及ρ -氧化銘,三 氫氧化鋁,例如三水鋁礦、拜三水鋁土(bay er it e)、諾三 水錫土( η o r d s t r a n d i t e )、d o y e 1 i t e、及其混合物相混合。Basic aluminum chloride (sol containing aluminum hydroxide based on chloride counterions) has the general formula AlmOjOH ^ Clp · χ (Η20), where m is 1 to 20, η is 1 to 8, and 0 is 5 to 40. ρ is 2 to 15, and X is 0 to 30. In one embodiment, the adhesive is A11304 (0H) 24C17 · 12 (Η20), which is described in GM · Wolterman, et. Al., Stud. Surf. Sci. And C at al ·, 76, pages 105- 144 (1993), which is incorporated herein by reference. In another embodiment, one or more adhesives and one or more other non-limiting examples of alumina materials, such as aluminum ο X yhydr * ο X ide, r—alumina, alumina, Gibbsite, and transitional alumina, such as α-alumina, -alumina, r-alumina, 5-lithium, ε-oxide, / c-oxide and ρ-oxide, trihydrogen Alumina, such as gibbsite, bayerite, ηordstrandite, doye 1ite, and mixtures thereof are mixed.

在另一實施例中,黏著劑爲氧化鋁溶膠,其優勢地包 括氧化鋁,隨意地包括矽石。在另一實施例中,黏著劑爲 膠溶的氧化鋁,其係藉由用酸,較佳爲不含鹵素的酸,處 理氧化鋁水合物(例如僞水鋁土)製備溶膠或鋁離子溶液, 而予以製得的。市售可得的膠體氧化鋁溶膠的非限制性範 例包括可購自 N a 1 c 〇 C h e m i c a 1 C 〇 ·,N a p e r v i 11 e,I lli η 〇 i s 的 Nalco 8676 及可購自的 Nyacol nano Technologies,Inc., Ashland, Massachussetts 的 Nyacol AL20DW。 觸媒組成物包括基質物質,該基質物質較佳地不同於 -29- (25) (25)200303237 金屬氧化物及任何黏著劑。基質物質典型地有效減低觸媒 總成本,充當熱槽以幫助觸媒組成物,例如再生期間,遮 蔽熱,硬化觸媒組成物及增加觸媒強度,例如抗碎強度及 抗磨耗性。 基質物質的非限制性範例包括一或多種非活潑金屬氧 化物’該非活潑金屬氧化物包括氧化鋇、石英、矽石或溶 膠、及其混合物’例如矽石-氧化鎂、矽石-氧化鉻、矽 石-氧化鈦、矽石-氧化鋁及矽石-氧化鋁-氧化钍。在一實 施例中,基質物質爲天然黏土,例如該等來自蒙脫土及高 嶺土族系者。這些天然黏土包括次皂土及該等有名的高嶺 土,例如Dixie、McNamee、喬治亞及佛羅里達黏土。其 他基質物質的非限制性範例包括haloysitte、高嶺土、迪 開石(dickite)、珍珠陶土(nacrite)或蠕陶土。基質物質, 例如黏土,可被施予已知的改良加工,例如鍛燒及/或酸 處理及/或化學處理。 在一較佳的施實例中,基質物質爲黏土或黏土類型的 組成物’特別是具有低含量鐡或二氧化鈦的黏土或黏土類 型的組成物,及最佳地,基質物質爲高嶺土。已發現高嶺 土會形成可泵抽的、高固體含量的漿料、及具有低新鮮的 表面積、及由於其平板結構而容易壓縮在一起。基質物質 (最佳爲高嶺土)的較佳平均顆粒大小是從約 0 . 1 μπι至約 0.6 μ m,且D 9 〇顆粒大小分布小於1 μ m。 觸媒組成物包括黏著劑或基質物質,觸媒組成物典型 地包括從約1重量%至約80重量%,例如從約5重量%至 (26) (26)200303237 約6 0重量%,及特別從約5重量%至50重量%,的分子 篩,以觸媒組成物總重計算。 觸媒組成物包括黏著劑及基質物質,黏著劑對基質物 質的重量比典型地從1 : 1 5至1 : 5,例如從1 : 10至1 : 4,及特別從1 : 6至1 : 5。黏著劑的含量典型地從約2 重量%至約3 0重量%,例如從約5重量%至約20重量%, 及特別從約7重量%至約1 5重量%,以黏著劑、分子篩及 基質物質的總重計算。已發現,高分子篩含量及低基質物 質含量會增加篩觸媒組成物的性能,然而低分子篩含量及 高基質物質含量會改善組成物的抗磨耗性。 觸媒組成物密度的典型範圍從〇.5g/cc至5g/cc,例如 從〇.6g/cc至5g/cc,例如從0.7g/cc至4g/cc,特別是從 〇.8g/cc 至 3g/cc。 製備觸媒組成物的方法 在製備觸媒組成物中,分子篩先被形成,之後與活潑 金屬氧化物,較佳地以實質上乾燥、經乾燥或經鍛燒狀態 ’完全混合。最佳地,分子篩及活潑金屬氧化物以其經鍛 燒狀態完全混合。未受任何特別理論限制,令人咸信,分 子篩及一或多種活潑金屬氧化物的緊密混合改善使用本發 明分子篩組成物及觸媒組成物的轉換方法。緊密混合可經 由此領域中任何已知方法,例如以混合硏磨器方式的混合 、鼓式混合器、螺條/漿式摻和器、捏合器或諸如此類者 ’予以達成。分子篩及金屬氧化物間的化學反應是不必要 -31 - (27) 200303237 的,且通常是不被喜歡的。 觸媒組成物包括基質及/或黏著劑,分子篩與基質及/ 或黏著劑合宜地先被調配成觸媒先質,之後活潑金屬氧化 與經調配的先質混合。活潑金屬氧化物可以未經承載的顆 粒方式被加入或以與載體(例如黏著劑或基質)混合方式加 入。得到的觸媒組成物之後可藉由已知技術,例如噴霧乾 燥、九化、擠壓及諸如此類者,形成有用的形狀及大小的 顆粒。 0 在一實施例中,分子篩組成物及基質物質,隨意地與 黏著劑,用液體混合形成漿料,之後混合,較佳地激烈混 合,產生一含有分子篩組成物的實質上均質的混合物。適 合的液體的非限制性範例包括水、醇+酮、醛及/或酯之一 者或混合。最佳的液體爲水。在一實施例中,漿料被膠體 硏磨一段時間,足以產生欲得之漿料組織、次顆粒大小及 /或次顆粒大小分布。 分子篩組成物及基質物質及隨意的黏著劑可以在相同 β 或不同的液體中混合,及可以任何次序、一起、同時、連 續或其組合方式混合。在一較佳實施例中,使用相同的液 體,較佳者爲水。分子篩組成物、基質物質及隨意的黏著 劑以固體、實質上乾燥或經乾燥的形式,或以漿料方式, 〜起或個別方式,在液體中被混合。假如固體一起以乾燥 或實質上乾燥的固體方式被加入,較佳的是,加入受限制 量的及/或經控制量的液體。 在一實施例中,分子篩組成物、黏著劑及基質物質的 -32- (28) 200303237 獎料被混合或硏磨,以得到一分子篩觸媒組成物次顆粒的 充分均勻的漿料’其之後被餵入至產生分子篩觸媒組成物 之形成單元。在一較佳實施例中,形成單元爲噴霧乾燥器 。典型地,形成單元被維持在一溫度,該溫度足以從漿料 及從得到的分子篩觸媒組成物中移除大部分的液體。當觸 媒組成物係以該方式形成時,所得到的觸媒組成物爲微顆 粒形式。 當使用噴霧乾燥器作爲形成單元時,典型地,分子舖 組成物及基質物質及隨意的黏著劑的漿料被餵至有乾燥氣 體的噴霧乾燥容器中,其平均入口溫度範圍從2 0 0 °C至約 5 5 0 °C,及出口溫度範圍從100°C至約22 5 °C。在一實施例 中,噴霧乾燥所形成的觸媒組成物的平均直徑爲從約 4 〇 μ m至約3 0 0 μ m,例如從約5 0 μ m至約2 5 0 μ m,例如從 約5 0 μ m至約2 0 0 μ m ’及合宜地從約6 5 μ m至約9 0 μ m。 供形成分子飾觸媒組成物的其他方法被描述在2000 年7月17日申請的美國專利申請案序號〇9/017,7丨4中(使 用經回收的分子篩觸媒組成物噴霧乾燥),其倂入本文作 爲參考。 一旦分子篩觸媒組成物以實質上乾燥或經乾燥狀態方 式形成’爲了進一步硬化及/或活化所形成的觸媒組成物 ’通常在高溫實施熱處理,例如鍛燒。典型的鍛燒溫度範 圍從約4 0 0 °c至約1,〇 〇 〇 °c,例如從約5 0 0 °c至約8 0 0 °c, 例如從約5 5 0 °C至約700 °C。典型的鍛燒環境爲空氣(其可 包括少量的水蒸氣)、氮、氦、煙道氣體(貧氧的燃燒產物 -33- (29) 200303237 )或其任何組合。 在一較佳實施例中,觸媒組成物在氮氣中及溫度從約 600 °C至約70 CTC下受熱。加熱被持續一段時間,典型地 從3 0分鐘至1 5小時,例如從1小時至約10小時,例如 從約1小時至約5小時,及特別是從約2小時至約4小時 使用分子篩觸媒組成物的方法 Φ 上述之觸媒組成物係用於各種方法,該方法包括裂解 ,例如石腦油進料裂解成輕烯烴類(US 6,3 00,5 3 7)或較大 分子量(MW)烴裂解成較小MW烴;氫裂解,例如重石油 及/或環狀進料的氫裂解;異構化作用,例如芳香族(如二 甲苯)的異構化;聚合作用,例如一或多種烯烴類聚合產 生聚合物產物;重整;氫化作用;脫氫作用;脫蠟,例如 烴類的脫鱲以移除直鏈烷烴;吸收作用,例如烷基芳香族 化合物吸收以分離出其異構物;烷基化作用,例如芳香族 φ 烴(如苯及烷基苯)隨意地以丙烯烷基化產生枯烯,或長鏈 烯煙類;烷基移轉作用’例如芳香族及多烷基芳香族烴的 組合的烷基移轉;脫烷基作用;加氫去環化作用;歧化作 用,例如甲苯的歧化作用以製備苯及對二甲苯;寡聚合作 用’例如直鏈及支鏈烯烴的寡聚合作用;及脫氫環化作用 〇 較佳的方法包括使石腦油轉換成高芳香族混合物的方 法;使輕烯烴類轉換成汽油、餾出物及潤滑油的方法;使 -34- (30) (30)200303237 含氧物轉換成烯烴類的方法;使輕鏈烷烴轉換成;):希烴類及 /或芳香族的方法;使不飽和烴(乙烯及/或乙炔)轉換成供 轉換成醇、酸及酯之醛的方法。 本發明的最佳方法是關於使進料轉換成一或多種燒烴 類的方法。典型地,進料包括一或多種含脂肪族之化合物 ,該脂肪族部分包括從1至5 0個碳原子,例如從1至2 〇 個原子’例如從1至1 0個碳原子,及特別地從1至4 個碳原子。 含脂肪族之化合物的非限制性範例包括醇類,例如甲 醇及乙醇,烷硫醇’如甲硫醇及乙硫醇,硫醚,例如二甲 硫,烷基胺,例如甲胺’烷醚,例如二甲醚、二乙醚及甲 乙醚,烷基鹵化物,例如甲基氯及乙基氯,烷基酮,例如 二甲酮、甲醛,及各種酸,例如乙酸。 在本發明的較佳實施例中,進料包括一或多種含氧物 ’更詳而言之’ 一或多種含有至少一個氧原子的有機化合 物。在本發明的最佳實施例中,進料中的含氧物是一或多 種醇類,較佳爲脂肪族的醇,醇類中的脂肪族部分具有從 1至20個碳原子,較佳從1至1 〇個碳原子,及最佳從1 至4個碳原子。充當本發明方法之進料的醇類包括低級直 鏈及支鏈的脂肪族的醇及其不飽和的相似物(c〇unterpart) 〇 含氧物的非限制性範例包括甲醇、乙醇、正丙醇、異 丙醇、甲乙醚、二甲醚、二乙醚、二異丙醚、甲醛、二甲 基碳酸酯、一甲酮、乙酸及其混合物。 -35- (31) (31)200303237 在最佳實施例中’進料係選自~或多種甲醇、乙醇、 一甲@迷、一乙醚或其組合,更佳地係是甲醇及二甲醚,及 最佳地是甲醇。 上面所討論的各種進料,特別是含有含氧物之進料, 更特別的是含有醇的進料,主要被轉換成一或多種燃烴類 。由進料所製備的烯烴類典型地具有從2至3 0個碳原子 ’皋父佳2至8個碳原子,更佳2至6個碳原子,更佳2至 4個碳原子,及最佳爲乙烯及/或丙烯。 本發明的觸媒組成物特別用於通常稱爲氣體轉換成烯 烴(GTO)的方法或是甲醇轉換成烯烴(MT〇)的方法。在該 方法中’受充氧的進料,最佳爲含甲醇的進料,在分子篩 觸媒組成物存在下被轉換成一或多種燒烴類,較佳及優勢 地爲乙燃及/或丙;(:希。 使用本發明觸媒組成物以轉換進料,較佳爲含有一或 多種含氧物之進料’所產生的烯烴類的含量,以所產生的 烴類的總重計算’大於5 0重量%,典型地大於6 0重量°/〇 ,例如大於70重量%,及較佳地大於重量%。此外, 所產生的乙燃及/或丙烯的含量,以所產生的烴類產物的 總重什算’大於4 0重量%,典型地大於5 0重量%,例如 大於6 5重量% ’及較佳地大於7 8重量%。典型地,所產 生的乙燃的含量’以所產生的烴類產物的總重計算,大於 2 0重量%,例如大於3 〇重量%,例如大於4 〇重量%。此 外’所產生的丙燏的含量,以所產生的烴類產物的總重計 算’典型地大於2 0噩量%,例如大於2 5重量%,例如大 -36- (32) 200303237 於3 0重量%,較佳地大於3 5重量%。 發現與無活潑金屬氧化物成分之相似觸媒組成物在相 同轉換條件相比,使用本發明觸媒組成物使含有甲醇及二 甲醚之進料轉換成乙烯及丙烯,產生的乙烷及丙烷被減至 大於10%,例如大於2〇%,例如大於3〇%,及特別是在範 圍從約3 0 %至4 0 %。 除了含氧物成分之外,例如甲醇,進料可包括一或多 種稀釋劑,該稀釋劑通常對進料或分子篩觸媒組成物無反 應性,及典型地被用於減低進料的濃度。稀釋劑的非限制 性範例包括氨、氣、氮、一氧化碳、二氧化碳、水、實質 上無反反應性的鏈烷烴(特別是烷類,例如甲烷、乙烷及 丙烷)、實質上無反應性的芳香族化合物,及其混合物。 最佳的稀釋劑爲水及氮,以水爲特別佳著。 稀釋劑,例如水,可以液態或蒸氣形式或其組合型是 被使用。稀釋劑可直接被加至輸入反應器中的進料,或直 接被加至反應器中,或與分子篩觸媒組成物一起被加入。 本發明方法可被實施於一寬廣的溫度範圍內,例如範 圍從約2〇0°C至約l〇〇〇°C,例如從約2 5 0°C至約800°c, 包括從約2 5 0 °C至約7 5 0 °C ’合宜地從約3 00°C至約6 5 0°C ,典型地從約3 5 0 °C至約600°C,及特別地從約35〇t:至 約 5 5 0 °C。 同樣地,本發明方法可被實施於一寬廣的壓力範圍內 ’該壓力範圍包括自生壓力。典型地,方法中所使用的進 料(不包括其中任何稀釋劑)的分壓範圍從約〇 . 1 k P a a至約 -37- (33) (33)200303237 5Mpaa,例如從約5 kP aa至約i Mpaa,及合宜地從約 20kPaa 至約 500kPaa。 重量時空速度(WHS V),被定義爲排除任何稀釋劑的 進料的總重/小時/觸媒組成物中分子篩的重,典型範圍從 約111卜1至約5〇〇〇111-1,例如從約2111*-1至約3 00 011卜1, 例如從約5hr-l至約1 5 00hr-l,及合宜地從約iohru至約 1 000hr-l。在一實施例中,WHS V大於20hr-l,及範圍從 約2〇hr-l至約3〇〇hr-l,其中進料包括甲醇及/或二甲醚 〇 該方法是在流體化床中實施,進料的表面氣體速度 (SGV)爲至少〇.im/sec,例如大於〇 5rn/sec,例如大於 lm/sec,例如大於2m/sec,合宜地大於3m/sec,及典型 地大於4m/Sec ’該進料包括在反應器系統內,特別是在 上升管反應器,的稀釋劑及反應產物。參考2〇〇〇年n月 8曰申請的美國專利申請案序號〇9/7〇8,753,其倂入本文 作爲參考。 本發明方法合宜地以固定床方法,或更典型地以流體 化床方法(包括湍動床方法),例如連續流體化床方法,及 特別是連續尚速流體化床方法,實施。 g亥方法可發生在各種催化反應器,例如混合反應器, 該混合反應器具有緊密床或固定床反應區域及/或快速流 體化床反應區域連接在一起,循環流體化床反應器、上升 管反應器及諸如此類者。適合的反應器類型被描述在,例 如 US 4,0 76,7 9 6 、 US 6,2 8 7,5 2 2 (雙重上升管)及 (34) (34)200303237In another embodiment, the adhesive is an alumina sol, which advantageously includes alumina, optionally silica. In another embodiment, the adhesive is a peptized alumina, which is prepared by treating an alumina hydrate (such as pseudo-alumina) with an acid, preferably a halogen-free acid, to prepare a sol or aluminum ion solution And made it. Non-limiting examples of commercially available colloidal alumina sols include Nalco 8676 commercially available from Na 1 c 0C hemica 1 C 0 ·, Napervi 11 e, Illi η 0is, and Nyacol nano Technologies, Inc., Ashland, Massachussetts, Nyacol AL20DW. The catalyst composition includes a matrix material, which is preferably different from -29- (25) (25) 200303237 metal oxide and any adhesive. The matrix material is typically effective in reducing the total cost of the catalyst and acts as a heat sink to assist the catalyst composition, such as shielding heat during regeneration, hardening the catalyst composition, and increasing catalyst strength, such as crush strength and abrasion resistance. Non-limiting examples of matrix materials include one or more non-reactive metal oxides. The non-reactive metal oxides include barium oxide, quartz, silica or sols, and mixtures thereof such as silica-magnesia, silica-chromia, Silica-titanium oxide, silica-alumina and silica-alumina-hafnium oxide. In one embodiment, the matrix material is natural clay, such as those from the montmorillonite and kaolin families. These natural clays include secondary bentonite clays and such well-known kaolin clays as Dixie, McNamee, Georgia, and Florida clays. Non-limiting examples of other matrix materials include halositte, kaolin, dickite, nacrite, or vermiculite. The matrix material, such as clay, may be subjected to known improvements such as calcination and / or acid treatment and / or chemical treatment. In a preferred embodiment, the matrix material is a clay or clay type composition ', especially a clay or clay type composition having a low content of rhenium or titanium dioxide, and most preferably, the matrix material is kaolin. Kaolin has been found to form a pumpable, high solids slurry, has a low fresh surface area, and is easily compressed together due to its flat structure. The preferred average particle size of the matrix material (most preferably kaolin) is from about 0.1 μm to about 0.6 μm, and the D 9 particle size distribution is less than 1 μm. The catalyst composition includes an adhesive or matrix substance, and the catalyst composition typically includes from about 1% to about 80% by weight, such as from about 5% to (26) (26) 200303237 and about 60% by weight, and In particular, molecular sieves from about 5% to 50% by weight are calculated based on the total weight of the catalyst composition. The catalyst composition includes an adhesive and a matrix substance, and the weight ratio of the adhesive to the matrix substance is typically from 1:15 to 1: 5, such as from 1:10 to 1: 4, and particularly from 1: 6 to 1: 5. The content of the adhesive is typically from about 2% to about 30% by weight, such as from about 5% to about 20% by weight, and particularly from about 7% to about 15% by weight, with the adhesive, molecular sieve, and Calculation of total weight of matrix material. It has been found that high molecular sieve content and low matrix material content increase the performance of the sieve catalyst composition, whereas low molecular sieve content and high matrix material content improve the abrasion resistance of the composition. The typical density of the catalyst composition ranges from 0.5 g / cc to 5 g / cc, such as from 0.6 g / cc to 5 g / cc, such as from 0.7 g / cc to 4 g / cc, especially from 0.8 g / cc. To 3g / cc. Method for preparing a catalyst composition In the preparation of a catalyst composition, a molecular sieve is first formed, and then is completely mixed with an active metal oxide, preferably in a substantially dry, dried or calcined state. Optimally, the molecular sieve and the active metal oxide are completely mixed in their calcined state. Without being bound by any particular theory, it is believed that the intimate mixing of the molecular sieve and one or more active metal oxides improves the conversion method using the molecular sieve composition and catalyst composition of the present invention. Intimate mixing can be achieved by any method known in the art, such as mixing in the form of a mixing honer, drum mixer, ribbon / pulp blender, kneader, or the like '. Chemical reactions between molecular sieves and metal oxides are unnecessary -31-(27) 200303237 and are usually not preferred. The catalyst composition includes a matrix and / or an adhesive. The molecular sieve and the matrix and / or the adhesive are suitably formulated as a catalyst precursor, and then the active metal is mixed with the formulated precursor. The active metal oxide can be added as unsupported particles or as a mixture with a carrier such as an adhesive or matrix. The resulting catalyst composition can then be formed into particles of useful shape and size by known techniques, such as spray drying, curing, extrusion, and the like. In one embodiment, the molecular sieve composition and the matrix material are optionally mixed with an adhesive to form a slurry with a liquid, followed by mixing, and preferably vigorously mixing, to produce a substantially homogeneous mixture containing the molecular sieve composition. Non-limiting examples of suitable liquids include one or a combination of water, alcohol + ketone, aldehyde and / or ester. The best liquid is water. In one embodiment, the slurry is honed by the colloid for a period of time sufficient to produce the desired slurry structure, secondary particle size, and / or secondary particle