JP2005518930A - Molecular sieve compositions, their catalysts, their production and use in conversion processes - Google Patents

Molecular sieve compositions, their catalysts, their production and use in conversion processes Download PDF

Info

Publication number
JP2005518930A
JP2005518930A JP2003572681A JP2003572681A JP2005518930A JP 2005518930 A JP2005518930 A JP 2005518930A JP 2003572681 A JP2003572681 A JP 2003572681A JP 2003572681 A JP2003572681 A JP 2003572681A JP 2005518930 A JP2005518930 A JP 2005518930A
Authority
JP
Japan
Prior art keywords
catalyst composition
oxide
molecular sieve
metal oxide
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003572681A
Other languages
Japanese (ja)
Other versions
JP2005518930A5 (en
Inventor
ルバン、ドロン
バーチュリ、ジェームス・シー
Original Assignee
エクソンモービル・ケミカル・パテンツ・インク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/215,511 external-priority patent/US6906232B2/en
Application filed by エクソンモービル・ケミカル・パテンツ・インク filed Critical エクソンモービル・ケミカル・パテンツ・インク
Publication of JP2005518930A publication Critical patent/JP2005518930A/en
Publication of JP2005518930A5 publication Critical patent/JP2005518930A5/ja
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • C10G50/02Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation of hydrocarbon oils for lubricating purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates (SAPO compounds)
    • B01J35/19
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/095Catalytic reforming characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • C10G45/54Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • C10G49/08Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J35/60
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/10Magnesium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/83Aluminophosphates (APO compounds)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/84Aluminophosphates containing other elements, e.g. metals, boron
    • C07C2529/85Silicoaluminophosphates (SAPO compounds)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Abstract

本発明は触媒組成物、それを生成する方法、及び供給原料、好ましくはオキシジェネート化された供給原料、の、一つ以上のオレフィン、好ましくはエチレン及び/又はプロピレン、への変換におけるその使用に関する。その触媒組成物は、分子篩並びに少なくとも1つの、元素の周期表の3族、元素のランタニド系列及び元素のアクチニド系列から選ばれる金属の酸化物を含有する。The present invention relates to a catalyst composition, a process for producing it, and its use in the conversion of a feed, preferably an oxygenated feed, into one or more olefins, preferably ethylene and / or propylene. About. The catalyst composition comprises a molecular sieve and at least one oxide of a metal selected from the group 3 of the periodic table of elements, the lanthanide series of elements and the actinide series of elements.

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、分子篩組成物及びその分子篩組成物を含有する触媒、そのような組成物及び触媒の合成、並びにオレフィン類を生成するための変換方法におけるそのような組成物及び触媒の使用に関する。   The present invention relates to molecular sieve compositions and catalysts containing the molecular sieve compositions, the synthesis of such compositions and catalysts, and the use of such compositions and catalysts in conversion processes to produce olefins.

オレフィン類は、伝統的に触媒分解法又は蒸気分解法により石油供給原料から生成されている。それらの分解法、特に蒸気分解は、種々の炭化水素供給原料からエチレン及び/又はプロピレンのような軽質オレフィン類を生成する。エチレン及びプロピレンは、プラスチック及び他の化学的化合物を製造するための種々の方法において有用な重要な石油化学商品である。   Olefins are traditionally produced from petroleum feedstocks by catalytic cracking or steam cracking. Their cracking processes, particularly steam cracking, produce light olefins such as ethylene and / or propylene from various hydrocarbon feedstocks. Ethylene and propylene are important petrochemical products useful in various processes for producing plastics and other chemical compounds.

石油化学工業では、オキシジェネート類、特にアルコール類、が軽質オレフィンに変換できることがかなりの間、知られている。軽質オレフィン生成のために好ましいアルコールはメタノールであり、メタノール含有供給原料を軽質オレフィン類、主にエチレン及び/又はプロピレン、に変換する好ましい方法は、供給原料を分子篩触媒組成物と接触させることに関する。   In the petrochemical industry, it has been known for some time that oxygenates, especially alcohols, can be converted to light olefins. A preferred alcohol for light olefin production is methanol, and a preferred method of converting a methanol-containing feedstock to light olefins, primarily ethylene and / or propylene, involves contacting the feedstock with a molecular sieve catalyst composition.

オキシジェネート含有供給原料を一つ以上のオレフィンに変換することが知られている多くの異なる種類の分子篩が存在する。例えば、米国特許第5,367,100号には、メタノールをオレフィンに変換するためのゼオライト、ZSM−5、の使用が記載されており、米国特許第4,062,905号には、結晶質アルミノ珪酸塩ゼオライト類、例えばゼオライトT、ZK5、エリオナイト及びシャバサイトを用いる、メタノール及び他のオキシジェネートの、エチレン及びプロピレンへの変換が記載されており、米国特許第4,079,095号には、メタノールを、エチレン及びプロピレンのような炭化水素生成物に変換するためのZSM−34の使用が記載されており、米国特許第4,310,440号には、しばしばAlPOと示される結晶質アルミノ燐酸塩を用いてアルコールから軽質オレフィンを生成することが記載されている。 There are many different types of molecular sieves known to convert oxygenate-containing feedstocks to one or more olefins. For example, US Pat. No. 5,367,100 describes the use of zeolite, ZSM-5, to convert methanol to olefins, and US Pat. No. 4,062,905 describes crystalline materials. US Pat. No. 4,079,095 describes the conversion of methanol and other oxygenates to ethylene and propylene using aluminosilicate zeolites such as zeolite T, ZK5, erionite and shabasite. the shown methanol, use of ZSM-34 for conversion to hydrocarbon products such as ethylene and propylene have been described, in U.S. Patent No. 4,310,440, often with AlPO 4 The production of light olefins from alcohols using crystalline aluminophosphates is described.

メタノールをオレフィンに変換するために最も有用な分子篩のいくつかはシリコアルミノ燐酸塩(SAPO)分子篩である。シリコアルミノ燐酸塩分子篩は、[SiO]、[AlO]及び[PO]角共有四面体単位の三次元微孔質結晶質骨組構造を有する。SAPO分子篩の合成、触媒へのその配合、及び供給原料をオレフィンに、特に、供給原料がメタノールであるときに、変換することにおけるその使用は、米国特許第4,499,327号、第4,677,242号、第4,677,243号、第4,873,390号、第5,095,163号、第5,714,662号及び第6,166,282号に開示されており、それらのすべての記載を引用により本明細書に完全に組み込む。 Some of the most useful molecular sieves for converting methanol to olefins are silicoaluminophosphate (SAPO) molecular sieves. The silicoaluminophosphate molecular sieve has a three-dimensional microporous crystalline framework structure of [SiO 4 ], [AlO 4 ] and [PO 4 ] angle-sharing tetrahedral units. The synthesis of the SAPO molecular sieve, its incorporation into the catalyst, and its use in converting the feedstock to olefins, particularly when the feedstock is methanol, is described in US Pat. No. 4,499,327, 677,242, 4,677,243, 4,873,390, 5,095,163, 5,714,662 and 6,166,282, All of which are fully incorporated herein by reference.

メタノールの、オレフィン類への変換に用いられる場合、SAPO分子篩を含むほとんどの分子篩は、迅速なコークス化を受け、従って、典型的には触媒の高温及び蒸気環境への暴露に係る頻繁な再生を必要とする。結果として、現在のメタノール変換触媒は、限定された有用な寿命を有する傾向を有し、従って、特にメタノールの、オレフィン類への変換において用いられる場合に、増大された寿命を示す分子篩触媒組成物を提供する必要がある。   When used to convert methanol to olefins, most molecular sieves, including SAPO molecular sieves, undergo rapid coking and thus typically undergo frequent regeneration with exposure to high temperatures and steam environments of the catalyst. I need. As a result, current methanol conversion catalysts tend to have a limited useful life, and thus molecular sieve catalyst compositions that exhibit increased life, particularly when used in the conversion of methanol to olefins. Need to provide.

米国特許第4,465,889号には、メタノール、ジメチルエーテル又はそれらの混合物を、イソ−C化合物に富んだ炭化水素生成物に変換することにおける使用のための、トリウム、ジルコニウム又はチタン金属の酸化物で含浸された珪酸塩分子篩を含有する触媒組成物が記載されている。 No. 4,465,889, methanol, dimethyl ether or mixtures thereof, for use in converting to iso -C 4 rich compound hydrocarbon products, thorium, zirconium or titanium metal A catalyst composition containing a silicate molecular sieve impregnated with an oxide is described.

米国特許第6,180,828号には、メタノール及びアンモニアからメチルアミン類を生成するための改質された分子篩の使用が記載されており、そこでは、例えばシリコアルミノ燐酸塩分子篩が、酸化ジルコニウム、酸化チタン、酸化イットリウム、モンモリロナイト又はカオリンのような一つ以上の改質剤と配合されている。   U.S. Pat. No. 6,180,828 describes the use of modified molecular sieves to produce methylamines from methanol and ammonia, where, for example, silicoaluminophosphate molecular sieves are zirconium oxide, Formulated with one or more modifiers such as titanium oxide, yttrium oxide, montmorillonite or kaolin.

米国特許第5,417,949号は、分子篩、金属酸化物バインダーを用いて、酸素含有流出物中の有害な窒素酸化物を窒素及び水に変換する方法に関し、そこでは、好ましいバインダーはチタニアであり、分子篩はアルミノ珪酸塩である。   US Pat. No. 5,417,949 relates to a process for converting harmful nitrogen oxides in oxygen-containing effluents to nitrogen and water using molecular sieves, metal oxide binders, where the preferred binder is titania. Yes, the molecular sieve is aluminosilicate.

欧州特許公開EP−A−312981には、シリカ含有支持体物質上に、無機耐火性マトリックス物質に埋め込まれたゼオライトと、少なくとも一つの、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム又はランタンの酸化物、好ましくは酸化マグネシウム、との物理的混合物を含有する触媒組成物を用いる、バナジウム含有炭化水素供給原料流れを分解するための方法が開示されている。   European Patent Publication EP-A-312981 discloses a zeolite embedded in an inorganic refractory matrix material on a silica-containing support material and at least one oxide of beryllium, magnesium, calcium, strontium, barium or lanthanum, Disclosed is a process for cracking a vanadium-containing hydrocarbon feed stream using a catalyst composition, preferably containing a physical mixture with magnesium oxide.

Kang及びInuiによるEffects of decrease in number of acid sites located on the external surface of Ni−SAPO−34 crystalline catalyst by the mechanochemical method、Catalysis Letters 53、171乃至176頁(1998年)には、Ni−SAPO−34におけるメタノールからエチレンへの変換において、触媒を微小球の非多孔質シリカ上のMgO、CaO、BaO又はCsO(BaOが最も好ましい)とともに粉砕することにより、形状選択性を増大し、コークス生成を低減させることができることが開示されている。 Effects of Decrease in Number of Acid Sites Located on the PO-Kine and Inui by Y-SAP-34 Crystalline Catalyst by the 17 In the conversion of methanol to ethylene in the catalyst, the catalyst is ground with MgO, CaO, BaO or Cs 2 O (BaO is most preferred) on non-porous silica in microspheres to increase shape selectivity and coke formation It is disclosed that can be reduced.

PCT特許出願公開WO98/29370には、ランタニド系列元素、アクチニド系列元素、スカンジウム、イットリウム、4族金属、5族金属及びそれらの組み合わせから成る群から選ばれる金属を含有する小細孔非ゼオライト分子篩におけるオキシジェネート類の、オレフィン類への変換が開示されている。   PCT patent application publication WO 98/29370 describes a small pore non-zeolite molecular sieve containing a metal selected from the group consisting of lanthanide series elements, actinide series elements, scandium, yttrium, group 4 metals, group 5 metals and combinations thereof. The conversion of oxygenates to olefins is disclosed.

一つの面において、本発明は、分子篩、並びに少なくとも一つの、元素周期表の3族、元素のランタニド系列、元素のアクチニド系列から選ばれる金属の酸化物を含有する触媒組成物にあり、前記金属酸化物は、100℃において、少なくとも0.03mg/金属酸化物mの、典型的には少なくとも0.04mg/金属酸化物mの、二酸化炭素の取り込みを有する。 In one aspect, the present invention resides in a catalyst composition comprising a molecular sieve and an oxide of a metal selected from at least one group 3 of the periodic table of elements, a lanthanide series of elements, an actinide series of elements, oxide has at 100 ° C., of at least 0.03 mg / metal oxide m 2, typically at least 0.04 mg / metal oxide m 2 to the carbon dioxide uptake.

好ましくは、触媒組成物は、又、前記金属酸化物とは異なる、バインダー及びマトリックス物質の少なくとも一つを含有し得る。   Preferably, the catalyst composition may also contain at least one of a binder and a matrix material different from the metal oxide.

一つの態様では、前記金属酸化物は、酸化ランタン、酸化イットリウム、酸化スカンジウム、酸化セリウム、酸化プラセオジム、酸化ネオジム、酸化サマリウム、酸化トリウム及びそれらの混合物から選ばれる。   In one embodiment, the metal oxide is selected from lanthanum oxide, yttrium oxide, scandium oxide, cerium oxide, praseodymium oxide, neodymium oxide, samarium oxide, thorium oxide, and mixtures thereof.

好ましくは、分子篩は、便利にシリコアルミノ燐酸塩を含有する。   Preferably, the molecular sieve conveniently contains silicoaluminophosphate.

他の面では、本発明は、3族金属酸化物及び/又はランタニド系列元素又はアクチニド系列元素の酸化物、バインダー、マトリックス物質及びシリコアルミノ燐酸塩分子篩を含有する分子篩触媒組成物に存する。   In another aspect, the invention resides in a molecular sieve catalyst composition comprising a Group 3 metal oxide and / or an oxide of a lanthanide series element or an actinide series element, a binder, a matrix material, and a silicoaluminophosphate molecular sieve.

さらに他の面では、本発明は、分子篩を含有する第一の粒子を、少なくとも一つの、元素の周期表3族、元素のランタニド系列及び元素のアクチニド系列から選ばれる金属の酸化物を含有する第二の粒子と物理的に混合することを含む、触媒組成物を生成する方法であり、前記金属酸化物が、100℃において、少なくとも0.03mg/金属酸化物粒子mの二酸化炭素の取り込みを有する、方法に存する。 In yet another aspect, the present invention contains at least one oxide containing a metal selected from the group 3 of the periodic table of elements, the lanthanide series of elements, and the actinide series of elements. A method of producing a catalyst composition comprising physically mixing with second particles wherein the metal oxide incorporates at least 0.03 mg / m 2 of metal oxide particles m 2 at 100 ° C. In the method.

好ましくは、前記金属のイオンを含有する溶液から前記金属酸化物の水和された前駆体を沈殿させ、少なくとも80℃の温度で10日以下の間、水和された前駆体を熱水処理し、次に、その水和された前駆体を400℃乃至900℃の範囲の温度でか焼することにより、前記の第二の粒子が製造される。   Preferably, the hydrated precursor of the metal oxide is precipitated from a solution containing the metal ions, and the hydrated precursor is hydrothermally treated at a temperature of at least 80 ° C. for 10 days or less. The second particles are then produced by calcining the hydrated precursor at a temperature in the range of 400 ° C. to 900 ° C.

