TWI305841B - System and method for measuring digital multimeters automatically - Google Patents

System and method for measuring digital multimeters automatically Download PDF

Info

Publication number
TWI305841B
TWI305841B TW95137338A TW95137338A TWI305841B TW I305841 B TWI305841 B TW I305841B TW 95137338 A TW95137338 A TW 95137338A TW 95137338 A TW95137338 A TW 95137338A TW I305841 B TWI305841 B TW I305841B
Authority
TW
Taiwan
Prior art keywords
digital multimeter
measurement
signal
calibrator
tested
Prior art date
Application number
TW95137338A
Other languages
Chinese (zh)
Other versions
TW200817709A (en
Inventor
Ren-Bo Huang
Xiao-Lin Gan
Yu Kuang Ho
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW95137338A priority Critical patent/TWI305841B/en
Publication of TW200817709A publication Critical patent/TW200817709A/en
Application granted granted Critical
Publication of TWI305841B publication Critical patent/TWI305841B/en

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

1305841 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種自動測量系統及方法,尤其涉及/種 數位多用表自動測量系統及方法。 【先前技術】 數位多用表是電子測量中最常用的工具,它可以用來 測量電壓(包括直流電壓和交流電壓)、電流(包栝直流 > 電流和交流電流)、電阻(包括低阻抗電阻和高阻抗電陴)’ 還可以用來測量電晶體的主要參數和電容器的電容等。數 位多用表具有測量精確、取值方便、功能齊全等優點’但 是,數位多用表由於使用不當,在實際檢測時容易造成表 内元件損壞,產生故障,需要經常對數位多用表進行測量。 傳統的數位多用表測量方式採取手動測量,測量人員 用連接線將校準器和待測的數位多用表連接起來,在校準 器面板上輸入相關參數,使校準器輸出相應訊號,記錄下 > 权準器輪出的標準值。然後,測量人員調整數位多用表的 接收參數’讀取數位多用表的測量值,比較校準器輸出的 心準值和數位多用表的測量值,判斷測量結果是否準確。 ^種手動測量方式存在測量效率低、容易出現記錄或讀值 等人為錯誤。 【發明内容】 鑒於以上内容’有必要提供一種數位多用表 自動測量 系統及方法’其可控制校準器輸出標準訊號來自動測量待 測的數位多用表。 1305841 一種數位多用表自動測量系統,包括控制電腦、校準 器及待測的數位多用表,所述的控制電腦包括:偵測模組, 用於偵測是否存在校準器及待測的數位多用表;測量模 組,用於當偵測模組偵測到校準器及待測的數位多用表存 在時,控制校準器輸出數位多用表待測參數的標準訊號至 待測的數位多用表,透過所述待測數位多用表對該標準訊 號進行測量,獲取數位多用表的測量值;測量結果分析模 組,用於比較所述標準訊號的值和數位多用表測量得到的 測量值,從而判斷該待測數位多用表的測量值是否在誤差 範圍内;報表生成模組,用於根據所述標準訊號的值和數 位多用表測量的測量值的比較結果生成一個測量報表。 一種數位多用表自動測量方法,包括如下步驟:偵測 是否存在校準器及待測的數位多用表;當偵測到校準器及 待測的數位多用表存在時,控制校準器輸出數位多用表待 測參數的標準訊號至待測的數位多用表,透過數位多用表 對該標準訊號進行測量,獲取數位多用表的測量值;比較 所述標準訊號的值和待測數位多用表測量得到的測量值, 從而判斷該待測數位多用表的測量值是否在誤差範圍内; 根據所述標準訊號的值和數位多用表測量的測量值的比較 結果生成一個測量報表。 相較於習知技術,所述的數位多用表自動測量系統及 方法,提高了數位多用表測量的效率和準確性,避免了手 動測量的人為錯誤。 【實施方式】 1305841 參閱圖1所示,是本發明數位多用表自動測量系統較 佳實施例測量電壓和高阻抗電阻時的硬體架構圖。該系統 主要包括控制電腦10、校準器20及數位多用表30。所述 控制電腦10分別跟校準器20及數位多用表30相連,所述 校準器20是一測量過程中標準的校準源,所述數位多用表 30為待測的數位多用表。 對數位多用表30要進行電壓、電流和電阻的測量, 其測量步驟為:1.測量數位多用表30的電壓和高阻抗電 阻(100.0001千歐至100兆歐);2.測量數位多用表30的 電流;3.測量數位多用表30的低阻抗電阻(1歐至100 千歐)。其中,電壓測量包括直流電壓測量和交流電壓測 量,電流測量包括直流電流測量和交流電流測量,電阻測 量包括低阻抗電阻測量和高阻抗電阻測量。在步驟1和步 驟2完成後,需要變換數位多用表30和校準器20的連接, 各個步驟的具體連接方式如下。 在測量數位多用表30的電壓和高阻抗電阻時,數位 多用表30的公共埠31跟校準器20的電壓/電阻低端21相 連,數位多用表30的電壓/電阻埠32跟校準器20的電壓/ 電阻高端22相連,參閱圖1所示。 在測量數位多用表30的電流時,數位多用表30的公 共埠31跟校準器20的電流低端24相連,數位多用表30 的電流埠33跟校準器20的大電流輸出埠23相連,參閱圖 2所示。 在測量數位多用表30的低阻抗電阻時,數位多用表 1305841 30的公共埠31跟校準器20的電壓/電阻低端21和電流低 端24相連,數位多用表30的電壓/電阻埠32跟校準器20 的電壓/電阻高端22和AUX輔助埠25相連,參閱圖3所 示。 在測量過程中,控制電腦10向校準器20發出測量一 標準值的測量指令,校準器2 0根據該指令輸出一個該標準 值的訊號給數位多用表30,數位多用表30對該訊號進行 多次測量,將得到的測量值返回給控制電腦10。控制電腦 10對該多個測量值取平均值,作為數位多用表30的測量 值,然後比較該測量值和標準值,判斷該測量值是否在誤 差範圍内,判斷公式為:標準值X (1-X%)=<測量值<=標 準值X ( 1+Y%),X、Y的大小視具體情況而定。例如,控 制電腦10向校準器20發出測量5V電壓(標準值)的測 量指令,校準器20根據該指令輸出一個5V的電壓訊號給 數位多用表30,數位多用表30對該電壓訊號進行多次測 量,並將測量值返回給控制電腦10。控制電腦10對該多 個測量值取平均值(比如為4.9998V),然後比較該測量值 和標準值,判斷該測量值是否在允許的誤差範圍内,假設 判斷公式中X取值為0.036,Y取值為0.038,則可判斷該 測量值準確,因為 5 X ( 1 - 0.036%) =< 4.9998 <= 5 X ( 1 + 0.038%) ° 參閱圖4所示,是本發明數位多用表自動測量系統中 控制電腦的功能模組圖。本發明所稱的模組是完成一特定 功能的電腦程式段,比程式更適合於描述軟體在電腦中的 Γ305841 執行過程,因此在本發明以下對軟體描述中都以模組描 述。所述控制電腦10包括偵測模組101,測量模組102, 測量結果分析模組103及報表生成模組104。 其中,偵測模組101用於偵測是否存在校準器20及 數位多用表30,如果校準器20和數位多用表30已經存 在,則開始測量。 測量模組102用於當偵測模組101偵測到校準器及數 位多用表30存在時,控制校準器20輸出數位多用表30 待測參數(包括電壓、電流、電阻等)的標準訊號至數位 多用表30,透過所述數位多用表30對該標準訊號進行測 量,獲取數位多用表30的測量值。所述測量模組102包括 有第一測量子模組1021、第二測量子模組1022及第三測 量子模組1023。其中,第一測量子模組1021用於測量數 位多用表30的電壓和高阻抗電阻,對電壓的測量包括對直 流電壓測量和交流電壓測量。在電壓測量中,控制電腦10 .的第一測量子模組1021向校準器20發出一標準電壓的測 量指令,校準器20根據該指令輸出一個電壓訊號並傳送給 數位多用表30。數位多用表30對該電壓訊號進行多次測 量,將測量的結果返回給控制電腦10,第一測量子模組 1021對該多個測量值取平均值,作為數位多用表30的測 量值。然後進行下一個測量點的電壓測量,為了使測量得 到的結果更加科學全面,需要設定多個測量點,對不同的 電壓(包括直流電壓和交流電壓)進行測量,其他的測量 (包括電流和電阻測量)同樣需要設定不同的測量點進行 11 1305841 全面測量。 測完電壓後,第一測量子模組1021再進行高阻抗電 阻的測量。首先,第一測量子模組1021向校準器2〇發出 一標準高阻抗電阻的測量指令’校準器20根據該指令輸出 一個高阻抗電阻訊號並傳送給數位多用表30。數位多用表 30對該訊號進行多次測量,將測量的結果返回給控制電腦 10 ’第一測量子模組1021對該多個測量值取平均值,作為 丨數位多用表30的測量值。測完電壓和高阻抗電阻後,變更 校準器20和數位多用表30之間的連線(參閱圖2所示), 進行下一步的電流測量。 第二測量子模組1022用於測量數位多用表30的電 流,其中,對電流的測量包括對直流電流測量和交流電流 測量。在電流測量中,控制電腦10的第二測量子模組1022 向校準器20發出一標準電流的測量指令,校準器20根據 該指令輸出一個電流訊號並傳送給數位多用表30。數位多 > 用表30對該電流訊號進行多次測量,將測量的結果返回給 控制電腦10,第二測量子模組1022對該多個測量值取平 均值,作為數位多用表30的測量值。測完電流(包括直流 電流和交流電流)後,變更校準器20和數位多用表30之 間的連線(參閱圖3所示),進行下一步的低阻抗電阻測量。 