size distribution. The molecular sieve composition, matrix material, and optional adhesive can be mixed in the same β or different liquids, and can be mixed in any order, together, simultaneously, continuously, or a combination thereof. In a preferred embodiment, the same liquid is used, preferably water. The molecular sieve composition, matrix material, and optional adhesive are mixed in a liquid in a solid, substantially dry or dried form, or in a slurry manner, or individually. If the solids are added together as a dry or substantially dry solid, it is preferred to add a limited and / or controlled amount of liquid. In one embodiment, the -32- (28) 200303237 of the molecular sieve composition, adhesive and matrix material is mixed or honed to obtain a sufficiently uniform slurry of the molecular sieve catalyst composition secondary particles. It is fed to a formation unit that generates a molecular sieve catalyst composition. In a preferred embodiment, the forming unit is a spray dryer. Typically, the forming unit is maintained at a temperature sufficient to remove most of the liquid from the slurry and from the resulting molecular sieve catalyst composition. When the catalyst composition is formed in this manner, the obtained catalyst composition is in the form of fine particles. When a spray dryer is used as the forming unit, typically, the slurry of the molecular slab composition and the matrix material and an optional adhesive is fed into a spray drying container with a drying gas, and its average inlet temperature ranges from 200 ° C to about 5 5 0 ° C, and outlet temperature range from 100 ° C to about 22 5 ° C. In one embodiment, the average diameter of the catalyst composition formed by spray drying is from about 40 μm to about 300 μm, such as from about 50 μm to about 250 μm, such as from About 50 μm to about 200 μm 'and expediently from about 65 μm to about 90 μm. Other methods for forming molecular trim catalyst compositions are described in U.S. Patent Application Serial No. 09 / 017,7 丨 4, filed July 17, 2000 (spray drying using recovered molecular sieve catalyst composition), It is incorporated herein by reference. Once the molecular sieve catalyst composition is formed in a substantially dry or dried state, the catalyst composition formed for further hardening and / or activation is usually heat-treated at a high temperature, such as calcination. Typical calcination temperatures range from about 400 ° C to about 1,000 ° C, such as from about 500 ° C to about 800 ° C, such as from about 5 50 ° C to about 700 ° C. A typical calcination environment is air (which may include small amounts of water vapor), nitrogen, helium, flue gas (oxygen-depleted combustion products -33- (29) 200303237), or any combination thereof. In a preferred embodiment, the catalyst composition is heated under nitrogen at a temperature from about 600 ° C to about 70 CTC. Heating is continued for a period of time, typically from 30 minutes to 15 hours, such as from 1 hour to about 10 hours, such as from about 1 hour to about 5 hours, and especially from about 2 hours to about 4 hours using molecular sieves. Method of medium composition Φ The above catalyst composition is used in various methods, which include cracking, such as cracking of naphtha feed into light olefins (US 6,3 00,5 3 7) or larger molecular weight ( MW) hydrocarbons to smaller MW hydrocarbons; hydrogen cracking, such as the cracking of heavy petroleum and / or cyclic feeds; isomerization, such as the isomerization of aromatics (such as xylene); polymerization, such as Polymerization of one or more olefins to produce a polymer product; reforming; hydrogenation; dehydrogenation; dewaxing, such as dehydration of hydrocarbons to remove linear alkanes; absorption, such as absorption of alkyl aromatics to isolate them Isomers; alkylation, for example, aromatic φ hydrocarbons (such as benzene and alkylbenzene) are freely alkylated with propylene to produce cumene, or long-chain olefins; alkyl transfers, such as aromatic and Combined alkyl transfer of polyalkyl aromatic hydrocarbons; dealkylation Radical dehydrocyclization; disproportionation such as toluene disproportionation to produce benzene and para-xylene; oligomerization 'such as oligomerization of linear and branched olefins; and dehydrocyclization The best methods include a method of converting naphtha into a highly aromatic mixture; a method of converting light olefins into gasoline, distillates and lubricating oil; and a method of converting -34- (30) (30) 200303237 oxygenates into Olefins; conversion of light paraffins;): Greek and / or aromatic methods; conversion of unsaturated hydrocarbons (ethylene and / or acetylene) into aldehydes for conversion to alcohols, acids and esters . The preferred method of the present invention relates to a method for converting a feed to one or more hydrocarbons. Typically, the feed comprises one or more aliphatic-containing compounds, the aliphatic portion comprising from 1 to 50 carbon atoms, such as from 1 to 20 atoms, such as from 1 to 10 carbon atoms, and particularly Ground from 1 to 4 carbon atoms. Non-limiting examples of aliphatic-containing compounds include alcohols, such as methanol and ethanol, alkyl mercaptans such as methyl mercaptan and ethyl mercaptan, thioethers such as dimethylsulfide, alkylamines such as methylamine 'alkyl ether For example, dimethyl ether, diethyl ether and methyl ether, alkyl halides such as methyl chloride and ethyl chloride, alkyl ketones such as dimethyl ketone, formaldehyde, and various acids such as acetic acid. In a preferred embodiment of the present invention, the feed comprises one or more oxygenates 'more specifically' one or more organic compounds containing at least one oxygen atom. In a preferred embodiment of the present invention, the oxygenate in the feed is one or more alcohols, preferably aliphatic alcohols, and the aliphatic portion of the alcohols has from 1 to 20 carbon atoms, preferably From 1 to 10 carbon atoms, and preferably from 1 to 4 carbon atoms. Alcohols used as a feed for the process of the present invention include lower linear and branched aliphatic alcohols and their unsaturated analogs (counterpart). Non-limiting examples of oxygenates include methanol, ethanol, n-propyl Alcohols, isopropanol, methyl ether, dimethyl ether, diethyl ether, diisopropyl ether, formaldehyde, dimethyl carbonate, monomethyl ketone, acetic acid, and mixtures thereof. -35- (31) (31) 200303237 In a preferred embodiment, the 'feeding is selected from the group consisting of ~ or more of methanol, ethanol, monomethyl @ 迷, monoethyl ether or a combination thereof, and more preferably methanol and dimethyl ether , And most preferably methanol. The various feeds discussed above, especially feeds containing oxygenates, and more particularly feeds containing alcohols, are primarily converted to one or more hydrocarbon-burning species. The olefins produced from the feed typically have from 2 to 30 carbon atoms, preferably from 2 to 8 carbon atoms, more preferably from 2 to 6 carbon atoms, more preferably from 2 to 4 carbon atoms, and most Preferably, it is ethylene and / or propylene. The catalyst composition of the present invention is particularly used for a method generally called a gas conversion to an olefin (GTO) or a method for converting methanol to an olefin (MT0). In this method, the oxygenated feed is preferably a feed containing methanol, which is converted into one or more hydrocarbon-burning hydrocarbons in the presence of a molecular sieve catalyst composition, preferably and advantageously ethane and / or propylene. ;: Greek. Use of the catalyst composition of the present invention to switch feeds, preferably feeds containing one or more oxygenates 'content of olefins produced, calculated based on total weight of hydrocarbons produced' More than 50% by weight, typically more than 60% by weight, such as more than 70% by weight, and preferably more than 50% by weight. In addition, the content of ethane and / or propylene produced is based on the hydrocarbons produced The total weight of the product is even more than 'greater than 40% by weight, typically greater than 50% by weight, such as greater than 65% by weight' and preferably greater than 78% by weight. The total weight of the produced hydrocarbon products is greater than 20% by weight, such as greater than 30% by weight, such as greater than 40% by weight. In addition, the content of the propionate produced is based on the total amount of the produced hydrocarbon products. Recalculation 'is typically greater than 20% by weight, such as greater than 25% by weight, for example Such as Da-36- (32) 200303237 at 30% by weight, preferably more than 35% by weight. It was found that the catalyst of the present invention was used in comparison with similar catalyst compositions without active metal oxide components under the same conversion conditions The composition converts a feed containing methanol and dimethyl ether into ethylene and propylene, and the ethane and propane produced are reduced to greater than 10%, such as greater than 20%, such as greater than 30%, and particularly in a range from about 30% to 40%. In addition to the oxygenate component, such as methanol, the feed may include one or more diluents, which are generally non-reactive to the feed or molecular sieve catalyst composition, and are typically Used to reduce the concentration of the feed. Non-limiting examples of diluents include ammonia, gas, nitrogen, carbon monoxide, carbon dioxide, water, paraffinic hydrocarbons (especially alkanes such as methane, ethane, and propane that are substantially non-reactive) ), Aromatic compounds that are substantially non-reactive, and mixtures thereof. The best diluent is water and nitrogen, with water being particularly preferred. The diluent, such as water, can be in liquid or vapor form or a combination thereof. Use. Thinner can be straight The feed added to the input reactor is either directly added to the reactor or added together with the molecular sieve catalyst composition. The method of the present invention can be implemented in a wide temperature range, for example, ranging from about 2000 ° C to about 1000 ° C, such as from about 250 ° C to about 800 ° c, including from about 250 ° C to about 750 ° C 'conveniently from about 300 ° C to about 650 ° C, typically from about 350 ° C to about 600 ° C, and particularly from about 350 ° to about 550 ° C. Likewise, the method of the present invention can be Implemented over a wide range of pressures. This pressure range includes autogenous pressures. Typically, the partial pressure range of the feed used in the process (excluding any diluent therein) ranges from about 0.1 kPaa to about -37. -(33) (33) 200303237 5Mpaa, for example from about 5 kP aa to about i Mpaa, and expediently from about 20 kPaa to about 500 kPaa. The weight space-time velocity (WHS V) is defined as the total weight of the feed excluding any diluent / hour / weight of the molecular sieve in the catalyst composition, and typically ranges from about 111 to about 5000111-1, For example from about 2111 * -1 to about 3 00 011 bl, for example from about 5 hr-l to about 1 500 hr-l, and suitably from about 10 hr-l to about 1,000 hr-l. In one embodiment, the WHS V is greater than 20 hr-1, and ranges from about 20 hr-1 to about 300 hr-1, where the feed includes methanol and / or dimethyl ether. The method is in a fluidized bed In the implementation, the surface gas velocity (SGV) of the feed is at least 0.1 / sec, such as greater than 0.05 rn / sec, such as greater than 1 lm / sec, such as greater than 2 m / sec, suitably greater than 3 m / sec, and typically greater than 4m / Sec 'This feed includes the diluent and reaction products in the reactor system, especially in the riser reactor. Reference is made to U.S. Patent Application Serial No. 09 / 708,753, filed on 8th, 2000, which is incorporated herein by reference. The method of the present invention is suitably implemented in a fixed bed method, or more typically in a fluidized bed method (including a turbulent moving bed method), such as a continuous fluidized bed method, and particularly a continuous high-speed fluidized bed method. The ghai method can occur in various catalytic reactors, such as a hybrid reactor, which has a tight or fixed bed reaction zone and / or a fast fluidized bed reaction zone connected together, a circulating fluidized bed reactor, a riser Reactors and the like. Suitable reactor types are described in, for example, US 4,0 76,7 9 6, US 6,2 8 7,5 2 2 (dual riser) and (34) (34) 200303237