他の面において、分子篩、及び少なくとも一つの、元素の周期表3族、元素のランタニド系列及び元素のアクチニド系列から選ばれる金属の酸化物を含有する触媒組成物であり、前記金属酸化物が、100℃において、少なくとも0.03mg/金属酸化物mの、二酸化炭素の取り込みを有する、触媒組成物の存在下で、オキシジェネート、都合よくアルコール、例えばメタノール、のような供給原料を一つ以上のオレフィンに変換する方法に関する。 In another aspect, there is a catalyst composition comprising a molecular sieve and an oxide of a metal selected from at least one group 3 of the periodic table of elements, a lanthanide series of elements and an actinide series of elements, wherein the metal oxide is One feedstock such as oxygenate, conveniently an alcohol such as methanol, in the presence of a catalyst composition having carbon dioxide uptake of at least 0.03 mg / m 2 of metal oxide at 100 ° C. The present invention relates to a method for converting to olefin.

一つの態様では、前記触媒組成物は、1.5より大きいような、1より大きい寿命向上指数(Lifetime Enhancement Index)(LEI)を有する。LEIは、本明細書では、前記触媒組成物の寿命の、活性な金属酸化物の不存在での同じ触媒組成物の寿命に対する比として定義される。   In one embodiment, the catalyst composition has a Lifetime Enhancement Index (LEI) greater than 1, such as greater than 1.5. LEI is defined herein as the ratio of the lifetime of the catalyst composition to the lifetime of the same catalyst composition in the absence of active metal oxide.

本発明は、分子篩触媒組成物、及び炭化水素供給原料、特にオキシジェネート化された供給原料、の、オレフィンへの変換におけるその使用に関する。分子篩を、元素の周期表[CRC Handbook of Chemistry and Physics、78版、CRC Press(フロリダ州、Boca Raton)(1997年)に記載されたIUPAC形式を用いる]の3族及び/又はランタニド系列元素又はアクチニド系列元素からの活性な金属の酸化物と配合することにより、オキシジェネート、より特定するとメタノール、のような供給原料の、オレフィンへの変換に用いられる場合に、増大されたオレフィン収量及び/又はより長い寿命を有する触媒組成物がもたらされることが見出された。又、得られた触媒組成物は、よりプロピレン選択性であり、アルデヒド類及びケトン類、特にアセトアルデヒド、のような、他の望ましくない化合物とともに、望ましくないエタン及びプロパンを少量しか生じない傾向を有する。   The present invention relates to molecular sieve catalyst compositions and their use in the conversion of hydrocarbon feeds, particularly oxygenated feeds, to olefins. The molecular sieve is a group of elements of the Periodic Table of Elements [CRC Handbook of Chemistry and Physics, 78th Edition, CRC Press (Boca Raton, Fla.) (1997) using the IUPAC format] and / or lanthanide series elements or By combining with active metal oxides from actinide series elements, increased olefin yields and / or when used to convert feeds such as oxygenates, more particularly methanol, to olefins. Or it has been found that a catalyst composition having a longer lifetime is provided. The resulting catalyst composition is also more propylene-selective and tends to produce only a small amount of undesirable ethane and propane, along with other undesirable compounds such as aldehydes and ketones, particularly acetaldehyde. .

分子篩
分子篩は、IUPAC Commission on Zeolite Nomenclatureの規則によるStructure Commission of the International Zeolite Associationにより分類されている。この分類によると、それについて構造が確立されている骨組種ゼオライト及びゼオライト種分子篩は、3文字コードを与えられており、Atlas of Zeolite Framework Types、5版、Elsevier(英国、ロンドン)(2001年)に記載されており、その記載を引用により本明細書に完全に組み込む。
Molecular sieves Molecular sieves are classified by the Structure Commission of the International Zeolite Association according to the rules of the IUPAC Commission on Zeolite Nomenclature. According to this classification, the framework-type zeolite and zeolite-type molecular sieve, for which the structure has been established, have been given the three letter code, Atlas of Zeolite Framework Types, 5th edition, Elsevier (London, UK) (2001) Which is fully incorporated herein by reference.

特に、オキシジェネート含有供給原料の、オレフィンへの変換における使用のための好ましい分子篩の非限定例には、骨組種、AEL、AEI、BEA、CHA、EDI、FAU、FER、GIS、LTA、LTL、MER、MFI、MOR、MTT、MWW、TAM及びTONが含まれる。一つの好ましい態様では、本発明の触媒組成物において用いられる分子篩は、AEIトポロジー又はCHAトポロジー又はそれらの組み合わせを有し、最も好ましくはCHAトポロジーを有する。   In particular, non-limiting examples of preferred molecular sieves for use in the conversion of oxygenate-containing feedstocks to olefins include skeletal species, AEL, AEI, BEA, CHA, EDI, FAU, FER, GIS, LTA, LTL , MER, MFI, MOR, MTT, MWW, TAM and TON. In one preferred embodiment, the molecular sieve used in the catalyst composition of the present invention has an AEI topology or a CHA topology or a combination thereof, and most preferably has a CHA topology.

結晶質分子篩物質は、角共有の[TO]四面体の3次元の4連結骨組構造を有し、Tは、[SiO]、[AlO]及び/又は[PO]四面体単位のような、四面体として配位されたカチオンである。本発明において有用な分子篩は、[AlO]及び[PO]四面体単位を含む骨組を便利に含有する、すなわち、アルミノ燐酸塩(AlPO)分子篩であるか、又は、[SiO]、[AlO]及び[PO]四面体単位を含む骨組を便利に含有する、すなわち、シリコアルミノ燐酸塩(SAPO)分子篩である。最も好ましくは、本発明において有用な分子篩は、シリコアルミノ燐酸塩(SAPO)分子篩又は置換された、好ましくは金属で置換された、SAPO分子篩である。適する金属置換基の例は、元素の周期表の1族のアルカリ金属、元素の周期表の2族のアルカリ土類金属、ランタニド系列:ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユーロピウム、ガドリニウム、エルビウム、ジスプロシウム、ホルミウム、ツリウム、イッテルビウム及びルテチウム;及びスカンジウム又はイットリウムを含む元素の周期表の3族の稀土金属、元素の周期表の4族乃至12族の遷移金属又はそれらの金属種のいずれかの混合物である。 The crystalline molecular sieve material has an angle-sharing [TO 4 ] tetrahedral three-dimensional four-linked framework structure, where T is a [SiO 4 ], [AlO 4 ] and / or [PO 4 ] tetrahedral unit. Such a cation coordinated as a tetrahedron. The molecular sieves useful in the present invention conveniently contain a framework comprising [AlO 4 ] and [PO 4 ] tetrahedral units, ie aluminophosphate (AlPO) molecular sieves, or [SiO 4 ], [ Conveniently containing a framework comprising AlO 4 ] and [PO 4 ] tetrahedral units, ie a silicoaluminophosphate (SAPO) molecular sieve. Most preferably, the molecular sieve useful in the present invention is a silicoaluminophosphate (SAPO) molecular sieve or a SAPO molecular sieve substituted, preferably substituted with metal. Examples of suitable metal substituents are group 1 alkali metals of the periodic table of elements, alkaline earth metals of group 2 of the periodic table of elements, lanthanide series: lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, erbium , Dysprosium, holmium, thulium, ytterbium and lutetium; and any of the rare earth metals of group 3 of the periodic table of elements including scandium or yttrium, transition metals of groups 4 to 12 of the periodic table of elements or any of these metal species It is a mixture.

好ましくは、本発明において用いられる分子篩は、[TO]四面体の8員環により定義される細孔系を有し、5オングストローム未満の、3オングストローム乃至5オングストロームのような、例えば、3オングストローム乃至4.5オングストロームの、特に3.5オングストローム乃至4.2オングストロームの、平均細孔サイズを有する。 Preferably, the molecular sieve used in the present invention has a pore system defined by an 8-membered ring of [TO 4 ] tetrahedron and has a pore size of less than 5 angstroms, such as 3 angstroms to 5 angstroms, for example 3 angstroms It has an average pore size of from ~ 4.5 Angstroms, especially from 3.5 Angstroms to 4.2 Angstroms.

本発明において有用なSAPO及びAlPO分子篩の非限定的な例は、SAPO−5、SAPO−8、SAPO−11、SAPO−16、SAPO−17、SAPO−18、SAPO−20、SAPO−31、SAPO−34、SAPO−35、SAPO−36、SAPO−37、SAPO−40、SAPO−41、SAPO−42、SAPO−44(米国特許第6,162,415号)、SAPO−47、SAPO−56、AlPO−5、AlPO−11、AlPO−18、AlPO−31、AlPO−34、AlPO−36、AlPO−37、AlPO−46及びそれらの金属含有分子篩の一つ又は組み合わせが含まれる。それらのなかで、特に有用な分子篩は、SAPO−18、SAPO−34、AlPO−34及びAlPO−18並びにそれらの金属含有誘導体の一つ又は組み合わせようなSAPO−18、SAPO−34、SAPO−35、SAPO−44、SAPO−56、AlPO−18及びAlPO−34並びにそれらの金属含有誘導体の一つ又は組み合わせであり、特にSAPO−34及びAlPO−18並びにそれらの金属含有誘導体の一つ又は組み合わせである。   Non-limiting examples of SAPO and AlPO molecular sieves useful in the present invention include SAPO-5, SAPO-8, SAPO-11, SAPO-16, SAPO-17, SAPO-18, SAPO-20, SAPO-31, SAPO. -34, SAPO-35, SAPO-36, SAPO-37, SAPO-40, SAPO-41, SAPO-42, SAPO-44 (US Pat. No. 6,162,415), SAPO-47, SAPO-56, One or a combination of AlPO-5, AlPO-11, AlPO-18, AlPO-31, AlPO-34, AlPO-36, AlPO-37, AlPO-46 and their metal-containing molecular sieves are included. Among them, particularly useful molecular sieves are SAPO-18, SAPO-34, SAPO-35, such as SAPO-18, SAPO-34, AlPO-34 and AlPO-18 and one or combinations of their metal-containing derivatives. , SAPO-44, SAPO-56, AlPO-18 and AlPO-34 and their metal-containing derivatives or combinations thereof, in particular SAPO-34 and AlPO-18 and their metal-containing derivatives or combinations thereof. is there.

一つの態様では、分子篩は、一つの分子篩組成物内に2つ以上の別の結晶質相を有する互生物質である。特に、互生分子篩は、米国特許出願公開2002−0165089及び1998年4月16日に公開されたPCT特許出願公開WO98/15496に記載されており、それらの両方の記載を引用により本明細書に組み込む。例えば、SAPO−18、AlPO−18及びRUW−18はAEI骨組種を有し、SAPO−34はCHA骨組種を有する。従って、本発明において用いられる分子篩は、AEI及びCHA骨組種の少なくとも一つの互生相を含有し得て、特にそれでは米国特許出願公開2002−0165089に開示されたDIFFaX法により決定されるCHA骨組種対AEI骨組種の比は1:1より大きい。   In one embodiment, the molecular sieve is an commensal material having two or more separate crystalline phases within one molecular sieve composition. In particular, symbiotic molecular sieves are described in US Patent Application Publication No. 2002-0165089 and PCT Patent Application Publication WO 98/15496 published April 16, 1998, both of which are incorporated herein by reference. . For example, SAPO-18, AlPO-18 and RUW-18 have an AEI skeleton, and SAPO-34 has a CHA skeleton. Thus, the molecular sieve used in the present invention may contain at least one alternate phase of AEI and CHA framework species, and in particular, CHA framework species pairs determined by the DIFFaX method disclosed in US Patent Application Publication No. 2002-0165089. The ratio of AEI skeleton species is greater than 1: 1.

好ましくは、分子篩がシリコアルミノ燐酸塩である場合、その分子篩は、0.65以下の、0.65乃至0.10のような、好ましくは0.40乃至0.10の、より好ましくは0.32乃至0.10の、最も好ましくは0.32乃至0.15の、Si/Al比を有する。   Preferably, when the molecular sieve is a silicoaluminophosphate, the molecular sieve is not more than 0.65, such as 0.65 to 0.10, preferably 0.40 to 0.10, more preferably 0.32. Having a Si / Al ratio of from 0.10 to 0.10, most preferably from 0.32 to 0.15.

金属酸化物
本発明において有用な金属酸化物は、100℃において、少なくとも0.03mg/金属酸化物mの、二酸化炭素の取り込みを有する、元素の周期表3族金属、ランタニド系列金属及びアクチニド系列金属の酸化物である。金属酸化物の二酸化炭素取り込みの上限は臨界的ではないが、一般的に、本発明において有用な金属酸化物は、100℃において、10mg未満/金属酸化物mの二酸化炭素の、5mg未満/金属酸化物mの二酸化炭素のような、取り込みを有する。典型的には、本発明において有用な金属酸化物は0.05乃至1mg/金属酸化物mの二酸化炭素の取り込みを有する。分子篩と組み合わせて用いられる場合、そのような活性金属酸化物は、触媒変換プロセス、特に、オキシジェネートの、オレフィンへの変換において利点を与える。
Metal Oxides The metal oxides useful in the present invention are at least 0.03 mg / m 2 metal oxide m 2 elemental periodic group III metals, lanthanide series metals and actinide series at 100 ° C. with uptake of carbon dioxide. It is a metal oxide. Although the upper limit of carbon dioxide uptake of metal oxides is not critical, in general, metal oxides useful in the present invention are less than 10 mg / m 2 of carbon dioxide in metal oxide m 2 at 100 ° C. such as carbon dioxide in the metal oxide m 2, with incorporation. Typically, metal oxides useful in the present invention have a carbon dioxide uptake of 0.05 to 1 mg / m 2 of metal oxide. When used in combination with molecular sieves, such active metal oxides provide advantages in catalytic conversion processes, particularly in the conversion of oxygenates to olefins.

金属酸化物の二酸化炭素取り込みを決定するために、下記の操作が採用される。金属酸化物の試料を、流動空気中で約200℃乃至500℃に、一定の重量、「乾燥重量」、が得られるまで加熱することにより、その試料を脱水する。次にその試料の温度を100℃に低下させ、二酸化炭素を連続的又は断続的に、再び一定の重量が得られるまで、その試料に通過させる。試料の乾燥重量に基づく、mg/試料mgでの、試料の重量における増大が、吸着された二酸化炭素の量である。   In order to determine the carbon dioxide uptake of the metal oxide, the following procedure is employed. The sample of metal oxide is dehydrated by heating to about 200 ° C. to 500 ° C. in flowing air until a constant weight, “dry weight”, is obtained. The temperature of the sample is then reduced to 100 ° C. and carbon dioxide is passed through the sample continuously or intermittently until a constant weight is obtained again. The increase in sample weight in mg / mg sample based on the dry weight of the sample is the amount of carbon dioxide adsorbed.