第三測量子模組1023用於測量數位多用表30的低阻 抗電阻。在低阻抗電阻測量中,控制電腦10的第三測量子 模組1023向校準器20發出一標準低阻抗電阻的測量指 令,校準器20根據該指令輸出一個低阻抗電阻訊號並傳送 12 1305841 給數位多用表30。數位多用表30對該訊號進行多次測量, 將測量的結果返回給控制電腦10,第三測量子模組1023 對該多個測量值取平均值,作為數位多用表30的測量值。 測量結果分析模組103用於全部測量完畢後,比較所 述標準訊號的值(標準值)和數位多用表30測量得到的測 量值,從而判斷該數位多用表30的測量值是否在誤差範圍 内,判斷公式為:標準值X (1-X%)=<測量值<=標準值X (1+Y%),X、Y的大小視具體情況而定。 報表生成模組104用於根據所述標準訊號的值和數位 多用表30測量的測量值的比較結果生成一個測量報表,對 測量值在誤差範圍内的測量點標記為測量通過(Pass),對 測量值不在誤差範圍内的測量點標記為測量不通過 (Failed)。 參閱圖5所示,是本發明數位多用表自動測量方法較 佳實施例的流程圖。首先,步驟S401,控制電腦10的偵 φ 測模組101偵測校準器20及數位多用表30。 步驟S402,判斷校準器20和數位多用表30是否存在。 步驟S403,如果校準器20和數位多用表30已經存 在,則控制電腦10的第一測量子模組1021向校準器20 發出一標準電壓的測量指令,校準器20根據該指令輸出一 個電壓訊號並傳送給數位多用表30。數位多用表30對該 電壓訊號進行多次測量,將測量的結果返回給控制電腦 10,第一測量子模組1021對該多個測量值取平均值,作為 數位多用表30的測量值。然後進行下一個測量點的電壓測 13 Γ305841 量,為了使測量得到的結果更加科學全面,需要設定多個 測量點,對不同的電壓(包括直流電壓和交流電壓)進行 測量,其他的測量(包括電流和電阻測量)同樣需要設定 不同的測量點進行全面測量。 測完電壓後,第一測量子模組1021再進行高阻抗電 阻的測量。首先,第一測量子模組1021向校準器20發出 一標準高阻抗電阻的測量指令,校準器20根據該指令輸出 一個高阻抗電阻訊號並傳送給數位多用表30。數位多用表 ® 30對該訊號進行多次測量,將測量的結果返回給控制電腦 10,第一測量子模組1021對該多個測量值取平均值,作為 數位多用表30的測量值。測完電壓和高阻抗電阻後,變更 校準器20和數位多用表30之間的連線(參閱圖2所示)。 步驟S404,控制電腦10的第二測量子模組1022向校 準器20發出一標準電流的測量指令,校準器20根據該指 令輸出一個電流訊號並傳送給數位多用表30。數位多用表 _ 30對該電流訊號進行多次測量,將測量的結果返回給控制 電腦10,第二測量子模組1022對該多個測量值取平均值, 作為數位多用表30的測量值。測完電流(包括直流電流和 交流電流)後,變更校準器20和數位多用表30之間的連 線(參閱圖3所示)。 步驟S405,控制電腦10的第三測量子模組1023向校 準器20發出一標準低阻抗電阻的測量指令,校準器20根 據該指令輸出一個低阻抗電阻訊號並傳送給數位多用表 30。數位多用表30對該訊號進行多次測量,將測量的結果 14 1305841 返回給控制電腦10,第三測量子模組1023對該多個測量 值取平均值,作為數位多用表3〇的測量值。 步驟S406,全部測量完畢後,控制電腦1〇的測量結 果分析模組10 3比較標準值和數位多用表3 〇測量得到的測 量值’㈣錄位多用表3G_量值是否在誤差範圍 内’判斷公式為:標準值X (1_χ%)=<測量值<=標準值X (1+Υ%)’ X、Υ的大小視具體情況而定。 #、胃步驟謂,根據所述標準值和數位多用表%測量的 測1值的峰絲生成—個測量報表,對測量值在誤差範 圍内的測量點標記為測量通過(Pass),對測量值不在誤差 範圍内的測量點標記為測量不通過(Failed )。 所述數位多用表自動測量可以是只測量電壓(包括直 流電壓和交流電壓)、電流(包括直流電流和交流電流)、 電阻(包括高阻抗電阻和低阻抗電阻)中的一個或多個, 其測量的順序也可以調整。 籲本發明數位多用表自動測量系統及方法,雖以較佳實 施例揭露如上,然其並非用以限定本發明。任何熟悉此項 技藝之人士,在不脫離本發明之精神及範圍内,當可做更 動與潤飾’因此本發明之保護範圍當視後附之申請專利範 圍所界定者為準。 【圖式簡單說明】 曰圖1是本發明數位多用表自動測量系統較佳實施例測 量電壓和高阻抗電阻時的硬體架構圖。 圖2疋本發明數位多用表自動測量系統較佳實施例測 15 1305841 量電流時的硬體架構圖。 圖3是本發明數位多用表自動測量系統較佳實施例測 量低阻抗電阻時的硬體架構圖。 圖4是本發明數位多用表自動測量系統中控制電腦的 功能模組圖。 圖5是本發明數位多用表自動測量方法較佳實施例的 流程圖。1305841 IX. Description of the Invention: [Technical Field] The present invention relates to an automatic measuring system and method, and more particularly to an automatic measuring system and method for a digital multimeter. [Prior Art] The digital multimeter is the most commonly used tool in electronic measurement. It can be used to measure voltage (including DC voltage and AC voltage), current (including DC) current and AC current, and resistance (including low impedance). And high-impedance 陴) can also be used to measure the main parameters of the transistor and the capacitance of the capacitor. The digital multimeter has the advantages of accurate measurement, convenient value, and complete functions. However, due to improper use of the digital multimeter, it is easy to cause damage to the components in the actual detection during the actual detection, resulting in failure, and it is often necessary to measure the digital multimeter. The traditional digital multimeter measurement method adopts manual measurement. The measurement personnel connect the calibrator and the digital multimeter to be tested with a connecting line, input relevant parameters on the calibrator panel, and enable the calibrator to output corresponding signals, and record the right. The standard value of the wheel. Then, the surveyor adjusts the receiving parameter of the digital multimeter' to read the measured value of the digital multimeter, compares the heart value of the calibrator output with the measured value of the digital multimeter, and judges whether the measurement result is accurate. ^Manual measurement methods have human error such as low measurement efficiency and easy occurrence of recording or reading. SUMMARY OF THE INVENTION In view of the above, it is necessary to provide a digital multimeter automatic measuring system and method which can control the calibrator output standard signal to automatically measure the digital multimeter to be tested. 