Fluidization Engineering, D. Kunii and O. Levenspiel, Robert E. Krieger Published Company,New York, New York 1 977,其皆倂入本文作爲參考。 較佳的反應器類型爲上升管反應器,該上升管反應器 通常被描述於尺丨5€1'11以(:1〇1*,?111丨(1丨2&1:丨011&11(1?11^〇1-Particle System, pages 48 to 59, F.A. Zenz and D.F. Othmo, Reinhold Publishing Corporation, New york, I 960, 及US 6, 166,282(快速流體化床反應器),及2000年5月4 日申請的美國專利申請案序號09/5 64,6 1 3,其皆倂入本文 作爲參考。 在一實際實施例中,該方法以流體化床方法或高速流 體化床,利用反應器系統、再生系統及回收系統,予以實 施。 在此方法中,反應器系統合宜地包括流體化床反應器 系統,該反應器系統具有在一或多個上升管反應器內的第 一反應區域,及在至少一個分離容器內的第二反應區域, 典型地包括一或多個旋風分離機。在一實施例中,一或多 個上升管反應器及分離容器被包含在單一反應容器內。新 鮮進料,較佳地含有一或多種含氧物,隨意地有一或多種 稀釋劑,被餵至該一或多個上升管反應器,分子篩觸媒組 成物或其焦結版被導入至該上升管反應器。在一實施例中 ,分子篩觸媒組成物或其焦結版在被導入至該上升管反應 器之前,與液體及/或氣體接觸,該液體較佳爲水或甲醇 ,該氣體例如爲惰性氣體,例如氮。 -39- (35) (35)200303237 在一實施例中,以液體及/或蒸氣方式進入反應器系 統的新鮮進料的含量範圍從約0 . 1重量%至約8 5重量%, 例如從約1重量%至約7 5重量。/〇,更典型地從約5重量% 至約65重量%,以含有在其中的任何稀釋劑的進料的總 重計算。液體及蒸氣進料可爲相同組成物,或可包括各種 比例的相同或不同進料,該進料具有相同或不同的稀釋劑 〇 輸入反應器系統的進料在第一反應區域部份或完全地 較佳地被轉換爲氣體流出物,該流出物隨同焦結的觸媒組 成物進入分離容器。在較佳實施例中,在分離容器內提供 旋風分離機以在分離容器內從含有一或多種烯烴類之氣體 流出物中分離出焦結的觸媒組成物。雖然旋風分離機是較 佳的,在分離容器內重力效應亦可被應用於從氣體流出物 分離出觸媒組成物。從氣體流出物分離出觸媒組成物的其 他方法包括使用板、罩、彎頭及諸如此類者。 在一實施例中,分離容器包括典型地在分離容器的下 游部份中的汽提區域。在汽提區域中,焦結的觸媒組成物 與氣體,較佳爲物流、甲烷、二氧化碳、一氧化碳、輕或 惰性氣體(例如氬)中之一者或其組合,較佳爲氣體,相接 觸,以移除來自焦結的觸媒組成物的受吸附的烴類,該觸 媒組成物之後被導入至再生系統。 焦結的觸媒組成物從分離容器中移除,及被導入至再 生系統。再生系統包括再生器,於再生器中,焦結的觸媒 組成物在慣用的溫度、壓力及滯留時間的再生條件下與再 -40- (36) 200303237 生介質,較佳爲含有氧的氣體,相接觸。 適合的再生介質的非限制性範例包括一或多種的氧、 03、S03、N20、NO、N02、N205、空氣、用氮或二氧化 碳稀釋的空氣、氧、及水(US 6,24 5,7 〇3)、一氧化碳及/或 氫。適合的再生條件爲該等具有燃燒來自焦結的觸媒組成 物的焦炭能力者,較佳地燃燒該焦炭至低於〇 . 5重量%的 程度,以輸入至再生系統之焦結的分子篩觸媒組成物的總 重計算。例如,再生溫度可在範圍從約2 〇 〇艺至約丨5 〇 〇。〇 ,例如從約3 0 0 °C至約1 0 0 0 °C,例如從約4 5 0 °C至約7 5 0 °C,及合宜地從約 5 5 0 °C至約 7 0 0 °C。再生壓力可在範圍 從約 1 5 p s i a ( 1 0 3 k P a a)至約 5 0 0 p s i a ( 3 4 4 8 k P a a),例如從約 20psia(138kPaa)至約 250psia(1724kPaa),包括從約 25?84(1721^&&)至約150?5丨&( 1 03 41^&&),及合宜地從約 30psia(207kPaa)至約 60psia(414kPaa)。 觸媒組成物於再生器中的滯留時間可在範圍從約1分 鐘至數小時,例如從約1分鐘至1 00分鐘,及於再生作用 中氧的容積可在範圍從約0.0 1莫耳%至約5莫耳。/〇,以氣 體的總容積計算。 於再生步驟中焦炭的燃燒是放熱反應,及在一實施例 中,再生系統內的溫度藉由領域中各種技術予以控制,該 技術包括以批次、連續或部分連續模式或其.組合方式,將 經冷卻的氣體餵入至再生器容器中。較佳的技術包含從再 生系統中移出經再生的觸媒組成物,及使經再生的觸媒組 成物通過觸媒冷卻器,形成經冷卻的再生觸媒組成物。在 -41 - (37) 200303237 一實施例中,觸媒冷卻器爲熱交換器,熱交換器位於再生 系統的內部或外部。操作再生系統的其他方法被描述於 U S 6,2 9 0,9 1 6 (控制溼氣),其倂入本文作爲參考。 從再生系統,較佳地從觸媒冷卻器,移出的再生觸媒 組成物與新鮮的分子篩觸媒組成物及/或循環分子篩觸媒 組成物及/或進料及/或新鮮氣體或液體相混合,及被送回 至上升管反應器。在一實施例中,從再生系統移出的再生 觸媒組成物直接地,較佳地是在通過觸媒冷卻器之後,被 送回至上升管反應器。可以部分連續或連續方式使用載體 ,例如惰性氣體、進料蒸氣、氣體及諸如此類者,以幫助 使再生觸媒組成物導入至反應器系統,較佳地至一或多個 上升管反應器。 藉由控制來自再生系統的再生觸媒組成物或經冷卻的 再生觸媒組成物流通至反應器系統,維持在輸入至反應器 之分子篩觸媒組成物上焦炭的最理想程度。控制觸媒組成 物流動的多種技術被描述在Michael Louge,Experimental Techniques, Circulating Fluidized Beds, Grace, Avidan and Knowlton,eds·,Blackie,1997 (336-337),其倂入本 文作爲參考。 觸媒組成物上焦炭程度係藉由從轉換方法中移出觸媒 組成物及測定其碳含量而予以測量的。再生作用之後,在 分子篩觸媒組成物上焦炭的典型程度在範圍從〇 . 〇 1重量% 至約1 5重量% ’例如從約〇 .丨重量%至約1 〇重量%,例如 從約Q · 2重量%至約5重量%,及合宜地從約〇 3重量%至 -42- (38) 200303237 約2重量%,以分子篩重量計算。 氣體流出物從分離容器中移出,及通過回收系統。多 種已知的回收系統、技術及程序用於從氣體流出物中分離 出烯烴類及純化;(:希烴類。回收系統通常包括各種分離作用 、分黯及/或蒸餾塔、管柱、分離機或機組、反應系統, 例如乙苯的製造(US 5,476,97 8)及其他衍生方法,例如醛 、酮及酯的製造(US 5,6 7 5,(H1),及其他組合設備,例如各 種冷凝管、熱交換器、冷凍系統或冷卻機組、壓縮機、分 離鼓或鍋、泵及諸如此類者中之一或多種或其組合。 這些單獨或是組合使用的塔、管柱、分離機或機組的 非限制性範例包括一或多種的甲烷餾除器(較佳爲高溫甲 院織除器)、乙烷餾除器、丙烷餾除器、淸洗塔(通常爲鹼 丨生淸洗ί合及/或驟冷塔)、吸收器、吸附器、膜、乙燦(C2) 分離機、丙烯(C 3 )分離機、丁烯(C4)分離機及諸如此類者 〇 用於優先回收烯烴(較佳爲輕烯烴,例如乙烯、丙烯 及/或丁烯)的各種回收系統被描述於U S 5,9 6 0,6 4 3 (第二富 含乙烯物流)、US 5,019,143、5,452,581 及 5,082,481(膜 分離)、US 5,6 72,197(依賴壓力吸附劑)、US 6,06 9,28 8(氫 移除)、US 5,904,8 80 (在單一步驟中,回收的甲醇被轉換 成氫及二氧化碳)、US 5,92 7,063 (回收的甲醇被轉換成氣 體渦輪發電廠)及 U S 6,1 2 1,5 0 4 (直接產物驟冷)、U S 6,1 2 1,5 0 3 (無超精餾的高純化烯烴類)及u S 6,2 9 3,9 9 8 (壓 力轉換吸附作用),其皆倂入本文作爲參考。 -43- (39) 200303237 含有純化系統(例如烯烴類的純化)的其他回收系統被 描 述 於 Kirk-Othmer Encyclopedia of Chemical Technology, 4th Edition, Volume 9,John Wiley & Sons, 199 6 pages 249-271 and 894-899,其倂入本文作爲參考。 純化系統亦被描述於,例如U S 6,2 7 1,4 2 8 (二烯烴物流的 純化)、US 6,293,999(從丙烷分離出丙烯)及2000年1〇月 2 〇日申請的美國專利申請案序號0 9/ 6 8 9,3 6 3 (使用水合觸 媒的淸洗物流),其皆倂入本文作爲參考。 通常’伴隨大部分的回收系統是額外的產物、副產物 及/或污染物與較佳的主產物的製備、產生或累積。較佳 的主產物,輕烯烴,例如乙烯及丙烯,典型地被純化,以 用於衍生物製造方法,例如聚合方法。因此,在回收系統 的最佳實施例中,回收系統亦包括純化系統。例如,特別 於MTO方法所產生的輕烯烴通過純化系統,該純化系統 移除低程度的副產物或污染物。 污染物及副產物的非限制性範例通常包括極性化合物 ,例如水、醇類、羧酸類、醚類、碳氧化物類、硫化合物 ’例如硫化氫、硫化羰及硫醇類,氨及其他氮化合物、胂 、磷化氫及氯化物。其他污染物或副產物包括氫及烴,例 如乙炔、甲基乙炔、丙二烯、丁二烯及丁炔。 典型地’在轉換一或多種含氧物成具有2或3個碳原 子的烯烴類中,次量的烴,特別是具有4或多個碳原子的 烯烴亦被產生。C4 +烴的含量通常小於2〇重量。/。,例如小 於1 0重量% ’例如小於5重量。/。,及特別小於2重量%, -44 - (40) 200303237 以從方法中移出的流出氣體總重計算,排除水。典型地, 回收系統因此可包括一或多種反應系統,以轉換CO不純 物成有用的產物。 此反應系統的非限制性範例被描述於U S 5,9 5 5 6 4 0 ( 轉換4個碳原子產物成丁-丨-烯)、us 4,774,3 7 5 (異丁焼及 丁 - 2 -燃被轉換成院化汽油)、u S 6,0 4 9,0 1 7 (正丁;(:希的二聚 合作用)、US 4,28 7,3 69及5,76 3,67 8 (較高級烯烴用二氧化 碳羰基化或醛化製造羰基化合物)、U S 4,5 4 2,2 5 2 (多階段 絕熱方法)、US 5,63 4,3 5 4 (烯烴-氫回收)及Cosyns,j. et. al., Process for Upgrading C3? C4 and C5 OlefinicFluidization Engineering, D. Kunii and O. Levenspiel, Robert E. Krieger Published Company, New York, New York 1 977, all of which are incorporated herein by reference. The preferred reactor type is a riser reactor. The riser reactor is usually described at a scale of 5 € 1'11 to (: 1〇1 *,? 111 丨 (1 丨 2 & 1: 丨 011 & 11). (1? 11 ^ 〇1-Particle System, pages 48 to 59, FA Zenz and DF Othmo, Reinhold Publishing Corporation, New York, I 960, and US 6, 166,282 (Rapid Fluidized Bed Reactor), and May 2000 U.S. Patent Application Serial No. 09/5 64,6 1 3, filed on March 4, which is incorporated herein by reference. In a practical embodiment, the method uses a fluidized bed method or a high-speed fluidized bed using a reactor System, regeneration system, and recovery system. In this method, the reactor system desirably includes a fluidized bed reactor system having a first reaction zone within one or more riser reactors, And the second reaction zone within at least one separation vessel typically includes one or more cyclones. In one embodiment, one or more riser reactors and separation vessels are contained within a single reaction vessel. Fresh Feed, preferably containing one or more Oxygen, optionally one or more diluents, is fed to the one or more riser reactors, and the molecular sieve catalyst composition or its coking plate is introduced into the riser reactor. In one embodiment, the molecular sieve Before the catalyst composition or its coking plate is introduced into the riser reactor, it is in contact with a liquid and / or a gas, the liquid is preferably water or methanol, and the gas is, for example, an inert gas such as nitrogen. (35) (35) 200303237 In one embodiment, the content of fresh feed that enters the reactor system in a liquid and / or vapor manner ranges from about 0.1% to about 85% by weight, such as from about 1% by weight % To about 75 wt.%, More typically from about 5 wt.% To about 65 wt.%, Based on the total weight of the feed containing any diluent therein. The liquid and vapor feeds may be of the same composition Or may include various proportions of the same or different feeds, the feeds having the same or different diluents. The feed to the reactor system is partially or completely preferably converted to a gaseous effluent in the first reaction zone. , The effluent with the coking catalyst The product enters a separation container. In a preferred embodiment, a cyclone is provided in the separation container to separate the coked catalyst composition from the gas effluent containing one or more olefins in the separation container. Although the cyclone A separator is preferred, and the gravity effect in the separation container can also be used to separate the catalyst composition from the gas effluent. Other methods of separating the catalyst composition from the gas effluent include the use of plates, hoods, and elbows And the like. In one embodiment, the separation vessel includes a stripping area typically in the downstream portion of the separation vessel. In the stripping area, the coked catalyst composition is in contact with a gas, preferably one of a stream, methane, carbon dioxide, carbon monoxide, a light or inert gas (such as argon), or a combination thereof, preferably a gas. To remove the adsorbed hydrocarbons from the coked catalyst composition, which is then introduced into the regeneration system. The scorched catalyst composition is removed from the separation container and is introduced into the regeneration system. The regeneration system includes a regenerator. In the regenerator, the coked catalyst composition regenerates with conventional regeneration conditions of temperature, pressure and residence time. (36) 200303237, preferably an oxygen-containing gas , Contact. Non-limiting examples of suitable regeneration media include one or more of oxygen, 03, S03, N20, NO, N02, N205, air, air diluted with nitrogen or carbon dioxide, oxygen, and water (US 6,24 5,7 〇3), carbon monoxide and / or hydrogen. Suitable regeneration conditions are those who have the ability to burn coke from the coking catalyst composition, and preferably burn the coke to a level of less than 0.5% by weight to enter the coking molecular sieve into the regeneration system. Calculation of the total weight of the media composition. For example, the regeneration temperature may range from about 2000 to about 500. 〇, such as from about 300 ° C to about 100 ° C, such as from about 4 50 ° C to about 750 ° C, and suitably from about 5 50 ° C to about 700 ° C. The regeneration pressure may range from about 15 psia (103 kPaa) to about 50 psia (3 4 48kPaa), such as from about 20 psia (138 kPaa) to about 250 psia (1724 kPaa), including from About 25? 84 (1721 ^ &) to about 150? 5 (& 031 ^ & &), and expediently from about 30psia (207kPaa) to about 60psia (414kPaa). The residence time of the catalyst composition in the regenerator can range from about 1 minute to several hours, for example, from about 1 minute to 100 minutes, and the volume of oxygen during regeneration can range from about 0.01 1 mole%. To about 5 moles. / 〇, calculated based on the total volume of the gas. In the regeneration step, the combustion of coke is an exothermic reaction, and in one embodiment, the temperature in the regeneration system is controlled by various technologies in the field, which include batch, continuous or partial continuous mode or a combination thereof, The cooled gas is fed into a regenerator container. The preferred technique includes removing the regenerated catalyst composition from the regeneration system, and passing the regenerated catalyst composition through a catalyst cooler to form a cooled regenerated catalyst composition. In one embodiment of -41-(37) 200303237, the catalyst cooler is a heat exchanger, and the heat exchanger is located inside or outside the regeneration system. Other methods of operating the regeneration system are described in US 6,29,9 1 6 (moisture control), which is incorporated herein by reference. Regenerated catalyst composition removed from the regeneration system, preferably from the catalyst cooler, and fresh molecular sieve catalyst composition and / or recycled molecular sieve catalyst composition and / or feed and / or fresh gas or liquid phase Mix and return to riser reactor. In one embodiment, the regeneration catalyst composition removed from the regeneration system is returned to the riser reactor directly, preferably after passing through the catalyst cooler. The carrier may be used in a partially continuous or continuous manner, such as inert gas, feed vapor, gas, and the like, to help introduce the regeneration catalyst composition into the reactor system, preferably to one or more riser reactors. By controlling the regeneration catalyst composition from the regeneration system or the cooled regeneration catalyst composition to flow to the reactor system, the optimal level of coke on the molecular sieve catalyst composition input to the reactor is maintained. Various techniques for controlling catalyst composition flow are described in Michael Louge, Experimental Techniques, Circulating Fluidized Beds, Grace, Avidan and Knowlton, Eds., Blackie, 1997 (336-337), which is incorporated herein by reference. The degree of coke on the catalyst composition was measured by removing the catalyst composition from the conversion method and measuring its carbon content. After regeneration, the typical degree of coke on the molecular sieve catalyst composition ranges from 0.01% to about 15% by weight, such as from about 0.1% by weight to about 10% by weight, such as from about Q. · 2% by weight to about 5% by weight, and suitably from about 0.33% by weight to -42- (2003) 200303237, about 2% by weight, calculated as the molecular sieve weight. The gas effluent is removed from the separation vessel and passed through a recovery system. A variety of known recovery systems, techniques and procedures are used to separate and purify olefins from gaseous effluents; (: Hydrocarbons. Recovery systems typically include various separations, separation and / or distillation columns, columns, separations Machine or unit, reaction system, such as the production of ethylbenzene (US 5,476,97 8) and other derivatization methods, such as the production of aldehydes, ketones and esters (US 5,6 7 5, (H1), and other combined equipment, such as One or more or a combination of various condenser tubes, heat exchangers, refrigeration systems or cooling units, compressors, separation drums or pans, pumps, and the like. These towers, tubes, separators, or Non-limiting examples of the unit include one or more methane distillers (preferably high-temperature Jiayuan weavers), ethane distillers, propane distillers, scrubbing towers (usually alkaline, raw scrubbing) And / or quenching tower), absorber, adsorber, membrane, Ecan (C2) separator, propylene (C3) separator, butene (C4) separator and the like. Light olefins, such as ethylene, propylene and / or Various recovery systems for ene) are described in US 5,960,6 4 3 (second ethylene-rich stream), US 5,019,143, 5,452,581 and 5,082,481 (membrane separation), US 5,6 72,197 (dependent Pressure adsorbent), US 6,06 9,28 8 (hydrogen removal), US 5,904,8 80 (in a single step, the recovered methanol is converted to hydrogen and carbon dioxide), US 5,92 7,063 (recovered methanol Converted into gas turbine power plant) and US 6,1 2 1,5 0 4 (direct product quenching), US 6,1 2 1,5 0 3 (highly purified olefins without ultra-rectification), and U S 6, 2 9 3, 9 9 8 (pressure conversion adsorption), all of which are incorporated herein by reference. -43- (39) 200303237 Other recovery systems containing purification systems (such as the purification of olefins) are described in Kirk- Othmer Encyclopedia of Chemical Technology, 4th Edition, Volume 9, John Wiley & Sons, 199 6 pages 249-271 and 894-899, which are incorporated herein by reference. Purification systems are also described in, for example, US 6, 2 7 1 , 4 2 8 (purification of diene stream), US 6,293,999 (propylene separated from propane), and October 2, 2000 U.S. Patent Application Serial No. 0 9/6 8 9, 3 6 3 (washing stream using hydration catalyst), which are all incorporated herein by reference. Often, 'with most recovery systems are additional products, Preparation, production or accumulation of by-products and / or contaminants and preferred main products. The preferred main products, light olefins, such as ethylene and propylene, are typically purified for use in derivative manufacturing processes, such as polymerization processes. Therefore, in the preferred embodiment of the recovery system, the recovery system also includes a purification system. For example, light olefins, particularly those produced by the MTO process, pass through a purification system that removes low levels of by-products or contaminants. Non-limiting examples of pollutants and by-products typically include polar compounds such as water, alcohols, carboxylic acids, ethers, carbon oxides, sulfur compounds such as hydrogen sulfide, carbonyl sulfide and thiols, ammonia and other nitrogen Compounds, rhenium, phosphine and chloride. Other pollutants or by-products include hydrogen and hydrocarbons, such as acetylene, methylacetylene, propadiene, butadiene, and butyne. Typically, in converting one or more oxygenates to olefins having 2 or 3 carbon atoms, minor amounts of hydrocarbons, especially olefins having 4 or more carbon atoms, are also produced. The content of C4 + hydrocarbons is usually less than 20 weight. /. For example, less than 10% by weight, for example, less than 5% by weight. /. , And especially less than 2% by weight, -44-(40) 200303237 Calculated as the total weight of the effluent gas removed from the method, excluding water. Typically, the recovery system may therefore include one or more reaction systems to convert CO impurities into useful products. Non-limiting examples of this reaction system are described in US 5,9 5 5 6 4 0 (conversion of 4 carbon atom products to butane- 丨 -ene), us 4,774,3 7 5 (isobutane and butane-2- Ignition is converted into chemical gasoline), u S 6,0 4 9, 0 1 7 (Ning Ding; (: Greek dimerization), US 4,28 7,3 69 and 5,76 3,67 8 ( Carbonyl carbonylation or aldolization of higher olefins to produce carbonyl compounds), US 4,5 4 2,2 5 2 (multistage adiabatic process), US 5,63 4,3 5 4 (olefin-hydrogen recovery) and Cosyns, j. et. al., Process for Upgrading C3? C4 and C5 Olefinic