後に記載した実施例において、二酸化炭素吸着は、周囲圧力下でMetler TGA/SDTA 851熱重量分析システムを用いて測定される。金属酸化物試料を流動空気中で約500℃に1時間脱水する。次に、その試料の温度を流動ヘリウム中で100℃の望ましい吸着温度に低下させる。その試料を流動ヘリウム中で100℃において平衡させた後に、試料を、10重量%の二酸化炭素を含有し残量がヘリウムである気体混合物の20分離パルス(約12秒/パルス)に付す。吸着気体の各パルス後に金属酸化物試料を3分間、流動ヘリウムでフラッシさせる。500℃における処理の後に、吸着重量に基づく、mg/吸着剤mgでの試料の重量における増大が、吸着された二酸化炭素の量である。試料の表面積は、ASTM D3663として公表されたBrunauer、Emmett及びTeller(BET)の方法により測定され、二酸化炭素mg/金属酸化物mでの二酸化炭素取り込みが与えられる。 In the examples described below, carbon dioxide adsorption is measured using a Mettler TGA / SDTA 851 thermogravimetric analysis system under ambient pressure. The metal oxide sample is dehydrated in flowing air to about 500 ° C. for 1 hour. The temperature of the sample is then lowered to the desired adsorption temperature of 100 ° C. in flowing helium. After equilibrating the sample in flowing helium at 100 ° C., the sample is subjected to 20 separation pulses (about 12 seconds / pulse) of a gas mixture containing 10 wt% carbon dioxide and the balance being helium. After each pulse of adsorbed gas, the metal oxide sample is flushed with flowing helium for 3 minutes. After treatment at 500 ° C., the increase in the weight of the sample in mg / mg adsorbent based on the weight of adsorption is the amount of carbon dioxide adsorbed. Surface area of the sample, Brunauer, published as ASTM D3663, measured by the method of Emmett and Teller (BET), is given carbon dioxide uptake with carbon dioxide mg / metal oxide m 2.

好ましい3族金属酸化物には、スカンジウム、イットリウム及びランタンの酸化物が含まれ、ランタニド又はアクチニド系列金属の好ましい酸化物には、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロジウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテリウム及びトリウム、の酸化物が含まれる。最も好ましい活性な金属酸化物は、酸化スカンジウム、酸化ランタン、酸化イットリウム、酸化セリウム、酸化プラセオジム、酸化ネオジム及びそれらの混合物、特に、酸化ランタンと酸化セリウムの混合物が含まれる。   Preferred Group 3 metal oxides include oxides of scandium, yttrium and lanthanum, and preferred oxides of lanthanide or actinide series metals include cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprodium, Oxides of holmium, erbium, thulium, ytterbium, ruthelium and thorium are included. The most preferred active metal oxides include scandium oxide, lanthanum oxide, yttrium oxide, cerium oxide, praseodymium oxide, neodymium oxide and mixtures thereof, in particular mixtures of lanthanum oxide and cerium oxide.

一つの態様では、有用な金属酸化物は、触媒組成物において分子篩と組み合わせて用いられる場合、触媒組成物の有用な寿命の延長において有効である3族金属及び/又はランタニド及びアクチニド系列金属の酸化物である。触媒組成物寿命における延長の数量化は、下記式、

Figure 2005518930
In one embodiment, the useful metal oxide, when used in combination with a molecular sieve in the catalyst composition, is an oxidation of a Group 3 metal and / or a lanthanide and actinide series metal that is effective in extending the useful life of the catalyst composition. It is a thing. The quantification of the extension in the catalyst composition life is given by the following formula:
Figure 2005518930

(式中、触媒又は触媒組成物の寿命は同じ条件下で同じプロセスで測定され、触媒組成物による供給原料の変換が、ある画定された水準、例えば10%、より低減するまでの、触媒組成物のg当り処理された供給原料の累積量である)により定義される寿命向上指数(Lifetime Enhancement Index)(LEI)により決定される。不活性な金属酸化物は、触媒組成物の寿命における効果がほとんどないか、もしくは全くないか、又は触媒組成物の寿命を短くし、従って、1以下のLEIを有する。本発明の活性な金属酸化物は、分子篩と組み合わせて用いられる場合、1より大きなLEIを有する分子篩触媒組成物を与える、ランタニド及びアクチニド系列の酸化物を含む、3族金属酸化物である。定義により、活性な金属酸化物と組み合わされていない分子篩触媒組成物は、1.0に等しいLEIを有する。 (Wherein the lifetime of the catalyst or catalyst composition is measured in the same process under the same conditions, and the catalyst composition until the conversion of the feedstock by the catalyst composition is reduced by some defined level, for example 10%. Is the Lifetime Enhancement Index (LEI) defined by the cumulative amount of feed processed per gram of product. Inert metal oxides have little or no effect on the life of the catalyst composition or shorten the life of the catalyst composition and thus have a LEI of 1 or less. The active metal oxides of the present invention are Group 3 metal oxides, including lanthanide and actinide series oxides, which when used in combination with molecular sieves, give molecular sieve catalyst compositions having a LEI greater than 1. By definition, a molecular sieve catalyst composition that is not combined with an active metal oxide has a LEI equal to 1.0.

分子篩との組み合わせにおいて活性な金属酸化物を含むことにより、1より大きく50までの範囲の、1.5乃至20のような、範囲のLEIを有する触媒組成物が生成され得る。典型的には、本発明による触媒組成物は、1.1より大きな、例えば1.2乃至15の範囲の、より特定すると1.3より大きな、1.5より大きいような、1.7より大きいような、2より大きいような、LEI値を示す。   By including an active metal oxide in combination with a molecular sieve, a catalyst composition having a range of LEI, such as 1.5 to 20, in the range of greater than 1 to 50 can be produced. Typically, the catalyst composition according to the invention is greater than 1.1, for example in the range of 1.2 to 15, more particularly greater than 1.3, greater than 1.5, such as greater than 1.5. The LEI value is greater than 2, such as greater.

活性な金属酸化物は、種々の方法を用いて生成され得る。活性な金属酸化物は、硝酸塩、ハロゲン化物、硝酸硫酸塩又は酢酸塩のような金属塩のような活性な金属酸化物前駆体から製造されるのが好ましい。他の適する金属酸化物の供給源には、オキシクロリド及び硝酸塩のような、か焼中に金属酸化物を生成する化合物が含まれる。アルコキシド、例えばイットリウム−n−プロポキシド、も3族金属酸化物の適する供給源である。   Active metal oxides can be produced using various methods. The active metal oxide is preferably prepared from an active metal oxide precursor such as a metal salt such as nitrate, halide, nitrate sulfate or acetate. Other suitable metal oxide sources include compounds that form metal oxides during calcination, such as oxychlorides and nitrates. Alkoxides, such as yttrium-n-propoxide, are also suitable sources of Group 3 metal oxides.

一つの態様では、3族金属酸化物又はランタニドもしくはアクチニド系列の酸化物は、少なくとも80℃、好ましくは少なくとも100℃、の温度を含む条件下で熱水処理される。熱水処理は、大気圧よりも高い圧力で密閉容器において行われ得る。しかし、処理の好ましい様式は、還流条件下での開放容器の使用に関する。例えば、還流液体の作用及び/又は攪拌による、液体媒体中での、3族金属酸化物又はランタニドもしくはアクチニド系列の酸化物の攪拌は、前記酸化物の前記液体媒体との有効な相互作用を促進する。前記酸化物の前記液体媒体との接触の時間は、好ましくは少なくとも1時間、好ましくは少なくとも8時間である。この処理のための液体媒体は、約6以上、好ましくは約8以上、のpHを有する。適する液体媒体の非限定例には、水、水酸化物溶液(NH 、Na、K、Mg2+及びCa2+の水酸化物を含む)、炭酸塩及び重炭酸塩溶液(NH 、Na、K、Mg2+及びCa2+の炭酸塩及び重炭酸塩を含む)、ピリジン及びそれらの誘導体並びにアルキル/ヒドロキシルアミンが含まれる。 In one embodiment, the Group 3 metal oxide or lanthanide or actinide series oxide is hydrothermally treated under conditions comprising a temperature of at least 80 ° C, preferably at least 100 ° C. The hydrothermal treatment can be performed in a closed container at a pressure higher than atmospheric pressure. However, the preferred mode of treatment involves the use of an open vessel under reflux conditions. For example, stirring a Group 3 metal oxide or a lanthanide or actinide series oxide in a liquid medium by the action and / or stirring of a refluxing liquid promotes effective interaction of the oxide with the liquid medium. To do. The time of contact of the oxide with the liquid medium is preferably at least 1 hour, preferably at least 8 hours. The liquid medium for this treatment has a pH of about 6 or higher, preferably about 8 or higher. Non-limiting examples of suitable liquid media include water, hydroxide solutions (including hydroxides of NH 4 + , Na + , K + , Mg 2+ and Ca 2+ ), carbonate and bicarbonate solutions (NH 4 + , Na + , K + , Mg 2+ and Ca 2+ carbonates and bicarbonates), pyridine and their derivatives, and alkyl / hydroxylamines.

他の態様では、活性な3族金属酸化物又はランタニドもしくはアクチニド系列の活性な酸化物は、金属塩のような、金属のイオンの供給源を含有する水性溶液のような液体溶液を、その溶液への沈殿剤の添加によるような、水和された前駆体の固体酸化物物質の沈殿をもたらすのに十分な条件に付すことにより、製造される。便利には、沈殿は、7より高いpHにおいて行われる。例えば、沈殿剤は、好ましくは、水酸化ナトリウム又は水酸化アンモニウムのような塩基である。   In other embodiments, the active Group 3 metal oxide or the lanthanide or actinide series of active oxide is a liquid solution, such as an aqueous solution containing a source of metal ions, such as a metal salt. By subjecting it to conditions sufficient to result in precipitation of a hydrated precursor solid oxide material, such as by addition of a precipitant to. Conveniently, the precipitation is performed at a pH higher than 7. For example, the precipitating agent is preferably a base such as sodium hydroxide or ammonium hydroxide.

沈殿の間に液体媒体が維持される温度は、一般的には、200℃以下の、0℃乃至200℃の範囲のような、温度である。沈殿のための温度の特定の範囲は、20℃乃至100℃である。次に、得られるゲルを、少なくとも80℃、好ましくは少なくとも100℃、の温度において熱水処理する。その熱水処理は典型的には、大気圧で行われる。一つの態様では、そのゲルは、10日までの、5日までのような、例えば3日までの、間、熱水処理される。   The temperature at which the liquid medium is maintained during precipitation is generally a temperature, such as a range of 0 ° C. to 200 ° C., up to 200 ° C. A specific range of temperature for precipitation is 20 ° C to 100 ° C. The resulting gel is then hydrothermally treated at a temperature of at least 80 ° C, preferably at least 100 ° C. The hydrothermal treatment is typically performed at atmospheric pressure. In one embodiment, the gel is hydrothermally treated for up to 10 days, such as up to 5 days, such as up to 3 days.

次に、金属酸化物の水和された前駆体を、例えば、ろ過又は遠心分離により回収し、洗滌し、乾燥させる。次に、得られた物質は、例えば酸化雰囲気中で、少なくとも400℃の、少なくとも500℃のような、例えば600℃乃至900℃の、特に650℃乃至800℃の、温度において、か焼され得て、固体酸化物物質を生成する。か焼時間は、典型的には、48時間以下、0.5乃至24時間のような、例えば1.0乃至10時間、である。一つの態様では、か焼は、約700℃で1乃至3時間行われる。   The metal oxide hydrated precursor is then recovered, for example, by filtration or centrifugation, washed and dried. The resulting material can then be calcined, for example in an oxidizing atmosphere, at a temperature of at least 400 ° C., such as at least 500 ° C., for example 600 ° C. to 900 ° C., in particular 650 ° C. to 800 ° C. To produce a solid oxide material. The calcination time is typically 48 hours or less, such as 1.0 to 10 hours, such as 0.5 to 24 hours. In one embodiment, the calcination is performed at about 700 ° C. for 1-3 hours.

触媒組成物
本発明の触媒組成物は、一つ以上の先に記載した分子篩及び一つ以上の先に記載した活性な金属酸化物、任意に、活性な金属酸化物とは異なるバインダー及び/又はマトリックス物質を含有する。典型的には、触媒組成物における活性な金属酸化物に対する分子篩の重量比は、5重量%乃至800重量%。好ましくは10重量%乃至600重量%、より好ましくは20重量%乃至500重量%、最も好ましくは30重量%乃至400重量%である。
Catalyst Composition The catalyst composition of the present invention comprises one or more molecular sieves as described above and one or more active metal oxides as described above, optionally a binder and / or different from the active metal oxide. Contains matrix material. Typically, the weight ratio of molecular sieve to active metal oxide in the catalyst composition is 5% to 800% by weight. It is preferably 10% to 600% by weight, more preferably 20% to 500% by weight, and most preferably 30% to 400% by weight.

本発明の触媒組成物を生成するのに有用な多くの異なるバインダーが存在する。単独で又は組み合わせで有用なバインダーの非限定例には、種々の種類の水和アルミナ、シリカ類及び/又は他の無機酸化物ゾルが含まれる。一つの好ましいアルミナ含有ゾルはアルミニウムクロロヒドロールである。無機酸化物ゾルは、合成された分子篩と、マトリックスのような他の物質とを一緒に、特に熱処理後に、結合させるグルーのように作用する。加熱時に、無機酸化物ゾル、好ましくは低粘度を有する無機酸化物ゾル、は、無機酸化物バインダー成分に変換される。例えば、アルミナゾルは、熱処理の後に、酸化アルミニウムバインダーに変換される。   There are many different binders useful for producing the catalyst composition of the present invention. Non-limiting examples of binders useful alone or in combination include various types of hydrated alumina, silicas and / or other inorganic oxide sols. One preferred alumina-containing sol is aluminum chlorohydrol. The inorganic oxide sol acts like a glue that combines the synthesized molecular sieve and other materials such as a matrix, especially after heat treatment. Upon heating, the inorganic oxide sol, preferably an inorganic oxide sol having a low viscosity, is converted to an inorganic oxide binder component. For example, alumina sol is converted to an aluminum oxide binder after heat treatment.

アルミニウムクロロヒドロール、塩化物対イオンを有するヒドロキシル化アルミニウム系ゾルは、一般式、Al(OH)Cl・x(HO)
(式中、mは1乃至20であり、nは1乃至8であり、oは5乃至40であり、pは2乃至15であり、xは0乃至30である)を有する。一つの態様では、バインダーは、G.M.WoltermanらによるStud.Surf.Sci.and Catal.、76巻、105−144頁(1993年)に記載されているように、Al13(OH)24Cl・12(HO)である。他の態様では、一つ以上のバインダーが、アルミニウムオキシヒドロキシド、γ−アルミナ、ベーマイト、ダイアスポア、並びにα−アルミナ、β−アルミナ、γ−アルミナ、δ−アルミナ、ε−アルミナ、κ−アルミナ及びρ−アルミナのような遷移アルミナ、ギブサイト、バイヤライト、ノルドストランダイト、ドイエライト(doyelite)のような三水酸化アルミニウム並びにそれらの混合物のような一つ以上の他のアルミナ物質と配合される。
Aluminum chlorohydrol, hydroxylated aluminum based sol having a chloride counterion, the general formula, Al m O n (OH) o Cl p · x (H 2 O)
Wherein m is 1 to 20, n is 1 to 8, o is 5 to 40, p is 2 to 15, and x is 0 to 30. In one embodiment, the binder comprises G.I. M.M. Stud. Surf. Sci. and Catal. 76, 105-144 (1993), Al 13 O 4 (OH) 24 Cl 7 · 12 (H 2 O). In other embodiments, the one or more binders are aluminum oxyhydroxide, γ-alumina, boehmite, diaspore, and α-alumina, β-alumina, γ-alumina, δ-alumina, ε-alumina, κ-alumina and It is blended with one or more other alumina materials such as transition aluminas such as rho-alumina, aluminum trihydroxides such as gibbsite, bayerite, nordstrandite, doyelite, and mixtures thereof.