1305841 A digital multimeter automatic measuring system, comprising a control computer, a calibrator and a digital multimeter to be tested, the control computer comprising: a detecting module, configured to detect whether a calibrator exists and a digital multimeter to be tested The measuring module is configured to control the calibrator to output the standard signal of the digital multimeter to be tested to the digital multimeter to be tested when the detecting module detects the calibrator and the digital multimeter to be tested exists, The measured digital multimeter is used to measure the standard signal, and the measurement value of the digital multimeter is obtained; the measurement result analysis module is configured to compare the value of the standard signal with the measured value measured by the digital multimeter, thereby determining the waiting Whether the measured value of the digital multimeter is within the error range; the report generating module is configured to generate a measurement report according to the comparison between the value of the standard signal and the measured value measured by the digital multimeter. A digital multimeter automatic measurement method includes the following steps: detecting whether there is a calibrator and a digital multimeter to be tested; when detecting the calibrator and the digital multimeter to be tested, the control calibrator outputs a digital multimeter Measuring the standard signal of the parameter to the digital multimeter to be tested, measuring the standard signal through the digital multimeter, obtaining the measured value of the digital multimeter; comparing the value of the standard signal with the measured value measured by the digital multimeter to be tested , thereby determining whether the measured value of the digital multimeter to be tested is within an error range; generating a measurement report according to the comparison result of the standard signal value and the measured value measured by the digital multimeter. Compared with the prior art, the digital multimeter automatic measurement system and method improve the efficiency and accuracy of the digital multimeter measurement, and avoid human error of manual measurement. [Embodiment] 1305841 Referring to Fig. 1, it is a hardware architecture diagram of a preferred embodiment of the digital multimeter automatic measuring system for measuring voltage and high impedance resistance. The system mainly includes a control computer 10, a calibrator 20, and a digital multimeter 30. The control computer 10 is connected to the calibrator 20 and the digital multimeter 30 respectively. The calibrator 20 is a standard calibration source during measurement, and the digital multimeter 30 is a digital multimeter to be tested. For the digital multimeter 30, the voltage, current and resistance are measured. The measurement steps are as follows: 1. Measure the voltage and high impedance resistance of the multimeter table 30 (100.0001 kohms to 100 megohms); 2. Measure the digital multimeter 30 Current; 3. Measure the multi-meter low-impedance resistance of meter 30 (1 ohm to 100 kΩ). Among them, voltage measurement includes DC voltage measurement and AC voltage measurement. Current measurement includes DC current measurement and AC current measurement. Resistance measurement includes low impedance resistance measurement and high impedance resistance measurement. After the completion of the steps 1 and 2, the connection of the digital multimeter 30 and the calibrator 20 needs to be changed, and the specific connection manner of each step is as follows. When measuring the voltage of the digital multimeter 30 and the high impedance resistance, the common 埠31 of the digital multimeter 30 is connected to the voltage/resistance low end 21 of the calibrator 20, and the voltage/resistance 埠32 of the digital multimeter 30 and the calibrator 20 The high voltage/resistance 22 is connected, see Figure 1. When measuring the current of the digital multimeter 30, the common 埠31 of the digital multimeter 30 is connected to the current low terminal 24 of the calibrator 20, and the current 埠33 of the digital multimeter 30 is connected to the large current output 埠23 of the calibrator 20, see Figure 2 shows. When measuring the low impedance resistance of the digital multimeter 30, the common 埠31 of the digital multimeter 1305841 30 is connected to the voltage/resistance low end 21 and the current low end 24 of the calibrator 20, and the voltage/resistance 埠32 of the digital multimeter 30 is followed. The voltage/resistance high side 22 of the calibrator 20 is connected to the AUX auxiliary 埠 25, as shown in FIG. During the measurement process, the control computer 10 sends a measurement command for measuring a standard value to the calibrator 20, and the calibrator 20 outputs a signal of the standard value to the digital multimeter 30 according to the command, and the digital multimeter 30 performs the signal. The measured value is returned to the control computer 10 for the second measurement. The control computer 10 averages the plurality of measured values as the measured value of the digital multimeter 30, and then compares the measured value with the standard value to determine whether the measured value is within the error range, and the judgment formula is: the standard value X (1) -X%) = <measured value <=standard value X (1+Y%), and the magnitude of X and Y depends on the case. For example, the control computer 10 sends a measurement command for measuring the 5V voltage (standard value) to the calibrator 20, and the calibrator 20 outputs a 5V voltage signal to the digital multimeter 30 according to the command, and the digital multimeter 30 performs the voltage signal multiple times. The measurement is made and the measured value is returned to the control computer 10. The control computer 10 averages the plurality of measured values (for example, 4.9998V), and then compares the measured value with the standard value to determine whether the measured value is within an allowable error range, assuming that the X value is 0.036 in the judgment formula. If the Y value is 0.038, the measured value can be judged to be accurate because 5 X (1 - 0.036%) = < 4.9998 <= 5 X (1 + 0.038%) ° As shown in Fig. 4, the digital multi-purpose of the present invention is used. The functional module diagram of the control computer in the automatic measurement system. The module referred to in the present invention is a computer program segment for performing a specific function, and is more suitable for describing the execution process of the software in the computer than the program. Therefore, the following description of the software in the present invention is described by a module. The control computer 10 includes a detection module 101, a measurement module 102, a measurement result analysis module 103, and a report generation module 104. The detecting module 101 is configured to detect whether the calibrator 20 and the digital multimeter 30 are present. If the calibrator 20 and the digital multimeter 30 already exist, the measurement is started. The measuring module 102 is configured to, when the detecting module 101 detects the presence of the calibrator and the digital multimeter 30, control the calibrator 20 to output the standard signal of the digital multimeter 30 to be tested (including voltage, current, resistance, etc.) to The digital multimeter 30 measures the standard signal through the digital multimeter 30 to obtain the measured value of the digital multimeter 30. The measurement module 102 includes a first measurement sub-module 1021, a second measurement sub-module 1022, and a third quantum module 1023. The first measurement sub-module 1021 is used to measure the voltage and high-impedance resistance of the digital multimeter 30, and the measurement of the voltage includes the measurement of the direct current voltage and the measurement of the alternating current voltage. In the voltage measurement, the first measurement sub-module 1021 of the control computer 10 sends a standard voltage measurement command to the calibrator 20, and the calibrator 20 outputs a voltage signal according to the command and transmits it to the digital multimeter 30. The digital multimeter 30 performs the measurement on the voltage signal a plurality of times, and returns the measurement result to the control computer 10, and the first measurement submodule 1021 averages the plurality of measurement values as the measurement value of the digital multimeter 30. Then carry out the voltage measurement at the next measurement point. In order to make the measurement results more scientific and comprehensive, it is necessary to set multiple measurement points, measure different voltages (including DC voltage and AC voltage), and other measurements (including current and resistance). Measurement) It is also necessary to set different measurement points for 11 1305841 full measurement. After the voltage is measured, the first measurement sub-module 1021 performs the measurement of the high-impedance resistance. First, the first measurement sub-module 1021 sends a measurement command of a standard high-impedance resistance to the calibrator 2, and the calibrator 20 outputs a high-impedance resistance signal according to the command and transmits it to the digital multimeter 30. The digital multimeter 30 performs a plurality of measurements on the signal, and returns the measurement result to the control computer. The first measurement sub-module 1021 averages the plurality of measurement values as the measurement value of the digital multimeter 30. After measuring the voltage and high-impedance resistance, change the wiring between Calibrator 20 and Digital Multimeter 30 (see Figure 2) for the next current measurement. The second measurement sub-module 1022 is for measuring the current of the digital multimeter 30, wherein the measurement of the current includes measurement of the direct current and measurement of the alternating current. In the current measurement, the second measurement sub-module 1022 of the control computer 10 issues a standard current measurement command to the calibrator 20, and the calibrator 20 outputs a current signal according to the command and transmits it to the digital multimeter 30. The digital multi-measurement is performed on the current signal by the table 30, and the measurement result is returned to the control computer 10, and the second measurement sub-module 1022 averages the plurality of measurement values as the measurement of the digital multimeter 30. value. After measuring the current (including DC current and AC current), change the wiring between Calibrator 20 and Digital Multimeter 30 (see Figure 3) for the next low impedance resistance measurement. The third measurement sub-module 1023 is for measuring the low impedance resistance of the digital multimeter 30. In the low impedance resistance measurement, the third measurement sub-module 1023 of the control computer 10 sends a measurement command of the standard low impedance resistance to the calibrator 20, and the calibrator 20 outputs a low impedance resistance signal according to the instruction and transmits 12 1305841 to the digital position. Multi-use table 30. The digital multimeter 30 performs a plurality of measurements on the signal, and returns the measurement result to the control computer 10, and the third measurement submodule 1023 averages the plurality of measurement values as the measured value of the digital multimeter 30. The measurement result analysis module 103 is configured to compare the value of the standard signal (standard value) and the measured value measured by the digital multimeter 30 after all the measurements are completed, thereby determining whether the measured value of the digital multimeter 30 is within the error range. The judgment formula is: standard value X (1-X%)=<measured value<=standard value X (1+Y%), and the magnitudes of X and Y are determined as the case may be. The report generation module 104 is configured to generate a measurement report according to the comparison result between the value of the standard signal and the measured value measured by the digital multimeter 30, and mark the measurement point whose measurement value is within the error range as a measurement pass (Pass), Measurement points where the measured value is not within the error range are marked as measurement failing (Failed). Referring to Figure 5, there is shown a flow chart of a preferred embodiment of the automatic multimeter measurement method of the present invention. First, in step S401, the detection module 101 of the control computer 10 detects the calibrator 20 and the digital multimeter 30. In step S402, it is judged whether or not the calibrator 20 and the digital multimeter 30 are present. Step S403, if the calibrator 20 and the digital multimeter 30 already exist, the first measurement submodule 1021 of the control computer 10 sends a standard voltage measurement command to the calibrator 20, and the calibrator 20 outputs a voltage signal according to the command. Transfer to the multimeter 30. The digital multimeter 30 performs a plurality of measurements on the voltage signal, and returns the measurement result to the control computer 10. The first measurement submodule 1021 averages the plurality of measurement values as the measured value of the digital multimeter 30. Then carry out the voltage measurement of 13 Γ305841 at the next measurement point. In order to make the measurement results more scientific and comprehensive, it is necessary to set multiple measurement points to measure different voltages (including DC voltage and AC voltage), and other measurements (including Current and resistance measurements) also require different measurement points for comprehensive measurements. After the voltage is measured, the first measurement sub-module 1021 performs the measurement of the high-impedance resistance. First, the first measurement sub-module 1021 sends a measurement command of the standard high-impedance resistance to the calibrator 20, and the calibrator 20 outputs a high-impedance resistance signal according to the instruction and transmits it to the digital multimeter 30. The digital multimeter ® 30 performs a plurality of measurements on the signal, and returns the measurement result to the control computer 10, and the first measurement submodule 1021 averages the plurality of measurement values as the measurement value of the digital multimeter 30. After measuring the voltage and high-impedance resistance, change the wiring between Calibrator 20 and Digital Multimeter 30 (see Figure 2). In step S404, the second measurement sub-module 1022 of the control computer 10 sends a measurement command of the standard current to the calibrator 20. The calibrator 20 outputs a current signal according to the instruction and transmits it to the digital multimeter 30. The digital multimeter _ 30 performs a plurality of measurements on the current signal, and returns the measurement result to the control computer 10, and the second measurement submodule 1022 averages the plurality of measurement values as the measured value of the digital multimeter 30. After measuring the current (including DC current and AC current), change the wiring between Calibrator 20 and Digital Multimeter 30 (see Figure 3). In step S405, the third measurement sub-module 1023 of the control computer 10 sends a measurement command of the standard low-impedance resistance to the calibrator 20. The calibrator 20 outputs a low-impedance resistance signal according to the command and transmits it to the digital multimeter 30. The digital multimeter 30 performs multiple measurements on the signal, and returns the measured result 14 1305841 to the control computer 10, and the third measurement submodule 1023 averages the plurality of measured values as the measured value of the digital multimeter. . Step S406, after all the measurements are completed, the measurement result analysis module 103 of the control computer 1 compares the standard value and the measured value of the digital multimeter 3 〇 ' (4) whether the recording multimeter 3G_ magnitude is within the error range' The judgment formula is: standard value X (1_χ%)=<measured value<=standard value X (1+Υ%)' X, the size of Υ depends on the specific situation. #、胃步骤: According to the standard value and the multi-meter meter, the measured value of the peak value is measured. The measurement point is measured as the measurement point (Pass), the measurement is measured. Measurement points whose values are not within the error range are marked as measurement fail (Failed). The digital multimeter can automatically measure one or more of measuring only voltage (including DC voltage and AC voltage), current (including DC current and AC current), and resistance (including high impedance resistance and low impedance resistance). The order of measurement can also be adjusted. The present invention is directed to an automatic measurement system and method for a digital multimeter of the present invention. Although the above is disclosed in the preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art will be able to make modifications and refinements without departing from the spirit and scope of the invention, and the scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a hardware structural diagram of a preferred embodiment of the digital multimeter automatic measuring system of the present invention for measuring voltage and high impedance resistance. Fig. 2 is a diagram showing the hardware structure of the preferred embodiment of the digital multimeter automatic measuring system of the present invention when measuring 15 1305841 current. Fig. 3 is a diagram showing the hardware structure of a preferred embodiment of the digital multimeter automatic measuring system of the present invention for measuring low impedance resistance. Fig. 4 is a functional block diagram of a control computer in the automatic multimeter measuring system of the present invention. Fig. 5 is a flow chart showing a preferred embodiment of the automatic multimeter measuring method of the present invention.

【主要元件符號說明】 控制電腦 10 校準器 20 數位多用表 30 偵測模組 101 測量模組 102 測量結果分析模組 103 報表生成模組 104 第一測量子模組 1021 第二測量子模組 1022 第三測量子模組 1023 16[Main component symbol description] Control computer 10 Calibrator 20 Digital multimeter 30 Detection module 101 Measurement module 102 Measurement result analysis module 103 Report generation module 104 First measurement submodule 1021 Second measurement submodule 1022 Third measurement sub-module 1023 16

Claims (1)

1305841 十、申請專利範圍 . 一種數位多用表自動測量系統,包括控制電腦、校準器 及待測的數位多用表,其中,所述的控制電腦包括: 偵測模組’用於偵測是否存在校準器及待測的數位多用 表; 測量模組’用於當偵測模組偵測到校準器及待測的數位 多用表存在時,控制校準器輸出數位多用表待測參數的 標準訊號至待測的數位多用表,透過所述待測數位多用 • 表對該標準訊號進行測量,獲取數位多用表的測量值; 測量結果分析模組,用於比較所述標準訊號的值和數位 多用表測量得到的測量值,從而判斷該待測數位多用表 的測量值是否在誤差範圍内;及 報表生成模組,用於根據所述標準訊號的值和數位多用 表測量的測量值的比較結果生成一個測量報表。 2 ·如申請專利範圍第1項所述的數位多用表自動測量系 • 統’其中,所述的測量模組包括: 第一測量子模組,用於控制校準器輸出標準電壓和高阻 抗電阻訊號至待測的數位多用表,透過數位多用表對該 訊號進行測量,獲取數位多用表的測量值; 第二測量子模組,用於控制校準器輸出標準電流訊號至 =測的數位多用表,透過數位多用表對該訊號行消】 量’獲取數位多用表的測量值; 第三測量子模組,用於控制校準器輸出標準低阻抗電阻 訊號至待測的數位多用表,透過數位多用表對該訊號進 1305841 行測量,獲取數位多用表的測量值。 3 ·如申請專利範圍第2項所述的數位多用表自動測量系 統,其中,所述數位多用表對電壓訊號進行測量包括對 直流電壓測量和交流電壓測量,所述數位多用表對電流 訊號進行測量包括對直流電流測量和交流電流測量。 4 · 一種數位多用表自動測量方法,該方法包括如下步驟: 偵測是否存在校準器及待測的數位多用表; 當偵測到校準器及待測的數位多用表存在時,控制校準 > 器輸出數位多用表待測參數的標準訊號至待測的數位 多用表,透過數位多用表對該標準訊號進行測量,獲取 數位多用表的測量值; 比較所述標準訊號的值和待測數位多用表測量得到的 測量值,從而判斷該待測數位多用表的測量值是否在誤 差範圍内;及 根據所述標準訊號的值和數位多用表測量的測量值的 | 比較結果生成一個測量報表。 5 ·如申請專利範圍第4項所述的數位多用表自動測量方 法,其中,所述步驟控制校準器輸出數位多用表待測參 數的標準訊號至待測的數位多用表,透過數位多用表對 該標準訊號進行測量,獲取數位多用表的測量值包括: 控制校準器輸出標準電壓和高阻抗電阻訊號至待測的 數位多用表,透過數位多用表對該訊號進行測量,獲取 數位多用表的測量值; 控制校準器輸出標準電流訊號至待測的數位多用表,透 18 1305841 - 春 過數位多用表對該訊號進行測量,獲取數位多用表的測 量值; 控制校準器輸出標準低阻抗電阻訊號至待測的數位多 用表,透過數位多用表對該訊號進行測量,獲取數位多 用表的測量值。 6 ·如申請專利範圍第5項所述的數位多用表自動測量方 法,其中,所述數位多用表對電壓訊號進行測量包括對 直流電壓測量和交流電壓測量,所述數位多用表對電流 > 訊號進行測量包括對直流電流測量和交流電流測量。1305841 X. Patent application scope. A digital multimeter automatic measurement system, comprising a control computer, a calibrator and a digital multimeter to be tested, wherein the control computer comprises: a detection module 'for detecting whether there is calibration And the digital multimeter to be tested; the measuring module is used to control the calibrator to output the standard signal of the digital multimeter to be tested when the detecting module detects the calibrator and the digital multimeter to be tested exists The measured digital multimeter is used to measure the standard signal through the digital multimeter to be measured, and obtain the measurement value of the digital multimeter; the measurement result analysis module is used to compare the value of the standard signal and the digital multimeter measurement Obtaining a measured value, thereby determining whether the measured value of the digital multimeter to be tested is within an error range; and a report generating module, configured to generate a comparison result according to the value of the standard signal and the measured value measured by the digital multimeter Measurement report. 2. The digital multimeter automatic measurement system according to claim 1, wherein the measurement module comprises: a first measurement submodule for controlling a calibrator output standard voltage and a high impedance resistance The signal is sent to the digital multimeter to be tested, and the signal is measured by the digital multimeter to obtain the measurement value of the digital multimeter; the second measurement submodule is used to control the calibrator output standard current signal to the measured digital multimeter The digital multimeter is used to eliminate the measurement of the digital multimeter. The third measurement submodule is used to control the calibrator to output the standard low impedance resistance signal to the digital multimeter to be tested, and the digital multimeter is used. The table measures the signal into the 1305841 line and obtains the measured value of the digital multimeter. 3. The digital multimeter automatic measurement system according to claim 2, wherein the digital multimeter measures the voltage signal including a DC voltage measurement and an AC voltage measurement, and the digital multimeter performs a current signal. Measurements include DC current measurements and AC current measurements. 4 · A digital multimeter automatic measurement method, the method comprises the following steps: detecting whether there is a calibrator and a digital multimeter to be tested; when detecting the calibrator and the digital multimeter to be tested exists, controlling calibration > The standard signal of the digital multimeter to be tested is outputted to the digital multimeter to be tested, and the standard signal is measured by the digital multimeter to obtain the measured value of the digital multimeter; the value of the standard signal and the digital to be measured are compared. The measured value is measured to determine whether the measured value of the digital multimeter to be tested is within an error range; and a measurement report is generated according to the comparison value of the standard signal value and the measured value of the digital multimeter. 5. The digital multimeter automatic measurement method according to claim 4, wherein the step controls the calibrator to output a standard signal of the digital multimeter to be tested to the digital multimeter to be tested, through the digital multimeter pair The standard signal is measured, and the measurement value of the digital multimeter is obtained by: controlling the calibrator output standard voltage and the high impedance resistance signal to the digital multimeter to be tested, and measuring the signal through the digital multimeter to obtain the measurement of the digital multimeter. Value; Control the calibrator to output the standard current signal to the digital multimeter to be tested, through 18 1305841 - Spring over the digital multimeter to measure the signal, obtain the measurement value of the digital multimeter; control the calibrator to output the standard low impedance resistance signal to The digital multimeter to be tested is measured by a digital multimeter to obtain the measured value of the digital multimeter. The digital multimeter automatic measurement method according to claim 5, wherein the digital multimeter measures the voltage signal, including the DC voltage measurement and the AC voltage measurement, the digital multimeter is opposite to the current > Signal measurements include DC current measurement and AC current measurement. 1919
TW95137338A 2006-10-11 2006-10-11 System and method for measuring digital multimeters automatically TWI305841B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95137338A TWI305841B (en) 2006-10-11 2006-10-11 System and method for measuring digital multimeters automatically

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95137338A TWI305841B (en) 2006-10-11 2006-10-11 System and method for measuring digital multimeters automatically

Publications (2)

Publication Number Publication Date
TW200817709A TW200817709A (en) 2008-04-16
TWI305841B true TWI305841B (en) 2009-02-01

Family

ID=44769407

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95137338A TWI305841B (en) 2006-10-11 2006-10-11 System and method for measuring digital multimeters automatically

Country Status (1)

Country Link
TW (1) TWI305841B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102466788B (en) * 2010-11-03 2016-08-03 北京普源精电科技有限公司 Universal meter calibration source
CN103048634A (en) * 2012-11-29 2013-04-17 安徽徽宁电器仪表集团有限公司 Power instrument detecting method
US10119998B2 (en) * 2016-11-07 2018-11-06 Fluke Corporation Variable capacitance non-contact AC voltage measurement system
TWI749978B (en) * 2020-12-31 2021-12-11 致茂電子股份有限公司 Multi-channel calibration method
CN113820643B (en) * 2021-11-25 2022-06-17 深圳市鼎阳科技股份有限公司 Production system for calibrating multimeter and shunt and calibration method

Also Published As

Publication number Publication date
TW200817709A (en) 2008-04-16

Similar Documents

Publication Publication Date Title
TWI305841B (en) System and method for measuring digital multimeters automatically
JP3816975B2 (en) Manufacturing defect analyzer
CN111856243B (en) Automatic current measurement precision testing system and method
WO2022012048A1 (en) Signal test point detection method and system, and related components
WO2020006749A1 (en) Chip impedance testing method and system
US20140375346A1 (en) Test control device and method for testing signal integrities of electronic product
TW201020873A (en) Apparatus for testing electronic system with 4-wires resistive touch panel and the method therefor
TW201447566A (en) Testing system and method for I2C bus
CN101153899A (en) Automatic measuring system and method of digital multimeter
TWI503556B (en) Detection and operation of detection system
CN101206252A (en) System and method for measuring digital multimeter
JP5897393B2 (en) Resistance measuring device
CN103760388A (en) Four-wire test fixture and test method thereof
JP3402274B2 (en) Electronic component impedance measuring device
CN116859124A (en) Measuring device and method
JP6504087B2 (en) Inspection device, control method therefor, control program
CN218272637U (en) Contact checking circuit for battery internal resistance tester and battery internal resistance tester
CN107817432B (en) MEMS gyroscope circuit board detection method and device
TWI522637B (en) Detection of the operation of the system
WO2023029253A1 (en) Power source stability testing method, system, and device
US8143881B2 (en) Current measuring apparatus for power supply
TWI729631B (en) Method for measuring impedance
CN106124865A (en) The measuring method of the capacitance of differential capacitance and device
TW200830103A (en) Device capable of automatically detecting a universal serial bus (USB) host or a peripheral
TWI835494B (en) Automatic measurement method for signal jitter