Streams,Pet. & Coal,Vol· 37,No. 4 ( 1 995 )(二聚合或寡 聚合丙烯、丁烯及戊烯),其皆倂入本文作爲參考。 藉由上述方法中任一者所製備的較佳輕烯烴爲高純淨 主要烯烴產物,該產物包括含量大於8 0重量%,例如大 於90重量%,例如大於95重量%,例如至少約99重量% 的單一碳原子數的烯烴,以烯烴的總重計算。 在一實際實施例中,本發明方法形成整合方法的一部 份’該整合方法用於從烴進料,較佳爲氣體烴進料,特別 爲甲烷及/或乙烷,製備輕烯烴。在該方法的第一步驟使 氣體進料,較佳是混有水物流,通過合成氣體產生區域, 製備合成氣體物流,典型地包括二氧化碳、一氧化碳及氫 。合成氣體產物是已知的,及典型的合成氣體溫度在範圍 從約 7 0 0 °C至約1 2 〇 〇 °C ,及合成氣體壓力在範圍從約 2MPa至約lOOMPa。合成氣體物流是由天然氣、石油液體 (41) 200303237 及含碳物質,例如煤、回收的塑膠、都市廢棄物或任何其 他有機材料製備的。較佳地’合持氣體物流是經由天然氣 的重組物流製備的。 在該方法的下一步驟包含使合成氣體物流與多相觸媒 ,典型爲以銅爲底質的觸媒,相接觸製備含有含氧物的物 流,通常與水混合。在一實施例中,接觸的步驟是在溫度 範圍從約150°C至約45 0 °C及壓力範圍從約5MPa至約 1 0 Μ P a時予以實施的。 φ 該含有含氧物的物流或粗甲醇,典型地包括醇類產物 及各種其他成分,例如醚類、特別是二甲醚,酮類、酸類 、經溶解的氣體,例如氫、甲烷、碳氧化物、及氮、及燃 料油。在一較佳實施例中,含有含氧物之物流,粗甲醇, 通過已知純化方法、蒸餾、分離及分餾,得到經純化的含 氧物之物流,例如,商業等級A及AA甲醇。 含有含氧物之物流或經純化的含有含氧物之物流,隨 葸地與一或多種稀釋劑,之後可充當方法中的進料,製備 輕烯烴,例如乙烯及/或丙烯。該整合方法的非限制性範 例被描述於E P - B - 0 9 3 3 3 4 5,其倂入本文作爲參考。 在另一更完全的整合方法中,其隨意地與上述整合方 法相組合,在一實施例中,所製得的烯烴類係針對供製備 各種聚烯類之一或多種聚合方法。(參考,例如,2000年 7月1 3日申請的美國專利·申請案序號〇 9 / 6 1 5,3 7 6,其併 入本文作爲參考)。 聚合方法包括溶液、氣相、漿相及高壓方法,或其組 -46 - (42) 200303237 合。特別佳者爲一或多種烯烴類之氣相或漿相聚合,該烯 烴之至少一者爲乙烯或丙烯。這些聚合方法利用聚合觸媒 ,該聚合觸媒可包括上面所討論的分子篩觸媒中之任一者 或其組合,然而,較佳的聚合觸媒爲齊格-納塔、飛利浦 型、茂金屬、茂金屬型及前聚合觸媒,及其混合物。 在較佳實施例中,整合方法包括在聚合觸媒系統存在 於聚合反應器中聚合一或多種烯烴類製備一或多種聚合產 物之方法,其中該一或多種烯烴類已藉由使用上述分子篩 觸媒組成物轉換醇類,特別是甲醇,予以製得。較佳的聚 合方法是氣相聚合方法,及烯烴類中至少一者爲乙烯或丙 烯,及較佳地,聚合觸媒系統爲經支撐的茂金屬觸媒系統 。在此實施例中,經支撐的茂金屬觸媒系統包括載體、茂 金屬或茂金屬型化合物及活化劑,較佳地,活化劑爲非配 位的陰離子或鋁氧烷,或其組合,及最佳地,活化劑爲鋁 氧烷。 上述聚合方法所製得的聚合物包括線性低密度聚乙烯 、彈性體、塑料、高密度聚乙烯、低密度聚乙烯、聚丙烯 及聚丙烯共聚物。藉由聚合方法所製得之以丙烯爲底質的 聚合物包括雜排聚丙烯、同排聚丙烯、對排聚丙烯、及丙 烯雜亂、嵌段或碰撞共聚物。 實施方式 實施例 提供下面實施例,以使本發明,包括其代表性優點, -47- (43) (43)200303237 獲得較佳了解。 在實施例中,L EI被疋義爲含有活潑金屬氧化物分子 篩觸媒組成物的壽命對LEI定義爲1之無金屬氧化物的相 同分子篩的壽命的比値。爲了測定L E1,壽命被定義爲被 轉換的含氧物的累積含量(較佳爲轉換成一或多種烯烴類 )/g分子篩,直到轉換率下降至約其初始値的1 〇%。若實 驗結束時轉換未被下降至其初始値的1 〇%,壽命藉由以實 驗最後2個數據計算轉換下降比率的線性外插法予以計算 。爲了測定下面實施例的LEI,在一較佳的含氧物轉換方 法中,甲醇在475°C、25psig(172kPag)及甲醇的重量時空 速度爲l〇〇h-l時被轉換成一或多種烯烴類。 “主要烯烴”爲對乙烯及丙烯選擇性的總合。 “ C 2 == / C 3 = ”比値爲乙烯對丙烯加權選擇性的比値。“ c 3純 度”係藉由丙烯選擇性除以丙烯及丙烷選擇性的總合予以 計算而得。對甲烷、乙烯、乙烷、丙烯、丙烷、C 4,s及 C5 + ’s選擇性是平均加權選擇性。C5 +,s只由C5,s、C6,s 及C 7 ’ S構成。表中的選擇性値的總合不等於1 〇 〇 %,因爲 其已對焦炭校正,其爲已知。 實施例A 分子篩的製備 石夕銘磷酸鹽分子篩’ SAPO-34,被稱爲,在充當 有機結構指向劑或樣板劑之四乙基氫氧化銨(R1)及二丙胺 (R2)存在下結晶。具有下面莫耳比例組成的混合物: (44) (44)200303237 2Si02/Al203/P205/0.9Rl/1.5R2/50H20 係藉由混合C ο n d e a P u r a 1 S B與去離子水形成漿料予 以製備。將磷酸(8 5%)加至該漿料中。攪拌這些加成物形 成均質混合物。該均質混合物被力[[入 Ludox A S 4 0 ( 4 0 % S i Ο 2)’接著被加入R 1,混合形成均質混合物。 該均質混合物被加入R2。該均質混合物之後在不鏽鋼壓 力鍋中攪動受熱至1 7〇°C持續40小時予以結晶。此提供 結晶分子篩的漿料。結晶體之後經由過濾從母液中分離出 來。分子篩結晶體之後與黏著劑及基質物質混合,及經由 噴霧乾燥形成顆粒。 實施例B 轉換方法 使用微流動反應器’得到所有催化或轉換數據,該反 應器由位於爐內之不鏽鋼反應器(1/4英吋(0.64cm)外直徑) 構成’蒸氣甲醇被餵至微流動反應器。反應器被維持在溫 度47 5 °C及壓力25psig(172.4kPag)。甲醇的流速爲致使甲 醇的重量/g分子篩的流速,亦稱爲重量時空速度(WH S V) ’爲1 0 〇 h - 1。從反應器出來的產物氣體被收集,及使用 氣體層析法予以分析。每一實驗所負荷的觸媒爲50mg, 及反應器床用石英予以稀釋’以最小化反應器內的熱點。 特別地,對本發明觸媒組成物而言,實施例A的MS A分 -49- (45) (45)200303237 子篩與活潑金屬氧化物的物理狀態混合物被使用。負荷的 總觸媒組成物保持5 0 mg,及當反應器床內分子篩的含量 經由加入混合的金屬氧化物而減低,甲醇流速被調整,致 使甲醇的 WHSV爲l〇〇h-l,以反應器床內分子篩的含量 計算。 實施例1 1 000克Zr*OCl2.8H2〇被攪拌溶解於3.0升的蒸餾水 Φ 中。製備含有400克濃NH40H及3.0升蒸餾水的另一溶 液。兩溶液受熱至6 0 °C。這兩個受熱的溶液使用噴嘴混 合在速率5 0 m 1 / m i η予以組合。最後混合物的ρ η經由加入 濃氫氧化銨被調整至約9。此漿料之後被放入聚丙烯瓶中 及至於氣流盒(1 〇 〇 °C ) 7 2小時。所形成的產物經由過濾被 回收,用過量的水淸洗,及在8 5 °C乾燥隔夜。該產物的 一部份在流動空氣中被段燒至700 °C持續3小時,以製備 活潑鉻氧化物物質。 ® 實施例2 5 00 克的 Zr0Cl2.8H20 及 84 克 La(N03)3.6H20 被攪 拌溶解於3.0升的蒸餾水中。製備含有2 60克濃NH40Η 及3.0升蒸餾水的另一溶液。兩溶液受熱至6 0 °C,之後使 用噴嘴混合在速率50ml/min予以組合,形成最後的混合 物,駿料。最後混合物的Ρ Η經由加入濃氫氧化鏡被調整 至約9。此漿料之後被放入聚丙烯瓶中及至於氣流盒(丨〇 〇 -50- (46) (46)200303237 °C )72小時。所形成的產物經由過濾被回收,用過量的水 淸洗,及在8 5 °C乾燥隔夜。該產物的一部份在流動空氣 中被段燒至°C持續,3小時,以製備活潑混合金屬氧化 物,該氧化物包含少量1 〇重量%La,以混合金屬氧化物 的最後重量計算。 實施例3 5 0g的Zr*0C12.8H20被攪拌溶解於3 00 ml蒸餾水中。 製備另一含有4.2g的La(N03)3.6H20及3 00ml蒸餾水之 溶液。這兩溶液被攪拌結合,形成最終混合物。最終混合 物,漿料,的pH値經由加入濃氫氧化銨(28.9g)而被調整 至約9。此漿料之後被放置於聚丙烯瓶中,及置於氣流盒 (1 0 0 °C )中7 2小時。所形成的產物經由過濾被回收,以過 量的水淸洗,及在8 5 °C乾燥隔夜。此得到的產物的一部 份在流動空氣中被鍛燒至700 °C持續3小時,產生活潑的 混合金屬氧化物,該氧化物含有5重量%La,係以混合金 屬氧化物的最終重量計算。 實施例4 5 00g 的 Zr0C12.8H20 及 70g 的 γ(Ν03)3.5Η20 被攪 拌溶解於3 · 0升蒸餾水中。製備另一含有2 6 0 g濃ΝΗ4 Ο Η 及3 . 〇升蒸餾水的溶液。兩溶液受熱至6 0 °C,之後使用噴 嘴以速率5 0 m 1/ m i η混合,形成最終混合物。最終混合物 ,漿料,的pH値經由加入濃氫氧化銨而被調整至約9。 -51 - (47) (47)200303237 此漿料之後被放置於聚丙烯瓶中,及置於氣流盒(1 00 t;) 中7 2小時。所形成的產物經由過濾被回收,以過量的水 淸洗’及在8 5 °C乾燥隔夜。此得到的產物的一部份在流 動空氣中被鍛燒至7〇〇。(:持續3小時,產生活潑的混合金 屬氧化物,該氧化物含有1 〇重量% Y(釔),係以混合金屬 氧化物的最終重量計算。 實施例5 5 0 0 g 的 Zr0C12.8H20 及 56g 的 Ca(N03)2.4H20 被攪 拌溶解於 3 0 00ml蒸餾水中。製備另一含有 260gNH4OH 及3 0 0 0 m 1蒸餾水的溶液。這兩溶液被攪拌結合。最終混 合物的pH値經由加入濃氫氧化銨(160g)而被調整至約9 。此漿料之後被放置於聚丙烯瓶中,及置於氣流盒(1 00 °C )中72小時。所形成的產物經由過濾被回收,以過量的水 淸洗,及在8 5 °C乾燥隔夜。此得到的產物的一部份在流 動空氣中被鍛燒至70 〇°C持續3小時,產生活潑的混合金 屬氧化物,該氧化物含有5重量% C a(鈣),係以混合金屬 氧化物的最終重量計算。 實施例6 70g 的 Ti0S04 · xh2S〇4 · xH20(x=l)被攪拌溶解於 400ml蒸餾水。製備另一含有12.8gCeS04及3 0 0ml蒸餾 水的溶液。這兩溶液被攪拌結合。最終混合物的pH値經 由加入濃氫氧化銨(64.3 g)而被調整至約8。此漿料之後被 (48) (48)200303237 放置於聚丙烯瓶中,及置於氣流盒(1 〇 〇 °c )中7 2小時。所 形成的產物經由過濾被回收,以過量的水淸洗,及在8 5 °C乾燥隔夜。此得到的產物的一部份在流動空氣中被鍛燒 至70 0°C持續3小時,產生活潑的混合金屬氧化物,該氧 化物含有5重量%Ce,係以混合金屬氧化物的最終重量計 算。 實施例7 5g的HfOCl2 · χΗ20被攪拌溶解於1 〇〇ml蒸餾水中。 最終混合物的pH値經由加入濃氫氧化銨(4.5g)而被調整 至約9。此漿料之後被放置於聚丙烯瓶中,及置於氣流盒 (100°C )中72小時。所形成的產物經由過濾被回收,以過 量的水淸洗,及在8 5 °C乾燥隔夜。此得到的產物的一部 份在流動空氣中被鍛燒至70 〇°C持續3小時,產生活潑的 混合金屬氧化物。 實施例8 5g 的 Hf〇Cl2 · χΗ20 及 〇.62g 的 La(N03)3 · 6H20 被 攪拌溶解於1 〇〇ml蒸餾水中。最終混合物的pH値經由加 入濃氫氧化銨(3 . 5 g)而被調整至約9 °此漿料之後被放置 於聚丙烯瓶中’及置於氣流盒(100°C )中72小時。所形成 的產物經由過濾被回收’以過量的水淸洗’及在8 5 °C乾 燥隔夜。此得到的產/物的一部份在流動空氣中被鍛燒至 7 0 0 °C持續3小時’産生活潑旳混合金丨勸^化物’該氧化 (49) 200303237 物含有5重量y〇La ’係以混合金屬氧化物的最終重量計算 實施例9Streams, Pet. &Amp; Coal, Vol. 37, No. 4 (1 995) (dimerized or oligomeric propylene, butene and pentene), all of which are incorporated herein by reference. A preferred light olefin prepared by any of the above methods is a high purity primary olefin product that includes a content greater than 80% by weight, such as greater than 90% by weight, such as greater than 95% by weight, such as at least about 99% Olefins of a single carbon number, based on the total weight of the olefins. In a practical embodiment, the process of the present invention forms part of an integrated process' which is used to produce light olefins from a hydrocarbon feed, preferably a gaseous hydrocarbon feed, especially methane and / or ethane. In the first step of the method, a gas feed, preferably a mixed water stream, is passed through the synthesis gas generation zone to prepare a synthesis gas stream, which typically includes carbon dioxide, carbon monoxide and hydrogen. Syngas products are known, and typical syngas temperatures range from about 700 ° C to about 12O ° C, and syngas pressures range from about 2 MPa to about 100 MPa. Syngas streams are made from natural gas, petroleum liquids (41) 200303237 and carbonaceous substances such as coal, recycled plastic, municipal waste or any other organic material. Preferably, the ' co-gas stream is prepared via a reorganized stream of natural gas. The next step in the process involves contacting a synthesis gas stream with a heterogeneous catalyst, typically a copper-based catalyst, to produce a stream containing oxygenates, usually mixed with water. In one embodiment, the step of contacting is performed at a temperature ranging from about 150 ° C to about 45 ° C and a pressure ranging from about 5MPa to about 10 MPa. φ The oxygenate-containing stream or crude methanol typically includes alcohol products and various other components, such as ethers, especially dimethyl ether, ketones, acids, dissolved gases, such as hydrogen, methane, and carbon oxidation Materials, and nitrogen, and fuel oil. In a preferred embodiment, the oxygenate-containing stream, crude methanol, is obtained by known purification methods, distillation, separation, and fractionation to obtain a purified oxygenate stream, such as commercial grade A and AA methanol. An oxygenate-containing stream or a purified oxygenate-containing stream, when combined with one or more diluents, can then be used as a feed in a process to produce light olefins such as ethylene and / or propylene. A non-limiting example of this integration method is described in EP-B-0 9 3 3 3 4 5 which is incorporated herein by reference. In another more complete integration method, which is optionally combined with the above integration method, in one embodiment, the olefins produced are directed to one or more polymerization methods for preparing various polyolefins. (Reference, for example, U.S. Patent · Application Serial No. 09/61, 5,376, filed July 13, 2000, which is incorporated herein by reference). Polymerization methods include solution, gas phase, slurry phase, and high-pressure methods, or a combination thereof -46-(42) 200303237. Particularly preferred is the gas-phase or slurry-phase polymerization of one or more olefins, at least one of which is ethylene or propylene. These polymerization methods utilize polymerization catalysts, which may include any or a combination of the molecular sieve catalysts discussed above, however, preferred polymerization catalysts are Zieg-Natta, Philips-type, metallocene , Metallocene-type and pre-polymerization catalysts, and mixtures thereof. In a preferred embodiment, the integration method includes a method of polymerizing one or more olefins in the presence of a polymerization catalyst system in a polymerization reactor to prepare one or more polymerization products, wherein the one or more olefins have been catalyzed by using the molecular sieve described above The vehicle composition is obtained by converting alcohols, especially methanol. The preferred polymerization method is a gas phase polymerization method, and at least one of the olefins is ethylene or propylene, and preferably, the polymerization catalyst system is a supported metallocene catalyst system. In this embodiment, the supported metallocene catalyst system includes a carrier, a metallocene or metallocene compound and an activator. Preferably, the activator is a non-coordinating anion or alumoxane, or a combination thereof, and Most preferably, the activator is alumoxane. The polymers prepared by the above polymerization methods include linear low density polyethylene, elastomers, plastics, high density polyethylene, low density polyethylene, polypropylene, and polypropylene copolymers. The propylene-based polymers produced by the polymerization method include hetero-row polypropylene, homo-row polypropylene, counter-row polypropylene, and propylene random, block or collision copolymers. Embodiments Examples The following examples are provided to enable the present invention, including its representative advantages, to obtain a better understanding of -47- (43) (43) 200303237. In the examples, L EI is defined as the ratio of the life of the active metal oxide molecular sieve catalyst composition to the life of the same molecular sieve without metal oxide having an LEI of 1. To determine L E1, the lifetime is defined as the cumulative content of converted oxygenates (preferably converted to one or more olefins) / g molecular sieve until the conversion rate drops to about 10% of its initial value. If the conversion does not drop to 10% of its initial value at the end of the experiment, the lifetime is calculated by linear extrapolation using the last 2 data of the experiment to calculate the conversion reduction ratio. In order to determine the LEI of the following examples, in a preferred oxygenate conversion method, methanol is converted to one or more olefins at 475 ° C, 25 psig (172 kPag), and a weight space-time velocity of 100 h-1. "Main olefin" is the sum of selectivity to ethylene and propylene. The "C 2 == / C 3 =" ratio 値 is the ratio of ethylene to propylene weighted selectivity 値. "C3 purity" is calculated by dividing the propylene selectivity by the sum of the propylene and propane selectivities. The selectivity to methane, ethylene, ethane, propylene, propane, C 4, s and C5 + 's is the average weighted selectivity. C5 +, s consists only of C5, s, C6, s and C7'S. The sum of the selectivities in the table is not equal to 100% because it is coke corrected and it is known. Example A Preparation of molecular sieve Shi Ximing Phosphate Molecular Sieve 'SAPO-34, which is called, crystallizes in the presence of tetraethylammonium hydroxide (R1) and dipropylamine (R2), which serve as the organic structure directing agent or template. A mixture having the following molar ratio: (44) (44) 200303237 2Si02 / Al203 / P205 / 0.9Rl / 1.5R2 / 50H20 is prepared by mixing C ο n d e a P u r a 1 S B with deionized water to form a slurry. Phosphoric acid (8 5%) was added to the slurry. These adducts are stirred to form a homogeneous mixture. The homogeneous mixture was forced into [[Ludox A S 40 (40% S i 0 2) '), then R 1 was added and mixed to form a homogeneous mixture. This homogeneous mixture was added to R2. This homogeneous mixture was then stirred in a stainless steel pressure cooker and heated to 170 ° C for 40 hours for crystallization. This provides a slurry of crystalline molecular sieve. The crystals were then separated from the mother liquor by filtration. The molecular sieve crystals are then mixed with an adhesive and a matrix substance, and then granulated by spray drying. Example B The conversion method uses a micro-flow reactor 'to obtain all catalytic or conversion data. The reactor consists of a stainless steel reactor (1/4 inch (0.64 cm) outside diameter) located inside the furnace.' Steam methanol is fed to the micro Flow reactor. The reactor was maintained at a temperature of 47 5 ° C and a pressure of 25 psig (172.4 kPag). The flow rate of methanol is a flow rate such that the weight of methanol / g molecular sieve is also referred to as a weight space-time velocity (WH S V) 'of 100 h-1. The product gas from the reactor is collected and analyzed using gas chromatography. The catalyst loaded in each experiment was 50 mg, and the reactor bed was diluted with quartz 'to minimize hot spots in the reactor. In particular, for the catalyst composition of the present invention, the MS A fraction of Example A -49- (45) (45) 200303237 was used as a physical state mixture of the sub-sieve and the active metal oxide. The loaded total catalyst composition was maintained at 50 mg, and when the molecular sieve content in the reactor bed was reduced by adding mixed metal oxides, the methanol flow rate was adjusted so that the WHSV of methanol was 100 hl. Calculation of the content of the internal molecular sieve. Example 1 1,000 g of Zr * OCl2.8H20 was stirred and dissolved in 3.0 liters of distilled water Φ. Another solution was prepared containing 400 g of concentrated NH40H and 3.0 liters of distilled water. Both solutions were heated to 60 ° C. The two heated solutions were mixed using a nozzle at a rate of 50 m 1 / m i η. The ρ η of the final mixture was adjusted to about 9 by adding concentrated ammonium hydroxide. This slurry was then placed in a polypropylene bottle and placed in an air box (1000 ° C) for 72 hours. The formed product was recovered by filtration, washed with excess water, and dried overnight at 85 ° C. Part of the product was burned to 700 ° C in flowing air for 3 hours to prepare active chromium oxide material. ® Example 2 500 g of Zr0Cl2.8H20 and 84 g of La (N03) 3.6H20 were stirred and dissolved in 3.0 liters of distilled water. Prepare another solution containing 260 grams of concentrated NH40Η and 3.0 liters of distilled water. The two solutions were heated to 60 ° C, and then combined using a nozzle to mix at a rate of 50 ml / min to form the final mixture. The pH of the final mixture was adjusted to about 9 by adding concentrated hydroxide mirrors. This slurry was then placed in a polypropylene bottle and in an airflow box (100-50-(46) (46) 200303237 ° C) for 72 hours. The formed product was recovered by filtration, washed with excess water, and dried overnight at 85 ° C. A part of the product was partially burned in flowing air to ° C for 3 hours to prepare an active mixed metal oxide, which contained a small amount of 10% by weight of La, calculated based on the final weight of the mixed metal oxide. Example 3 50 g of Zr * 0C12.8H20 was stirred and dissolved in 300 ml of distilled water. Another solution containing 4.2 g of La (N03) 3.6H20 and 300 ml of distilled water was prepared. The two solutions are combined with stirring to form the final mixture. The pH of the final mixture, slurry, was adjusted to about 9 by adding concentrated ammonium hydroxide (28.9 g). This slurry was then placed in a polypropylene bottle and placed in an air flow box (100 ° C) for 72 hours. The formed product was recovered by filtration, washed with excess water, and dried overnight at 85 ° C. A part of the obtained product was calcined in flowing air to 700 ° C for 3 hours to produce an active mixed metal oxide, which contains 5 wt% La, based on the final weight of the mixed metal oxide . Example 4 500 g of Zr0C12.8H20 and 70 g of γ (N03) 3.5Η20 were stirred and dissolved in 3.0 liters of distilled water. Another solution containing 260 g of concentrated NH 4 O 4 and 3.0 liters of distilled water was prepared. The two solutions were heated to 60 ° C, and then mixed using a nozzle at a rate of 50 m 1 / m i η to form a final mixture. The pH of the final mixture, slurry, was adjusted to about 9 by adding concentrated ammonium hydroxide. -51-(47) (47) 200303237 This slurry was then placed in a polypropylene bottle and placed in an air flow box (100 t;) for 7 2 hours. The product formed was recovered by filtration, washed with excess water 'and dried at 85 ° C overnight. A part of the obtained product was calcined to 700 in flowing air. (: For 3 hours, an active mixed metal oxide is produced. The oxide contains 10% by weight Y (yttrium), which is calculated based on the final weight of the mixed metal oxide. Example 5 0 0 g of Zr0C12.8H20 and 56g of Ca (N03) 2.4H20 was stirred and dissolved in 3000ml of distilled water. Another solution containing 260g of NH4OH and 300m1 of distilled water was prepared. The two solutions were combined by stirring. The pH of the final mixture was added by adding concentrated hydrogen The ammonium oxide (160g) was adjusted to about 9. This slurry was then placed in a polypropylene bottle and placed in an airflow box (100 ° C) for 72 hours. The formed product was recovered by filtration, in excess. Rinse with water, and dry overnight at 85 ° C. A part of the product obtained is calcined in flowing air to 70 ° C for 3 hours to produce a lively mixed metal oxide, which contains 5% by weight of Ca (calcium), calculated based on the final weight of the mixed metal oxide. Example 6 70 g of Ti0S04 · xh2S〇4 · xH20 (x = 1) was stirred and dissolved in 400 ml of distilled water. Another 12.8 g of CeS04 was prepared And 300 ml of distilled water solution. The mixture is stirred and combined. The pH of the final mixture is adjusted to about 8 by adding concentrated ammonium hydroxide (64.3 g). This slurry is then placed in a polypropylene bottle by (48) (48) 200303237, and placed in an airflow box (100 ° C) for 72 hours. The product formed was recovered by filtration, washed with excess water, and dried overnight at 85 ° C. A portion of the product obtained was subjected to flowing air. Calcining to 70 0 ° C for 3 hours produces an active mixed metal oxide containing 5 wt% Ce, calculated based on the final weight of the mixed metal oxide. Example 7 5g of HfOCl2 · χ 20 was dissolved by stirring In 100 ml of distilled water. The pH of the final mixture was adjusted to about 9 by adding concentrated ammonium hydroxide (4.5 g). This slurry was then placed in a polypropylene bottle and placed in an air flow box (100 ° C) for 72 hours. The formed product was recovered by filtration, washed with excess water, and dried overnight at 85 ° C. A part of the product obtained was calcined in flowing air to 70 ° C lasted for 3 hours and produced a lively mixed metal oxide. Example 8 5g of Hf〇Cl2 · χΗ20 and 0.62g of La (N03) 3 · 6H20 were stirred and dissolved in 1000ml of distilled water. The pH of the final mixture was adjusted by adding concentrated ammonium hydroxide (3.5g) To about 9 ° this slurry was then placed in a polypropylene bottle 'and placed in an air flow box (100 ° C) for 72 hours. The formed product was recovered by filtration 'washed with excess water' and dried overnight at 85 ° C. A part of the obtained product was calcined in flowing air to 700 ° C for 3 hours to 'produce active 旳 mixed gold 丨 persuaded'. This oxidation (49) 200303237 contains 5 weight y〇La 'Based on the final weight of the mixed metal oxide Example 9