市販のコロイドアルミナゾルの非限定的な例には、Nalco Chemical Co.(イリノイ州、Naperville)から入手可能なNalco 8676及びNyacol Nano Technology Inc.(マサチュセッツ州、Ashland)から入手可能なNyacol AL20DWが含まれる。   Non-limiting examples of commercially available colloidal alumina sols include Nalco Chemical Co. (Nalco 8676 and Nyacol Nano Technology Inc. available from Naperville, Ill.). Nyacol AL20DW available from (Ashland, Massachusetts).

触媒組成物が、マトリックス物質を含有する場合、マトリックス物質は好ましくは活性な金属酸化物及びバインダーとは異なる。マトリックス物質は、典型的には、全体の触媒コストを低減させるのに有効であり、再生中に、熱シンクとして作用し、触媒組成物の密度を高め、圧潰強度及び摩耗抵抗のような触媒物理的性質を増大させる。   When the catalyst composition contains a matrix material, the matrix material is preferably different from the active metal oxide and binder. The matrix material is typically effective in reducing the overall catalyst cost and acts as a heat sink during regeneration, increasing the density of the catalyst composition, catalyst physical properties such as crush strength and abrasion resistance. Increase physical properties.

本発明において有用なマトリックス物質の非限定例には、ベリリア、石英、シリカ又はゾル及びそれらの混合物を含む一つ以上の非活性金属酸化物、例えばシリカ−マグネシア、シリカ−ジルコニア、シリカ−チタニア、シリカ−アルミナ及びシリカ−アルミナ−トリア、が含まれる。一つの態様では、マトリックス物質は、モンモリロナイト及びカオリンの族からの物質のような天然のクレーである。それらの天然のクレーには、スベントナイト、並びに例えばDixieクレー、McNameeクレー、Georgiaクレー及びFloridaクレーとして知られているカオリンが含まれる。他のマトリックス物質の非限定例には、ハロイサイト、カオリナイト、ディッカイト、ナクライト又はアナウキサイト(anauxite)が含まれる。クレーのようなマトリックス物質は、か焼及び/又は酸処理及び/又は化学的処理のようなよく知られた改質プロセスに付され得る。   Non-limiting examples of matrix materials useful in the present invention include one or more non-active metal oxides including beryllia, quartz, silica or sol and mixtures thereof, such as silica-magnesia, silica-zirconia, silica-titania, Silica-alumina and silica-alumina-tria are included. In one embodiment, the matrix material is a natural clay such as materials from the montmorillonite and kaolin families. These natural clays include bentonite and kaolins known as, for example, Dixie clay, McNamee clay, Georgia clay and Florida clay. Non-limiting examples of other matrix materials include halloysite, kaolinite, dickite, nacrite or anauxite. Matrix materials such as clay can be subjected to well-known modification processes such as calcination and / or acid treatment and / or chemical treatment.

好ましい態様において、マトリックス物質は、クレー又はクレー種組成物、特に、クレー、又は低含量の鉄又はチタニアを有するクレー種組成物であり、最も好ましくはカオリンである。カオリンは、ポンプで注入できる高固体含量のスラリーを形成し、低いフレッシュな表面積を有し、板状構造のために容易に一緒にコンパクトに納まることが見出されている。マトリックス物質、最も好ましくはカオリン、の好ましい平均粒度は、0.1μm乃至0.6μmであり、1μm未満のD90粒度分布を有する。 In a preferred embodiment, the matrix material is a clay or clay seed composition, in particular clay or a clay seed composition having a low content of iron or titania, most preferably kaolin. Kaolin has been found to form a high solids content slurry that can be pumped, has a low fresh surface area, and easily fits together compactly because of the plate-like structure. The preferred average particle size of the matrix material, most preferably kaolin, is between 0.1 μm and 0.6 μm and has a D 90 particle size distribution of less than 1 μm.

触媒組成物がバインダー又はマトリックス物質を含有する場合、触媒組成物は、典型的には、触媒組成物の総重量に基づいて1重量%乃至80重量%の、好ましくは5重量%乃至60重量%の、より好ましくは5重量%乃至50重量%の、分子篩を含有する。   When the catalyst composition contains a binder or matrix material, the catalyst composition is typically 1 wt% to 80 wt%, preferably 5 wt% to 60 wt%, based on the total weight of the catalyst composition. More preferably 5% to 50% by weight of molecular sieve.

触媒組成物が、バインダー及びマトリックス物質を含有する場合、バインダー対マトリックス物質の重量比は、典型的には、1:15乃至1:5の、1:10乃至1:4のような、特に1:6乃至1:5の、比である。バインダーの量は、典型的には、バインダー、分子篩及びマトリックス物質の総重量に基づいて、約2重量%乃至約30重量%、約5重量%乃至約20重量%のような、特に、約7重量%乃至約15重量%、である。   When the catalyst composition contains a binder and a matrix material, the weight ratio of binder to matrix material is typically 1:15 to 1: 5, such as 1:10 to 1: 4, in particular 1 : 6 to 1: 5 ratio. The amount of binder is typically from about 2% to about 30%, from about 5% to about 20%, in particular from about 7%, based on the total weight of the binder, molecular sieve and matrix material. % To about 15% by weight.

触媒組成物は、典型的には、0.5g/cc乃至5g/cc、0.6g/cc乃至5g/ccのような、例えば0.7g/cc乃至4g/cc、特に、0.8g/cc乃至3g/cc、の範囲の密度を有する。   The catalyst composition is typically 0.5 g / cc to 5 g / cc, such as 0.7 g / cc to 5 g / cc, for example 0.7 g / cc to 4 g / cc, in particular 0.8 g / cc. It has a density in the range of cc to 3 g / cc.

触媒組成物を製造する方法
触媒組成物を製造することにおいて、分子篩を最初に合成し、次に、活性な金属酸化物、好ましくは、実質的に乾燥した、乾燥された又はか焼された状態での活性な金属酸化物、と物理的に混合する。最も好ましくは、分子篩及び活性な金属酸化物は、それらのか焼された状態で物理的に混合される。均質な物理的混合は、ミキサーマラー、ドラムミキサー、リボン/パドルブレンダー、ニーダー等を用いて混合するような、本技術分野で知られたいずれかの方法により行われ得る。分子篩と金属酸化物の化学的反応は不必要であり、一般的に、好ましくない。
Method of making a catalyst composition In making a catalyst composition, a molecular sieve is first synthesized and then an active metal oxide, preferably in a substantially dry, dried or calcined state. Physically mixed with active metal oxides at Most preferably, the molecular sieve and the active metal oxide are physically mixed in their calcined state. Homogeneous physical mixing can be done by any method known in the art, such as mixing using a mixer muller, drum mixer, ribbon / paddle blender, kneader and the like. A chemical reaction between the molecular sieve and the metal oxide is unnecessary and is generally not preferred.

触媒組成物が、マトリックス及び/又はバインダーを含有する場合、分子篩は、最初に、マトリックス及び/又はバインダーとともに触媒前駆体に便利に配合されて、次に活性な金属酸化物が、その配合された前駆体と配合される。活性な金属酸化物は、担持されない粒子として添加され得て、又はバインダー又はマトリックス物質のような支持体と組み合わせて添加され得る。次に、得られた触媒組成物は、噴霧乾燥、ペレット化、押し出し等のようなよく知られた技術により、有用な形状のそしてサイズの粒子に形成され得る。   When the catalyst composition contains a matrix and / or binder, the molecular sieve is first conveniently formulated into the catalyst precursor along with the matrix and / or binder and then the active metal oxide is formulated. Formulated with a precursor. The active metal oxide can be added as unsupported particles or can be added in combination with a support such as a binder or matrix material. The resulting catalyst composition can then be formed into particles of useful shape and size by well known techniques such as spray drying, pelletizing, extrusion and the like.

一つの態様では、分子篩組成物及びマトリックス物質は、任意にバインダーとともに、液体と配合されてスラリーを生成し、次に、混合されて、分子篩組成物を含有する実質的に均質な混合物を生成する。適する液体の非限定例には、水、アルコール、ケトン類、アルデヒド類及び/又はエステル類が含まれる。最も好ましい液体は、水である。次に、分子篩組成物、バインダー及びマトリックス物質のスラリーを、触媒組成物を必要な形状、例えば微小球、に形成する噴霧乾燥機のような生成単位装置に供給する。   In one embodiment, the molecular sieve composition and the matrix material are combined with a liquid, optionally with a binder, to produce a slurry and then mixed to produce a substantially homogeneous mixture containing the molecular sieve composition. . Non-limiting examples of suitable liquids include water, alcohols, ketones, aldehydes and / or esters. The most preferred liquid is water. The slurry of molecular sieve composition, binder and matrix material is then fed to a production unit device such as a spray dryer that forms the catalyst composition into the required shape, eg, microspheres.

分子篩触媒組成物が、実質的に乾燥状態又は乾燥された状態で生成されたら、その生成された触媒組成物をさらに硬化及び/又は活性化させるために、か焼のような熱処理を通常行う。典型的なか焼温度は、400℃乃至1,000℃、好ましくは500℃乃至800℃、より好ましくは550℃乃至700℃、の範囲である。典型的なか焼環境は、空気(少量の水蒸気を含有し得る)、窒素、ヘリウム、煙道ガス(酸素が乏しい燃焼生成物)又はそれらのいずれかの組み合わせである。   Once the molecular sieve catalyst composition has been produced in a substantially dry state or in a dried state, a heat treatment such as calcination is usually performed to further cure and / or activate the produced catalyst composition. Typical calcination temperatures are in the range of 400 ° C. to 1,000 ° C., preferably 500 ° C. to 800 ° C., more preferably 550 ° C. to 700 ° C. A typical calcination environment is air (which may contain a small amount of water vapor), nitrogen, helium, flue gas (oxygen-poor combustion products) or any combination thereof.

好ましい態様において、触媒組成物は、窒素中で600℃乃至700℃の温度で、典型的には、30分乃至15時間、好ましくは1時間乃至約10時間、より好ましくは約1時間乃至約5時間、最も好ましくは約2時間乃至約4時間、の時間、加熱される。   In a preferred embodiment, the catalyst composition is at a temperature of 600 ° C to 700 ° C in nitrogen, typically 30 minutes to 15 hours, preferably 1 hour to about 10 hours, more preferably about 1 hour to about 5 Heat is applied for a period of time, most preferably from about 2 hours to about 4 hours.

触媒組成物の使用
先に記載された触媒組成物は、例えば、ナフサ供給原料の、軽質オレフィンへの(米国特許第6,300,537号)、又はより高い分子量(MW)炭化水素の、より低いMWの炭化水素への、分解;例えば、重油及び/又は環式供給原料の水素分解;例えば、キシレンのような芳香族化合物の異性化;例えば、一つ以上のオレフィンの、ポリマー生成物を生成するための重合;改質;水素添加;脱水素化;例えば、炭化水素の、直鎖パラフィン類を除去するための脱蝋;例えば、アルキル芳香族化合物の、それらの異性体を分離するための吸収;例えば、ベンゼン、アルキルベンゼン類のような芳香族炭化水素のアルキル化;例えば、芳香族化合物とポリアルキル芳香族炭化水素類の組み合わせのアルキル交換;脱アルキル化;水素脱環化;例えば、トルエンの、ベンゼン及びキシレン類を生成するための不均化;例えば、直鎖及び分岐鎖オレフィンのオリゴマー化;及び脱水素環化を含む種々の方法において有用である。
The catalyst composition described in where the catalyst composition is used is, for example, a naphtha feedstock to light olefins (US Pat. No. 6,300,537) or higher molecular weight (MW) hydrocarbons. Cracking to low MW hydrocarbons; for example, hydrocracking heavy oils and / or cyclic feeds; for example, isomerization of aromatic compounds such as xylene; for example, polymer products of one or more olefins Polymerization to produce; reforming; hydrogenation; dehydrogenation; for example, dewaxing of hydrocarbons to remove linear paraffins; eg to separate their isomers of alkyl aromatics For example, alkylation of aromatic hydrocarbons such as benzene and alkylbenzenes; for example, alkyl exchange of combinations of aromatic compounds and polyalkylaromatic hydrocarbons; dealkylation; water Decyclizing; for example, toluene, disproportionation to produce benzene and xylenes; for example, oligomerization of straight and branched chain olefins; useful in a variety of ways, including and dehydrocyclization.

好ましい方法は、ナフサを、高度に芳香族の化合物の混合物に変換する方法;軽質オレフィンをガソリン、蒸留物及び潤滑剤に変換する方法;オキシジェネート類をオレフィンに変換する方法;軽質パラフイン類をオレフィン類及び/又は芳香族化合物に変換する方法;並びに不飽和炭化水素(エチレン及び/又はアセチレン)を、アルコール類、酸類及びエステル類への変換のためのアルデヒド類に変換する方法が含まれる。   Preferred methods include a method of converting naphtha to a mixture of highly aromatic compounds; a method of converting light olefins to gasoline, distillate and lubricant; a method of converting oxygenates to olefins; Methods of converting to olefins and / or aromatics; and methods of converting unsaturated hydrocarbons (ethylene and / or acetylene) to aldehydes for conversion to alcohols, acids and esters.

本発明の最も好ましい方法は、供給原料の、一つ以上のオレフィン類への変換である。典型的には、供給原料は、脂肪族部分が、1乃至約50の炭素原子、好ましくは1乃至20の炭素原子、より好ましくは1乃至10の炭素原子、最も好ましくは1乃至4の炭素原子、を有するような一つ以上の脂肪族部分含有化合物、好ましくは一つ以上のオキシジェネート、を含有する。   The most preferred method of the present invention is the conversion of the feedstock to one or more olefins. Typically, the feedstock has an aliphatic portion of 1 to about 50 carbon atoms, preferably 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and most preferably 1 to 4 carbon atoms. One or more aliphatic moiety-containing compounds, preferably one or more oxygenates.

適する脂肪族部分含有化合物の非限定的な例には、メタノール及びエタノールのようなアルコール類、メチルメルカプタン及びエチルメルカプタンのようなアルキルメルカプタン類、硫化メチルのような硫化アルキル類、メチルアミンのようなアルキルアミン類、ジメチルエーテル、ジエチルエーテル及びメチルエチルエーテルのようなアルキルエーテル類、塩化メチル及び塩化エチルのようなハロゲン化アルキル類、ジメチルケトンのようなアルキルケトン類、ホルムアルデヒド類、並びに酢酸のような種々の酸類が含まれる。好ましくは、供給原料は、メタノール、エタノール、ジメチルエーテル、ジエチルエーテル又はそれらの組み合わせ、より好ましくはメタノール及び/又はジメチルエーテル、最も好ましくはメタノールを含有する。   Non-limiting examples of suitable aliphatic moiety-containing compounds include alcohols such as methanol and ethanol, alkyl mercaptans such as methyl mercaptan and ethyl mercaptan, alkyl sulfides such as methyl sulfide, and methylamine. Various alkyl amines, alkyl ethers such as dimethyl ether, diethyl ether and methyl ethyl ether, alkyl halides such as methyl chloride and ethyl chloride, alkyl ketones such as dimethyl ketone, formaldehydes, and acetic acid The acids are included. Preferably, the feedstock contains methanol, ethanol, dimethyl ether, diethyl ether or combinations thereof, more preferably methanol and / or dimethyl ether, most preferably methanol.