實施例1至8之氧化物的二氧化碳攝入値在周圍壓力 下使用Mettler TGA/SDTA 851熱重分析系統予以測量。 金屬氧化物樣品在流動空氣中及約5 0 0 °C下脫水1小時, 之後在1 〇〇 °C測量二氧化碳的攝入値。樣品的表面積係依 照 Brunauer,Emmett,and Teller(BET)方法予以測量,提 供二氧化碳攝入値,以mg二氧化碳/m2金屬氧化物表示 ,如表1所示。The carbon dioxide uptake of the oxides of Examples 1 to 8 was measured at ambient pressure using a Mettler TGA / SDTA 851 thermogravimetric analysis system. The metal oxide sample was dehydrated in flowing air at about 500 ° C for 1 hour, and then the carbon dioxide uptake was measured at 1000 ° C. The surface area of the sample was measured in accordance with the Brunauer, Emmett, and Teller (BET) method, providing carbon dioxide uptake 値, expressed as mg carbon dioxide / m2 metal oxide, as shown in Table 1.

表1 實施例 觸媒乾燥重(mg) mg of C〇2 表面積(m2/g) C〇2攝入値 (mg of C02/m2) 1 76 0.0980 29 0.045 2 115 0.7781 80 0.085 3 73 0.4243 89 0.065 4 97 0.3808 100 0.039 5 78 0.5399 85 0.081 6 43 0.1035 50 0.048 7 158 0.3704 25 0.094 8 164 0.7359 60 0.075 -54- (50) (50)200303237 實施例1 〇 (比較例) 在這實施例中,觸媒組成物係由4 〇 m g實施例A的 MS A及10mg實施例1的活潑氧化鍩組成。觸媒組成物及 活潑的混合金屬氧化物被混合,之後以石英稀釋,形成反 應器床。於實施例B方法中測試觸媒組成物的結果顯示在 表2及3。結果表示將活潑的氧化銷加至觸媒床明顯增加 分子篩組成物的壽命,及減低不欲之乙烷及丙烷的含量。Table 1 Example Catalyst dry weight (mg) mg of C02 surface area (m2 / g) C02 intake (mg of C02 / m2) 1 76 0.0980 29 0.045 2 115 0.7781 80 0.085 3 73 0.4243 89 0.065 4 97 0.3808 100 0.039 5 78 0.5399 85 0.081 6 43 0.1035 50 0.048 7 158 0.3704 25 0.094 8 164 0.7359 60 0.075 -54- (50) (50) 200303237 Example 1 〇 (Comparative Example) In this example, the contact The vehicle composition was composed of 40 mg of MS A from Example A and 10 mg of active osmium oxide from Example 1. The catalyst composition and the active mixed metal oxide were mixed and then diluted with quartz to form a reactor bed. The results of testing the catalyst composition in the method of Example B are shown in Tables 2 and 3. The results show that the addition of active oxidizing pins to the catalyst bed significantly increases the life of the molecular sieve composition and reduces the content of unwanted ethane and propane.

實施例1 2 在這實施例中,觸媒組成物係由4 0 m g實施例 A的 M S A及含有1 0重量% L a的1 0 m g活潑的混合金屬氧化物( 描述於實施例2)組成。觸媒組成物及活潑的混合金屬氧 化物被混合,之後以石英稀釋,形成反應器床。於實施例 B方法中測試觸媒組成物的結果顯示在表2及3。表2及 3的數據說明,藉由構成20%觸媒組成物,該組成物裝載 含有1 〇重量%La的活潑混合金屬氧化物,分子篩壽命被 加倍,如同其LEI値2所示。此外,淨收益爲1.7%主要 烯烴,以絕對方式計算,此收益的大部分是由於丙烯增加 2.7 6%,補償乙烯減低1.07%。對乙烷的選擇性減低39% ,及對丙烷的選擇性減低3 7%,建議氫轉換反應已被顯著 地減低。 實施例1 3 在這實施例中,觸媒組成物係由3 0 mg實施例 A的 -55- (51) (51)200303237 M S A及含有1 〇重量。/〇 L a的2 0 m g活潑的混合金屬氧化物( 描述於實施例2)組成。觸媒組成物及活潑的混合金屬氧 化物被混合,之後以石英稀釋,形成反應器床。於實施例 B方法中測試觸媒組成物的結果顯示在表2及3。表2及 3的數據說明,藉由構成40%觸媒組成物,該組成物裝載 含有10重量。/〇La,SAP 0-34觸媒組成物的壽命增力□ 440% 。對此觸媒的選擇性傾向相似於實施例8所示者。Example 1 2 In this example, the catalyst composition is composed of 40 mg of MSA of Example A and 10 mg of active mixed metal oxide (described in Example 2) containing 10% by weight of La. . The catalyst composition and the active mixed metal oxide are mixed and then diluted with quartz to form a reactor bed. The results of testing the catalyst composition in the method of Example B are shown in Tables 2 and 3. The data in Tables 2 and 3 show that by constituting a 20% catalyst composition loaded with an active mixed metal oxide containing 10% by weight of La, the life of the molecular sieve is doubled, as shown in its LEI 其 2. In addition, the net income was 1.7% of major olefins. In absolute terms, most of this income was due to a 2.7 6% increase in propylene and a 1.07% reduction in compensation for ethylene. The selectivity to ethane was reduced by 39% and the selectivity to propane was reduced by 37%, suggesting that the hydrogen shift reaction has been significantly reduced. Example 1 3 In this example, the catalyst composition was composed of 30 mg of -55- (51) (51) 200303237 M S A of Example A and contained 10 weight. / 0 L a composition of 20 m g of active mixed metal oxide (described in Example 2). The catalyst composition and the active mixed metal oxide are mixed and then diluted with quartz to form a reactor bed. The results of testing the catalyst composition in the method of Example B are shown in Tables 2 and 3. The data in Tables 2 and 3 show that by constituting 40% of the catalyst composition, the composition contains 10% by weight. / 〇La, SAP 0-34 catalyst composition life increase □ 440%. The selectivity of this catalyst is similar to that shown in Example 8.

實施例1 4 在這實施例中,觸媒組成物係由40 mg實施例 A的 MS A及含有1 0重量% Y的10 mg活潑混合金屬氧化物(描 述於實施例4)組成。觸媒組成物及活潑的混合金屬氧化 物被混合,之後以石英稀釋,形成反應器床。於實施例B 方法中測試觸媒組成物的結果顯示在表2及3。以釔取代 鑭具有增加L EI的效果。然而,在選擇性的改善並不如鑭 戲劇化,在主要烯烴的收益爲1 . 2%,以絕對方式計算。 實施例1 5 在這實施例中,觸媒組成物係由4 〇 m g實施例 A的 MSA及含有5重量%La的10mg活潑混合金屬氧化物(描 述於實施例 3 )組成。觸媒組成物及活潑的混合金屬氧化 物被混合,之後以石英稀釋,形成反應器床。於實施例;B 方法中測試觸媒組成物的結果顯示在表2及3。將發現含 有5重量%氧化鑭的活潑混合金屬氧化物似乎比實施例8 -56- (52) 200303237 中含有1 0重量%La的活潑混合金屬氧化物,在增加LEI 具有較強效果。 實施例1 6 在這實施例1 6中,觸媒組成物係由3 0 m g實施例A 的MSA及含有5重量%Ca的l〇mg活潑混合金屬氧化物( 描述於實施例5 )組成。觸媒組成物及活潑的混合金屬氧 化物被混合,之後以石英稀釋,形成反應器床。此試驗於 實施例B中所討論的反應器及條件中所得的結果顯示在表 2及3。含有5重量%氧化鈣之活潑混合金屬氧化物具有 增加2 2 3 %的分子篩組成物壽命。 實施例1 7 (比較例)Example 1 4 In this example, the catalyst composition was composed of 40 mg of MS A of Example A and 10 mg of active mixed metal oxide (described in Example 4) containing 10% by weight of Y. The catalyst composition and the active mixed metal oxide were mixed and then diluted with quartz to form a reactor bed. The results of testing the catalyst composition in the method of Example B are shown in Tables 2 and 3. Replacing lanthanum with yttrium has the effect of increasing L EI. However, the improvement in selectivity is not as dramatic as lanthanum, and the gain in major olefins is 1.2%, calculated in absolute terms. Example 1 5 In this example, the catalyst composition was composed of 40 mg of MSA of Example A and 10 mg of active mixed metal oxide (described in Example 3) containing 5% by weight of La. The catalyst composition and the active mixed metal oxide were mixed and then diluted with quartz to form a reactor bed. The results of testing the catalyst composition in Example; Method B are shown in Tables 2 and 3. It will be found that the active mixed metal oxide containing 5% by weight of lanthanum oxide appears to have a stronger effect in increasing LEI than the active mixed metal oxide containing 10% by weight of La in Example 8-56- (52) 200303237. Example 16 In this example 16, the catalyst composition was composed of 30 mg of MSA of Example A and 10 mg of active mixed metal oxide (described in Example 5) containing 5% by weight of Ca. The catalyst composition and the active mixed metal oxide are mixed and then diluted with quartz to form a reactor bed. The results of this test in the reactors and conditions discussed in Example B are shown in Tables 2 and 3. The active mixed metal oxide containing 5% by weight of calcium oxide has an increase in the life of the molecular sieve composition by 2 2 3%. Example 17 (comparative example)

在這比較例中,觸媒組成物係由4 〇 mg實施例 A的 MSA及10mg無定型的矽石/氧化鋁、不活潑混合金屬氧 化物組成。分子篩觸媒組成物及不活潑混合金屬氧化物被 混合,之後以石英稀釋,形成反應器床。於實施例B方法 中測試該觸媒組成物的結果顯示在表2及3。此比較例:[7 說明,當不活潑混合金屬氧化物與本發明實施例1 1相I:匕 ’ L EI減低至低於1.0之値。此外,對主要烯烴的選擇性 損失1 .07%,且對乙烷及丙烷的產生無顯著地減低。 實施例1 8 在這實施例中,觸媒組成物係由3 0 mg實施例A白勺 -57- (53) (53)200303237 MSA及含有Ce及二氧化鈦的10mg活潑混合金屬氧化物( 描述於實施例6)組成。觸媒組成物及活潑混合金屬氧化 物被混合,之後以石英稀釋,形成反應器床。於實施例B 方法中測試該觸媒組成物的結果顯示在表2及3。活潑混 合金屬氧化物的存在增加134%的分子篩組成物壽命。 實施例1 9 在這實施例中,觸媒組成物係由40mg實施例 A的 MSA及10mg活潑給金屬氧化物(描述於實施例7)組成。 觸媒組成物及活潑混合金屬氧化物被混合,之後以石英稀 釋,形成反應器床。於實施例B方法中測試該觸媒組成物 的結果顯示在表2及3。表2及3的數據說明,藉由構成 2 0%觸媒組成物,該組成物裝載活潑給金屬氧化物,分子 篩的壽命增加1 26%。對乙烷的選擇性減低4〇%,及對丙 烷的選擇性減低46%,暗示氫轉換反應已被顯著地減低。 實施例2 0 在這實施例中,觸媒組成物係由4 0 m g實施例 A的 M S A及含有5重量% L a的1 0 m g活潑混合金屬氧化物(描 述於實施例8)組成。觸媒組成物及活潑混合金屬氧化物 被混合,之後以石英稀釋,形成反應器床。於實施例B方 法中測試該觸媒組成物的結果顯示在表2及3。表2及3 的數據說明,藉由構成2 0 %觸媒組成物,該組成物裝載含 有5重量%La的活潑混合金屬氧化物,分子篩的壽命增加 -58- (54) 200303237 1 5 0%。對乙烷的選擇性減低5 1 %,及對丙烷的選擇性減 低5 1 %,暗示氫轉換反應已被顯著地減低。 表2 實施例 反應器床組成物 (wt°/o) LEI 主要烯烴 (%) C27C3= c3純度(%) 10 (比較例) 1000/〇MSA 1 74.65 0.92 92.7 11 80%MSA/20%Zr〇2 2.64 74.79 0.82 96.1 12 80%MSA/20% of 10%La/ZrO2 2.03 76.34 0.84 95.6 13 60%MSA/40% of 10%La/ZrO2 5.41 75.50 0.85 94.6 14 80%MSA/20% of 10%Y/ZrO2 2.79 75.81 0.85 94.9 15 80%MSA/20% of 5%La/Zr02 4.85 75.84 0.84 94.8 16 80%MSA/20% of 5%Ca/Zr02 3.23 73.85 0.79 96.7 17 (比較例) 80%MSA/20% of Si02/Al203 0.79 73.58 0.93 93.3 18 80%MSA/20% of Ce/Ti02 2.34 65.65 0.87 95.1 19 80%MSA/20% of Hf02 2.26 72.98 0.71 96.2 20 80%MSA/20% of 5%La/HfO2 2.50 72.75 0.76 96.5In this comparative example, the catalyst composition was composed of 40 mg of MSA of Example A and 10 mg of amorphous silica / alumina and an inactive mixed metal oxide. The molecular sieve catalyst composition and the inactive mixed metal oxide are mixed and then diluted with quartz to form a reactor bed. The results of testing the catalyst composition in the method of Example B are shown in Tables 2 and 3. This comparative example: [7 shows that when the inactive mixed metal oxide is in phase 11 with Example 11 of the present invention I: d 'L EI is reduced to less than 1.0. In addition, the selectivity loss to the major olefins was 1.07%, and the production of ethane and propane was not significantly reduced. Example 18 In this example, the catalyst composition was composed of 30 mg of Example A-57- (53) (53) 200303237 MSA and 10 mg of active mixed metal oxide containing Ce and titanium dioxide (described in Example 6) Composition. The catalyst composition and the active mixed metal oxide were mixed and then diluted with quartz to form a reactor bed. The results of testing the catalyst composition in the method of Example B are shown in Tables 2 and 3. The presence of active mixed metal oxides increases the life of the molecular sieve composition by 134%. Example 19 In this example, the catalyst composition is composed of 40 mg of MSA of Example A and 10 mg of a reactive metal oxide (described in Example 7). The catalyst composition and the active mixed metal oxide are mixed and then diluted with quartz to form a reactor bed. The results of testing the catalyst composition in the method of Example B are shown in Tables 2 and 3. The data in Tables 2 and 3 show that by constituting a catalyst composition of 20%, the composition is loaded with active metal oxides, and the life of the molecular sieve is increased by 126%. The selectivity to ethane was reduced by 40% and the selectivity to propane was reduced by 46%, suggesting that the hydrogen shift reaction has been significantly reduced. Example 20 In this example, the catalyst composition was composed of 40 m g of M S A of Example A and 10 m g of a reactive mixed metal oxide (described in Example 8) containing 5% by weight of La. The catalyst composition and the active mixed metal oxide were mixed and then diluted with quartz to form a reactor bed. The results of testing the catalyst composition in the method of Example B are shown in Tables 2 and 3. The data in Tables 2 and 3 show that by constituting a catalyst composition of 20%, the composition is loaded with an active mixed metal oxide containing 5% by weight of La, and the life of the molecular sieve is increased by -58- (54) 200303237 1 50% . A 51% reduction in selectivity to ethane and a 51% reduction in selectivity to propane suggest that the hydrogen shift reaction has been significantly reduced. Table 2 Example reactor bed composition (wt ° / o) LEI main olefin (%) C27C3 = c3 purity (%) 10 (comparative example) 1000 / 〇MSA 1 74.65 0.92 92.7 11 80% MSA / 20% Zr. 2 2.64 74.79 0.82 96.1 12 80% MSA / 20% of 10% La / ZrO2 2.03 76.34 0.84 95.6 13 60% MSA / 40% of 10% La / ZrO2 5.41 75.50 0.85 94.6 14 80% MSA / 20% of 10% Y / ZrO2 2.79 75.81 0.85 94.9 15 80% MSA / 20% of 5% La / Zr02 4.85 75.84 0.84 94.8 16 80% MSA / 20% of 5% Ca / Zr02 3.23 73.85 0.79 96.7 17 (comparative example) 80% MSA / 20 % of Si02 / Al203 0.79 73.58 0.93 93.3 18 80% MSA / 20% of Ce / Ti02 2.34 65.65 0.87 95.1 19 80% MSA / 20% of Hf02 2.26 72.98 0.71 96.2 20 80% MSA / 20% of 5% La / HfO2 2.50 72.75 0.76 96.5

-59 - (55) (55)200303237 表3 產1 勿選擇性 實施例 反應器床 (wt%) ch4 c2= c2° c3= c3° C4,s C5+ 10 (比較例) 100%MSA 1.51 35.82 0.95 38.83 3.05 14.50 2.12 11 80%MSA/20%ZrO2 1.50 33.74 0.53 41.05 1.68 14.79 3.31 12 80%MSA/20% of 10%La/ZrO2 1.31 34.75 0.58 41.59 1.93 14.96 2.46 13 60%MSA/40% of 10%La/ZrO2 1.47 34.75 0.66 40.75 2.32 14.76 2.52 14 80%MSA/20°/〇 of 10%Y/ZrO2 1.32 34.92 0.66 40.88 2.20 14.41 3.07 15 80%MSA/20% of 5%La/Zr02 1.26 34.59 0.64 41.25 2.28 14.96 2.52 16 80%MSA/20% of 5%Ca/Zr02 1.50 32.65 0.42 41.20 1.43 14.84 5.34 17 (比較例) 80%MSA/20% of Si02/Al203 2.17 35.46 0.89 38.12 2.72 14.21 2.65 18 80%MSA/20% of Ce/Ti02 6.79 30.57 0.75 35.09 1.80 12.72 3.97 19 80%MSA/20% of HfO2 1.98 31.62 0.52 41.36 1.65 14.64 4.93 20 80%MSA/20% of 5%La/HfO2 1.98 31.58 0.47 41.18 1.49 14.53 5.52 當經由特別實施例描述及說明本發明時,熟習該項技 -60- (56) (56)200303237 術者將瞭解’本發明適於變化,無須在此說明。例如,預 期的是,本文中所述之分子篩組成物充當吸收劑、吸附劑 、氣體分離劑、去污劑、水純化劑及用於各種用途,例如 農學及園藝。將一或多種活潑金屬氧化物加至合成混合物 中,製備上述之分子篩,是在本發明之範圍內。爲此理由 ,爲決定本發明之真實範圍之目的,僅參考所附之申請專 利範圍。-59-(55) (55) 200303237 Table 3 Production 1 Do not choose Example reactor bed (wt%) ch4 c2 = c2 ° c3 = c3 ° C4, s C5 + 10 (comparative example) 100% MSA 1.51 35.82 0.95 38.83 3.05 14.50 2.12 11 80% MSA / 20% ZrO2 1.50 33.74 0.53 41.05 1.68 14.79 3.31 12 80% MSA / 20% of 10% La / ZrO2 1.31 34.75 0.58 41.59 1.93 14.96 2.46 13 60% MSA / 40% of 10% La / ZrO2 1.47 34.75 0.66 40.75 2.32 14.76 2.52 14 80% MSA / 20 ° / 〇of 10% Y / ZrO2 1.32 34.92 0.66 40.88 2.20 14.41 3.07 15 80% MSA / 20% of 5% La / Zr02 1.26 34.59 0.64 41.25 2.28 14.96 2.52 16 80% MSA / 20% of 5% Ca / Zr02 1.50 32.65 0.42 41.20 1.43 14.84 5.34 17 (comparative example) 80% MSA / 20% of Si02 / Al203 2.17 35.46 0.89 38.12 2.72 14.21 2.65 18 80% MSA / 20% of Ce / Ti02 6.79 30.57 0.75 35.09 1.80 12.72 3.97 19 80% MSA / 20% of HfO2 1.98 31.62 0.52 41.36 1.65 14.64 4.93 20 80% MSA / 20% of 5% La / HfO2 1.98 31.58 0.47 41.18 1.49 14.53 5.52 EXAMPLES When describing and explaining the present invention, those skilled in the art -60- (56) (56) 200303237 will understand that the present invention is suitable for variations and need not be described here. For example, it is expected that the molecular sieve compositions described herein serve as absorbents, adsorbents, gas separation agents, detergents, water purification agents, and for various uses such as agronomy and horticulture. It is within the scope of the present invention to add one or more active metal oxides to the synthesis mixture to prepare the above molecular sieves. For this reason, for the purpose of determining the true scope of the present invention, reference is only made to the scope of the attached patent application.