先に記載した種々の供給原料を、特に、アルコールのようなオキシジェネートを含有する供給原料を、用いる場合、本発明の触媒組成物は、その供給原料を主に一つ以上のオレフィンに変換するのに有効である。生成されるオレフィンは、典型的には、2乃至30の炭素原子、好ましくは2乃至8の炭素原子、より好ましくは2乃至6の炭素原子、さらにより好ましくは2乃至4の炭素原子、を有し、最も好ましくはエチレン及び/又はプロピレンである。   When using the various feedstocks described above, particularly feedstocks containing oxygenates such as alcohols, the catalyst composition of the present invention converts the feedstock primarily into one or more olefins. It is effective to do. The olefin produced typically has 2 to 30 carbon atoms, preferably 2 to 8 carbon atoms, more preferably 2 to 6 carbon atoms, and even more preferably 2 to 4 carbon atoms. And most preferably ethylene and / or propylene.

典型的には、本発明の触媒組成物は、一つ以上のオキシジェネートを含有する供給原料を、生成物における炭化水素の総重量に基づいて、50重量%より多くの、典型的には60重量%より多くの、70重量%より多くのような、好ましくは80重量%より多くの、オレフィン(類)を含有する生成物に変換するのに有効である。さらに、生成物における炭化水素の総重量に基づく、生成されるエチレン及び/又はプロピレンの量は、典型的には40重量%より多く、例えば50重量%より多く、好ましくは65重量%より多く、より好ましくは78重量%より多い。典型的には、生成される炭化水素生成物の総重量に基づく、重量%における生成されるエチレンの量は、30重量%より多く、35重量%より多いような、例えば40重量%より多い。又、生成される炭化水素生成物の総重量に基づく、重量%における生成されるプロピレンの量は、20重量%より多く、25重量%より多いような、例えば30重量%より多く、好ましくは35重量%より多い。   Typically, the catalyst composition of the present invention comprises a feed containing one or more oxygenates, typically greater than 50% by weight, typically based on the total weight of hydrocarbons in the product. It is effective to convert to a product containing olefin (s) greater than 60%, such as greater than 70%, preferably greater than 80%. Furthermore, the amount of ethylene and / or propylene produced, based on the total weight of hydrocarbons in the product, is typically greater than 40% by weight, such as greater than 50% by weight, preferably greater than 65% by weight, More preferably more than 78% by weight. Typically, the amount of ethylene produced in weight percent, based on the total weight of the hydrocarbon product produced, is greater than 30 weight percent, such as greater than 35 weight percent, such as greater than 40 weight percent. Also, the amount of propylene produced in wt%, based on the total weight of the hydrocarbon product produced, is greater than 20 wt%, such as greater than 25 wt%, such as greater than 30 wt%, preferably 35 More than weight percent.

メタノール及びジメチルエーテルを含有する供給原料の、エチレン及びプロピレンへの変換のために本発明の触媒組成物を用いる場合、同じ変換条件で、しかし活性な金属酸化物成分がない同様な触媒組成物と比較して、エタン及びプロパンの生成は、10%より多く、20%より多くのような、例えば30%より多く、特に30%乃至40%の範囲、低減されることが見出されている。   When using the catalyst composition of the present invention for the conversion of a feedstock containing methanol and dimethyl ether to ethylene and propylene, compared to a similar catalyst composition under the same conversion conditions but without an active metal oxide component Thus, it has been found that the production of ethane and propane is reduced by more than 10%, such as more than 20%, for example more than 30%, in particular in the range of 30% to 40%.

メタノールのようなオキシジェネート成分の他に、供給原料は、一般的には、供給原料及び分子篩触媒組成物に対して非反応性であり、典型的には、供給原料の濃度を低減させるために用いられる一つ以上の希釈剤を含有し得る。希釈剤の非限定的な例には、ヘリウム、アルゴン、窒素、一酸化炭素、二酸化炭素、水、本質的に非反応性のパラフィン類(特に、メタン、エタン及びプロパンのようなアルカン類)、本質的に非反応性の芳香族化合物並びにそれらの混合物が含まれる。最も好ましい希釈剤は水及び窒素であり、水が特に好ましい。   In addition to oxygenate components such as methanol, the feedstock is generally non-reactive with the feedstock and molecular sieve catalyst composition, typically to reduce the feedstock concentration. It may contain one or more diluents used in Non-limiting examples of diluents include helium, argon, nitrogen, carbon monoxide, carbon dioxide, water, essentially non-reactive paraffins (especially alkanes such as methane, ethane and propane), Essentially non-reactive aromatic compounds as well as mixtures thereof are included. The most preferred diluents are water and nitrogen, with water being particularly preferred.

本方法は、200℃乃至1,000℃、例えば250℃乃至800℃、250℃乃至750℃、を含み、便利には300℃乃至650℃、好ましくは350℃乃至600℃、より好ましくは350℃乃至550℃、の範囲のような広範囲の温度で行われ得る。   The method includes 200 ° C. to 1,000 ° C., such as 250 ° C. to 800 ° C., 250 ° C. to 750 ° C., conveniently 300 ° C. to 650 ° C., preferably 350 ° C. to 600 ° C., more preferably 350 ° C. It can be performed at a wide range of temperatures, such as in the range of 550 ° C.

同様に本方法は、自己圧を含む広範囲の圧力で行われ得る。典型的には、本方法において用いられる供給原料中の希釈剤を除く供給原料の分圧は、0.1kPaa乃至5MPaa、好ましくは5kPaa乃至1MPaa、より好ましくは20kPaa乃至500kPaa、の範囲である。   Similarly, the method can be performed over a wide range of pressures, including self-pressure. Typically, the partial pressure of the feed, excluding the diluent in the feed used in the process, is in the range of 0.1 kPaa to 5 MPaa, preferably 5 kPaa to 1 MPaa, more preferably 20 kPaa to 500 kPaa.

触媒組成物における分子篩の重量当り時間当り、希釈剤を除く供給原料の総重量として定義される毎時重量空塔速度(WHSV)は、1時間−1乃至5,000時間−1、好ましくは2時間−1乃至3,000時間−1、より好ましくは5時間−1乃至1,500時間−1、最も好ましくは10時間−1乃至1,000時間−1、の範囲であることができる。一つの態様では、WHSVは少なくとも20時間−1であり、供給原料がメタノール及び/又はジメチルエーテルを含有する場合は、20時間−1乃至300時間−1の範囲である。 The hourly weight superficial velocity (WHSV), defined as the total weight of the feedstock excluding diluent, per hour per weight of molecular sieve in the catalyst composition is 1 hour- 1 to 5,000 hours- 1 , preferably 2 hours -1 to 3,000 hours −1 , more preferably 5 hours −1 to 1,500 hours −1 , most preferably 10 hours −1 to 1,000 hours −1 . In one embodiment, the WHSV is at least 20 hours −1 and in the range of 20 hours −1 to 300 hours −1 when the feedstock contains methanol and / or dimethyl ether.

本発明の方法は、便利には固定床法として、より典型的には流動床法(乱流床法を含む)として、連続的流動床法のような、特に連続的高速度流動床法として、行われる。   The process of the present invention is conveniently used as a fixed bed process, more typically as a fluidized bed process (including turbulent bed process), such as a continuous fluidized bed process, particularly as a continuous high speed fluidized bed process. Done.

一つの実際的な態様では、本方法は、反応器系、再生系及び回収系を用いる流動床法として行われる。そのような方法では、任意に一つ以上の希釈剤を含有する新しい供給原料を、分子篩触媒組成物とともに、反応器系における一つ以上の上昇菅反応器に供給する。その供給原料は、上昇管反応器中で気体流出物に変換され、コークス化された触媒組成物とともに反応器系における分離容器(disengaging vessel)に入る。コークス化された触媒組成物を分離容器内で、典型的にはサイクロンを補助として気体流出物と分離させ、次に、ストリッピング域に、典型的には分離容器の、より低い部分におけるストリッピング域に、供給する。ストリッピング域において、コークス化された触媒組成物を、水蒸気、メタン、二酸化炭素、一酸化炭素、水素及び/又はアルゴンのような不活性気体のような気体、好ましくは水蒸気、と接触させ、コークス化された触媒組成物から吸着された炭化水素を回収し、次にコークス化された触媒組成物を再生系に導入する。   In one practical embodiment, the process is performed as a fluidized bed process using a reactor system, a regeneration system, and a recovery system. In such a process, a new feedstock, optionally containing one or more diluents, is fed along with the molecular sieve catalyst composition to one or more rising-up reactors in the reactor system. The feedstock is converted to a gaseous effluent in the riser reactor and enters a separating vessel in the reactor system with the coked catalyst composition. The coked catalyst composition is separated from the gaseous effluent in a separation vessel, typically with the aid of a cyclone, and then stripped into the stripping zone, typically in the lower part of the separation vessel. Supply to the area. In the stripping zone, the coked catalyst composition is contacted with a gas such as steam, methane, carbon dioxide, carbon monoxide, hydrogen and / or an inert gas such as argon, preferably steam, and coke. The adsorbed hydrocarbon is recovered from the converted catalyst composition, and then the coked catalyst composition is introduced into the regeneration system.

再生系において、コークス化された触媒組成物を、コークス化された触媒組成物から、好ましくは、再生系に入るコークス化された分子篩触媒組成物の総重量に基づいて0.5重量%未満の水準まで、コークスを燃焼させることができる再生条件下で、再生媒体、好ましくは酸素を含有する気体、と接触させる。例えば、再生条件は、450℃乃至750℃の、好ましくは550℃乃至700℃の、範囲の温度を含み得る。   In the regeneration system, the coked catalyst composition is less than 0.5% by weight, based on the total weight of the coked molecular sieve catalyst composition entering the regeneration system, preferably from the coked catalyst composition. To a level, contact is made with a regeneration medium, preferably a gas containing oxygen, under regeneration conditions where the coke can be combusted. For example, the regeneration conditions can include a temperature in the range of 450 ° C. to 750 ° C., preferably 550 ° C. to 700 ° C.

再生系から取り出される再生された触媒組成物は、新しい分子篩触媒組成物及び/又は再循環された分子篩触媒組成物及び/又は供給原料及び/又は新しい気体又は液体と配合され、上昇管反応器に戻される。   The regenerated catalyst composition withdrawn from the regeneration system is blended with the new molecular sieve catalyst composition and / or recycled molecular sieve catalyst composition and / or feed and / or new gas or liquid and fed to the riser reactor. Returned.

気体流出物を分離系から取り出し、気体流出物中の軽質オレフィン、特にエチレン及びプロピレン、を分離し、精製するために回収系を通過させる。   The gas effluent is removed from the separation system and passed through a recovery system to separate and purify light olefins, particularly ethylene and propylene, in the gas effluent.

一つの実際的な態様では、本発明の方法は、炭化水素供給原料、特にメタン及び/又はエタン、から軽質オレフィンを生成するための統合された方法の部分を形成する。その方法の最初の工程は、合成気体生成域に、気体供給原料を好ましくは水蒸気と組み合わせて通し、典型的には二酸化炭素、一酸化炭素及び水素を含有する、合成気体流れを生成する。次に合成気体流れを、一般的に、150℃乃至450℃の範囲の温度及び5MPa乃至10MPaの範囲の圧力において、不均質な触媒、典型的には銅系触媒と接触させることにより、オキシジェネート含有流れに変換する。精製後、オキシジェネート含有流れは、エチレン及び/又はプロピレンのような軽質オレフィンを生成するための先に記載した方法における供給原料として用いられ得る。この統合された方法の非限定例は欧州特許EP−B−0933345に記載されており、その記載を引用により本明細書に完全に組み込む。   In one practical embodiment, the process of the present invention forms part of an integrated process for producing light olefins from hydrocarbon feedstocks, particularly methane and / or ethane. The first step of the process is to pass a gas feed through a synthesis gas production zone, preferably in combination with water vapor, to produce a synthesis gas stream that typically contains carbon dioxide, carbon monoxide and hydrogen. The synthesis gas stream is then generally contacted with a heterogeneous catalyst, typically a copper-based catalyst, at a temperature in the range of 150 ° C. to 450 ° C. and a pressure in the range of 5 MPa to 10 MPa. Convert to a nate-containing stream. After purification, the oxygenate-containing stream can be used as a feed in the previously described process for producing light olefins such as ethylene and / or propylene. A non-limiting example of this integrated method is described in EP-B-0933345, the description of which is fully incorporated herein by reference.

先に記載した統合された方法と任意に組み合わされる、他の、より完全に統合された方法において、生成されるオレフィンは、種々のポリオレフィンを生成するための一つ以上の重合プロセスに向けられる。   In other, more fully integrated methods, optionally combined with the integrated methods described above, the olefins produced are directed to one or more polymerization processes to produce various polyolefins.

本発明の代表的な利点を含む、本発明のよりよい理解を与えるために、下記の実施例を提供する。   In order to provide a better understanding of the present invention, including the typical advantages of the present invention, the following examples are provided.

実施例において、LEIは、1のLEIを有すると定義され、金属酸化物を含有しない同じ分子篩の寿命に対する、活性な金属酸化物を含有する分子篩触媒組成物の寿命の比と定義される。LEIを決定するために、寿命は、変換速度が初期の値の約10%に降下するまでの、分子篩のg当り、好ましくは一つ以上のオレフィンに変換されるオキシジェネートの累積量と定義される。実験の終わりまでに、その変換がその初期の値の10%に降下しない場合、寿命は、実験における最後の2つのデーターポイントでの変換における低減の速度に基づく線形補外により推定される。   In the examples, LEI is defined as having an LEI of 1 and is defined as the ratio of the lifetime of the molecular sieve catalyst composition containing active metal oxide to the lifetime of the same molecular sieve containing no metal oxide. To determine LEI, lifetime is defined as the cumulative amount of oxygenate that is preferably converted to one or more olefins per gram of molecular sieve until the conversion rate drops to about 10% of the initial value. Is done. If the transformation does not drop to 10% of its initial value by the end of the experiment, the lifetime is estimated by linear extrapolation based on the rate of reduction in the transformation at the last two data points in the experiment.