-61 --61-

Claims (1)

200303237 ⑴ 拾、申請專利範圍 1 · 一種觸媒組成物,包括分子篩及至少一種來自元素 週期表之第4族金屬的氧化物,其中該金屬氧化物的二氧 化碳的攝入値在100 °C時至少爲0.03 mg/m2金屬氧化物。 2.如申請專利範圍第1項之觸媒組成物,其中該金 屬氧化物的二氧化碳的攝入値在 1 00 °C時至少爲 0.035mg/m2金屬氧化物。 3 .如申請專利範圍第1項之觸媒組成物,其中該金 屬氧化物的二氧化碳的攝入値在100°C時低於l〇mg/m2金 屬氧化物。 4-如申請專利範圍第1項之觸媒組成物,其中該金 屬氧化物的二氧化碳的攝入値在1〇〇 °c時低於5mg/m2金 屬氧化物。 5 .如申請專利範圍第1項之觸媒組成物,亦包括不 同於該金屬氧化物的至少一種黏著劑及基質物質。 6.如申請專利範圍第1項之觸媒組成物,其中該金 屬氧化物的表面積大於1 〇 m 2 / g。 7 ·如申請專利範圍第1項之觸媒組成物,亦包括黏 者劑及基質物質’其互爲不同且不同於該金屬氧化物。 8 .如申請專利範圍第7項之觸媒組成物,其中黏著 劑爲氧化鋁溶膠’及基質物質爲黏土。 9.如申請專利範圍第1項之觸媒組成物,其中該金 屬氧化物係選自氧化鉻及氧化給。 10·如申請專利範圖第1項之觸媒組成物,亦包括選 -62- (2) 200303237 自元素週期表的第2及3族金屬的氧化物。 11.如申請專利範圍第1 0項之觸媒組成物,其中第 4族金屬氧化物包括氧化錐,及第2族及/或第3族金屬氧 化物包括一或多種選自氧化鈣、氧化鋇、氧化鑭、氧化釔 及氧化銃的氧化物。 1 2 ·如申請專利範圍第1項之觸媒組成物,其中分子 篩包括一含有至少兩個四面體單位之架構,該單位選自 [Si04]、[Al〇4]及[P〇4]單位。 φ 1 3 .如申請專利範圍第1 2項之觸媒組成物,其中分 子篩包括矽鋁磷酸鹽。 1 4 .如申請專利範圍第1 2項之觸媒組成物,其中分 子篩包括CHA架構類型的分子篩。 15.如申請專利範圍第1 4項之觸媒組成物,其中分 子篩另外包括AEI架構類型的分子篩。 1 6.如申請專利範圍第1項之觸媒組成物,其中分子 篩對金屬氧化物的重量比例範圍在5 %至8 0 0 %間。 β 17. —種分子篩觸媒組成物,包括活潑的第4族金屬 氧化物及第2族及/或第3族金屬氧化物、黏著劑、基質 物質及矽鋁磷酸鹽分子篩。 1 8 . —種製備觸媒組成物之方法,該方法包括使含有 分子篩的第一粒子與含有第4族金屬氧化物的第二粒子完 &混合’該第4族金屬氧化物的二氧化碳的攝入値在1 0 0 °C時至少爲〇 0 3 m g / 1T12金屬氧化物粒子。 19.如申請專利範圍第1 S項之方法,其中該第二粒 -63- (3) 200303237 子的表面積大於1 〇 m2 / g。 2〇.如申請專利範圍第1 8項之方法,其中該第二粒 子的表面積大於15m2/g。 2 1.如申請專利範圍第1 8項之方法,其中該第一粒 子包括砂鋁磷酸鹽分子篩及/或鋁磷酸鹽分子篩。 2 2·如申請專利範圍第1 8項之方法,其中該第一及 第二粒子中至少一者亦包括黏著劑及基質物質中至少一者 參 23 ·如申請專利範圍第1 8項之方法,其中該第一粒 子包括矽鋁磷酸鹽分子篩、含有氧化鋁溶膠的黏著劑及含 有黏土的基質物質。 2 4 .如申請專利範圍第1 8項之方法,其中該第二粒 子亦包括第2族及/或第3族金屬氧化物。 25 ·如申請專利範圍第1 8項之方法,其中該第二粒 子包括氧化鉻,及氧化鈣、氧化鋇、氧化鑭、氧化釔及氧 化銃中至少一者。 φ 2 6. —種製備觸媒組成物之方法,該方法包括: (i) 由反應混合物合成分子篩,該混合物包括至少一 種樣板劑及矽來源、磷來源及鋁來源中至少兩者;及 (ii) 回收(i)中所合成的分子篩; (iii) 藉由從一含有第4族金屬離子來源的溶液中沉 澱,以形成第4族金屬氧化物的水合前驅物; (iv) 回收(iii)中所形成的水合前驅物; (v) 鍛燒(iv)中所回收的水合前驅物,以形成受鍛燒 -64- (4) 200303237 的第4族金屬氧化物,該金屬氧化物的二氧化碳的攝入値 在100°C時至少爲〇.〇3mg/m2金屬氧化物;及 (vi)完全混合⑴中所回收的分子篩及(v)中所製備的 受鍛燒的金屬氧化物。 2 7 .如申請專利範圍第26項之方法,其中分子篩及/ 或第4族金屬氧化物在(vi)步驟之前先與黏著劑及/或基質 物質混合。200303237 范围 Patent application scope 1 · A catalyst composition, including a molecular sieve and at least one oxide from a Group 4 metal of the periodic table, wherein the carbon dioxide intake of the metal oxide is at least at 100 ° C 0.03 mg / m2 metal oxide. 2. The catalyst composition according to item 1 of the patent application scope, wherein the carbon dioxide intake of the metal oxide is at least 0.035 mg / m2 metal oxide at 100 ° C. 3. The catalyst composition according to item 1 of the patent application scope, wherein the carbon dioxide intake of the metal oxide is less than 10 mg / m2 of the metal oxide at 100 ° C. 4- The catalyst composition according to item 1 of the patent application scope, wherein the carbon dioxide intake of the metal oxide is lower than 5 mg / m2 metal oxide at 100 ° C. 5. The catalyst composition according to item 1 of the patent application scope also includes at least one adhesive and matrix substance different from the metal oxide. 6. The catalyst composition according to item 1 of the patent application scope, wherein the surface area of the metal oxide is greater than 10 m 2 / g. 7 · If the catalyst composition of item 1 of the patent application scope also includes a binder and a matrix substance, which are different from each other and different from the metal oxide. 8. The catalyst composition according to item 7 of the patent application scope, wherein the adhesive is alumina sol 'and the matrix substance is clay. 9. The catalyst composition according to item 1 of the patent application scope, wherein the metal oxide is selected from chromium oxide and oxide. 10. If the catalyst composition in item 1 of the patent application diagram also includes oxides selected from Group 62 and Group 3 metals of the Periodic Table of Elements. 11. The catalyst composition according to item 10 of the application, wherein the Group 4 metal oxide includes an oxide cone, and the Group 2 and / or Group 3 metal oxide includes one or more selected from calcium oxide, oxide Barium, lanthanum oxide, yttrium oxide and hafnium oxide. 1 2 · The catalyst composition according to item 1 of the scope of patent application, wherein the molecular sieve includes a structure containing at least two tetrahedral units, the unit being selected from [Si04], [Al〇4] and [P〇4] units . φ 1 3. The catalyst composition according to item 12 of the patent application scope, wherein the molecular sieve includes silicoaluminophosphate. 14. The catalyst composition according to item 12 of the patent application scope, wherein the molecular sieve comprises a molecular sieve of CHA structure type. 15. The catalyst composition according to item 14 of the patent application scope, wherein the molecular sieve additionally includes a molecular sieve of AEI structure type. 16. The catalyst composition according to item 1 of the patent application range, wherein the weight ratio of the molecular sieve to the metal oxide ranges from 5% to 800%. β 17. A molecular sieve catalyst composition, including active Group 4 metal oxides and Group 2 and / or Group 3 metal oxides, adhesives, matrix substances, and silicoaluminophosphate molecular sieves. 18. A method for preparing a catalyst composition, the method comprising: & mixing ' the carbon dioxide of the Group 4 metal oxide with the first particles containing the molecular sieve and the second particles containing the Group 4 metal oxide Ingestion is at least 0.3 mg / 1T12 metal oxide particles at 100 ° C. 19. The method according to item 1S of the scope of patent application, wherein the surface area of the second particle -63- (3) 200303237 is greater than 10 m2 / g. 20. The method of claim 18 in the scope of patent application, wherein the surface area of the second particle is greater than 15 m2 / g. 2 1. The method of claim 18 in the scope of patent application, wherein the first particle comprises aluminophosphate molecular sieve and / or aluminophosphate molecular sieve. 2 2 · If the method of applying for the item No. 18 of the patent scope, wherein at least one of the first and second particles also includes at least one of the adhesive and the matrix material, please refer to 23 · If the method of applying for the scope of No. 18 patent application The first particles include a silicoaluminophosphate molecular sieve, a binder containing alumina sol, and a matrix substance containing clay. 24. The method of claim 18, wherein the second particle also includes a Group 2 and / or Group 3 metal oxide. 25. The method of claim 18, wherein the second particles include chromium oxide, and at least one of calcium oxide, barium oxide, lanthanum oxide, yttrium oxide, and hafnium oxide. φ 2 6. —A method for preparing a catalyst composition, the method comprising: (i) synthesizing a molecular sieve from a reaction mixture including at least one of a template agent and at least two of a silicon source, a phosphorus source, and an aluminum source; and ( ii) recovering the molecular sieve synthesized in (i); (iii) forming a hydration precursor of a Group 4 metal oxide by precipitating from a solution containing a source of a Group 4 metal ion; (iv) recovering (iii ); (V) calcined the hydrated precursor recovered in (iv) to form a Group 4 metal oxide which is subjected to calcination-64- (4) 200303237, The intake of carbon dioxide (at 100 ° C) is at least 0.03 mg / m2 of metal oxide; and (vi) the molecular sieve recovered in ⑴ and the calcined metal oxide prepared in (v) are completely mixed. 27. The method of claim 26, wherein the molecular sieve and / or the Group 4 metal oxide is mixed with an adhesive and / or a matrix substance before step (vi). 2 S .如申請專利範圍第26項之方法,其中分子篩對 受鍛燒的金屬氧化物的重量比範圍從30%至400%。 2 9 ·如申請專利範圍第2 6項之方法,其中受鍛燒的 金屬氧化物的表面積大於1 0 m2 / g。 30.如申請專利範圍第26項之方法,其中分子篩在 (vi)之前先乾噴灑基質物質及黏著劑。 3 1 .如申請專利範圍第3 〇項之方法,其中分子篩爲 矽鋁磷酸鹽、黏著劑爲氧化鋁溶膠,及基質物質爲黏土。2 S. The method of claim 26, wherein the weight ratio of the molecular sieve to the calcined metal oxide ranges from 30% to 400%. 29. The method according to item 26 of the patent application, wherein the surface area of the metal oxide to be calcined is greater than 10 m2 / g. 30. The method of claim 26, wherein the molecular sieve is dry sprayed with a matrix substance and an adhesive before (vi). 31. The method of claim 30, wherein the molecular sieve is silicoaluminophosphate, the adhesive is alumina sol, and the matrix material is clay. 32.如申請專利範圍第26項之方法,其中受混合的 金屬氧化物是在(i i i)中藉由從至少一溶液中沉澱予以製備 的,該溶液含有第4族金屬氧化物的前驅物,及第2族金 屬氧化物的前驅物及第3族金屬氧化物的前驅物中至少一 者。 3 3 .如申請專利範圍第26項之方法,其中該沉澱作 用是在pH大於7時實施的。 34·如申請專利範圍第26項之方法,其中(iii)亦包 括在溫度至少8 0 °C熱液處理沉澱物持續1 0天。 -65- (5) (5)200303237 35.如申請專利範圍第26項之方法,其中(v)是在溫 度範圍從約4 0 0 □至約9 0 0 °C內實施的。 3 6. —種在觸媒組成物存在下使進料轉化成一或多不重 烯烴類之方法,該觸媒組成物包括分子篩及活潑的第4 @ 金屬氧化物,該金屬氧化物的二氧化碳的攝入値在l〇(re 時至少爲〇.〇3mg/m2金屬氧化物。 37.如申請專利範圍第3 6項之方法,其中該金屬氧 化物的二氧化碳的攝入値在100°C時至少爲0.03 5 mg/m2 金屬氧化物。 3 8 .如申請專利範圍第3 6項之方法,其中該金屬氧 化物的一氧化碳的攝入値在1 0 0 °C時低於1 0 m g / m 2金屬氧 化物。 3 9.如申請專利範圍第3 6項之方法,其中該金屬氧 化物的二氧化碳的攝入値在1〇〇 °C時低於5mg/m2金屬氧 化物。 40.如申請專利範圍第37項之方法,亦包括不同於 該金屬氧化物的至少一種黏著劑及基質物質。 4 1 ·如申請專利範圍第3 7項之方法,亦包括黏著劑 及基質物質’其互爲不同且不同於該金屬氧化物。 4 2.如申請專利範圍第4 1項之方法,其中黏著劑爲 氧化鋁溶膠。 43 ·如申請專利範圍第4 1項之方法,其中基質爲黏 土。 4 4 ·如申請專利範圍第3 6項之方法,其中觸媒組成 -66- (6) (6)200303237 物的壽命增加指數(LEI)大於1。 45. 如申請專利範圍第3 6項之方法,其中分子篩係 視情況選擇性地在樣板劑存在下由反應混合物合成的,該 混合物包括矽源、磷源及鋁源中至少兩者。 46. 如申請專利範圍第36項之方法,其中分子篩爲 矽鋁磷酸鹽。 4 7 .如申請專利範圍第3 6項之方法,其中觸媒組成 物亦包括活潑第2族及/或第3族金屬氧化物。 4 8 .如申請專利範圍第3 6項之方法,其中進料包括 甲醇及/或二甲醚。 4 9. 一種使進料在分子篩觸媒組成物存在下轉換成一 或多種烯烴之方法,包括分子篩、黏著劑、基質物質及不 同於黏著劑及基質物質的金屬氧化物的混合物。 50·如申請專利範圍第49項之方法,其中金屬氧化 物的混合物包括第4族金屬氧化物及第2族及7或第3族 金屬氧化物。 5 1 . —種使進料在觸媒組成物存在下轉換成一或多種 燃烴之方法,該觸媒組成物係藉由如申請專利範圍第18 項之方法予以製備的。 5 2 . —種使進料在觸媒組成物存在下轉換成一或多種 少希烴之方法,該觸媒組成物係藉由如申請專利範圍第2 6 項之方法予以製備的。 5 3 · —種製備一或多種烯烴之方法,該方法包括: (a)將含有至少一種含氧物之進料在觸媒組成物存下 -67- (7) (7)200303237 導入反應器系統,該組成物包括分子篩、黏著劑、基質物 質及活潑第4族金屬氧化物; (b) 從反應器系統排出含有一或多種烯烴之流出物物 流;及 (c) 使流出物物流通過回收系統;及 (d )回收至少該一或多種烯烴。 54·如申請專利範圍第53項之方法,其中黏著劑爲 氧化鋁溶膠。 5 5.如申請專利範圍第5 3項之方法,其中基質物質 爲黏土。 5 6.如申請專利範圍第5 3項之方法,其中分子篩爲 矽鋁磷酸鹽分子篩及/或鋁磷酸鹽分子篩。 5 7.如申請專利範圍第5 3項之方法,其中活潑第4 族金屬氧化物爲活潑的鉻金屬氧化物或活潑的給金屬氧化 物或其混合物。 5 8.如申請專利範圍第53項之方法,其中活潑第4 族金屬氧化物的二氧化碳的攝入値在 1 〇〇 °C時至少爲 0.03mg/m2金屬氧化物。 59. 如申請專利範圍第53項之方法,其中觸媒組成 物亦包括活潑第2族及/或第3族金屬氧化物。 60. 如申請專利範圍第53項之方法,其中進料包括 甲醇及/或二甲醚。 61. 如申請專利範圍第53項之方法,其中活潑金屬 氧化物的表面積大於。 -68- (8) 200303237 6 2 .如申請專利範圍第5 3項之方法,其中觸媒組成 物的LEI大於無活潑金屬氧化物的相同觸媒組成物的LEI 〇 6 3 .如申請專利範圍第5 3項之方法,其中篩觸媒組 成物的LEI大於1.5。 64· —種製備一或多種烯烴之整合方法,該整合方法 包括: (a) 使烴進料通過合成氣體產生區域以產生合成氣體 物流; (b) 使合成氣體物流與觸媒接觸,形成氧化進料;及 (Ο使氧化進料在分子篩觸媒組成物存在下轉換成該 一或多種烯烴,該組成物包括分子篩及活潑金屬氧化物。 6 5 ·如申請專利範圍第64項之整合方法,其中該方 法進一步包括(d)在聚合觸媒存在下使該一或多種烯烴聚 合成聚烯烴。 6 6 .如申請專利範圍第64項之整合方法,其中氧化 進料包括甲醇,烯烴包括乙烯及丙烯,及活潑金屬氧化物 爲活潑第4族金屬氧化物,該氧化物的表面積大於 1 0 m2 / g 〇 6 7.如申請專利範圍第6 6項之整合方法,其中第4 族金屬氧化物爲活潑氧化銷。 68.如申請專利範園第66項之整合方法,其中分子 篩矽鋁磷酸鹽分子篩。 -69- 200303237 陸、(一) (二) 、本案指定代表圖為:無 、本代表圖之元件代表符號簡單說明: 柒、本案若有化學式時,請揭示最能顯示發明特徵的化學 式··32. The method of claim 26, wherein the mixed metal oxide is prepared in (iii) by precipitating from at least one solution containing a precursor of a group 4 metal oxide, And at least one of a precursor of a Group 2 metal oxide and a precursor of a Group 3 metal oxide. 33. The method according to item 26 of the patent application, wherein the precipitation is carried out at a pH greater than 7. 34. The method according to item 26 of the patent application, wherein (iii) also includes hydrothermally treating the precipitate at a temperature of at least 80 ° C for 10 days. -65- (5) (5) 200303237 35. The method according to item 26 of the patent application range, wherein (v) is carried out in a temperature range from about 400 ° C to about 900 ° C. 3 6. —A method for converting a feedstock into one or more non-heavy olefins in the presence of a catalyst composition comprising a molecular sieve and a live 4th metal oxide, the carbon dioxide of the metal oxide The ingestion is at least 0.03 mg / m2 metal oxide at 10 (re). 37. The method according to item 36 of the patent application scope, wherein the carbon dioxide intake of the metal oxide is at 100 ° C At least 0.03 5 mg / m2 metal oxide. 38. The method according to item 36 of the scope of patent application, wherein the carbon monoxide intake of the metal oxide is less than 10 mg / m at 100 ° C. 2 Metal oxide. 3 9. The method according to item 36 of the patent application scope, wherein the carbon dioxide intake of the metal oxide is less than 5 mg / m2 metal oxide at 100 ° C. 40. As applied The method of item 37 of the patent also includes at least one adhesive and matrix material different from the metal oxide. 4 1 · If the method of item 37 of the patent application also includes the adhesive and matrix material 'which are mutually Different and different from the metal oxide. 4 2. If the patent application The method surrounding item 41, wherein the adhesive is an alumina sol. 43 · The method according to item 41 of the patent application, wherein the matrix is clay. 4 4 · The method according to item 36, where the contact Media composition -66- (6) (6) 200303237 The life increase index (LEI) of the substance is greater than 1. 45. For the method of item 36 of the patent application, wherein the molecular sieve is optionally selected by the presence of a sample agent The reaction mixture is synthesized, and the mixture includes at least two of a silicon source, a phosphorus source, and an aluminum source. 46. The method according to item 36 of the patent application, wherein the molecular sieve is a silicoaluminophosphate. 4 7. The method according to item 6, wherein the catalyst composition also includes active Group 2 and / or Group 3 metal oxides. 4 8. The method according to item 36 of the scope of patent application, wherein the feed includes methanol and / or dimethyl ether Ether. 4 9. A method for converting a feed to one or more olefins in the presence of a molecular sieve catalyst composition, comprising a mixture of molecular sieves, a binder, a matrix material, and a metal oxide other than a binder and a matrix material. 50 · If apply The method of claim 49, wherein the mixture of metal oxides includes Group 4 metal oxides and Group 2 and Group 7 or Group 3 metal oxides. 5 1. A method for making the feed in the presence of a catalyst composition A method for converting into one or more kinds of hydrocarbon combustion, the catalyst composition is prepared by a method such as the scope of application for patent No. 18. 5 2. A method for converting the feedstock into one or more kinds in the presence of the catalyst composition In the method of Greek hydrocarbon, the catalyst composition is prepared by a method such as the item 26 of the scope of patent application. 5 3-A method for preparing one or more olefins, the method comprising: (a) introducing a feed containing at least one oxygenate in a catalyst composition -67- (7) (7) 200303237 into the reactor System, the composition comprising a molecular sieve, an adhesive, a matrix substance, and an active Group 4 metal oxide; (b) discharging an effluent stream containing one or more olefins from the reactor system; and (c) passing the effluent stream through recovery A system; and (d) recovering at least the one or more olefins. 54. The method of claim 53 in which the adhesive is an alumina sol. 5 5. The method according to item 53 of the patent application scope, wherein the matrix substance is clay. 5 6. The method according to item 53 of the patent application scope, wherein the molecular sieve is a silicoaluminophosphate molecular sieve and / or an aluminophosphate molecular sieve. 5 7. The method according to item 53 of the scope of patent application, wherein the active Group 4 metal oxide is an active chromium metal oxide or an active metal-donor oxide or a mixture thereof. 5 8. The method according to item 53 of the scope of patent application, wherein the carbon dioxide intake of the active Group 4 metal oxide is at least 0.03 mg / m2 metal oxide at 1000 ° C. 59. The method of claim 53 in which the catalyst composition includes active Group 2 and / or Group 3 metal oxides. 60. The method of claim 53 in which the feed includes methanol and / or dimethyl ether. 61. The method according to item 53 of the patent application, wherein the surface area of the active metal oxide is greater than. -68- (8) 200303237 6 2. The method of item 53 of the patent application range, wherein the LEI of the catalyst composition is greater than the LEI of the same catalyst composition without active metal oxides. The method according to item 53, wherein the LEI of the sieve catalyst composition is greater than 1.5. 64 · An integrated method for preparing one or more olefins, the integrated method comprising: (a) passing a hydrocarbon feed through a synthesis gas generation area to generate a synthesis gas stream; (b) contacting the synthesis gas stream with a catalyst to form an oxidation Feed; and (0) convert the oxidation feed to the one or more olefins in the presence of a molecular sieve catalyst composition, the composition including molecular sieves and active metal oxides. 6 5-Integrated method as claimed in item 64 Wherein the method further comprises (d) polymerizing the one or more olefins to a polyolefin in the presence of a polymerization catalyst. 6 6. The integrated method of claim 64, wherein the oxidation feed includes methanol and the olefin includes ethylene And propylene, and the active metal oxide are active Group 4 metal oxides, and the surface area of the oxide is greater than 10 m 2 / g 〇6. The integration method of item 6 of the patent application scope, wherein the Group 4 metal is oxidized The material is active oxidation pin. 68. For example, the integrated method of the patent application No. 66, wherein the molecular sieve silicoaluminophosphate molecular sieve. -69- 200303237 Lu, (a) (b), The designated representative figure in this case is: None. The element representative symbols of this representative figure are simply explained: 柒 If there is a chemical formula in this case, please disclose the chemical formula that can best show the characteristics of the invention ...
TW092103148A 2002-02-28 2003-02-14 Molecular sieve compositions, catalyst thereof, their making and use in conversion processes TWI265824B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US36096302P 2002-02-28 2002-02-28
US36601202P 2002-03-20 2002-03-20
US37469702P 2002-04-22 2002-04-22
US10/215,511 US6906232B2 (en) 2002-08-09 2002-08-09 Molecular sieve compositions, catalysts thereof, their making and use in conversion processes