「主要オレフィン」は、エチレン及びプロピレンに対する選択性の合計である。「C /C 」は、実施中に検量された、プロピレン選択性に対するエチレン選択性の比である。「C純度」は、プロピレン選択性をプロピレン選択性とプロパン選択性の合計で割ることにより計算される。メタン(CH)、エチレン(C )、エタン(C )、プロピレン(C )、プロパン(C )、C類(C’s)及びC+類(C5’+s)についての選択性は、実施中の検量された平均選択性である。C+類は、C類、C類及びC類からのみから成ることに注意。選択性値は、よく知られているようにコークスについて補正されているので、表において合計して100%にはならない。 “Major olefin” is the sum of the selectivity to ethylene and propylene. “C 2 = / C 3 = ” is the ratio of ethylene selectivity to propylene selectivity calibrated during the run. "C 3 purity" is calculated by dividing the propylene selectivity in the total propylene selectivity and propane selectivity. Methane (CH 4 ), ethylene (C 2 = ), ethane (C 2 0 ), propylene (C 3 = ), propane (C 3 0 ), C 4 classes (C 4 ′ s) and C 5 + classes (C The selectivity for 5 ′ + s) is the calibrated average selectivity during the run. C 5 + s is noted that consist C 5 ethers, C 6 to acids and C 7 acids only. The selectivity values are corrected for coke as is well known, so they do not add up to 100% in the table.

実施例A
分子篩の製造
シリコアルミノ燐酸塩分子篩、MSAと表されるSAPO−34を、有機構造指示剤又はテンプレート剤としてのテトラエチルアンモニウムヒドロキシド(R1)及びジプロピルアミン(R2)の存在下で結晶化させた。下記:
0.2SiO/Al/P/0.9R1/1.5R2/50H
のモル比組成の混合物を、最初に、ある量のCondea Pural SBを脱イオン化水と混合してスラリーを生成することにより調製した。このスラリーに、ある量の燐酸(85%)を添加した。それらの添加は、攪拌しながら行い、均質な混合物を生成した。この均質な混合物に、Ludox AS40(40%のSiO)を添加し、次に、R1を、混合しながら添加し、均質な混合物を生成した。この均質な混合物にR2を添加し、次に得られた混合物を、ステンレス鋼のオートクレーブ中で攪拌しながら170℃に40時間加熱することにより、結晶化させた。それにより、結晶質の分子篩のスラリーが得られた。次にその結晶をろ過により母液から分離した。次にその分子篩結晶をバインダー及びマトリックス物質と混合し、噴霧乾燥により粒子を生成した。
Example A
Preparation of Molecular Sieve A silicoaluminophosphate molecular sieve, SAPO-34, designated MSA, was crystallized in the presence of tetraethylammonium hydroxide (R1) and dipropylamine (R2) as organic structure indicators or templating agents. following:
0.2SiO 2 / Al 2 O 3 / P 2 O 5 /0.9R1/1.5R2/50H 2 O
Was prepared by first mixing an amount of Condea Pural SB with deionized water to form a slurry. To this slurry was added an amount of phosphoric acid (85%). Their addition was carried out with stirring to produce a homogeneous mixture. To this homogeneous mixture, Ludox AS40 (40% SiO 2 ) was added, then R1 was added with mixing to produce a homogeneous mixture. R2 was added to this homogeneous mixture, and the resulting mixture was then crystallized by heating to 170 ° C. for 40 hours with stirring in a stainless steel autoclave. Thereby, a slurry of crystalline molecular sieve was obtained. The crystals were then separated from the mother liquor by filtration. The molecular sieve crystals were then mixed with a binder and matrix material and particles were produced by spray drying.

実施例B
変換方法
気化させたメタノールを供給する炉内に位置するステンレス鋼反応器[1/4インチ(0.64cm)外径]から成るマイクロフロー反応器を用いて、与えられたすべての変換データーを得た。その反応器を475℃の温度及び25psig(172.4kPag)の圧力で維持した。メタノールの流量は、毎時重量空塔速度(WHSV)としても知られている、分子篩のg当り重量ベースでのメタノールの流量が100時間−1であるような流量であった。反応器を出る生成物気体を回収し、ガスクロマトグラフィーを用いて分析した。触媒装填は50mgであり、触媒床を石英で希釈し、反応器の熱い箇所を最小にした。
Example B
Conversion Method All the conversion data given is obtained using a microflow reactor consisting of a stainless steel reactor [1/4 inch (0.64 cm) outer diameter] located in a furnace supplying vaporized methanol. It was. The reactor was maintained at a temperature of 475 ° C. and a pressure of 25 psig (172.4 kPag). The flow rate of methanol was such that the flow rate of methanol on a weight basis per g of molecular sieve, also known as the hourly superficial velocity (WHSV), was 100 hours- 1 . The product gas exiting the reactor was collected and analyzed using gas chromatography. The catalyst loading was 50 mg and the catalyst bed was diluted with quartz to minimize reactor hot spots.

実施例1
La(NO)・xHO (Aldrich Chemical Company)の試料を700℃において空気中で3時間か焼し、酸化ランタンを生成した。
Example 1
A sample of La (NO 3 ) 3 xH 2 O (Aldrich Chemical Company) was calcined in air at 700 ° C. for 3 hours to produce lanthanum oxide.

実施例2
La(NO)・xHO (Aldrich Chemical Company)50gを蒸留水500ml中に攪拌しながら溶解させた。濃縮した水酸化アンモニウムの添加により、pHを9に調整した。次にそのスラリーをポリプロピレン瓶に入れ、スチームボックス(100℃)に72時間入れた。生成された生成物をろ過により回収し、過剰の水で洗滌し、85℃で一晩乾燥させた。この触媒の一部を流動空気中で600℃に3時間か焼し、酸化ランタン(La)を生成した。
Example 2
50 g of La (NO 3 ) 3 xH 2 O (Aldrich Chemical Company) was dissolved in 500 ml of distilled water with stirring. The pH was adjusted to 9 by the addition of concentrated ammonium hydroxide. The slurry was then placed in a polypropylene bottle and placed in a steam box (100 ° C.) for 72 hours. The product produced was collected by filtration, washed with excess water and dried at 85 ° C. overnight. A portion of this catalyst was calcined at 600 ° C. for 3 hours in flowing air to produce lanthanum oxide (La 2 O 3 ).

実施例3
Y(NO)・6HO、50gを蒸留水500ml中に攪拌しながら溶解させた。濃縮した水酸化アンモニウムの添加により、pHを9に調整した。次にそのスラリーをポリプロピレン瓶に入れ、スチームボックス(100℃)に72時間入れた。生成された生成物をろ過により回収し、過剰の水で洗滌し、85℃で一晩乾燥させた。この触媒の一部を流動空気中で600℃に3時間か焼し、酸化イットリウム(Y)を生成した。
Example 3
Y (NO 3) 3 · 6H 2 O, and dissolved with stirring 50g of distilled water 500 ml. The pH was adjusted to 9 by the addition of concentrated ammonium hydroxide. The slurry was then placed in a polypropylene bottle and placed in a steam box (100 ° C.) for 72 hours. The product produced was collected by filtration, washed with excess water and dried at 85 ° C. overnight. A portion of this catalyst was calcined at 600 ° C. for 3 hours in flowing air to produce yttrium oxide (Y 2 O 3 ).

実施例4
Sc(NO)・xHO (Aldrich Chemical Company)の試料を700℃において空気中で3時間か焼し、酸化スカンジウム(Sc)を生成した。
Example 4
A sample of Sc (NO 3 ) 3 xH 2 O (Aldrich Chemical Company) was calcined in air at 700 ° C. for 3 hours to produce scandium oxide (Sc 2 O 3 ).

実施例5
Ce(NO)・6HO、50gを蒸留水500ml中に攪拌しながら溶解させた。濃縮した水酸化アンモニウムの添加により、pHを8に調整した。次にそのスラリーをポリプロピレン瓶に入れ、スチームボックス(100℃)に72時間入れた。生成された生成物をろ過により回収し、過剰の水で洗滌し、85℃で一晩乾燥させた。この触媒の一部を流動空気中で600℃に3時間か焼し、酸化セリウム(Ce)を生成した。
Example 5
Ce (NO 3) 3 · 6H 2 O, and dissolved with stirring 50g of distilled water 500 ml. The pH was adjusted to 8 by the addition of concentrated ammonium hydroxide. The slurry was then placed in a polypropylene bottle and placed in a steam box (100 ° C.) for 72 hours. The product produced was collected by filtration, washed with excess water and dried at 85 ° C. overnight. A portion of this catalyst was calcined at 600 ° C. for 3 hours in flowing air to produce cerium oxide (Ce 2 O 3 ).

実施例6
Pr(NO)・6HO、50gを蒸留水500ml中に攪拌しながら溶解させた。濃縮した水酸化アンモニウムの添加により、pHを8に調整した。次にそのスラリーをポリプロピレン瓶に入れ、スチームボックス(100℃)に72時間入れた。生成された生成物をろ過により回収し、過剰の水で洗滌し、85℃で一晩乾燥させた。この触媒の一部を流動空気中で600℃に3時間か焼し、酸化プラセオジム(Pr)を生成した。
Example 6
Pr (NO 3) 3 · 6H 2 O, and dissolved with stirring 50g of distilled water 500 ml. The pH was adjusted to 8 by the addition of concentrated ammonium hydroxide. The slurry was then placed in a polypropylene bottle and placed in a steam box (100 ° C.) for 72 hours. The product produced was collected by filtration, washed with excess water and dried at 85 ° C. overnight. A portion of this catalyst was calcined in flowing air at 600 ° C. for 3 hours to produce praseodymium oxide (Pr 2 O 3 ).

実施例7
Nd(NO)・6HO、50gを蒸留水500ml中に攪拌しながら溶解させた。濃縮した水酸化アンモニウムの添加により、pHを9に調整した。次にそのスラリーをポリプロピレン瓶に入れ、スチームボックス(100℃)に72時間入れた。生成された生成物をろ過により回収し、過剰の水で洗滌し、85℃で一晩乾燥させた。この触媒の一部を流動空気中で600℃に3時間か焼し、酸化ネオジム(Nd)を生成した。
Example 7
Nd (NO 3) 3 · 6H 2 O, and dissolved with stirring 50g of distilled water 500 ml. The pH was adjusted to 9 by the addition of concentrated ammonium hydroxide. The slurry was then placed in a polypropylene bottle and placed in a steam box (100 ° C.) for 72 hours. The product produced was collected by filtration, washed with excess water and dried at 85 ° C. overnight. A portion of this catalyst was calcined at 600 ° C. for 3 hours in flowing air to produce neodymium oxide (Nd 2 O 3 ).

実施例8
Ce(NO)・6HO、39g及びLa(NO)・6HO、7.0gを蒸留水500ml中に攪拌しながら溶解させた。濃縮した水酸化アンモニウム、20gと蒸留水500mgを含有する他の溶液を調製した。それらの2つの溶液を、ノズルミキサーを用いて50ml/分の速度で合わせた。最終的な複合体のpHを、濃縮された水酸化アンモニウムの添加により、約9に調整した。次にそのスラリーをポリプロピレン瓶に入れ、スチームボックス(100℃)に72時間入れた。生成された生成物をろ過により回収し、過剰の水で洗滌し、85℃で一晩乾燥させた。この触媒の一部を流動空気中で700℃に3時間か焼し、混合された金属酸化物の最終重量に基づいて、呼称5重量%のランタンを含有する混合された金属酸化物を生成した。
Example 8
Ce (NO 3 ) 3 · 6H 2 O, 39 g and La (NO 3 ) 3 · 6H 2 O, 7.0 g were dissolved in 500 ml of distilled water with stirring. Another solution was prepared containing 20 g of concentrated ammonium hydroxide and 500 mg of distilled water. The two solutions were combined at a rate of 50 ml / min using a nozzle mixer. The final complex pH was adjusted to about 9 by the addition of concentrated ammonium hydroxide. The slurry was then placed in a polypropylene bottle and placed in a steam box (100 ° C.) for 72 hours. The product produced was collected by filtration, washed with excess water and dried at 85 ° C. overnight. A portion of this catalyst was calcined in flowing air at 700 ° C. for 3 hours to produce a mixed metal oxide containing 5% by weight lanthanum based on the final weight of the mixed metal oxide. .

実施例9
Ce(NO)・6HO、9g及びLa(NO)・6HO、30.0gを蒸留水500ml中に攪拌しながら溶解させた。濃縮した水酸化アンモニウム、20gと蒸留水500mgを含有する他の溶液を調製した。それらの2つの溶液を、ノズルミキサーを用いて50ml/分の速度で合わせた。最終的な複合体のpHを、濃縮された水酸化アンモニウムの添加により、約9に調整した。次にそのスラリーをポリプロピレン瓶に入れ、スチームボックス(100℃)に72時間入れた。生成された生成物をろ過により回収し、過剰の水で洗滌し、85℃で一晩乾燥させた。この触媒の一部を流動空気中で700℃に3時間か焼し、混合された金属酸化物の最終重量に基づいて、呼称5重量%のセリウムを含有する混合された金属酸化物を生成した。
Example 9
Ce (NO 3 ) 3 · 6H 2 O, 9 g and La (NO 3 ) 3 · 6H 2 O, 30.0 g were dissolved in 500 ml of distilled water with stirring. Another solution was prepared containing 20 g of concentrated ammonium hydroxide and 500 mg of distilled water. The two solutions were combined at a rate of 50 ml / min using a nozzle mixer. The final complex pH was adjusted to about 9 by the addition of concentrated ammonium hydroxide. The slurry was then placed in a polypropylene bottle and placed in a steam box (100 ° C.) for 72 hours. The product produced was collected by filtration, washed with excess water and dried at 85 ° C. overnight. A portion of this catalyst was calcined in flowing air at 700 ° C. for 3 hours to produce a mixed metal oxide containing 5% by weight of cerium based on the final weight of the mixed metal oxide. .

実施例10
実施例1乃至9の酸化物の二酸化炭素の取り込みを周囲圧力下でMettler TGA/SDTA 851熱重量分析システムを用いて測定した。最初に、それらの金属酸化物試料を約500℃に流動空気中で1時間脱水し、その後に、100℃において二酸化炭素の取り込みを測定した。それらの試料の表面積をBrunauer、Emmett及びTeller(BET)の方法により測定し、二酸化炭素の取り込みを、二酸化炭素mg/金属酸化物mで出し、表1に表した。

Figure 2005518930
Example 10
Carbon dioxide uptake of the oxides of Examples 1-9 was measured using a Mettler TGA / SDTA 851 thermogravimetric analysis system under ambient pressure. Initially, the metal oxide samples were dehydrated to about 500 ° C. in flowing air for 1 hour, after which carbon dioxide uptake was measured at 100 ° C. The surface areas of these samples were measured by the method of Brunauer, Emmett and Teller (BET), and the carbon dioxide uptake was expressed as mg carbon dioxide / metal oxide m 2 and is shown in Table 1.
Figure 2005518930

比較例11
本比較例11(CEx.11)では、実施例Aで生成された分子篩触媒組成物を、活性な金属酸化物を含有しない分子篩触媒組成物50mgを用いて実施例Bの方法で試験した。その実施の結果を表2及び表3に表わす。
Comparative Example 11
In this comparative example 11 (CEx.11), the molecular sieve catalyst composition produced in Example A was tested by the method of Example B using 50 mg of the molecular sieve catalyst composition containing no active metal oxide. The results of the implementation are shown in Tables 2 and 3.

実施例12
本実施例では、実施例Aで生成された分子篩触媒組成物を、実施例1においてニトレート分解により生成されたLa、10mgを含有する分子篩触媒組成物40mgを用いて実施例Bの方法で試験した。成分をよく混合し、次に、砂で希釈し、反応器床を生成した。この実験の結果を表2及び表3に示し、それらの表は、La、活性な3族金属酸化物、の添加により、149%、寿命が増大したことを示している。エタンへの選択性は、36%低減し、プロパンへの選択性は、32%低減し、水素移動反応において有意な低減を示している。
Example 12
In this example, the molecular sieve catalyst composition produced in Example A was used as the method of Example B using 40 mg of the molecular sieve catalyst composition containing 10 mg of La 2 O 3 produced by nitrate decomposition in Example 1. Tested. The ingredients were mixed well and then diluted with sand to produce a reactor bed. The results of this experiment are shown in Tables 2 and 3, which show that the lifetime increased by 149% with the addition of La 2 O 3 , an active Group 3 metal oxide. The selectivity to ethane is reduced by 36% and the selectivity to propane is reduced by 32%, indicating a significant reduction in the hydrogen transfer reaction.

実施例13
本実施例では、実施例Aで生成された分子篩触媒組成物を、実施例2において沈殿により生成されたLa、10mgを含有する分子篩触媒組成物40mgを用いて実施例Bの方法で試験した。成分をよく混合し、次に、砂で希釈し、反応器床を生成した。この実験の結果を表2及び表3に示し、それらの表は、沈殿により生成されたLa、活性な3族金属酸化物、の添加により、340%、寿命が増大したことを示している。エタンへの選択性は、55%低減し、プロパンへの選択性は、44%低減し、水素移動反応において有意な低減を示している。
Example 13
In this example, the molecular sieve catalyst composition produced in Example A was prepared by the method of Example B using 40 mg of the molecular sieve catalyst composition containing 10 mg of La 2 O 3 produced by precipitation in Example 2. Tested. The ingredients were mixed well and then diluted with sand to produce a reactor bed. The results of this experiment are shown in Tables 2 and 3, which show that the lifetime was increased by 340% by the addition of La 2 O 3 produced by precipitation, an active Group 3 metal oxide. ing. The selectivity to ethane is reduced by 55% and the selectivity to propane is reduced by 44%, indicating a significant reduction in the hydrogen transfer reaction.

実施例14
本実施例14では、実施例Aで生成された分子篩触媒組成物を、実施例3において生成されたY、10mgを含有する分子篩触媒組成物40mgを用いて実施例Bの方法で試験した。成分をよく混合し、次に、砂で希釈し、反応器床を生成した。この実験の結果を表2及び表3に示し、それらの表は、Y、活性な3族金属酸化物、の添加により、1090%、寿命が増大したことを示している。エタンへの選択性は、45%低減し、プロパンへの選択性は、28%低減し、水素移動反応において有意な低減を示している。
Example 14
In Example 14, the molecular sieve catalyst composition produced in Example A was tested by the method of Example B using 40 mg of the molecular sieve catalyst composition containing 10 mg of Y 2 O 3 produced in Example 3. did. The ingredients were mixed well and then diluted with sand to produce a reactor bed. The results of this experiment are shown in Tables 2 and 3, which show that the lifetime increased by 1090% with the addition of Y 2 O 3 , an active Group 3 metal oxide. The selectivity to ethane is reduced by 45% and the selectivity to propane is reduced by 28%, indicating a significant reduction in the hydrogen transfer reaction.

実施例15
本実施例15では、実施例Aで生成された分子篩触媒組成物を、実施例4において生成されたSc、10mgを含有する分子篩触媒組成物40mgを用いて実施例Bの方法で試験した。成分をよく混合し、次に、砂で希釈し、反応器床を生成した。この実験の結果を表2及び表3に示し、それらの表は、Sc、活性な3族金属酸化物、の添加により、167%、寿命が増大したことを示している。エタンへの選択性は、27%低減し、プロパンへの選択性は、21%低減し、水素移動反応において有意な低減を示している。
Example 15
In this Example 15, the molecular sieve catalyst composition produced in Example A was tested by the method of Example B using 40 mg of the molecular sieve catalyst composition containing 10 mg of Sc 2 O 3 produced in Example 4. did. The ingredients were mixed well and then diluted with sand to produce a reactor bed. The results of this experiment are shown in Tables 2 and 3, which show that the lifetime increased by 167% with the addition of Sc 2 O 3 , an active Group 3 metal oxide. The selectivity to ethane is reduced by 27% and the selectivity to propane is reduced by 21%, indicating a significant reduction in the hydrogen transfer reaction.

実施例16
本実施例16では、実施例Aで生成された分子篩触媒組成物を、実施例5において生成されたCe、10mgを含有する分子篩触媒組成物40mgを用いて実施例Bの方法で試験した。成分をよく混合し、次に、砂で希釈し、反応器床を生成した。この実験の結果を表2及び表3に示し、それらの表は、Ce、活性なランタニド金属酸化物、の添加により、630%、寿命が増大したことを示している。エタンへの選択性は、50%低減し、プロパンへの選択性は、34%低減し、水素移動反応において有意な低減を示している。
Example 16
In this Example 16, the molecular sieve catalyst composition produced in Example A was tested by the method of Example B using 40 mg of the molecular sieve catalyst composition containing 10 mg of Ce 2 O 3 produced in Example 5. did. The ingredients were mixed well and then diluted with sand to produce a reactor bed. The results of this experiment are shown in Tables 2 and 3, which show that the lifetime increased by 630% with the addition of Ce 2 O 3 , an active lanthanide metal oxide. The selectivity to ethane is reduced by 50% and the selectivity to propane is reduced by 34%, indicating a significant reduction in the hydrogen transfer reaction.

実施例17
本実施例17では、実施例Aで生成された分子篩触媒組成物を、実施例6において生成されたPr、10mgを含有する分子篩触媒組成物40mgを用いて実施例Bの方法で試験した。成分をよく混合し、次に、砂で希釈し、反応器床を生成した。この実験の結果を表2及び表3に示し、それらの表は、Pr、活性なランタニド金属酸化物、の添加により、640%、寿命が増大したことを示している。エタンへの選択性は、51%低減し、プロパンへの選択性は、38%低減し、水素移動反応において有意な低減を示している。
Example 17
In this Example 17, the molecular sieve catalyst composition produced in Example A was tested by the method of Example B using 40 mg of the molecular sieve catalyst composition containing 10 mg of Pr 2 O 3 produced in Example 6. did. The ingredients were mixed well and then diluted with sand to produce a reactor bed. The results of this experiment are shown in Tables 2 and 3, which show that the lifetime was increased by 640% with the addition of Pr 2 O 3 , an active lanthanide metal oxide. The selectivity to ethane is reduced by 51% and the selectivity to propane is reduced by 38%, indicating a significant reduction in the hydrogen transfer reaction.

実施例18
本実施例18では、実施例Aで生成された分子篩触媒組成物を、実施例7において生成されたNd、10mgを含有する分子篩触媒組成物40mgを用いて実施例Bの方法で試験した。成分をよく混合し、次に、砂で希釈し、反応器床を生成した。この実験の結果を表2及び表3に示し、それらの表は、Nd、活性なランタニド金属酸化物、の添加により、340%、寿命が増大したことを示している。エタンへの選択性は、49%低減し、プロパンへの選択性は、34%低減し、水素移動反応において有意な低減を示している。
Example 18
In this Example 18, the molecular sieve catalyst composition produced in Example A was tested by the method of Example B using 40 mg of the molecular sieve catalyst composition containing 10 mg of Nd 2 O 3 produced in Example 7. did. The ingredients were mixed well and then diluted with sand to produce a reactor bed. The results of this experiment are shown in Tables 2 and 3, which show that the lifetime was increased by 340% with the addition of Nd 2 O 3 , an active lanthanide metal oxide. The selectivity to ethane is reduced by 49% and the selectivity to propane is reduced by 34%, indicating a significant reduction in the hydrogen transfer reaction.

実施例19
本実施例19では、実施例Aで生成された分子篩触媒組成物を、実施例8において生成された混合された金属酸化物10mgを含有する分子篩触媒組成物40mgを用いて実施例Bの方法で試験した。成分をよく混合し、次に、砂で希釈し、反応器床を生成した。この実験の結果を表2及び表3に示し、それらの表は、5%のLaO/Ce、3族酸化物により改質された活性なランタニド金属酸化物、の添加により、450%、寿命が増大したことを示している。エタンへの選択性は、47%低減し、プロパンへの選択性は、37%低減し、水素移動反応において有意な低減を示している。
Example 19
In this Example 19, the molecular sieve catalyst composition produced in Example A was prepared by the method of Example B using 40 mg of the molecular sieve catalyst composition containing 10 mg of the mixed metal oxide produced in Example 8. Tested. The ingredients were mixed well and then diluted with sand to produce a reactor bed. The results of this experiment are shown in Tables 2 and 3, which show that by adding 5% LaO x / Ce 2 O 3 , an active lanthanide metal oxide modified with a Group 3 oxide, 450% %, Indicating that the life has increased. The selectivity to ethane is reduced by 47% and the selectivity to propane is reduced by 37%, indicating a significant reduction in the hydrogen transfer reaction.

実施例20
本実施例20では、実施例Aで生成された分子篩触媒組成物を、実施例9において生成された混合された金属酸化物10mgを含有する分子篩触媒組成物40mgを用いて実施例Bの方法で試験した。成分をよく混合し、次に、砂で希釈し、反応器床を生成した。この実験の結果を表2及び表3に示し、それらの表は、5%のCeO/La、ランタニド系列酸化物により改質された活性な3族金属酸化物、の添加により、260%、寿命が増大したことを示している。エタンへの選択性は、56%低減し、プロパンへの選択性は、45%低減し、水素移動反応において有意な低減を示している。

Figure 2005518930
Figure 2005518930
Example 20
In this Example 20, the molecular sieve catalyst composition produced in Example A was subjected to the method of Example B using 40 mg of the molecular sieve catalyst composition containing 10 mg of the mixed metal oxide produced in Example 9. Tested. The ingredients were mixed well and then diluted with sand to produce a reactor bed. The results of this experiment are shown in Tables 2 and 3, which are obtained by adding 5% CeO x / La 2 O 3 , an active Group 3 metal oxide modified with a lanthanide series oxide, 260%, indicating increased lifetime. The selectivity to ethane is reduced by 56% and the selectivity to propane is reduced by 45%, indicating a significant reduction in the hydrogen transfer reaction.
Figure 2005518930
Figure 2005518930

Claims (18)

分子篩、並びに少なくとも一つの、元素の周期表の3族、元素のランタニド系列及び元素のアクチニド系列から選ばれる金属の酸化物を含有する触媒組成物であり、前記金属酸化物が、100℃において、少なくとも0.03mg/金属酸化物mの、二酸化炭素の取り込みを有する、触媒組成物。 A catalyst composition comprising a molecular sieve and an oxide of a metal selected from at least one group 3 of the periodic table of elements, a lanthanide series of elements and an actinide series of elements, wherein the metal oxide is at 100 ° C. A catalyst composition having a carbon dioxide uptake of at least 0.03 mg / m 2 of metal oxide. 前記金属酸化物が、100℃において、少なくとも0.04mg/金属酸化物mの、二酸化炭素の取り込みを有する、請求項1に記載の触媒組成物。 The catalyst composition of claim 1, wherein the metal oxide has a carbon dioxide uptake of at least 0.04 mg / m 2 of metal oxide at 100 ° C. 前記金属酸化物が、100℃において、10mg未満/金属酸化物mの、二酸化炭素の取り込みを有する、請求項1又は請求項2に記載の触媒組成物。 The catalyst composition according to claim 1 or 2, wherein the metal oxide has a carbon dioxide uptake of less than 10 mg / metal oxide m 2 at 100 ° C. 前記金属酸化物とは異なる、バインダー及びマトリックス物質の少なくとも一つをさらに含有する、請求項1乃至3のいずれか1請求項に記載の触媒組成物。 The catalyst composition according to any one of claims 1 to 3, further comprising at least one of a binder and a matrix substance different from the metal oxide. 3族金属酸化物及び/又はランタニド元素又はアクチニド系列元素の酸化物、バインダー、マトリックス物質及びシリコアルミノ燐酸塩分子篩を含有する分子篩触媒組成物。 A molecular sieve catalyst composition comprising a Group 3 metal oxide and / or an oxide of a lanthanide element or an actinide series element, a binder, a matrix material, and a silicoaluminophosphate molecular sieve. バインダーがアルミナゾルであり、マトリックス物質がクレーである、請求項4又は請求項5に記載の触媒組成物。 The catalyst composition according to claim 4 or 5, wherein the binder is alumina sol and the matrix material is clay. 前記金属酸化物が、酸化ランタン、酸化イットリウム、酸化スカンジウム、酸化セリウム、酸化プラセオジム、酸化ネオジム、酸化サマリウム、酸化トリウム及びそれらの混合物から選ばれる、請求項1乃至6のいずれか1請求項に記載の触媒組成物。 7. The metal oxide according to claim 1, wherein the metal oxide is selected from lanthanum oxide, yttrium oxide, scandium oxide, cerium oxide, praseodymium oxide, neodymium oxide, samarium oxide, thorium oxide, and mixtures thereof. The catalyst composition. 前記金属酸化物が酸化イットリウムである、請求項1乃至7のいずれか1請求項に記載の触媒組成物。 The catalyst composition according to any one of claims 1 to 7, wherein the metal oxide is yttrium oxide. 分子篩が、アルミノ燐酸塩又はシリコアルミノ燐酸塩を含有する、請求項1乃至8のいずれか1請求項に記載の触媒組成物。 The catalyst composition according to any one of claims 1 to 8, wherein the molecular sieve contains an aluminophosphate or a silicoaluminophosphate. 分子篩が、CHA骨組種分子篩及び/又はAEI骨組種分子篩を含有する、請求項9に記載の触媒組成物。 The catalyst composition according to claim 9, wherein the molecular sieve contains a CHA framework type molecular sieve and / or an AEI framework type molecular sieve. 分子篩を含有する第一の粒子を、少なくとも一つの、元素の周期表の3族、元素のランタニド系列及び元素のアクチニド系列から選ばれる金属の酸化物を含有する第二の粒子と物理的に混合することを含む、触媒組成物を生成する方法であり、前記金属酸化物が、100℃において、少なくとも0.03mg/金属酸化物mの、二酸化炭素の取り込みを有する、方法。 Physically mixing the first particle containing the molecular sieve with at least one second particle containing an oxide of a metal selected from the group 3 of the periodic table of elements, the lanthanide series of elements and the actinide series of elements A method of producing a catalyst composition, wherein the metal oxide has an uptake of carbon dioxide of at least 0.03 mg / metal oxide m 2 at 100 ° C. 前記の第一の粒子が、シリコアルミノ燐酸塩分子篩、アルミナゾルを含むバインダー及びクレーを含むマトリックス物質を含有する、請求項11に記載の方法。 12. The method of claim 11, wherein the first particles comprise a matrix material comprising a silicoaluminophosphate molecular sieve, a binder comprising alumina sol and clay. 前記金属のイオンを含有する溶液から前記金属酸化物の水和された前駆体を沈殿させ、少なくとも80℃の温度で10日以下の間、その水和された前駆体を熱水処理し、次に、その水和された前駆体を400℃乃至900℃の範囲の温度でか焼することにより、前記の第二の粒子が製造される、請求項11又は請求項12に記載の方法。 Precipitating the hydrated precursor of the metal oxide from the solution containing the metal ions and hydrothermally treating the hydrated precursor at a temperature of at least 80 ° C. for 10 days or less; The method of claim 11 or claim 12, wherein the second particles are produced by calcining the hydrated precursor at a temperature in the range of 400 ° C to 900 ° C. 分子篩、並びに少なくとも一つの、元素の周期表の3族、元素のランタニド系列及び元素のアクチニド系列から選ばれる金属の酸化物を含有する触媒組成物であり、前記金属酸化物が、100℃において、少なくとも0.03mg/金属酸化物mの、二酸化炭素の取り込みを有する、触媒組成物の存在下で、供給原料を、一つ以上のオレフィンに変換する方法。 A catalyst composition comprising a molecular sieve and an oxide of a metal selected from at least one group 3 of the periodic table of elements, a lanthanide series of elements and an actinide series of elements, wherein the metal oxide is at 100 ° C. A process for converting a feedstock to one or more olefins in the presence of a catalyst composition having carbon dioxide uptake of at least 0.03 mg / m 2 of metal oxide. 前記触媒組成物が、1より大きい寿命向上指数(Lifetime Enhancement Index)(LEI)を有する、請求項14に記載の方法。 15. The method of claim 14, wherein the catalyst composition has a Lifetime Enhancement Index (LEI) greater than 1. 分子篩がシリコアルミノ燐酸塩である、請求項14又は請求項15に記載の方法。 16. A method according to claim 14 or claim 15 wherein the molecular sieve is silicoaluminophosphate. 供給原料が、メタノール及び/又はジメチルエーテルを含有する、請求項14乃至16のいずれか1請求項に記載の方法。 17. A method according to any one of claims 14 to 16, wherein the feedstock contains methanol and / or dimethyl ether. 請求項11乃至13のいずれか1請求項に記載の方法により生成される触媒組成物の存在下で、供給原料を一つ以上のオレフィンに変換する方法。 14. A process for converting a feedstock to one or more olefins in the presence of a catalyst composition produced by the process of any one of claims 11-13.
JP2003572681A 2002-02-28 2003-02-10 Molecular sieve compositions, their catalysts, their production and use in conversion processes Pending JP2005518930A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US36096302P 2002-02-28 2002-02-28
US36601202P 2002-03-20 2002-03-20
US37469702P 2002-04-22 2002-04-22
US10/215,511 US6906232B2 (en) 2002-08-09 2002-08-09 Molecular sieve compositions, catalysts thereof, their making and use in conversion processes
PCT/US2003/004169 WO2003074177A2 (en) 2002-02-28 2003-02-10 Catalyst compositions comprising molecular sieves, their preparation and use in conversion processes

Publications (2)

Publication Number Publication Date
JP2005518930A true JP2005518930A (en) 2005-06-30
JP2005518930A5 JP2005518930A5 (en) 2006-03-30

Family

ID=27792286

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2003572681A Pending JP2005518930A (en) 2002-02-28 2003-02-10 Molecular sieve compositions, their catalysts, their production and use in conversion processes
JP2003572680A Withdrawn JP2005518929A (en) 2002-02-28 2003-02-10 Molecular sieve compositions, their catalysts, their production and use in conversion processes
JP2003572679A Withdrawn JP2005518928A (en) 2002-02-28 2003-02-10 Molecular sieve compositions, their catalysts, their production and use in conversion processes

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2003572680A Withdrawn JP2005518929A (en) 2002-02-28 2003-02-10 Molecular sieve compositions, their catalysts, their production and use in conversion processes
JP2003572679A Withdrawn JP2005518928A (en) 2002-02-28 2003-02-10 Molecular sieve compositions, their catalysts, their production and use in conversion processes

Country Status (11)

Country Link
EP (3) EP1478462A2 (en)
JP (3) JP2005518930A (en)
KR (3) KR20040089679A (en)
CN (3) CN1298427C (en)
AU (3) AU2003212993A1 (en)
BR (1) BR0308011A (en)
CA (2) CA2477432A1 (en)
EA (3) EA007871B1 (en)
MY (2) MY140018A (en)
TW (3) TWI265824B (en)
WO (3) WO2003074175A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012240008A (en) * 2011-05-20 2012-12-10 Tokyo Institute Of Technology Catalyst and method for producing olefin
WO2014061569A1 (en) * 2012-10-15 2014-04-24 三菱瓦斯化学株式会社 Method for producing catalyst for use in production of methylamine compound, and method for producing methylamine compound

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1478462A2 (en) * 2002-02-28 2004-11-24 ExxonMobil Chemical Patents Inc. Molecular sieve compositions, catalyst thereof, their making and use in conversion processes
US7074739B2 (en) 2002-11-19 2006-07-11 Exxonmobil Chemical Patents Inc. Multi-component molecular sieve catalyst compositions and their use in aromatics reactions
US6951830B2 (en) 2003-08-05 2005-10-04 Exxonmobil Chemical Patents Inc. Molecular sieve catalyst compositions, their production and use in conversion processes
US7404891B2 (en) 2004-03-29 2008-07-29 Exxonmobil Chemical Patents Inc. Heat recovery technique for catalyst regenerator flue gas
US7166757B2 (en) * 2004-07-30 2007-01-23 Exxonmobil Chemical Patents Inc. Conversion of oxygenates to olefins
WO2007021394A2 (en) * 2005-08-18 2007-02-22 Exxonmobil Chemical Patents Inc. Catalytic conversion of oxygenates to olefins
CN101003018A (en) * 2006-01-20 2007-07-25 中国石油天然气股份有限公司 Heterogenous catalysis solid alkali catalyst, and its preparing method and use
US7335621B2 (en) 2006-04-19 2008-02-26 Exxonmobil Chemical Patents Inc. Catalyst compositions and preparation thereof
JP4710744B2 (en) * 2006-07-18 2011-06-29 トヨタ自動車株式会社 Method for producing composite metal oxide
US7595275B2 (en) 2006-08-15 2009-09-29 Exxonmobil Chemical Patents Inc. Catalyst compositions and their synthesis
CN101239878B (en) * 2007-02-07 2010-05-19 中国石油化工股份有限公司 Method for increasing yield of ethylene and propylene from olefin with four carbon or above
CN101239866B (en) * 2007-02-07 2010-12-01 中国石油化工股份有限公司 Method for producing ethylene and propylene from oxygen-containing compounds
CA2578494A1 (en) * 2007-02-14 2008-08-14 Nova Chemicals Corporation Catalytic cracking of ethers to 1-olefins
EP2022565A1 (en) * 2007-07-06 2009-02-11 Casale Chemicals S.A. Process for preparing silicoaluminoposphate (SAPO) molecular sieves, catalysts containing said sieves and catalytic dehydration processes using said catalysts
WO2009021726A1 (en) * 2007-08-13 2009-02-19 Saudi Basic Industries Corporation Process for converting aliphatic oxygenates to aromatics
DE102007059129A1 (en) * 2007-12-07 2009-06-10 Süd-Chemie AG Catalyst with increased olefin selectivity for the conversion of oxygenates to olefins
EP2268400A1 (en) * 2008-04-04 2011-01-05 Petr Vasiliev Zeolite catalyst zeolite secondary structure
CN102344328B (en) * 2011-07-25 2014-03-12 浙江大学 Semi-continuous method for converting methyl alcohol into propylene by using moving bed technology
UA112832C2 (en) * 2013-05-07 2016-10-25 Сінтос С.А. METHOD OF OBTAINING 1,3-BUTADIEN
CN107661774B (en) * 2016-07-27 2020-11-03 中国科学院大连化学物理研究所 Catalyst and method for preparing low-carbon olefin by directly converting synthesis gas
CN107661773B (en) * 2016-07-29 2020-08-04 中国科学院大连化学物理研究所 Method for preparing liquid fuel and co-producing low-carbon olefin by directly converting catalyst and synthesis gas
CN108568311B (en) * 2017-03-07 2021-03-23 中国科学院大连化学物理研究所 Catalyst and method for preparing ethylene by directly converting synthesis gas
KR102326358B1 (en) * 2017-04-27 2021-11-12 달리안 인스티튜트 오브 케미컬 피직스, 차이니즈 아카데미 오브 사이언시즈 In situ production method and reaction process of catalyst for producing at least one of toluene, P-xylene and light olefins
CN109939667B (en) * 2018-01-26 2021-01-05 中国科学院大连化学物理研究所 Catalyst and method for preparing low-carbon olefin by directly converting synthesis gas
CN109939722B (en) * 2018-01-26 2021-05-25 中国科学院大连化学物理研究所 Organic base modified composite catalyst and method for preparing ethylene by hydrogenation of carbon monoxide
US20210370276A1 (en) * 2018-10-30 2021-12-02 Exxonmobil Chemical Patents Inc. Group 1 Metal Ion Content of Microporous Molecular Sieve Catalysts
CN111346664B (en) * 2018-12-24 2022-11-15 中国石油化工股份有限公司 Modified vanadium-silicon molecular sieve, preparation method thereof and thioether oxidation method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4465889A (en) * 1982-07-02 1984-08-14 Summit Gas Systems Pte. Ltd. Catalytic conversion of methanol, dimethyl ether and mixtures thereof to a hydrocarbon product rich in iso-C4 compounds and new catalysts therefor
US4781816A (en) 1987-10-19 1988-11-01 Phillips Petroleum Company Cracking process
US6040264A (en) * 1996-04-04 2000-03-21 Exxon Chemical Patents Inc. Use of alkaline earth metal containing small pore non-zeolitic molecular sieve catalysts in oxygenate conversion
TW412510B (en) * 1996-12-31 2000-11-21 Exxon Chemical Patents Inc Oxygenate conversions using small pore non-zeolitic molecular sieve catalysts
US6423879B1 (en) * 1997-10-02 2002-07-23 Exxonmobil Oil Corporation Selective para-xylene production by toluene methylation
JP4221532B2 (en) * 1998-06-26 2009-02-12 三菱瓦斯化学株式会社 Methylamine production catalyst and method for producing methylamines using the catalyst
US6388156B1 (en) * 1999-05-14 2002-05-14 Exxonmobil Chemical Patents Inc. Direct selective synthesis of para-xylene by reacting an aromatic compound with a methylating agent formed from CO, Co2 and H2
WO2001064340A1 (en) * 2000-03-01 2001-09-07 Exxonmobil Chemical Patents Inc. Thorium-containing sapo molecular sieve for producing olefins
US6448197B1 (en) * 2000-07-13 2002-09-10 Exxonmobil Chemical Patents Inc. Method for making a metal containing small pore molecular sieve catalyst
WO2002005952A2 (en) * 2000-07-13 2002-01-24 Uop Llc Attrition resistant catalyst for light olefin production
CA2369318A1 (en) * 2002-01-28 2003-07-28 Universite Concordia Hybrid catalysts for the deep catalytic cracking of petroleum naphthas and other hydrocarbon feedstocks for the selective production of light olefins
EP1478462A2 (en) * 2002-02-28 2004-11-24 ExxonMobil Chemical Patents Inc. Molecular sieve compositions, catalyst thereof, their making and use in conversion processes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012240008A (en) * 2011-05-20 2012-12-10 Tokyo Institute Of Technology Catalyst and method for producing olefin
WO2014061569A1 (en) * 2012-10-15 2014-04-24 三菱瓦斯化学株式会社 Method for producing catalyst for use in production of methylamine compound, and method for producing methylamine compound
US9180444B2 (en) 2012-10-15 2015-11-10 Mitsubishi Gas Chemical Company, Inc. Method for producing catalyst for use in production of methylamine compound, and method for producing methylamine compound
JPWO2014061569A1 (en) * 2012-10-15 2016-09-05 三菱瓦斯化学株式会社 Method for producing catalyst for producing methylamines and method for producing methylamines

Also Published As

Publication number Publication date
KR20040089680A (en) 2004-10-21
WO2003074176A2 (en) 2003-09-12
AU2003212993A8 (en) 2003-09-16
TWI306780B (en) 2009-03-01
EP1478462A2 (en) 2004-11-24
JP2005518929A (en) 2005-06-30
EA007872B1 (en) 2007-02-27
CN1327964C (en) 2007-07-25
AU2003216248B2 (en) 2008-12-11
CN1642648A (en) 2005-07-20
EA007871B1 (en) 2007-02-27
AU2003212993A1 (en) 2003-09-16
WO2003074175A3 (en) 2003-12-04
AU2003216248A1 (en) 2003-09-16
EA007873B1 (en) 2007-02-27
CA2477428C (en) 2011-03-22
WO2003074176A3 (en) 2003-12-18
EP1478464A2 (en) 2004-11-24
CA2477432A1 (en) 2003-09-12
BR0308011A (en) 2005-01-04
TW200306890A (en) 2003-12-01
KR20040089679A (en) 2004-10-21
EA200401061A1 (en) 2005-04-28
TWI265824B (en) 2006-11-11
EP1478461A2 (en) 2004-11-24
TW200303237A (en) 2003-09-01
TWI265825B (en) 2006-11-11
WO2003074175A2 (en) 2003-09-12
EA200401101A1 (en) 2005-04-28
CN1646221A (en) 2005-07-27
CN100335172C (en) 2007-09-05
WO2003074177A2 (en) 2003-09-12
WO2003074177A3 (en) 2003-12-31
AU2003225560A1 (en) 2003-09-16
CA2477428A1 (en) 2003-09-12
MY139847A (en) 2009-11-30
MY140018A (en) 2009-11-30
JP2005518928A (en) 2005-06-30
CN1298427C (en) 2007-02-07
TW200303238A (en) 2003-09-01
AU2003225560B2 (en) 2008-05-08
EA200401102A1 (en) 2005-04-28
CN1638865A (en) 2005-07-13
KR20040091080A (en) 2004-10-27

Similar Documents

Publication Publication Date Title
AU2003216248B2 (en) Catalyst compositions comprising molecular sieves, their preparation and use in conversion processes
AU2002350150B2 (en) Molecular sieve catalyst composition, its making and use in conversion processes
US6844291B2 (en) Molecular sieve compositions, catalyst thereof, their making and use in conversion processes
US6995111B2 (en) Molecular sieve compositions, catalysts thereof, their making and use in conversion processes
US7319178B2 (en) Molecular sieve compositions, catalysts thereof, their making and use in conversion processes
US7214844B2 (en) Molecular sieve catalyst compositions, its making and use in conversion processes
US7166757B2 (en) Conversion of oxygenates to olefins
AU2002350150A1 (en) Molecular sieve catalyst composition, its making and use in conversion processes
WO2006023095A1 (en) Conversion of oxygenates to olefins
EP1680222B1 (en) Method of formulating a molecular sieve catalyst composition
US7307196B2 (en) Molecular sieve compositions, catalyst thereof, their making and use in conversion processes
US7199277B2 (en) Pretreating a catalyst containing molecular sieve and active metal oxide
US7186875B2 (en) Conversion of oxygenates to olefins
ZA200406712B (en) Catalyst composition comprising molecular sieves, their preparation and use in conversion processes

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090609