Publications (2)

Publication Number Publication Date
TW200303237A true TW200303237A (en) 2003-09-01
TWI265824B TWI265824B (en) 2006-11-11

Family

ID=27792286

Family Applications (3)

Application Number Title Priority Date Filing Date
TW092103154A TWI265825B (en) 2002-02-28 2003-02-14 Molecular sieve compositions, catalyst thereof, their making and use in conversion processes
TW092103144A TWI306780B (en) 2002-02-28 2003-02-14 Molecular sieve compositions,catalysts thereof, their making and use in conversion processes.
TW092103148A TWI265824B (en) 2002-02-28 2003-02-14 Molecular sieve compositions, catalyst thereof, their making and use in conversion processes

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW092103154A TWI265825B (en) 2002-02-28 2003-02-14 Molecular sieve compositions, catalyst thereof, their making and use in conversion processes
TW092103144A TWI306780B (en) 2002-02-28 2003-02-14 Molecular sieve compositions,catalysts thereof, their making and use in conversion processes.

Country Status (11)

Country Link
EP (3) EP1478464A2 (en)
JP (3) JP2005518928A (en)
KR (3) KR20040091080A (en)
CN (3) CN100335172C (en)
AU (3) AU2003212993A1 (en)
BR (1) BR0308011A (en)
CA (2) CA2477428C (en)
EA (3) EA007871B1 (en)
MY (2) MY139847A (en)
TW (3) TWI265825B (en)
WO (3) WO2003074177A2 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005518928A (en) * 2002-02-28 2005-06-30 エクソンモービル・ケミカル・パテンツ・インク Molecular sieve compositions, their catalysts, their production and use in conversion processes
US7074739B2 (en) * 2002-11-19 2006-07-11 Exxonmobil Chemical Patents Inc. Multi-component molecular sieve catalyst compositions and their use in aromatics reactions
US6951830B2 (en) 2003-08-05 2005-10-04 Exxonmobil Chemical Patents Inc. Molecular sieve catalyst compositions, their production and use in conversion processes
US7404891B2 (en) 2004-03-29 2008-07-29 Exxonmobil Chemical Patents Inc. Heat recovery technique for catalyst regenerator flue gas
US7166757B2 (en) * 2004-07-30 2007-01-23 Exxonmobil Chemical Patents Inc. Conversion of oxygenates to olefins
WO2007021394A2 (en) * 2005-08-18 2007-02-22 Exxonmobil Chemical Patents Inc. Catalytic conversion of oxygenates to olefins
CN101003018A (en) * 2006-01-20 2007-07-25 中国石油天然气股份有限公司 Heterogenous catalysis solid alkali catalyst, and its preparing method and use
US7335621B2 (en) 2006-04-19 2008-02-26 Exxonmobil Chemical Patents Inc. Catalyst compositions and preparation thereof
JP4710744B2 (en) * 2006-07-18 2011-06-29 トヨタ自動車株式会社 Method for producing composite metal oxide
US7595275B2 (en) 2006-08-15 2009-09-29 Exxonmobil Chemical Patents Inc. Catalyst compositions and their synthesis
CN101239878B (en) * 2007-02-07 2010-05-19 中国石油化工股份有限公司 Method for increasing yield of ethylene and propylene from olefin with four carbon or above
CN101239866B (en) * 2007-02-07 2010-12-01 中国石油化工股份有限公司 Method for producing ethylene and propylene from oxygen-containing compounds
CA2578494A1 (en) * 2007-02-14 2008-08-14 Nova Chemicals Corporation Catalytic cracking of ethers to 1-olefins
EP2022565A1 (en) * 2007-07-06 2009-02-11 Casale Chemicals S.A. Process for preparing silicoaluminoposphate (SAPO) molecular sieves, catalysts containing said sieves and catalytic dehydration processes using said catalysts
EP2188234A1 (en) * 2007-08-13 2010-05-26 Saudi Basic Industries Corporation Catalyst composition and process for converting aliphatic oxygenates to aromatics
DE102007059129A1 (en) * 2007-12-07 2009-06-10 Süd-Chemie AG Catalyst with increased olefin selectivity for the conversion of oxygenates to olefins
CN102006933A (en) * 2008-04-04 2011-04-06 彼得·瓦西列夫 Zeolite catalyst zeolite secondary structure
JP5818133B2 (en) * 2011-05-20 2015-11-18 国立大学法人東京工業大学 Olefin production catalyst and olefin production method
CN102344328B (en) * 2011-07-25 2014-03-12 浙江大学 Semi-continuous method for converting methyl alcohol into propylene by using moving bed technology
WO2014061569A1 (en) * 2012-10-15 2014-04-24 三菱瓦斯化学株式会社 Method for producing catalyst for use in production of methylamine compound, and method for producing methylamine compound
CA2908655C (en) * 2013-05-07 2016-08-02 Synthos S.A. Process for the production of 1,3-butadiene
CN107661774B (en) * 2016-07-27 2020-11-03 中国科学院大连化学物理研究所 Catalyst and method for preparing low-carbon olefin by directly converting synthesis gas
CN107661773B (en) * 2016-07-29 2020-08-04 中国科学院大连化学物理研究所 Method for preparing liquid fuel and co-producing low-carbon olefin by directly converting catalyst and synthesis gas
CN108568311B (en) * 2017-03-07 2021-03-23 中国科学院大连化学物理研究所 Catalyst and method for preparing ethylene by directly converting synthesis gas
WO2018195865A1 (en) * 2017-04-27 2018-11-01 中国科学院大连化学物理研究所 In-situ preparation method for catalyst for preparing at least one of toluene, p-xylene and low-carbon olefin, and reaction process
CN109939722B (en) * 2018-01-26 2021-05-25 中国科学院大连化学物理研究所 Organic base modified composite catalyst and method for preparing ethylene by hydrogenation of carbon monoxide
CN109939667B (en) * 2018-01-26 2021-01-05 中国科学院大连化学物理研究所 Catalyst and method for preparing low-carbon olefin by directly converting synthesis gas
WO2020091969A1 (en) * 2018-10-30 2020-05-07 Exxonmobil Chemical Patents Inc. Group 1 metal ion content of microporous molecular sieve catalysts
CN111346664B (en) * 2018-12-24 2022-11-15 中国石油化工股份有限公司 Modified vanadium-silicon molecular sieve, preparation method thereof and thioether oxidation method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4465889A (en) * 1982-07-02 1984-08-14 Summit Gas Systems Pte. Ltd. Catalytic conversion of methanol, dimethyl ether and mixtures thereof to a hydrocarbon product rich in iso-C4 compounds and new catalysts therefor
US4781816A (en) 1987-10-19 1988-11-01 Phillips Petroleum Company Cracking process
US6040264A (en) * 1996-04-04 2000-03-21 Exxon Chemical Patents Inc. Use of alkaline earth metal containing small pore non-zeolitic molecular sieve catalysts in oxygenate conversion
TW412510B (en) * 1996-12-31 2000-11-21 Exxon Chemical Patents Inc Oxygenate conversions using small pore non-zeolitic molecular sieve catalysts
US6423879B1 (en) * 1997-10-02 2002-07-23 Exxonmobil Oil Corporation Selective para-xylene production by toluene methylation
JP4221532B2 (en) * 1998-06-26 2009-02-12 三菱瓦斯化学株式会社 Methylamine production catalyst and method for producing methylamines using the catalyst
US6388156B1 (en) * 1999-05-14 2002-05-14 Exxonmobil Chemical Patents Inc. Direct selective synthesis of para-xylene by reacting an aromatic compound with a methylating agent formed from CO, Co2 and H2
WO2001064340A1 (en) * 2000-03-01 2001-09-07 Exxonmobil Chemical Patents Inc. Thorium-containing sapo molecular sieve for producing olefins
US6448197B1 (en) * 2000-07-13 2002-09-10 Exxonmobil Chemical Patents Inc. Method for making a metal containing small pore molecular sieve catalyst
AU2001275901A1 (en) * 2000-07-13 2002-01-30 Uop Llc Attrition resistant catalyst for light olefin production
CA2369318A1 (en) * 2002-01-28 2003-07-28 Universite Concordia Hybrid catalysts for the deep catalytic cracking of petroleum naphthas and other hydrocarbon feedstocks for the selective production of light olefins
JP2005518928A (en) * 2002-02-28 2005-06-30 エクソンモービル・ケミカル・パテンツ・インク Molecular sieve compositions, their catalysts, their production and use in conversion processes

Also Published As

Publication number Publication date
CN1646221A (en) 2005-07-27
JP2005518929A (en) 2005-06-30
WO2003074177A2 (en) 2003-09-12
AU2003225560B2 (en) 2008-05-08
AU2003225560A1 (en) 2003-09-16
CN1327964C (en) 2007-07-25
EA007872B1 (en) 2007-02-27
KR20040089679A (en) 2004-10-21
BR0308011A (en) 2005-01-04
EA007873B1 (en) 2007-02-27
MY140018A (en) 2009-11-30
AU2003216248A1 (en) 2003-09-16
EA007871B1 (en) 2007-02-27
WO2003074176A2 (en) 2003-09-12
EP1478462A2 (en) 2004-11-24
JP2005518930A (en) 2005-06-30
AU2003212993A1 (en) 2003-09-16
JP2005518928A (en) 2005-06-30
KR20040091080A (en) 2004-10-27
TWI265824B (en) 2006-11-11
CN1298427C (en) 2007-02-07
EP1478461A2 (en) 2004-11-24
CA2477432A1 (en) 2003-09-12
TW200306890A (en) 2003-12-01
TWI306780B (en) 2009-03-01
CA2477428A1 (en) 2003-09-12
EA200401102A1 (en) 2005-04-28
CN1638865A (en) 2005-07-13
EP1478464A2 (en) 2004-11-24
MY139847A (en) 2009-11-30
EA200401101A1 (en) 2005-04-28
AU2003212993A8 (en) 2003-09-16
TWI265825B (en) 2006-11-11
KR20040089680A (en) 2004-10-21
CA2477428C (en) 2011-03-22
AU2003216248B2 (en) 2008-12-11
TW200303238A (en) 2003-09-01
WO2003074175A3 (en) 2003-12-04
WO2003074177A3 (en) 2003-12-31
EA200401061A1 (en) 2005-04-28
WO2003074176A3 (en) 2003-12-18
CN1642648A (en) 2005-07-20
WO2003074175A2 (en) 2003-09-12
CN100335172C (en) 2007-09-05

Similar Documents

Publication Publication Date Title
TWI265824B (en) Molecular sieve compositions, catalyst thereof, their making and use in conversion processes
US7411106B2 (en) Molecular sieve compositions, catalyst thereof, their making and use in conversion processes
US7332636B2 (en) Low metal content catalyst compositions and processes for making and using same
US6844291B2 (en) Molecular sieve compositions, catalyst thereof, their making and use in conversion processes
US7160831B2 (en) Molecular sieve catalyst composition, its making and use in conversion processes
EP1529023B1 (en) Process for preparing olefins from oxygenates
US6995111B2 (en) Molecular sieve compositions, catalysts thereof, their making and use in conversion processes
US7319178B2 (en) Molecular sieve compositions, catalysts thereof, their making and use in conversion processes
EP1412084B1 (en) Making of a molecular sieve catalyst composition and use in conversion processes
US7238845B2 (en) Molecular sieve catalyst compositions, their production and use in conversion processes
US7378563B2 (en) Molecular sieve compositions, catalysts thereof, their making and use in conversion processes
EP1753533B1 (en) Molecular sieve catalyst composition, its making and use in conversion processes
EP1680222B1 (en) Method of formulating a molecular sieve catalyst composition
US7307196B2 (en) Molecular sieve compositions, catalyst thereof, their making and use in conversion processes
US7199277B2 (en) Pretreating a catalyst containing molecular sieve and active metal oxide
US7732537B2 (en) Methods addressing aging in flocculated molecular sieve catalysts for hydrocarbon conversion processes
EP1843847B1 (en) Molecular sieve catalyst composition, its making and use in conversion processes

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees