TWI303106B - Detector arrangement and method to determine spectral components in a radiation incident on a detector arrangement - Google Patents

Detector arrangement and method to determine spectral components in a radiation incident on a detector arrangement Download PDF

Info

Publication number
TWI303106B
TWI303106B TW95118748A TW95118748A TWI303106B TW I303106 B TWI303106 B TW I303106B TW 95118748 A TW95118748 A TW 95118748A TW 95118748 A TW95118748 A TW 95118748A TW I303106 B TWI303106 B TW I303106B
Authority
TW
Taiwan
Prior art keywords
detector
radiation
radiation detector
configuration
wavelength
Prior art date
Application number
TW95118748A
Other languages
Chinese (zh)
Other versions
TW200707777A (en
Inventor
Arndt Jaeger
Peter Stauss
Original Assignee
Osram Opto Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors Gmbh filed Critical Osram Opto Semiconductors Gmbh
Publication of TW200707777A publication Critical patent/TW200707777A/en
Application granted granted Critical
Publication of TWI303106B publication Critical patent/TWI303106B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • H01L31/1035Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type the devices comprising active layers formed only by AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

1303106 九、發明說明: 【發明所屬之技術領域】1303106 IX. Description of the invention: [Technical field to which the invention pertains]

V 本發明涉及一種偵測器配置及決定一入射至偵測器配置 上之輻射之光譜成份所用的方法,其中此偵測器配置具有 多個輻射偵測器。 【先前技術】 爲了在不同的波長範圍中偵測輻射量,通常使用一偵測 器配置,其具有多個相鄰配置的矽-光二極體晶片以偵測輻 • 射。藉由配屬於各別之矽-光二極體晶片之外部濾波器,則 各別的矽-光二極體晶片之光譜敏感度分佈可依據所期望 的偵測範圍來調整。上述具有多個矽-光二極體元件之偵測 器配置由臨時性的資料刊物Bauteil “MTCSiCT” der Firma %V The present invention relates to a detector configuration and method for determining a spectral component of radiation incident on a detector configuration, wherein the detector configuration has a plurality of radiation detectors. [Prior Art] In order to detect the amount of radiation in different wavelength ranges, a detector configuration is generally used, which has a plurality of adjacently configured x-ray diode wafers for detecting radiation. By distributing the external filters of the respective erbium-photodiode wafers, the spectral sensitivity distribution of the individual erbium-diode wafers can be adjusted according to the desired detection range. The above detector configuration with multiple 矽-optical diode elements is provided by the temporary data publication Bauteil "MTCSiCT" der Firma %

Laser Components中已爲人所知。然而,此構件(Bauteil)由 ^ 於昂貴之介電質濾波器而使成本較高。 此外,矽-光二極體晶片在紅外線光譜區中大都具有最大 的敏感度。反之,在可見光譜區中矽-光二極體晶片通常會 ® 產生一較小的信號,使得矽-光二極體晶片在可見光譜區中 的輻射偵測較在紅外線光譜區中的偵測更無效率。 【發明內容】 本發明的目的是提供一種已改良的偵測器配置,其特別 是可有效率地偵測可見光譜區中的輻射。此外,本發明的 目的是提供一種決定一入射至有效偵測器配置上之輻射之 光譜成份所用的方法,其可藉由可成本有利地製成之輻射 偵測器來決定光譜成份。 1303106 本發明中上述目的藉由具有申請專利範圍第丨項特徵的 偵測器配置來達成或藉由具有申請專利範圍第1 8項特徵 的方法來達成。本發明有利的其它形式描述在申請專利範 圍各附屬項中。 本發明的偵測器配置包括多個特別是在橫向中相鄰地配 置的分離式輻射偵測器,其中第一輻射偵測器和第二輻射 偵測器分別具有:半導體本體,其具備一接收輻射和產生 信號用的活性區;以及一配屬於各別輻射偵測器之偵測區。 該偵測區較佳是一種特別是相連接的波.長區,其中各別 的輻射偵測器對此波長區具有敏感性,即,此波長區中由 各別的輻射偵測器可產生一種明確的信號,其可由背景雜 訊中辨認。 該偵測區適當的方式是位於一種波長區中,此波長區中 設有該偵測器配置或各別的輻射偵測器以對輻射進行偵 測。各別的輻射偵測器可適當地用來在一預設的偵測區中 進行偵測。 本發明中半導體本體(特別是活性區)包含至少一輻射偵 測器,特別是包含第一輻射偵測器之活性區和第二輻射偵 測器之活性區,一種III-V-半導體材料及/或第一輻射偵測 器之活性區製作成與第二輻射偵測器之活性區不同。 由輻射入口側入射至半導體本體中的輻射入射至輻射偵 測器之活性區上。若輻射偵測器對入射的輻射所含有的波 長具有敏感性,則輻射功率之相對應的成份會在輻射偵測 器之半導體本體(特別是活性區)中被吸收。活性區中所產 1303106 生的電子-電洞對因此產生此輻射偵測器之信號。 藉由信號產生用的活性區中的III-V-半導體材料,則由 於入射至活性區中的光子而產生電子-電洞對時可有利地 達成一種高的內部量子效率(特別是在可見的光譜區中)。 高的內部量子效率通常隨著輻射偵測器之有利的高效率而 來。 藉由第一和第二輻射偵測器之活性區的不同的實施形 式’則可輕易地對各別之輻射偵測器之偵測區進行調整以 詹 便在不同的光譜區中進行輻射的偵測。藉由偵測器配置之 輻射偵測器的各別分開(即,不是單石式)的積體化方式, 則可使製造上的費用下降。由於輻射偵測器各別地設置 著,則偵測器配置的各別的輻射偵測器(特別是其半導體本 體)可簡易地製作在各別的輻射偵測器所屬的偵測區上且 予以調整。 在一較佳的形式中,第一輻射偵測器之活性區的功能層 的能帶間隙及/或厚度是與第二輻射偵測器之活性區的功 • 能層的能帶間隙或厚度不相同。不同的偵測區中因此可容 易地形成一種具有輻射偵測器之偵測器配置。 偵測區可適當地受到能帶間隙的影響或針對能帶間隙來 形成。該功能層較佳是可吸收一種波長區中的輻射,此波 長區所包含的波長小於該功能層之能帶間隙所對應的波 長。 該功能層的厚度決定該入射至輻射偵測器上的輻射之輻 射功率之在功該層中被吸收的成份。藉此可適當地調整該 1303106 偵測器信號之強度,即,各別之輻射偵測器之光電流的強 度或由此所導出的數値。功能層之厚度的.提高通常可使其 所吸收的輻射功能提高,這樣通常又可提供更大的信號。 在另一較佳的形式中,與第一輻射偵測器之活性區之功 能層之能帶間隙相對應的波長及/或與第二輻射偵測器之 活性區之功能層之能帶間隙相對應的波長位於可見之光譜 區中。因此,在可見之光譜區中可簡易地形成一種偵測器 配置以有效率地偵測輻射或決定一種光譜成份。 此處須注意:特別是亮度-或暗度可調整的人類眼睛依據 CIE (Commission Internationale de l’Eclairage)眼睛敏感度 曲線而感到敏感的波長區域即稱爲可見之光譜區域。介於 420奈米(含)和700奈米(含)之間的波長區域對亮度可調整 的人類眼睛而言大約可視爲可見的光譜區域。 在另一較佳的形式中,與第一輻射偵測器之活性區之功 能層之能帶間隙相對應的波長和與第二輻射偵測器之活性 區之功能層之能帶間隙相對應的波長位於不同彩色之光譜 區中。入射至偵測器配置上的輻射中的不同彩色之光譜成 份之偵測或決定因此是容易的。此偵測器配置特別是用來 偵測不同之彩色光譜成份,其大體上是原色紅,綠,藍等 彩色成份。 在另一較佳的形式中,第一輻射偵測器之偵測區和第二 輻射偵測器之偵測區域特別是只有一部份-或完全重疊。經 由一連I買之波長區域(大致上是可見之光譜區)來進行射 之偵測因此是容易的。偵測器配置在一種連續的偵測波長 1303106 ^ 區(例如,可見之光譜區)中具有敏感性時是有利的。此偵 測波長區可藉由各別輻射偵測器之重疊的偵測區來形成。 在另一較佳的形式中,第一*及/或第二輻射偵測器具有一 種配屬於各別輻射偵測器之預設的光譜敏感度分佈,其在 預設的最大波長時具有一種局部性或廣域性(global)之最 大値。 就輻射.測器之光譜敏感度分佈而言,此輻射偵測器之 活性區中所產生的信號(例如,光電流或由其所導出的數 • 値)之與入射至輻射偵測器上的輻射之波長的相依性是具 有決定性的。 最大波長及/或與輻射偵測器之活性區之功能層的能帶 間隙相對應的波長較佳是位於此輻射偵測器所屬的偵測區 中〇 • 在輻射偵測器之偵測區中產生一種較大的偵測器信號因 此可容易地達成。特別是在與較無效率的偵測器相比較 時’偵測器之能帶間隙或敏感度最大値位於偵測區外部, ® 就像在可見之光譜區中以傳統之矽-光二極體晶片來偵測 時通常會發生的情況一樣。 在偵測器配置的另一較佳的形式中,偵測器配置的至少 一個輻射偵測器(特別是多個輻射偵測器)具有一濾波層結 構’其具有至少一濾波層。此濾波層結構較佳是以單基板 方式積體化於輻射偵測器之半導體本體中。在濾波層結構 中可由入射的輻射吸收一些成份,這些成份可到達輻射偵 測器之活性區中而不會產生信號。此濾波層結構適當的方 1303106 式是配置-及/或形成在輻射偵測器(特別是其半導體本體) 之輻射入口側和半導體本體之活性區之間。此外,不同的 偵測區用的輻射偵測器之濾波層結構適當的方式是互相不 同地製成。 又,濾波層結構較佳是吸收一種波長區域中之輻射,此 波長區域所具有的波長小於輻射偵測器之光譜敏感分佈區 之最大波長及/或所具有的波長小於輻射偵測器之活性區 之功能層之能帶間隙所對應的波長。 藉由濾波層結構,則輻射偵測器之光譜敏感度分佈區或 輻射偵測器之偵測區特別是可適當地形成在較最大波長還 小之波長用的短波側及/或形成在輻射偵測器之功能層之 能帶間隙所對應的波長用的短波側。濾波層結構可決定輻 射偵測器之光譜敏感度分佈區之短波的極限波長及/或輻 射偵測器之偵測區之波的極限波長。濾波層結構中所吸收 的輻射未到達活性區中,使得在濾波層結構之吸收波長區 域中只產生一種較小的信號。濾波層之能帶間隙因此決定 了此濾波層之吸收波長區域且濾波層之厚度決定了由入射 的輻射所吸取的輻射功率之成份。 在另一有利的形式中’須形成該偵測器配置的二個輻射 偵測器,使偵測器配置中的一個輻射偵測器之濾波層結構 之一濾波層之成份是與另一輻射偵測器之活性區之功能層 的成份相同。該另一輻射偵測器較佳是具有一偵測區,其 所包含的波長小於其中一輻射偵測器之能帶間隙所對應的 波長。偵測器配置的二個輻射偵測器之偵測區可容易地互 -10- 1303106 相調整,使其偵測區及/或其敏感度分佈區達成一種較小的 重疊。特別有利的情況是其中一輻射偵測器之濾波層所具 ^ 有的厚度等於另一輻射偵測器之濾波層的厚度。偵測器配 置之各別的輻射偵測器的形成及其互相調整因此可容易地 達成。 在另一較佳的形式中,該濾波層結構具有多個濾波層。 例如,可形成濾波層結構的濾波層以便由不同的波長區域 中吸收各種波長之輻射,因此可簡易地形成一輻射偵測器 # 之光譜敏感度分佈區,特別是形成一波長較最大波長還小 的光譜敏感度分佈區。濾波層結構的濾波層因此具有各種 不同的能帶間隙及/或厚度。濾波層結構的吸收波長區域可 以上述方式相對於一種具有各別濾波層之結構而有利地受 " 到影響或擴大。 ^ 在另一較佳的形式中,須形成該偵測器配置的二個輻射 偵測器,使其中一輻射偵測器之偵測區包含另一輻射偵測 器之功能層之能帶間隙所對應的波長。 ® 另一輻射偵測器之偵測區所具有的波長較佳是位於一輻 射偵測器之偵測區之外部。較佳是設有另一輻射偵測器, 其在與一輻射偵測器相比較時可用於較長波長的輻射中。 該另一輻射偵測器因此在其所屬的偵測區中及一輻射偵測 器之偵測區中都產生了信號。光譜成份的決定因此較不容 易,但輻射偵測器可有利地以成本較低的方式製成。特別 是可省略一種濾波層結構。情況需要時另一輻射偵測器之 最大波長可位於一輻射偵測器之偵測區內部中。 -11- 1303106 在另一有利的形式中,須形成此偵測器配置的二個輻射 偵測器,使其中一輻射偵測器之功能層之能帶間隙所對應 的波長位於另一輻射偵測器之偵測區外部中。 這可藉由設置一種適當的濾、波層結構且情況需要日寺與適 當形成的活性區相組合來達成。因此,可容易地決定該入 射之輻射中光譜的成份,此乃因光譜成份可簡易地對應於 各別的輻射偵測器。特別是已簡化的這些光譜成份可直接 由各別偵測器之信號來決定。此外,其中一輻射偵測器之 • 最大波長較佳是位於另一輻射偵測器之偵測區之外部。 在另一有利的形式中,須形成此偵測器配置的二個輻射 偵測器,使其中一輻射偵測器之偵測區只覆蓋另一輻射偵 測器之偵測區之一部份或全部。在只覆蓋一部份時,光譜 成份可容易地配屬於各別的輻射偵測器,反之,在完全覆 ^ 蓋時由於不需調整光譜敏感度分佈或偵測區而使輻射偵測 器可成本較有利地製成。 在另一有利的形式中,須形成此偵測器配置的二個輻射 ® 偵測器,使偵測器配置之其中一輻射偵測器之光譜敏感度 分佈與另一輻射偵測器之光譜敏感度分佈特別是只有一部 份相重疊或完全重疊。由於此種重疊,則可容易地形成一 種預設的偵測波長區,其中可預設及/或形成該偵測器配置 以偵測輻射。特別是在與各別的輻射偵測器之偵測區相比 較時該偵測波長區可擴大。 在另一有利的形式中,須形成該偵測器配置的二個輻射 偵測器,使此偵測器配置的其中一輻射偵測器之光譜敏感 1303106 度分佈是與另.一輻射偵測器之光譜敏感度分佈不同,其中 該輻射偵測器之具有較大的最大波長之光譜敏感度份佈與 輻射偵測器之具有較小的最大波長之光譜敏感度份佈至少 以區段方式相疊合地延伸著。輻射偵測器之具有較大的最 大波長之光譜敏感度份佈完全覆蓋另一輻射偵測器之具有 較小的最大波長之光譜敏感度份佈。 偵測器配置之輻射偵測器因此在情況需要時在另一輻射 偵測器之整個偵測區上產生一明確的信號。爲了由入射的 輻射來決定光譜成份,則在測得各偵測器的信號之後可進 行一種算術運算,以形成該輻射偵測器之信號和另一輻射 偵測器之信號之差。由一輻射偵測器之信號特別是可直接 求得第一光譜成份且由該算術運算所得的結果可求得該入 射之輻射中的第二光譜成份。 在另一有利的形式中,須設置及/或形成該偵測器配置以 決定該入射至偵測器配置上的輻射之各個彩色成份,特別 是三原色紅、綠、藍之成份。 藉由求得不同之輻射偵測器上的信號,則可獲得一種與 入射至輻射偵測器上之輻射中的光譜彩色成份有關的結 論。 在本發明的另一較佳的形式中形成一種偵測器配置,以 決定所入射的輻射之色感(彩色位置)及/或色溫。彩色位置 通常由CIE-圖中的彩色座標(X和y)來設定。例如,若入射 的輻射含有較多的藍色成份’則在此光譜區中敏感的輻射 偵測器中會產生一種較強的信號,紅色和綠色光譜區用之 1303106 各輻射偵測器中會產生較小的信號。藉由適當地算出此三 種互相獨立-且較佳是可對應於各別即將決定之彩色成份 的信號’則可獲得此入射的輻射之有關彩色位置的情況。 例如’彩色成份決定所用的偵測器配置具有三個輻射偵 測器,其中設置及/或形成第一輻射偵測器以偵測藍色光譜 區中的輻射,第二輻射偵測器以偵測綠色光譜區中的輻 射,第三輻射偵測器以偵測紅色光譜區中的輻射。這些輻 射偵測器較佳是分別只在上述可見之光譜區中之一具有大 的敏感性。 在另一較佳的形式中,第一輻射偵測器在藍、綠、紅色 光譜區中具有敏感性,第二輻射偵測器只在藍、綠色光譜 區中具有敏感性,第三輻射偵測器只在藍色光譜區中具有 敏感性。由於第一輻射偵測器在藍、綠、紅色光譜區中產 生一信號,則由偵測器配置的信號來決定光譜成份(特別是 藍色和綠色成份)較由各別輻射偵測器中所產生的信號之 彩色成份以直接地獲得資訊時更困難,但偵測器配置的各 偵測器可成本較少地製成,此乃因不需對各別偵測器之偵 測區互相進行調整(大體上是藉由濾波層來進行)。 輻射偵測器因此全部都在藍色光譜區中產生信號。一輻 射偵測器不只在其所屬的偵測區中產生信號且亦在另一輻 射偵測器所屬的偵測區中產生信號,則此輻射偵測器可與 該另一輻射偵測器之信號形成相關性。此輻射偵測器中所 產生的信號可藉由與另一個對所提到之光譜成份同樣敏感 的輻射偵測器之信號的比較而簡易地與未受控制的背景雜 1 1303106 訊相區別。 例如,彩色成份可藉由各別輻射偵測器之信號之差値的 形成而獲得。 在另一較佳的形式中,第一輻射偵測器及/或第二輻射偵 測器之半導體本體(特別是活性區),功能層及/或濾波層結 構包含III-V-半導體材料,特別是由III-V-半導體材料系統 InxGayAh.yP,其中 OSxSl, 〇Sy€l 且 x + ySl,較佳是 y#〇 及 /或 y々l,InxGayAli-x-yAs,其中 OSxSl,OSySl 且 • x + yg 1,較佳是及/或,及/或InxGayAlmN,其中 O^xSl,OSySl且X + ySl,較佳是y矣0及/或y矣1,所構 成的材料。 如上所述,III-V-半導體材料之特徵是特別有利的高的內 部量子效率。在材料系統InXGayAh+ yP中,可簡易地形成 * 活性區或功能層,藉此可覆蓋整個可見的光譜區。 此外,濾波層結構用之濾波層可包含一種III-V-半導體 材料,其特別是由材料系統InxGayA1丨·Χ·ΥΡ和InxGayAl丨_x_yAs ® 所構成,則此種濾波層可以單基板方式積體化於半導體本 體中,特別是可積體化於以 InxGayAh + yP-及/或 InxGayAh + yAs爲主的半導體本體中。因此,可簡易地形成 一種特別緊密且小的輻射偵測器,其具有濾波層結構。 在另一較佳的形式中,偵測器配置的一輻射偵測器之功 能層’特別是半導體本體,濾波層結構及/或活性區以及偵 測器配置的另一輻射偵測器之功能層,特別是半導體本 體’濾波層結構及/或活性區是以相同的半導體材料系統而 1303106 製成,其製程因此可簡化。 本發明中,在決定一入射至偵測器配置的輻射中的不同 的光譜成份時,此偵測器配置的第一輻射偵測器具有其所 屬的偵測區,第二輻射偵測器具有其所屬的偵測區,且至 少一輻射偵測器所包含的半導體本體具有一種用來產生信 號的活性區,則首先須決定一種待決定的第一光譜成份用 之第一波長區以及待決定之第二光譜成份(其不同於第一 光譜成份)用之第二波長區。第一輕射偵測器之偵測區因此 • 包含第一波長區,第二輻射偵測器之偵測區因此包含第二 波長區’且第二輻射偵測器之偵測區是與第一波長區相重 疊。各輻射偵測器較佳是在橫向中相鄰地配置著及/或各別 地形成單一偵測器。此外,第一和第二輻射偵測器所具有 的半導體本體較佳是具有一種信號產生用的活性區。 • 於此,特別是由於所入射的輻射,則可藉由第一輻射偵 測器和第二輻射偵測器來測得所產生的信號。 然後’藉由來自第一輻射偵測器之信號和來自第二輻射 ^ 偵測器之柄號以進行一種算術運算,其可提供一種結果。 由此算術運算的結果可決定第二光譜成份,且由第一輻射 偵測器之信號特別是可直接決定第一光譜成份。第二光譜 成份及/或第二波長區所包含的波長較佳是大於第一光譜 區或第一波長區的波長。 在算術運算時’較佳是形成該藉由第二輻射偵測器所產 生的信號和該藉由第一輻射偵測器所產生的信號之差値。 所入射的輻射中之光譜成份可藉由第一輻射偵測器所產生 -16- 1303106 的信號和藉由先前已形成的差値之結果來求得。因此,所 入射的輻射中之第一光譜成份較佳是藉由第一輻射偵測器 ^ 所產生的信號來求得及/或所入射的輻射中的第二光譜成 份藉由先前所形成的差値來求得。 在一較佳的形式中,第二輻射偵測器之偵測區完全覆蓋 第一波長區。第二輻射偵測器因此對第一和第二光譜成份 都具有敏感性。這樣可有利地不需藉由昂貴的濾波器來調 整此偵測器配置之一輻射偵測器之偵測區。偵測區及/或敏 • 感度分佈基本上可單獨地藉由輻射偵測器的活性區(特別 是功能層)來決定。 在另一有利的形式中,第一輻射偵測器及/或第二輻射偵 測益之丰導體本體’特別是活性區,包含11v _半導體材 料’特別是由III-V-半導體材料系統InxGayAh^p,其中C -x - 1 ? OSySl 且 x + ySl,較佳是 y关0 及 / 或 y9tl, InxGayAh + yAs,其中 i,〇‘ y ^ 1 且 x + y $ 卜較佳是 y矣0 及 /或 y矣1,及 / 或 InxGayAli + yN,其中 Q<y< _ 1且x + y ^ 1,較佳是y#0及/或y#l,所構成的材料。 如上所述’輻射偵測器用的上述半導體材料特別適用於 可見之光譜區中。 本發明的方法中,較佳是使用本發明的偵測器配置,使 上述及以下所述之偵測器的特徵亦可用於本發明的方法中 且反之亦然。 上述已描述多個較佳的形式。於此,通常以此偵測器配 置的二個輻射偵測器作爲參考。須注意:此處所述的特徵 1303106 並非全部都必須在此偵測器配置的各別的輻射偵測器對 (pair)中實現。反之,其可在此偵測器配置之不同的幅射偵 測器對中實現° 本發明的其它特徵和有利的形式描述在以下的實施例及 相關的圖式中。 【實施方式】 相同、相同形式或作用相同之元件在各圖中設有相同的 參考符號。 第1 A圖中顯示本發明的偵測器配置的第一實施例之切 面圖。偵測器配置1 〇包含第一輻射偵測器1,第二輻射偵 測器2和第三輻射偵測器3。各輻射偵測器1,2或3分別 包含一種半導體本體1 1 ’ 2 1或3 1。輻射偵測器之半導體本 體分別具有活性區1 2 ’ 22或3 2,其用來產生信號或接收輻 射。各別之輻射偵測器之活性區較佳是包含至少一功能 層,其可由入射至偵測器配置的輻射4 0中吸收一些輻射成 份。特別是活性區可由功能層來形成。 第一,第二和第三輻射偵測器之偵測器配置之至少一輻 射偵測器之各活性區1 2,2 2或3 2含有一種111 - V -半導體材 料及/或第一輻射偵測器之活性區是以與另一輻射偵測器 不同的方式來製成。第一,第二和第三輻射偵測器之活性 區較佳是以成對且互相不同的方式來製成。 此外’第一,第二及/或第三輻射偵測器之活性區可有利 地配置在第一位障層丨3,2 3或3 3和第二位障層14,2 4或 34之間。輻射偵測器之多個位障層,例如,第一輻射偵測 -18- 1303106 器1之層13和14,較佳是具有不同的導電型式(η-導電型 或Ρ-導電型)。此外,各輻射偵測器之多個半導體本體較佳 是分別配置在載體1 5,2 5或3 5上。載體可使各別配置在 其上的半導體本體在機械上獲致穩定。例如,載體可包含 一種生長基板,其上特別是可以磊晶方式生長該配置在載 體上的半導體本體,或載體可由該生長基板所形成。載體 1 5,25和35較佳是包含相同的材料或由相同的材料所形 成。 偵測器配置的輻射偵測器較佳是設有不同(特別是成對 地不同)之偵測區,即,輻射偵測器產生一明確信號時所在 的區域。若形成該偵測器配置以便在可見光譜區上偵測輻 射,則一偵測區例如可配屬於第一輻射偵測器1,此偵測 區包含藍色光譜區。一偵測區例如可配屬於第二輻射偵測 器2,此偵測區包含綠色光譜區。一偵測區例如可配屬於 第三輻射偵測器3,此偵測區包含紅色光譜區。各偵測區 較佳是須互相調整,使包含一偵測區之一較小的波長特別 是只與相鄰的較長的波長之偵測區相重疊。以上述方式, 則輻射的偵測可在相連接的偵測波長區(大體上是可見的 光譜區)中藉由在整個偵測波長區中一種明確信號的產生 而簡易地達成。各別的輻射偵測器之偵測區可適當地藉由 活性區之功能層之形成來決定。各輻射偵測器(其具有不同 的偵測區)之功能層適當的方式是以不同的形式來形成。 用於不同偵測區之各輻射偵測器的功能層較佳是具有不 同的能帶間隙及/或厚度。能帶間隙基本上決定了由入射的 9 1303106 ^ 輻射中所吸收的波長區。特別是此能帶間隙決定了該波長 區之上限。因此,藉由該功能層之能帶間隙而可調整該偵 ♦ 測區,特別是可調整此偵測區的波長上限。藉由選取該功 能層的厚度,則可適當地對由入射的輻射40所吸收的輻射 功率之成份及各別的輻射偵測器中所產生的信號強度進行 調整。各輻射偵測器較佳是互相調整,使其各別的光譜敏 感度分佈具有相同的最大値。因此,可容易地對各別之輻 射偵測器中所產生的信號作比較且可決定該入射至偵測器 • 配置1 0上的輻射40中的不同的光譜成份。 爲了可測得各活性區1 2,22或32中所產生的電信號, 則各輻射偵測器較佳是具有第一電性接觸區1 6,26或36 和第二電性接觸區1 7,27或37。第一和第二電性接觸區特 別有利的是配置在載體1 5,25或35之相面對的側面上。 ' 第一和第二電性接觸區可與各別的活性區導電性地相連 接。該活性區較佳是配置在第一和第二接觸區之間。爲了 此一目的,則載體若是包含一種半導體材料(例如,GaAs) _日寺可受到摻雜,以使導電性提高。 各輻射偵測器較佳是在橫向中相鄰地配置著。各輻射偵 測器1,2和3特別是可配置在一種共同的載體元件1 〇〇上。 載體元件1 00例如可形成光電構件之外殻體(特別是塑料外 殼體)之一部份或形成電路板。外殼體可保護各輻射偵測器 晶片(載體及其上所配置的半導體本體)使不受外部的損害 所影響。在電路板上可對各輻射偵測器進行電性上的接 觸,此時各接觸區17,27或37以及16,26或36是與電 -20- 1303106 路板的導電軌導電性地相連接。 入射至半導體本體1 1,2 1或31中各別的輻射偵測器-* 或入射至各別的輻射偵測器1,2或3之輻射入射面1 8, 28或3 8上的輻射40可對應於各別區域之功能層之能帶間 隙而被吸收。這樣所產生的電子-電洞對(pair)可使輻射偵 測器產生信號。所產生的信號之與波長的相依性決定各別 輻射偵測器之光譜敏感度分佈。各別之輻射偵測器之光譜 敏感度分佈較佳是在最大波長處具有最大値,其適當的方 # 式是位於各別之輻射偵測器所屬的偵測區中。 第1 B圖中以定性方式顯示一各別輻射偵測器之光譜敏 感度分佈R與入射之輻射之波長λ的關係。光譜敏感度分佈 101在最大波長λπι處具有一最大値106且具有一短波長極 限Xa和一長波長極限λΐ3。此輻射偵測器之偵測區是由波長 • λ a和λ b所限定。 能量大的短波輻射亦可在偵測較長波長之輻射用的活性 區中或功能層中被吸收且因此產生一種信號。濾波層結構 ® 包含至少一濾波層且對波長小於活性區之功能層之能帶間 隙所對應的波長或小於最大波長的波長之輻射都予以吸 收,藉由濾波層結構,則由於與濾波層中所吸收的短波長 的輸射成份相對應的短波長輻射而可使信號的產生下降。 各別的輻射偵測器之偵測區情況需要時在與適當之能帶間 隙之功能層相組合下可依據一種待決定的光譜成份來調 整。該濾波層結構較佳是以單基板方式積體化j於半導體本: 體中且配置在半導體本體之$§射入口側和輻射偵測器之活 -21 - 1303106 性區之間。 本實施例中,第二輻射偵測器2和第三輻射偵測器3具 有一種濾波層結構29或39。第三輻射偵測器之濾波層結構 39具有第一濾波層391和第二濾波層3 92,其較佳是具有 不同的能帶間隙和厚度。藉由爐波層結構’則可在短波長 區域(小於最大波長)中使長波長輻射用之輻射偵測器之活 性區中的信號產生下降。短波長輻射在濾波層結構中大量 地被吸收且因此只會在活性區中小量地產生信號。 由各別輻射偵測器之配置在半導體本體之與載體相面對 的此側上的第一接觸區上可使半導體本體由接觸層1 60, 2 60或3 60所封閉。此接觸層可有利地具有一種至第一接觸 區的電性接觸特性。 就可見之光譜區中以III-V-半導體材料爲主之輻射偵測 器而言’特別是材料系統InxGayAh.x”P由於可簡易達成的 高的內部量子效率而適用於該輻射偵測器中。此材料系統 特別適用於活性區中。 爲了在入射的輻射中偵測不同彩色的光譜成份,特別是 二原色紅’綠,藍之成份,則具有如第1 C圖中之表格所示 成份而形成的元件之半導體本體特別適合用於輻射偵測器 中。載體15’ 25或35可分別藉由一種n_GaAs生長基板來 設定’其上以嘉晶方式生長該半導體本體n,2丨或31。半 導體本體較佳是以材料系統In。5((}心5p,其中〇 $ X $ 1爲主而製成’其特徵是.晶格可良好地依據G a A s生長基 板來調整。由此種材料系統所構成的半導體層之能帶間隙 -22 - 1303106 • 可藉由鋁含量X來調整。 第1C圖之表格中,D表示厚度,Eg表不對吸 定性的能帶間隙,特別是直接的能帶間隙,且 於此能帶間隙的波長。 濾波層結構29具有一濃波層,其成份和厚度是 一輻射偵測器之活性區1 2來形成,因此適用於第 測器3之第一濾波層3 9 1。第三幅射偵測器3之濾 39之第二濾波層3 92之成份和厚度是對應於第二 ® 器之活性區2 2來形成。具有一偵測區之輻射偵測 層之成份和厚度是依據另一輻射偵測器之功能層 以上述方式所形成的偵測器配置之各別的輻射 光譜敏感度分佈顯示在第1 D圖中。就第1 D圖而 器配置的光譜敏感度分佈是依據第1 Α圖來模擬, * 擬是依據第1 C圖中之表格所對應的資料來進行 中顯示:入射的輻射功率所產生的光電流之響JS 瓦特來表示)對入射至偵測器配置上的輻射之波: ®來表示)的關係。 第1D圖中顯示第一輻射偵測器1之光譜敏 1 0 1,第二輻射偵測器2之光譜敏感度分佈1 〇2以 射偵測器3之光譜敏感度分佈1 0 3。 第一輻射偵測器 1之偵測區由λ a,1 « 4 0 0 λΐ3,1400 nm (含),第二輻射偵測器2之偵測區E nm(含)至λΐ3,2«6 5 0 nm(含),且第三輻射偵測器3 由 Xa,3«5 50 nm(含)至 Xb,3«675 nm(含)。 收具有決 表示對應 對應於第 三輻射偵 波層結構 輻射偵測 器之濾波 來形成。 偵測器之 言,偵測 其中此模 。第1D圖 !(以安培/ 長(以奈米 感度分佈 ,及第三輻 n m(含)至 3 Xa,2«480 之偵測區 -23 - 1303106 ^ 偵測器配置因此覆蓋整個可見之光譜區(除了 67 5 nm和 7 00 nm之間的區域以外),其是以曲線104來表示,曲線 104指出亮度可調整的人類眼睛依據CIE-規則所得到的敏 感度。各輻射偵測器之偵測區因此互相重疊。長波長的輻 射偵測器3之偵測區特別是與短波長之輻射用的輻射偵測 器1之偵測區相重疊。此種重疊情況需要時可藉由輻射偵 測器1中另外形成活性區或適當的濾波來防止。入射的輻 射40中的光譜成份的決定因此可容易地達成。 • 光譜敏感度分佈101,102和103在最大波長處km,i(i=l, 2,3)分別具有一最大値。第一 fg射偵測器1配屬於藍色光 譜區,第二輻射偵測器1 0 2配屬於綠色光譜區,且第三輻 射偵測器103配屬於紅色光譜區。特別是λιη,1Μ90 nm, λ m, 2 « 5 5 5 n m且λ m , 3 « 6 1 0 n m之最大波長位於各別偵測器所 * 屬的光譜-或偵測區中。第二輻射偵測器2和第三輻射偵測 器3之光譜敏感度分佈之短波長邊緣在波長小於各別的最 大波長時是藉由入射的輻射中吸收這些小於最大波長的波 ® 長而形成於各輻射偵測器之濾波層結構中。較佳是經由濾 波層來形成光譜敏感度分佈,使相鄰的最大波長之二個光 譜敏感度分佈圖在一種位於最大値之一半的下方之値處相 交。本實施例中即屬此種情況。最大値的一半大約是〇. 1 5 A/W °濾波層結構特別是決定各別輻射偵測器之偵測區之 短波長極限。由於材料系統InxGayAl ! + yP中只有較小的敏 感度可在藍色光譜區中達成,則在形成敏感度分佈之短波 長邊緣時第一輻射偵測器中可省略另一濾波層結構。 -24 - 1303106 . 由於輻射偵測器在不同彩色之光譜區上調整,則由各別 的輻射偵測器所測得的信號可直接求得該入射至偵測器配 置上之輻射的彩色成份。繼續進行色感之決定。 此外,偵測器配置的輻射偵測器須互相調整,使其具有 相同的最大値。這可藉由各別輻射偵測區之適當地形成活 性區(特別是功能層)來達成。本實施例中,三個輻射偵測 器具有共同的最大値0.3 A/W。 長波長輻射用的輻射偵測器之半導體本體3 1依據上述 ® 的表格而具有大約5微米之大的厚度。此種大的厚度是與 作爲偵測區之調整用的濾波層結構有關,此濾波層結構吸 收該不期望產生信號之波長區之波長。 須注意:不是只有濾波層結構可用來形成該輻射偵測器 之光譜敏感度分佈之短波長邊緣。反之,活性區輻射入口 * 側所配置的位障層亦可用來作濾波用。各輻射偵測器之位 障層因此具有不同的厚度(請參閱第1 C圖之表格)。在長波 長之輻射用之輻射偵測器2和3中,短波長之輻射因此可 ® 大量地在各別的位障層中被吸收。 第2A圖是本發明之偵測器配置之第二實施例之切面 圖。第2B圖是第二實施例之偵測器配置中各元件之材料的 圖表。第2 C圖是第2 A圖之偵測器配置之光譜敏感度分佈 圖。第2 D圖是第2 C圖之輻射偵測器之光譜敏感度分佈圖 之差値曲線圖。 第二實施例之偵測器配置又包含第一輻射偵測器1,第 二輻射偵測器2和第三輻射偵測器3 °第2A圖之實施例基 -25 - 1303106 本上對應於第一實施例。 與第一實施例不同之處是,第二輻射偵測器2和第三車呈 * 射偵測器3中不需濾波層結構29或39。第三輻射偵測器3 在第二和第一輻射偵測器之偵測區中具有敏感性。第二福 射偵測器亦對第一輻射偵測器之偵測區具有敏感性但對第 三輻射偵測器之偵測區是不敏感的。第一,第二和第三輻 射偵測器之偵測區特別是可具有一種共同的波長下限。 爲了藉由上述的偵測器配置來決定所入射的輻射40之 • 光譜成份,則可由第一,第二和第三輻射偵測器之光譜敏 感度分佈來形成多個差値。由第一輻射偵測器之信號可有 利地直接獲得第一光譜成份之資訊,由第二輻射偵測器和 第一輻射偵測器之光譜敏感度分佈之差可獲得第二光譜成 份之資訊,且由第三輻射偵測器和第二輻射偵測器之光譜 ' 敏感度分佈之差可獲得第三光譜成份。 第2Β圖之表格中顯示各元件,其對第二實施例之輻射 偵測器之半導體本體而言特別適合。D表示厚度,Εα表示 β 對吸收具有決定性的能帶間隙,特別是直接的能帶間隙, 且λ。表示對應於此能帶間隙的波長。 該表格中所形成的偵測器配置之各別的輻射偵測器;^ 光譜敏感度分佈顯不在第2 C圖中。第2 C圖中,一偵測 配置之光譜敏感度分佈依據第2 Α圖來模擬,其中此模擬是 以對應於第2B圖的資料來進行。第2C圖中顯示:入射的 輻射功率所產生的光電流之響應(以安培/瓦特來表示)對Λ 射至偵測器配置上的輻射之波長(以奈米來表示)的關係。 -26 - 1303106 第2C圖中顯示第2A圖之偵測器配置的第一輻射偵測器 之光譜敏感度分佈1 〇 1,第二輻射偵測器之光譜敏感度分佈 1 02,和第三輻射偵測器之光譜敏感度分佈1 03。此外,亮 度可調整的人類眼睛104之敏感度分佈在大約5 5 5奈米時 顯示一種最大値。 藍色光譜區用的第一輻射偵測器1由於是對應於第1 D 圖而製成因此具有一種與第1 D圖之偵測器相同的光譜敏 感度分佈。第二和第三輻射偵測器中不需該濾波層結構, # 使這些偵測器對第1 D圖而言在短波長的波長區域中亦具 有敏感性。 第一,第二和第三輻射偵測器之光譜敏感度分佈區特別 是在波長小於第一輻射偵測器之最大波長λιη, 1時互相重 疊。此外,在波長小於λπι,1時第一,第二和第三輻射偵測 * 器之光譜敏感度分佈區在偵測器配置1 0之光譜敏感度分 佈之區域1 0 5中相疊合而延伸。 第一輻射偵測器之偵測區由此三個輻射偵測器之共同的 春 短波長極限Xa»400 nm(含)延伸至Xb,l»600 nm(含)’第二輻 射偵測器之偵測區由XaMOO nm(含)延伸至λ!3,2^650 n m (含),且第三輻射偵測器之偵測區由λ a « 4 0 0 n m (含)延伸 至λ b,3 « 6 7 5 n m (含)。第一輻射偵測器之光譜敏感度分佈之 最大波長λιη,1大約在490奈米處。第二輻射偵測器之光譜 敏感度分佈102之最大波長人❿,2大約在525奈米處。第三 輻射偵測器之光譜敏感度分佈103之最大波長Xm,3大約在 5 7 0奈米處。λ m,3因此位於綠色光譜區中’其位於第二輻 -27- 1303106 射偵測器之偵測區中。 各別的輻射偵測器因此具有重疊-或甚至覆蓋之敏感度 分佈或偵測區,這樣會使光譜成份不易對應於各別的偵測 器信號。由具有第2C圖之敏感度分佈之偵測器配置,則在 與第1 D圖之偵測器配置相比較下,不易直接由偵測器信號 得知單純輻射中有關光譜成份的資訊,但此種輻射偵測器 由於不需濾波層結構且因此使生長時間較少而可成本有利 地製成。 t 第2 A圖之偵測器配置中藉由藉由輻射偵測器中由於入 射的輻射所產生的信號之差値,則可由入射的輻射決定各 彩色成份。於此,較佳是只由具有短波長的偵測區之一輻 射偵測器之光譜敏感度分佈減掉另一輻射偵測器之光譜敏 感度分佈。輻射偵測器之特別是在二個敏感度分佈之長波 長側上的與波長有關的短波長偵測區是下一個偵測區。 第2 D圖顯示由差値所造成的曲線。曲線1 〇 1對應於第 一輻射偵測器1之光譜敏感度分佈。爲了獲得此曲線Π 2, t 第一輻射偵測器之光譜敏感度分佈1 0 1需由第2 C圖之第二 輻射偵測器之光譜敏感度分佈1 02減掉。爲了獲得此曲線 1 23,第二輻射偵測器之光譜敏感度分佈丨〇2需由第三輻射 偵測器之光譜敏感度分佈1 03減掉。由第一輻射偵測器之 fg號1 0 1可決定藍色光譜成份。差値曲線1 1 2在λ d,2» 5 4 0 n m 時具有一最大値且用來決定綠色光譜區中之光譜成份。差 値曲線123在λη,2«5 95 nm時具有一最大値且用來決定紅色 光譜區中之光譜成份。差値曲線1 23是與差値曲線1 1 2相 -28 - 1303106 重疊。 第一輻射偵測器之光譜敏感度分佈1 〇 1在短波長區域時 是與差値曲線1 1 2相重疊。由光譜敏感度分佈1 〇 1所覆蓋 的波長區域由400奈米延伸至600奈米,由差値曲線112 所覆蓋的波長區域大約由450奈米延伸至665奈米,由差 値曲線123所覆蓋的波長區域大約由540奈米延伸至650 奈米。除了 65 5奈米和700奈米之間的區域之外,藉由各 差値曲線和第一輻射偵測器之偵測區來連續地覆蓋整個可 #見的光譜區。 本專利申請案主張德國專利申請案2005年5月30日DE 10 2005 024 660.5 和 2005 年 9 月 14 日 DE 10 2005 043 918.7 之優先權,其已揭示的整個內容在此一倂作爲參考。 本發明當然不限於依據各實施例中所作的描述。反之, ' 本發明包含每一新的特徵和各特徵的每一種組合,特別是 包含各申請專利範圍-或不同實施例之各別特徵之每一種 組合,當相關的特徵或相關的組合本身未明顯地顯示在各 ® 申請專利範圍中或各實施例中時亦同。 【圖式簡單說明】 第1 A圖 本發明之偵測器配置之實施例之切面圖。 第1 B圖 輻射偵測器之光譜敏感度分佈之定性的圖解。 第1 C圖 偵測器配置中各元件之材料的圖表。 第1D圖 是第1A圖之偵測器配置之光譜敏感度分佈 圖。 第2A圖 本發明之偵測器配置之第二實施例之切面圖。 -29- 1303106 第2B圖 第二實施例之偵測器配置中各元件之材料的 圖表。 第2C圖 是第2A圖之偵測器配置之光譜敏感度分佈圖。 第2D圖 是第2C圖之輻射偵測器之光譜敏感度分佈圖 之差値曲線圖。 【主要元件符號說明】It is known in the Laser Components. However, this component (Bauteil) is costly due to the expensive dielectric filter. In addition, the erbium-photodiode wafers have the greatest sensitivity in the infrared spectral region. Conversely, in the visible region, the 矽-photodiode wafer typically produces a smaller signal, making the detection of the 矽-optical diode in the visible region of the spectrum less detectable than in the infrared region. effectiveness. SUMMARY OF THE INVENTION It is an object of the present invention to provide an improved detector configuration that, in particular, can efficiently detect radiation in the visible region of the spectrum. Moreover, it is an object of the present invention to provide a method for determining the spectral components of radiation incident on an active detector configuration that can be determined by a radiation detector that can be advantageously fabricated. 1303106 The above object of the present invention is achieved by a detector configuration having the features of the third aspect of the patent application or by a method having the features of claim 18 of the patent application. Other forms of advantageous aspects of the invention are described in the various dependent claims. The detector configuration of the present invention includes a plurality of separate radiation detectors, which are disposed adjacent to each other in the lateral direction, wherein the first radiation detector and the second radiation detector respectively have: a semiconductor body having a An active area for receiving radiation and generating a signal; and a detection area associated with each of the radiation detectors. Preferably, the detection area is a particularly connected wave length region, wherein each of the radiation detectors is sensitive to the wavelength region, that is, the wavelength detector is generated by a respective radiation detector. An explicit signal that can be identified by background noise. A suitable way for the detection zone is to locate a wavelength region in which the detector configuration or individual radiation detectors are located to detect radiation. Each of the radiation detectors can be suitably used for detection in a predetermined detection zone. The semiconductor body (especially the active region) of the present invention comprises at least one radiation detector, in particular an active region comprising a first radiation detector and an active region of a second radiation detector, a III-V-semiconductor material and / or the active area of the first radiation detector is made different from the active area of the second radiation detector. Radiation incident into the semiconductor body from the radiation inlet side is incident on the active region of the radiation detector. If the radiation detector is sensitive to the wavelength of the incident radiation, the corresponding component of the radiation power is absorbed in the semiconductor body (especially the active region) of the radiation detector. The electron-hole pair produced by the 1303106 in the active region thus produces a signal from the radiation detector. By the III-V-semiconductor material in the active region for signal generation, a high internal quantum efficiency (especially visible) can be advantageously achieved due to electron-hole pairs generated by photons incident into the active region. In the spectral region). High internal quantum efficiency generally comes with the advantageous high efficiency of the radiation detector. By means of different implementations of the active regions of the first and second radiation detectors, the detection regions of the respective radiation detectors can be easily adjusted to radiate in different spectral regions. Detection. The cost of manufacturing can be reduced by the separate (i.e., not monolithic) integration of the radiation detectors configured by the detector. Since the radiation detectors are separately disposed, the respective radiation detectors configured by the detectors (especially the semiconductor body thereof) can be easily fabricated on the detection areas to which the respective radiation detectors belong. Adjust it. In a preferred form, the energy band gap and/or thickness of the functional layer of the active region of the first radiation detector is the band gap or thickness of the energy layer of the active region of the second radiation detector. Not the same. It is thus easy to form a detector configuration with a radiation detector in different detection zones. The detection zone can be suitably formed by the band gap or for the band gap. Preferably, the functional layer absorbs radiation in a wavelength region that includes a wavelength less than a wavelength corresponding to an energy band gap of the functional layer. The thickness of the functional layer determines the component of the radiation power of the radiation incident on the radiation detector that is absorbed in the layer. Thereby, the intensity of the 1303106 detector signal, that is, the intensity of the photocurrent of the respective radiation detector or the number derived therefrom can be appropriately adjusted. The increase in the thickness of the functional layer generally increases the absorption of the radiation function, which in turn provides a greater signal. In another preferred form, the wavelength corresponding to the energy band gap of the functional layer of the active region of the first radiation detector and/or the energy band gap of the functional layer of the active region of the second radiation detector The corresponding wavelength is in the visible spectral region. Thus, a detector configuration can be easily formed in the visible spectral region to efficiently detect radiation or determine a spectral component. It should be noted here that especially the brightness- or dark-adjustable human eye is sensitive to the CIE (Commission Internationale de l'Eclairage) eye sensitivity curve, which is called the visible spectral region. A region of wavelength between 420 nm and 700 nm is considered to be a visible spectral region for a human eye with adjustable brightness. In another preferred form, the wavelength corresponding to the energy band gap of the functional layer of the active region of the first radiation detector corresponds to the energy band gap of the functional layer of the active region of the second radiation detector. The wavelengths are in the spectral regions of different colors. The detection or decision of the spectral components of the different colors incident on the detector configuration is therefore easy. The detector configuration is particularly useful for detecting different color spectral components, which are generally primary colors such as red, green, and blue. In another preferred form, the detection area of the first radiation detector and the detection area of the second radiation detector are particularly only partially or completely overlapped. The detection of the shot by a wavelength region (substantially the visible spectral region) purchased by I is therefore easy. The detector configuration is advantageous when it is sensitive in a continuous detection wavelength 1303106^ region (e.g., the visible spectral region). This detection wavelength region can be formed by overlapping detection regions of the respective radiation detectors. In another preferred form, the first* and/or second radiation detector has a predetermined spectral sensitivity distribution associated with each of the radiation detectors, which has a predetermined maximum wavelength The biggest flaw in locality or globality. In terms of the spectral sensitivity distribution of the radiation detector, the signal generated in the active region of the radiation detector (for example, the photocurrent or the number derived therefrom) is incident on the radiation detector. The dependence of the wavelength of the radiation is decisive. The wavelength corresponding to the maximum wavelength and/or the energy band gap of the functional layer of the active area of the radiation detector is preferably located in the detection area to which the radiation detector belongs. 在 In the detection area of the radiation detector Producing a larger detector signal can thus be easily achieved. Especially when compared to less efficient detectors, the detector's band gap or sensitivity is at most outside the detection area, ® is like a traditional 矽-light diode in the visible spectral region. The same is true when the chip is detected. In another preferred form of detector configuration, the detector is configured with at least one radiation detector (particularly a plurality of radiation detectors) having a filter layer structure having at least one filter layer. Preferably, the filter layer structure is integrated into the semiconductor body of the radiation detector in a single substrate manner. In the filter layer structure, some of the components can be absorbed by the incident radiation, and these components can reach the active area of the radiation detector without generating a signal. The appropriate configuration of the filter layer is in the form of a configuration - and/or formed between the radiation inlet side of the radiation detector (particularly its semiconductor body) and the active region of the semiconductor body. In addition, the filter layer structures of the radiation detectors used in different detection zones are suitably formed differently from each other. Moreover, the filter layer structure preferably absorbs radiation in a wavelength region having a wavelength smaller than a maximum wavelength of a spectrally sensitive distribution region of the radiation detector and/or having a wavelength less than that of the radiation detector The wavelength of the energy layer of the functional layer of the zone corresponds to the gap. By means of the filter layer structure, the spectral sensitivity distribution area of the radiation detector or the detection area of the radiation detector can be suitably formed on the short-wave side for wavelengths smaller than the maximum wavelength and/or formed in the radiation. The short-wave side of the wavelength corresponding to the energy gap of the functional layer of the detector. The filter layer structure determines the limiting wavelength of the short wave of the spectral sensitivity distribution region of the radiation detector and/or the limiting wavelength of the wave of the detection region of the radiation detector. The radiation absorbed in the filter layer structure does not reach the active region, so that only a small signal is generated in the absorption wavelength region of the filter layer structure. The energy band gap of the filter layer thus determines the absorption wavelength region of the filter layer and the thickness of the filter layer determines the component of the radiation power drawn by the incident radiation. In another advantageous form, the two radiation detectors of the detector configuration must be formed such that the filter layer of one of the filter layers of the detector configuration is composed of a filter layer and another radiation The functional layers of the active area of the detector have the same composition. Preferably, the other radiation detector has a detection zone that includes a wavelength that is less than a wavelength corresponding to a band gap of one of the radiation detectors. The detection areas of the two radiation detectors configured by the detector can be easily adjusted to each other to form a small overlap between the detection area and/or its sensitivity distribution area. It is particularly advantageous if the filter layer of one of the radiation detectors has a thickness equal to the thickness of the filter layer of the other radiation detector. The formation of the respective radiation detectors of the detector configuration and their mutual adjustment can thus be easily achieved. In another preferred form, the filter layer structure has a plurality of filter layers. For example, a filter layer of a filter layer structure can be formed to absorb radiation of various wavelengths in different wavelength regions, so that a spectral sensitivity distribution region of a radiation detector # can be easily formed, in particular, a wavelength greater than a maximum wavelength is formed. Small spectral sensitivity distribution area. The filter layer of the filter layer structure thus has a variety of different band gaps and/or thicknesses. The absorption wavelength region of the filter layer structure can be advantageously influenced or expanded relative to a structure having a respective filter layer in the manner described above. ^ In another preferred form, two radiation detectors of the detector configuration are formed such that the detection area of one of the radiation detectors includes the energy gap of the functional layer of the other radiation detector The corresponding wavelength. ® The detection zone of another radiation detector preferably has a wavelength outside the detection zone of a radiation detector. Preferably, another radiation detector is provided which can be used in longer wavelength radiation when compared to a radiation detector. The other radiation detector thus generates a signal in both the detection zone to which it belongs and the detection zone of a radiation detector. The determination of spectral components is therefore relatively inconvenient, but radiation detectors can advantageously be made in a lower cost manner. In particular, a filter layer structure can be omitted. The maximum wavelength of another radiation detector may be located inside the detection area of a radiation detector as the case requires. -11- 1303106 In another advantageous form, two radiation detectors of the detector configuration are formed such that the wavelength corresponding to the energy gap of the functional layer of one of the radiation detectors is located in another radiation detector. The detector is in the outside of the detection zone. This can be achieved by providing an appropriate filter, wave layer structure and the situation requires a combination of a Japanese temple and an appropriately formed active region. Therefore, the composition of the spectrum in the incident radiation can be easily determined because the spectral components can be easily adapted to the respective radiation detectors. In particular, these spectral components that have been simplified can be determined directly by the signals of the individual detectors. In addition, the maximum wavelength of one of the radiation detectors is preferably located outside the detection area of the other radiation detector. In another advantageous form, the two radiation detectors of the detector configuration are formed such that the detection area of one of the radiation detectors covers only one part of the detection area of the other radiation detector. Or all. When only one part is covered, the spectral components can be easily assigned to the respective radiation detectors. Conversely, the radiation detector can be used when the cover is completely covered because there is no need to adjust the spectral sensitivity distribution or the detection area. The cost is made more advantageously. In another advantageous form, two radiation detectors of the detector configuration are formed such that the spectral sensitivity distribution of one of the radiation detectors of the detector configuration and the spectrum of the other radiation detector In particular, only a portion of the sensitivity distribution overlaps or overlaps completely. Due to this overlap, a predetermined detection wavelength region can be easily formed, wherein the detector configuration can be preset and/or formed to detect radiation. In particular, the detection wavelength region can be expanded when compared to the detection regions of the respective radiation detectors. In another advantageous form, the two radiation detectors of the detector configuration are formed such that the spectrally sensitive 1303106 degree distribution of one of the detectors configured by the detector is combined with another radiation detection. The spectral sensitivity distribution of the device is different, wherein the spectral sensitivity of the radiation detector having a larger maximum wavelength and the spectral sensitivity of the radiation detector having a smaller maximum wavelength are at least in a segment manner. They overlap in a superposition. The spectral sensitivity of the radiation detector having a larger maximum wavelength completely covers the spectral sensitivity of the other radiation detector having a smaller maximum wavelength. The detector configured radiation detector thus produces a clear signal across the entire detection area of another radiation detector as the situation requires. In order to determine the spectral components from the incident radiation, an arithmetic operation can be performed after measuring the signals of the respective detectors to form a difference between the signals of the radiation detector and the signals of the other radiation detector. The second spectral component of the incident radiation can be ascertained by the signal of a radiation detector, in particular the first spectral component, and the result of the arithmetic operation. In another advantageous form, the detector configuration is arranged and/or formed to determine the respective color components of the radiation incident on the detector configuration, particularly the three primary colors red, green, and blue. By finding the signals on the different radiation detectors, a conclusion can be obtained relating to the spectral color components of the radiation incident on the radiation detector. In another preferred form of the invention, a detector arrangement is formed to determine the color perception (color position) and/or color temperature of the incident radiation. The color position is usually set by the color coordinates (X and y) in the CIE-picture. For example, if the incident radiation contains more blue components, a stronger signal is generated in the sensitive radiation detector in the spectral region, and the red and green spectral regions are used in 1303106 radiation detectors. Produces a smaller signal. The situation of the associated color position of the incident radiation can be obtained by appropriately calculating the three signals which are independent of one another and preferably correspond to the color components of the respective color components to be determined. For example, the color component determines that the detector configuration has three radiation detectors, wherein the first radiation detector is arranged and/or formed to detect radiation in the blue spectral region, and the second radiation detector detects The radiation in the green spectral region is measured, and the third radiation detector detects the radiation in the red spectral region. Preferably, these radiation detectors have a large sensitivity only in one of the spectral regions visible above. In another preferred form, the first radiation detector is sensitive in the blue, green, and red spectral regions, and the second radiation detector is sensitive only in the blue and green spectral regions, and the third radiation detector The detector is only sensitive in the blue spectral region. Since the first radiation detector generates a signal in the blue, green, and red spectral regions, the signal configured by the detector determines the spectral components (especially the blue and green components) compared to the respective radiation detectors. The color components of the generated signals are more difficult to obtain information directly, but the detectors configured by the detector can be made at a lower cost because the detection zones of the respective detectors do not need to be mutually Adjustments are made (generally by the filter layer). The radiation detectors therefore all generate signals in the blue spectral region. A radiation detector can generate a signal not only in the detection zone to which it belongs but also in the detection zone to which the other radiation detector belongs, and the radiation detector can be combined with the other radiation detector. Signal formation correlation. The signal produced in the radiation detector can be easily distinguished from the uncontrolled background noise by comparing the signals of another radiation detector that is equally sensitive to the spectral components mentioned. For example, color components can be obtained by the formation of a difference in the signals of the respective radiation detectors. In another preferred form, the semiconductor body (particularly the active region), the functional layer and/or the filter layer structure of the first radiation detector and/or the second radiation detector comprise a III-V-semiconductor material. In particular, the III-V-semiconductor material system InxGayAh.yP, wherein OSxSl, 〇Sy€ and x + ySl, preferably y#〇 and/or y々l, InxGayAli-x-yAs, wherein OSxSl, OSySl and • x + yg 1, preferably and/or, and/or InxGayAlmN, wherein O^xSl, OSySl and X + ySl, preferably y矣0 and/or y矣1, constitute the material. As noted above, the III-V-semiconductor material is characterized by a particularly advantageous high internal quantum efficiency. In the material system InXGayAh+yP, an *active or functional layer can be easily formed, thereby covering the entire visible spectral region. In addition, the filter layer for the filter layer structure may comprise a III-V-semiconductor material, which is composed in particular of the material systems InxGayA1丨·Χ·ΥΡ and InxGayAl丨_x_yAs ® , and the filter layer can be integrated in a single substrate manner. The semiconductor body is embodied, in particular, in a semiconductor body mainly composed of InxGayAh + yP- and/or InxGayAh + yAs. Therefore, a particularly compact and small radiation detector having a filter layer structure can be easily formed. In another preferred form, the functional layer of a radiation detector configured by the detector is specifically a semiconductor body, a filter layer structure and/or an active area, and a function of another radiation detector configured by the detector. The layers, in particular the semiconductor body 'filter layer structure and/or the active region, are made of the same semiconductor material system and 1303106, the process of which can be simplified. In the present invention, when determining a different spectral component of the radiation incident on the detector configuration, the first radiation detector configured by the detector has its associated detection zone, and the second radiation detector has The detection zone to which it belongs, and the semiconductor body included in the at least one radiation detector has an active region for generating a signal, firstly determining a first wavelength region for the first spectral component to be determined and to be determined The second spectral region of the second spectral component (which is different from the first spectral component). The detection area of the first light detector is therefore included in the first wavelength region, the detection region of the second radiation detector thus includes the second wavelength region, and the detection region of the second radiation detector is One wavelength region overlaps. Preferably, each of the radiation detectors is disposed adjacent to each other in the lateral direction and/or separately forms a single detector. Furthermore, the semiconductor bodies of the first and second radiation detectors preferably have an active region for signal generation. • Here, the generated signal can be measured by the first radiation detector and the second radiation detector, particularly due to the incident radiation. Then an arithmetic operation is performed by the signal from the first radiation detector and the handle number from the second radiation detector, which can provide a result. The result of the arithmetic operation determines the second spectral component, and the signal from the first radiation detector, in particular, directly determines the first spectral component. The wavelength of the second spectral component and/or the second wavelength region is preferably greater than the wavelength of the first spectral region or the first wavelength region. Preferably, during the arithmetic operation, the difference between the signal generated by the second radiation detector and the signal generated by the first radiation detector is formed. The spectral component of the incident radiation can be obtained by the signal of -16 - 1303106 generated by the first radiation detector and by the result of the previously formed difference. Therefore, the first spectral component of the incident radiation is preferably obtained by the signal generated by the first radiation detector and/or the second spectral component of the incident radiation is formed by the previous Let's ask for it. In a preferred form, the detection zone of the second radiation detector completely covers the first wavelength region. The second radiation detector is therefore sensitive to both the first and second spectral components. This advantageously eliminates the need for an expensive filter to adjust the detection zone of one of the detector configurations. The detection zone and/or the sensitivity distribution can be determined essentially by the active area of the radiation detector (especially the functional layer). In another advantageous form, the first radiation detector and/or the second radiation detection Yifeng conductor body 'in particular the active region comprises 11v_semiconductor material', in particular by the III-V-semiconductor material system InxGayAh ^p, where C -x - 1 ? OSySl and x + ySl, preferably y off 0 and / or y9tl, InxGayAh + yAs, where i, 〇' y ^ 1 and x + y $ bu is preferably y矣0 and / or y矣1, and / or InxGayAli + yN, where Q <y < _ 1 and x + y ^ 1, preferably y#0 and / or y#l, the material formed. The above-described semiconductor materials for radiation detectors as described above are particularly suitable for use in the visible spectral region. Preferably, in the method of the present invention, the detector configuration of the present invention is used such that the features of the detectors described above and below are also applicable to the method of the present invention and vice versa. A number of preferred forms have been described above. Here, two radiation detectors configured by the detector are usually used as a reference. It should be noted that not all of the features 1303106 described herein must be implemented in the respective pair of radiation detectors configured by the detector. Conversely, it can be implemented in different pairs of radiation detectors of the detector configuration. Other features and advantageous forms of the invention are described in the following embodiments and related figures. [Embodiment] The same or similar elements or elements having the same functions are denoted by the same reference numerals in the respective drawings. A first embodiment of the detector configuration of the present invention is shown in Fig. 1A. The detector configuration 1 includes a first radiation detector 1, a second radiation detector 2 and a third radiation detector 3. Each of the radiation detectors 1, 2 or 3 comprises a semiconductor body 1 1 ' 2 1 or 31, respectively. The semiconductor bodies of the radiation detectors each have an active region 1 2 ' 22 or 32 for generating a signal or receiving radiation. Preferably, the active regions of the respective radiation detectors comprise at least one functional layer that absorbs some of the radiation components from the radiation 40 that is incident on the detector. In particular, the active zone can be formed by a functional layer. Each of the active regions 1 2, 2 2 or 32 of the at least one radiation detector of the detector arrangement of the first, second and third radiation detectors comprises a 111 - V - semiconductor material and/or a first radiation The active area of the detector is made in a different manner than another radiation detector. Preferably, the active regions of the first, second and third radiation detectors are made in pairs and in mutually different ways. Furthermore, the active regions of the 'first, second and/or third radiation detectors can advantageously be arranged in the first barrier layer 丨3, 2 3 or 3 3 and the second barrier layer 14, 24 or 34 between. The plurality of barrier layers of the radiation detector, for example, the layers 13 and 14 of the first radiation detecting -18-1303106, preferably have different conductivity types (n-conducting type or germanium-conducting type). In addition, the plurality of semiconductor bodies of the radiation detectors are preferably disposed on the carrier 15, 5 or 35, respectively. The carrier can mechanically stabilize the semiconductor bodies individually disposed thereon. For example, the carrier may comprise a growth substrate on which the semiconductor body disposed on the carrier may be epitaxially grown, or the carrier may be formed from the growth substrate. The carriers 1 5, 25 and 35 preferably comprise the same material or are formed from the same material. The detectors configured with the radiation detectors preferably have different (especially in pairs) detection regions, i.e., the regions in which the radiation detector produces a clear signal. If the detector configuration is formed to detect radiation in the visible region of the spectrum, a detection zone can be associated, for example, with the first radiation detector 1, which includes a blue spectral region. A detection zone can be associated, for example, with a second radiation detector 2, which includes a green spectral region. A detection zone can be associated, for example, with a third radiation detector 3, which includes a red spectral region. Preferably, each of the detection zones is adapted to each other such that a smaller wavelength comprising one of the detection zones overlaps, in particular, only adjacent detection zones of longer wavelengths. In the above manner, the detection of radiation can be easily achieved in the connected detection wavelength region (substantially visible spectral region) by the generation of an unambiguous signal throughout the detection wavelength region. The detection zone of each of the radiation detectors can be suitably determined by the formation of a functional layer of the active zone. The appropriate layers of the functional layers of the radiation detectors (which have different detection zones) are formed in different forms. The functional layers of the radiation detectors for the different detection zones preferably have different band gaps and/or thicknesses. The band gap essentially determines the wavelength region absorbed by the incident 9 1303106 ^ radiation. In particular, this band gap determines the upper limit of the wavelength region. Therefore, the detection zone can be adjusted by the energy gap of the functional layer, and in particular, the upper limit of the wavelength of the detection zone can be adjusted. By selecting the thickness of the functional layer, the components of the radiated power absorbed by the incident radiation 40 and the signal intensity generated in the respective radiation detectors can be suitably adjusted. Preferably, the radiation detectors are mutually adjusted such that their respective spectral sensitivity distributions have the same maximum chirp. Thus, the signals generated in the respective radiation detectors can be easily compared and the different spectral components of the radiation 40 incident on the detector configuration 10 can be determined. In order to measure the electrical signals generated in each active region 12, 22 or 32, each of the radiation detectors preferably has a first electrical contact region 16, 26 or 36 and a second electrical contact region 1 7,27 or 37. The first and second electrical contact regions are particularly advantageously arranged on the facing sides of the carrier 15, 5 or 35. The first and second electrical contact regions are electrically conductively coupled to the respective active regions. Preferably, the active zone is disposed between the first and second contact zones. For this purpose, if the carrier contains a semiconductor material (e.g., GaAs), it may be doped to improve conductivity. Preferably, each of the radiation detectors is disposed adjacently in the lateral direction. In particular, the radiation detectors 1, 2 and 3 can be arranged on a common carrier element 1 . The carrier element 100 can, for example, form part of a housing (particularly a plastic housing) of the optoelectronic component or form a circuit board. The outer casing protects each of the radiation detector wafers (the carrier and the semiconductor body disposed thereon) from external damage. Each of the radiation detectors can be electrically contacted on the circuit board, and the contact regions 17, 27 or 37 and 16, 26 or 36 are electrically conductive with the conductive tracks of the electrical-20-1303106 board. connection. Radiation incident on the radiation incident surface of the semiconductor body 1, 1, 2 or 31 - or radiation incident on the radiation incident surface 1, 28 or 38 of the respective radiation detector 1, 2 or 3 40 may be absorbed corresponding to the energy band gap of the functional layers of the respective regions. The resulting electron-hole pair can cause the radiation detector to generate a signal. The wavelength dependence of the resulting signal determines the spectral sensitivity distribution of the individual radiation detectors. The spectral sensitivity distribution of the respective radiation detectors preferably has a maximum chirp at the maximum wavelength, and the appropriate square is located in the detection zone to which the respective radiation detector belongs. In Fig. 1B, the relationship between the spectral sensitivity distribution R of a respective radiation detector and the wavelength λ of the incident radiation is qualitatively displayed. The spectral sensitivity distribution 101 has a maximum 値 106 at the maximum wavelength λπι and has a short wavelength limit Xa and a long wavelength limit λ ΐ 3. The detection area of this radiation detector is defined by the wavelengths • λ a and λ b . The energy-intensive short-wave radiation can also be absorbed in the active region or in the functional layer for detecting longer wavelength radiation and thus produces a signal. The filter layer structure ??? comprises at least one filter layer and absorbs radiation having a wavelength smaller than a wavelength band of a functional layer of the active region or a wavelength smaller than a maximum wavelength, and the filter layer structure is The short-wavelength radiation corresponding to the absorbed short-wavelength transmission component can reduce the signal generation. The detection zone conditions of the respective radiation detectors can be adjusted according to a spectral component to be determined, if desired in combination with a functional layer of a suitable band gap. Preferably, the filter layer structure is formed in a single substrate manner in the semiconductor body and disposed between the $§ entrance side of the semiconductor body and the live-21 - 1303106 region of the radiation detector. In this embodiment, the second radiation detector 2 and the third radiation detector 3 have a filter layer structure 29 or 39. The filter layer structure 39 of the third radiation detector has a first filter layer 391 and a second filter layer 392, which preferably have different band gaps and thicknesses. By means of the furnace layer structure, the signal in the active region of the radiation detector for long-wavelength radiation is reduced in the short-wavelength region (less than the maximum wavelength). The short-wavelength radiation is absorbed in a large amount in the filter layer structure and thus only generates a small amount of signal in the active region. The semiconductor body can be closed by the contact layer 1 60, 2 60 or 3 60 on the first contact region of the semiconductor body on the side facing the carrier. This contact layer may advantageously have an electrical contact characteristic to the first contact region. In the visible spectral region of the III-V-semiconductor-based radiation detector, in particular the material system InxGayAh.x"P is suitable for the radiation detector due to the easily achieveable high internal quantum efficiency. This material system is particularly suitable for use in active areas. In order to detect different colored spectral components in incident radiation, especially the two primary colors of red 'green and blue' components, as shown in the table in Figure 1 C The semiconductor body of the component formed by the component is particularly suitable for use in a radiation detector. The carrier 15' 25 or 35 can be respectively configured by an n-GaAs growth substrate to grow the semiconductor body n, 2 丨 or 31. The semiconductor body is preferably made of a material system In. 5 ((} heart 5p, wherein 〇$ X $ 1 is mainly made of 'characteristics. The crystal lattice can be well adjusted according to the G a A s growth substrate. The band gap of the semiconductor layer formed by the material system is -22 - 1303106. • It can be adjusted by the aluminum content X. In the table of Figure 1C, D indicates the thickness, and Eg indicates the band gap of the inductive band. Is a direct energy gap, and The filter layer structure 29 has a thick wave layer whose composition and thickness are formed by the active region 12 of the radiation detector, and thus is suitable for the first filter layer 3 1 of the detector 3. The composition and thickness of the second filter layer 3 92 of the filter 39 of the third radiation detector 3 are formed corresponding to the active region 2 2 of the second detector. The composition of the radiation detecting layer having a detection area And the respective radiation spectral sensitivity distributions of the detector configurations formed in the manner described above in accordance with the functional layer of another radiation detector are shown in Figure 1D. The spectrum of the configuration of Figure 1D The sensitivity distribution is simulated according to the first diagram, * It is intended to be displayed according to the data corresponding to the table in Figure 1 C: the photocurrent generated by the incident radiant power is expressed as JS watts) The relationship between the wave of radiation to the detector configuration: ® to indicate. Figure 1D shows the spectral sensitivity of the first radiation detector 1 and the spectral sensitivity distribution of the second radiation detector 2 〇2 is distributed by the spectral sensitivity of the detector 3 1 0 3. The first radiation detector 1 The detection area is from λ a,1 « 4 0 0 λΐ3, 1400 nm (inclusive), the detection area E nm (inclusive) of the second radiation detector 2 to λΐ3, 2«6 5 0 nm (inclusive), and The third radiation detector 3 is composed of Xa, 3 «5 50 nm (inclusive) to Xb, 3 «675 nm (inclusive). The receiving has a corresponding filter corresponding to the radiation detector of the third radiation detecting layer structure. Formed by the detector, detect the mode. 1D picture! (in amperes / long (with nanometer sensitivity distribution, and the third wavelength nm (inclusive) to 3 Xa, 2«480 detection area - 23 - 1303106 ^ The detector configuration thus covers the entire visible spectral region (except for the region between 67 5 nm and 700 nm), which is represented by curve 104, which indicates the brightness of the adjustable human eye according to CIE - The sensitivity of the rules. The detection zones of the radiation detectors thus overlap each other. The detection area of the long-wavelength radiation detector 3 overlaps particularly with the detection area of the radiation detector 1 for short-wavelength radiation. Such overlap can be prevented by additional formation of active regions or appropriate filtering in the radiation detector 1 as needed. The decision of the spectral components in the incident radiation 40 can thus be easily achieved. • The spectral sensitivity distributions 101, 102 and 103 have a maximum chirp at the maximum wavelength km, i (i = 1, 2, 3), respectively. The first fg detector 1 is assigned to the blue spectral region, the second radiation detector 102 is assigned to the green spectral region, and the third radiation detector 103 is assigned to the red spectral region. In particular, the maximum wavelength of λιη, 1Μ90 nm, λ m, 2 « 5 5 5 n m and λ m , 3 « 6 1 0 n m is located in the spectrum- or detection zone of the respective detector. The short-wavelength edges of the spectral sensitivity distributions of the second radiation detector 2 and the third radiation detector 3 absorb the wavelengths of the wavelengths less than the maximum wavelength by incident radiation when the wavelength is smaller than the respective maximum wavelengths. Formed in the filter layer structure of each radiation detector. Preferably, the spectral sensitivity distribution is formed via the filter layer such that the two spectral sensitivity profiles of the adjacent maximum wavelengths intersect at a turn below one of the largest turns. This is the case in this embodiment. Half of the maximum 値 is approximately 〇. The 1 5 A/W ° filter layer structure in particular determines the short wavelength limit of the detection zone of the respective radiation detector. Since only a small sensitivity in the material system InxGayAl! + yP can be achieved in the blue spectral region, another filter layer structure can be omitted in the first radiation detector when forming a short wavelength edge of the sensitivity distribution. -24 - 1303106. Since the radiation detector is adjusted in different color spectral regions, the signals measured by the respective radiation detectors can directly determine the color components of the radiation incident on the detector configuration. . Continue to make a decision on color perception. In addition, the detectors configured with the radiation detectors must be adjusted to each other to have the same maximum ripple. This can be achieved by appropriately forming an active region (especially a functional layer) by the respective radiation detecting regions. In this embodiment, the three radiation detectors have a common maximum 値0.3 A/W. The semiconductor body 3 1 of the radiation detector for long-wavelength radiation has a thickness of about 5 μm in accordance with the table of the above ® . This large thickness is related to the filter layer structure used for the adjustment of the detection zone, which absorbs the wavelength of the wavelength region in which the signal is not expected to be generated. It should be noted that not only the filter layer structure can be used to form the short wavelength edge of the spectral sensitivity distribution of the radiation detector. Conversely, the barrier layer disposed on the side of the active area radiation inlet * can also be used for filtering. The barrier layers of each radiation detector are therefore of different thicknesses (see the table in Figure 1 C). In the long-wavelength radiation detectors 2 and 3, short-wavelength radiation can therefore be absorbed in a large number of individual barrier layers. Fig. 2A is a cross-sectional view showing a second embodiment of the detector configuration of the present invention. Fig. 2B is a graph showing the material of each element in the detector configuration of the second embodiment. Figure 2C is a spectral sensitivity map of the detector configuration of Figure 2A. Figure 2D is a plot of the spectral sensitivity profile of the radiation detector of Figure 2C. The detector configuration of the second embodiment further includes a first radiation detector 1, a second radiation detector 2, and a third radiation detector. The embodiment of the second embodiment of the second embodiment of the second embodiment is shown in FIG. First embodiment. The difference from the first embodiment is that the filter layer structure 29 or 39 is not required in the second radiation detector 2 and the third vehicle detector. The third radiation detector 3 is sensitive in the detection regions of the second and first radiation detectors. The second radiation detector is also sensitive to the detection area of the first radiation detector but insensitive to the detection area of the third radiation detector. The detection zones of the first, second and third radiation detectors may in particular have a common lower wavelength limit. In order to determine the spectral composition of the incident radiation 40 by the detector configuration described above, a plurality of rates can be formed by the spectral sensitivity distributions of the first, second and third radiation detectors. The information of the first spectral component can be directly obtained by the signal of the first radiation detector, and the information of the second spectral component can be obtained by the difference of the spectral sensitivity distribution of the second radiation detector and the first radiation detector. And the third spectral component is obtained by the difference between the spectral 'sensitivity distributions of the third radiation detector and the second radiation detector. Each of the elements is shown in the table of Figure 2, which is particularly suitable for the semiconductor body of the radiation detector of the second embodiment. D represents the thickness, Εα denotes that β has a decisive band gap for absorption, especially a direct band gap, and λ. Indicates the wavelength corresponding to this band gap. The respective radiation detectors of the detector configuration formed in the table; ^ spectral sensitivity distribution is not in Figure 2 C. In Figure 2C, the spectral sensitivity distribution of a detection configuration is simulated according to Figure 2, where the simulation is performed with data corresponding to Figure 2B. Figure 2C shows the response of the photocurrent generated by the incident radiant power (in amps per watt) to the wavelength of the radiation (in nanometers) that is incident on the detector configuration. -26 - 1303106 Figure 2C shows the spectral sensitivity distribution 1 〇1 of the first radiation detector of the detector configuration of Figure 2A, the spectral sensitivity distribution of the second radiation detector 102, and the third The spectral sensitivity distribution of the radiation detector is 103. In addition, the sensitivity of the human eye 104, which is adjustable in brightness, is distributed at approximately 555 nm to exhibit a maximum enthalpy. The first radiation detector 1 for the blue spectral region is made to correspond to the first D picture and thus has the same spectral sensitivity distribution as the detector of the first D picture. The filter layer structure is not required in the second and third radiation detectors. # These detectors are also sensitive to the wavelength region of the short wavelength for the first D picture. The spectral sensitivity distribution regions of the first, second, and third radiation detectors overlap each other particularly when the wavelength is less than the maximum wavelength λιη, 1 of the first radiation detector. In addition, when the wavelength is less than λπι, 1, the spectral sensitivity distribution regions of the first, second, and third radiation detectors are superimposed in the region of the spectral sensitivity distribution of the detector configuration 10; extend. The detection area of the first radiation detector extends from the common short wavelength limit Xa»400 nm (inclusive) of the three radiation detectors to Xb, l»600 nm (inclusive) 'second radiation detector The detection area extends from XaMOO nm (inclusive) to λ!3, 2^650 nm (inclusive), and the detection area of the third radiation detector extends from λ a « 4 0 0 nm (inclusive) to λ b , 3 « 6 7 5 nm (inclusive). The spectral sensitivity distribution of the first radiation detector has a maximum wavelength λιη, 1 at approximately 490 nm. The maximum wavelength of the spectral sensitivity distribution 102 of the second radiation detector is 2, which is approximately 525 nm. The maximum wavelength Xm of the spectral sensitivity distribution 103 of the third radiation detector is about 570 nm. λ m,3 is therefore located in the green spectral region' which is located in the detection region of the second spoke -27-1303106 detector. The individual radiation detectors thus have overlapping or even coverage sensitivity distributions or detection zones, which makes spectral components less likely to correspond to individual detector signals. According to the detector configuration having the sensitivity distribution of FIG. 2C, compared with the detector configuration of FIG. 1D, it is not easy to directly know the information about the spectral components in the pure radiation from the detector signal, but Such a radiation detector can be produced cost-effectively since it does not require a filter layer structure and therefore has less growth time. t In the detector configuration of Figure 2A, by the difference in the signal produced by the radiation detector due to the incident radiation, the color components can be determined by the incident radiation. Here, it is preferable to reduce the spectral sensitivity distribution of the other radiation detector by the spectral sensitivity distribution of only one of the detection areas having the short wavelength. The wavelength-dependent short-wavelength detection region of the radiation detector, particularly on the long wavelength side of the two sensitivity distributions, is the next detection region. Figure 2D shows the curve caused by the difference. Curve 1 〇 1 corresponds to the spectral sensitivity distribution of the first radiation detector 1. In order to obtain this curve , 2, the spectral sensitivity distribution 1 0 1 of the first radiation detector is subtracted from the spectral sensitivity distribution 102 of the second radiation detector of FIG. 2C. In order to obtain this curve 1 23, the spectral sensitivity distribution 丨〇2 of the second radiation detector is subtracted from the spectral sensitivity distribution 103 of the third radiation detector. The blue spectral component is determined by the fg number 1 0 1 of the first radiation detector. The rate curve 1 1 2 has a maximum chirp at λ d, 2» 5 4 0 n m and is used to determine the spectral components in the green spectral region. The delta curve 123 has a maximum chirp at λη, 2«5 95 nm and is used to determine the spectral components in the red spectral region. The difference curve 1 23 is overlapped with the difference curve 1 1 2 phase -28 - 1303106. The spectral sensitivity distribution 1 〇 1 of the first radiation detector overlaps the difference curve 1 1 2 in the short wavelength region. The wavelength region covered by the spectral sensitivity distribution 1 〇1 extends from 400 nm to 600 nm, and the wavelength region covered by the difference curve 112 extends from approximately 450 nm to 665 nm, from the difference curve 123 The covered wavelength region extends from approximately 540 nm to 650 nm. Except for the region between 65 5 nm and 700 nm, the entire visible spectrum region is continuously covered by the respective difference curves and the detection region of the first radiation detector. The present patent application claims the priority of the German patent application, the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the disclosure. The invention is of course not limited to the description made in accordance with the various embodiments. Conversely, 'the present invention encompasses each new feature and each combination of features, particularly each of the various combinations of the various claims and/or different embodiments, when the relevant features or related combinations are not It is clearly shown in the scope of each of the patent applications or in the respective embodiments. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A is a cross-sectional view showing an embodiment of a detector configuration of the present invention. Figure 1 B Qualitative illustration of the spectral sensitivity distribution of the radiation detector. Figure 1 C Diagram of the material for each component in the detector configuration. Figure 1D is a spectral sensitivity profile of the detector configuration of Figure 1A. Figure 2A is a cross-sectional view of a second embodiment of the detector configuration of the present invention. -29- 1303106 Figure 2B is a diagram of the material of each component in the detector configuration of the second embodiment. Figure 2C is a spectral sensitivity profile of the detector configuration of Figure 2A. Figure 2D is a plot of the spectral sensitivity profile of the radiation detector of Figure 2C. [Main component symbol description]

1,2 ,3 輻 射 偵 測 器 10 偵 測 器 配 置 11, 21, 3 1 半 導 體 本 體 12, 22, 32 活 性 區 13, 23, 33 第 一 位 障 層 14, 24, 34 第 二 位 障 層 15, 25, 35 載 體 16, 26, 36 第 一 接 觸 區 17, 27, 37 第 二 接 觸 區 18, 28, 38 輻 射 入 □ 側 29, 39 濾 波 層 結 構 40 輻 射 100 載 體 元 件 101 ,102,103 光 譜 敏 感 度 分 佈 104 眼 睛 敏 感 度 曲 線 105 區 域 1 12 ,123 曲 線 160 ,260,360 接 觸 層 391 ,392 濾 波 層 -30-1,2,3 Radiation Detector 10 Detector Configuration 11, 21, 3 1 Semiconductor Body 12, 22, 32 Active Region 13, 23, 33 First Barrier Layer 14, 24, 34 Second Barrier Layer 15 , 25, 35 carrier 16, 26, 36 first contact zone 17, 27, 37 second contact zone 18, 28, 38 radiation into □ side 29, 39 filter layer structure 40 radiation 100 carrier element 101, 102, 103 spectrally sensitive Degree distribution 104 Eye sensitivity curve 105 Area 1 12 , 123 Curve 160 , 260, 360 Contact layer 391 , 392 Filter layer -30-

Claims (1)

1303106 十、申請專利範圍: 1 · 一種具有多個分離式輻射偵測器(丨,2,3)之偵測器配置, 其特徵爲: -偵測器配置(10)之第一輻射偵測器(1,2,3)和第二輻 射偵測器(1,2,3)分別具有半導體本體(11,21,31), 其具有用來接收輻射和產生信號之活性區(12,22,32) 以及配屬於各別輻射偵測器之偵測區, -至少一個輻射偵測器之半導體本體包含III-V-半導體 材料及/或 弟一^輪射偵測器之活性區在構成上是與第二$g射偵測 器之活性區不同。 2.如申請專利範圍第1項之偵測器配置,其中第一輻射偵 測器(1,2,3)之活性區(12,22,3 2)之功能層的能帶間隙 及/或厚度是與第二輻射偵測器(1,2, 3)之活性區(12, 22, 3 2)之功能層的能帶間隙或厚度不同。 3 ·如申請專利範圍第2項之偵測器配置,其中第一輻射偵 測器(1,2,3)之活性區(12,22,3 2)之功能層的能帶間隙 所對應的波長及/或第二輻射偵測器(1,2,3)之活性區 (12,22,3 2)之功能層的能帶間隙所對應的波長位於可見 之光譜區中。 4.如申請專利範圍第2或3項之偵測器配置,其中第一輻 射偵測器(1,2,3)之活性區(12,22,32)之功能層的能帶 間隙所對應的波長及第二輻射偵測器(1,2,3)之活性區 (1 2,2 2,3 2)之功能層的能帶間隙所對應的波長位於不同 1303106 彩色之光譜區中。 5 .如申請專利範圍第丨至4項中任一項之偵測器配置,其 中偵測器配置(10)對相連接的偵測波長區具有敏感性。 6·如申請專利範圍第丨至5項中.任一項之偵測器配置,其 中第一偵測器和第二輻射偵測器分別具有一種對應於各 別輻射偵測器之光譜敏感度分佈(1 0 1,1 0 2,1 0 3 ),其在 一預設的最大波長時具有一最大値。 7 ·如申請專利範圍第6項之偵測器配置,其中 -偵測器配置的至少一輻射偵測器(2,3)具有一以單基板 方式積體化於該輻射偵測器之半導體本體(2 1,3 1)中的 濾波層結構(29,39),其具有至少一濾波層(29,391, 392), -濾波層結構吸收一波長區中的輻射,此波長區之波長 小於該輻射偵測器之光譜敏感度分佈(102,103)之最大 波長,以及 -濾波層結構配置在半導體本體之輻射入口側(1 8,2 8, 3 8 )和活性區之間。 8 ·如申請專利範圍第7項之偵測器配置,其中濾波層結構 (3 9)具有多個濾波層(391,3 92)。 9.如申請專利範圍第8項之偵測器配置,其中濾波層結構 (3 9)之濾波層(391,3 92)具有不同的能帶間隙及/或厚度。 1 〇.如申請專利範圍第2至9項中任一項之偵測器配置,其 中輻射偵測器(1,2,3)之偵測區包含此偵測器配置之另 一輻射偵測器(1,2,3)之功能層之能帶間隙所對應的波 -32- 1303106 長。 1 1 ·如申請專利範圍第6至1 0項中任一項之偵測器配置,其 中偵測器配置(1 0)之輻射偵測器(2,3)之敏感度分佈 (102,103)之最大波長位於偵測器配置之另一輻射偵測器 (1,2)之偵測區內部。 1 2 ·如申請專利範圍第1至1 1項中任一項之偵測器配置,其 中偵測器配置(1 0)之輻射偵測器(1,2,3 )之偵測區只覆 蓋此偵測器配置(10)之另一輻射偵測器(1,2,3)之偵測 I 區之一部份或全部。 1 3 ·如申請專利範圍第6至1 2項中任一項之偵測器配置,其 中偵測器配置(10)之輻射偵測器(1,2,3)之光譜敏感度 分佈(101,102,103)特別是只與偵測器配置之另一輻射 偵測器(1,2,3)之光譜敏感度分佈(101,102,103)的一 部份相重疊或完全重疊。 1 4.如申請專利範圍第6至1 3項中任一項之偵測器配置,其 中 > -偵測器配置(1 0)之輻射偵測器(1,2,3 )之光譜敏感度 分佈(1 0 1,1 0 2,1 0 3 )之最大波長是與此偵測器配置之 另一輻射偵測器(1,2,3)之光譜敏感度分佈(101 ’ 1〇2, 103)之最大波長不同, -具有較大之最大波長之偵測器配置之輻射偵測器之光 譜敏感度分佈與具有較小的最大波長之偵測器配置之 輻射偵測器之光譜敏感度分佈至少以區段方式相疊合 地延伸著。 -33- 1303106 1 5 ·如申請專利範圍第1至14項中任一項之偵測器配置,其 中設有及/或形成此偵測器配置(1 0),以特別決定該入射 至偵測器配置上的輻射(40)中的原色紅,綠,藍之彩色成 1 6 ·如申請專利範圍第1至1 5項中任一項之偵測器配置,其 中偵測器配置(1 0)具有第三輻射偵測器,其中設有及/或 形成第一輻射偵測器(1)以偵測藍色光譜區中的輻射,第 二輻射偵測器(2)以偵測綠色光譜區中的輻射,以及第三 輻射偵測器(3)以偵測紅色光譜區中的輻射。 1 7 ·如申請專利範圍第1至1 6項中任一項之偵測器配置,其 中第一輻射偵測器及/或第二輻射偵測器之半導體本體 (1 1,2 1,3 1),特別是活性區(1 2,2 2,3 2),功能層及/ 或濾波層結構(29,3 9)包含一種III-V·半導體材料,特別 是一種由III-V-半導體材料系統lnxGayAll_x.yP,其中〇$χ $1,OSySl且χ + ySl所構成的材料。 18·—種決定一入射至偵測器配置(1〇)上之輻射之光譜成份 所用的方法’此偵測器配置(1 〇)具有多個輻射偵測器(i, 2 ’ 3)’其中第一輻射偵測器具有其所屬的偵測區,第二 輻射偵測器具有其所屬的偵測區,且至少一輻射偵測器 包含半導體本體,其具有用來產生信號之活性區,本方 法之特徵是以下各步驟, a)決定第一波長區以用於待確定的第一光譜成份,且決 定第二波長區以用於待確定的第二光譜成份,其與第 一光譜成份不同,第一輻射偵測器(丨)之偵測區包含第 -34- 1303106 一波長區,第二輻射偵測器(2)之偵測區包含第二波長 區且第二輻射偵測器之偵測區是與第一波長區相重 疊, b) 測得該第一輻射偵測器所產生的信號及第二輻射偵測 器所產生的信號, c) 形成該第二輻射偵測器(2)所產生的信號及第一輻射 偵測器(1)所產生的信號之差値, d) 藉由第一輻射偵測器所產生的信號以求得入射的輻射 中之第一光譜成份及/或藉由步驟c)中所形成的差値 以求得入射的輻射中之第二光譜成份。 1 9 ·如申請專利範圍第1至1 8項中任一項之方法,其中第二 輻射偵測器(2)之偵測區完全覆蓋第一波長區。 2 0 ·如申請專利範圍第1 8或1 9項之方法,其中第一輻射偵 測器(1,2,3)及/或第二輻射偵測器(1,2,3)之半導體本 體(11,21,31),特別是活性區(12,22,32),包含一種 III- V -半導體材料’特別是一種由11^ v _半導體材料系統 InxGayAli.yP’ 其中 OSxSi,(^丫^且 x + 所構成 的材料。 2 1.如申請專利範圍第1 8至20項中任一項之方法,其中偵 測挤配置是申目靑專利fe圍第1至1 7項中任一*項之倬測器 配置(1 0)。 -35-1303106 X. Patent application scope: 1 · A detector configuration with multiple separate radiation detectors (丨, 2, 3), characterized by: - First radiation detection of detector configuration (10) The first (1, 2, 3) and second radiation detectors (1, 2, 3) each have a semiconductor body (11, 21, 31) having an active region for receiving radiation and generating a signal (12, 22) , 32) and a detection zone associated with each of the radiation detectors, - the semiconductor body of the at least one radiation detector comprises an active region of the III-V-semiconductor material and/or the Brother-Iron detector The upper is different from the active area of the second $g detector. 2. The detector configuration of claim 1, wherein the functional layer of the active region (12, 22, 32) of the first radiation detector (1, 2, 3) has a band gap and/or The thickness is different from the energy band gap or thickness of the functional layer of the active region (12, 22, 32) of the second radiation detector (1, 2, 3). 3. The detector configuration of claim 2, wherein the energy band gap of the functional layer of the active region (12, 22, 32) of the first radiation detector (1, 2, 3) corresponds to The wavelength corresponding to the band gap of the functional layer of the active region (12, 22, 32) of the wavelength and/or the second radiation detector (1, 2, 3) is located in the visible spectral region. 4. The detector configuration of claim 2 or 3, wherein the energy band of the functional layer of the active region (12, 22, 32) of the first radiation detector (1, 2, 3) corresponds to The wavelength corresponding to the band gap of the functional layer of the active region (1 2, 2 2, 3 2) of the second radiation detector (1, 2, 3) is located in a spectral region of different 1303106 colors. 5. The detector configuration of any one of claims 1-4, wherein the detector configuration (10) is sensitive to the detected detection wavelength region. 6. The detector configuration of any one of claims 1-5, wherein the first detector and the second radiation detector each have a spectral sensitivity corresponding to the respective radiation detector Distribution (1 0 1,1 0 2,1 0 3 ), which has a maximum chirp at a predetermined maximum wavelength. 7. The detector configuration of claim 6 wherein at least one of the radiation detectors (2, 3) configured by the detector has a semiconductor integrated in the radiation detector in a single substrate manner a filter layer structure (29, 39) in the body (2 1, 3 1) having at least one filter layer (29, 391, 392), the filter layer structure absorbing radiation in a wavelength region, the wavelength of the wavelength region The maximum wavelength of the spectral sensitivity distribution (102, 103) of the radiation detector is smaller than that, and the filter layer structure is disposed between the radiation inlet side (1 8, 2 8, 3 8 ) of the semiconductor body and the active region. 8. The detector configuration of claim 7, wherein the filter layer structure (39) has a plurality of filter layers (391, 392). 9. The detector arrangement of claim 8 wherein the filter layers (391, 392) of the filter layer structure (39) have different band gaps and/or thicknesses. 1 〇. The detector configuration of any one of claims 2 to 9, wherein the detection area of the radiation detector (1, 2, 3) includes another radiation detection of the detector configuration The energy of the functional layer of the device (1, 2, 3) corresponds to a wave length of -32 - 1303106. 1 1 · A detector configuration according to any one of claims 6 to 10, wherein the detector configuration (10) radiation detector (2, 3) has a sensitivity distribution (102, 103) The maximum wavelength is located inside the detection zone of another radiation detector (1, 2) in the detector configuration. 1 2 · The detector configuration of any one of claims 1 to 1 wherein the detection area of the radiation detector (1, 2, 3) of the detector configuration (10) is only covered Another detector (1, 2, 3) of the detector configuration (10) detects some or all of the I zone. 1 3 . The detector configuration of any one of claims 6 to 12, wherein the spectral sensitivity distribution (101) of the radiation detectors (1, 2, 3) of the detector configuration (10) , 102, 103) in particular overlaps or completely overlaps only a portion of the spectral sensitivity distribution (101, 102, 103) of another radiation detector (1, 2, 3) of the detector configuration. 1 4. The detector configuration of any one of claims 6 to 13 wherein the detector is configured to detect spectrally sensitive (1, 2, 3) of the radiation detectors (1, 2, 3) The maximum wavelength of the degree distribution (1 0 1,1 0 2,1 0 3 ) is the spectral sensitivity distribution of another radiation detector (1, 2, 3) configured with this detector (101 '1〇2) , 103) the maximum wavelength is different, - the spectral sensitivity distribution of the detector with the larger maximum wavelength of the detector and the spectral sensitivity of the detector with the smaller maximum wavelength of the detector configuration The degree distribution extends at least in a superimposed manner in sections. - 33- 1303106 1 5 - The detector configuration of any one of claims 1 to 14, wherein the detector configuration (10) is provided and/or formed to specifically determine the incident to the Detector The color of the primary color red, green, and blue in the radiation (40) on the detector configuration is 1 6 . The detector configuration according to any one of the claims 1 to 5, wherein the detector configuration (1) 0) having a third radiation detector in which a first radiation detector (1) is provided and/or formed to detect radiation in a blue spectral region, and a second radiation detector (2) detects green Radiation in the spectral region, and a third radiation detector (3) to detect radiation in the red spectral region. The detector configuration of any one of claims 1 to 16 wherein the first radiation detector and/or the second radiation detector semiconductor body (1 1,2 1,3) 1), in particular the active region (1 2, 2 2, 3 2), the functional layer and/or the filter layer structure (29, 39) comprise a III-V semiconductor material, in particular a III-V-semiconductor The material system lnxGayAll_x.yP, where 〇$χ $1, OSySl and χ + ySl constitute the material. 18. A method used to determine the spectral component of radiation incident on a detector configuration (1〇). This detector configuration (1 〇) has multiple radiation detectors (i, 2 ' 3)' The first radiation detector has its associated detection zone, the second radiation detector has its associated detection zone, and the at least one radiation detector comprises a semiconductor body having an active region for generating a signal. The method is characterized by the steps of: a) determining a first wavelength region for the first spectral component to be determined, and determining a second wavelength region for the second spectral component to be determined, the first spectral component Differently, the detection area of the first radiation detector (丨) includes a wavelength region of -34-1303106, and the detection region of the second radiation detector (2) includes a second wavelength region and the second radiation detector The detection area is overlapped with the first wavelength region, b) the signal generated by the first radiation detector and the signal generated by the second radiation detector are measured, c) forming the second radiation detector (2) The generated signal and the signal generated by the first radiation detector (1) And d) determining, by the signal generated by the first radiation detector, the first spectral component of the incident radiation and/or the difference formed in step c) to obtain the incident radiation The second spectral component. The method of any one of claims 1 to 18, wherein the detection zone of the second radiation detector (2) completely covers the first wavelength region. 2 0. The method of claim 18 or 19, wherein the semiconductor body of the first radiation detector (1, 2, 3) and/or the second radiation detector (1, 2, 3) (11, 21, 31), in particular the active region (12, 22, 32), comprising a III-V-semiconductor material 'especially an 11^v _ semiconductor material system InxGayAli.yP' where OSxSi, (^丫And the method of any of the above-mentioned items, wherein the detection of the squeeze configuration is any one of items 1 to 17 of the patent. * Item's detector configuration (1 0). -35-
TW95118748A 2005-05-30 2006-05-26 Detector arrangement and method to determine spectral components in a radiation incident on a detector arrangement TWI303106B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005024660 2005-05-30
DE102005043918.7A DE102005043918B4 (en) 2005-05-30 2005-09-14 Detector arrangement and method for determining spectral components in a radiation incident on a detector arrangement

Publications (2)

Publication Number Publication Date
TW200707777A TW200707777A (en) 2007-02-16
TWI303106B true TWI303106B (en) 2008-11-11

Family

ID=36636964

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95118748A TWI303106B (en) 2005-05-30 2006-05-26 Detector arrangement and method to determine spectral components in a radiation incident on a detector arrangement

Country Status (3)

Country Link
DE (1) DE102005043918B4 (en)
TW (1) TWI303106B (en)
WO (1) WO2006128407A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007012115A1 (en) 2006-11-30 2008-06-05 Osram Opto Semiconductors Gmbh radiation detector
DE102008006987A1 (en) * 2008-01-31 2009-08-06 Osram Opto Semiconductors Gmbh Radiation receiver and method for producing a radiation receiver
DE102008016100A1 (en) * 2008-03-28 2009-10-01 Osram Opto Semiconductors Gmbh Optoelectronic radiation detector and method for producing a plurality of detector elements
TWI468651B (en) * 2012-03-23 2015-01-11 Oto Photonics Inc Optical measurement system, carrying structure for configuring the same, and optical measurement method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104725A (en) * 1979-02-05 1980-08-11 Nec Corp Wave-length discrimination type photo-detector
DE2920773A1 (en) * 1979-05-22 1980-12-04 Siemens Ag Opto-electronic sensor circuit - has two separately adjusted photodiodes controlling integrated evaluation loop
JPS59227171A (en) * 1983-06-08 1984-12-20 Oki Electric Ind Co Ltd Color sensor
US4758734A (en) * 1984-03-13 1988-07-19 Nec Corporation High resolution image sensor array using amorphous photo-diodes
JPS6124271A (en) * 1984-07-13 1986-02-01 Nec Corp Image sensor
JPH04280678A (en) * 1991-03-08 1992-10-06 Nec Corp Solid-state image pickly element
GB2277405A (en) * 1993-04-22 1994-10-26 Sharp Kk Semiconductor colour display or detector array
US6407439B1 (en) * 1999-08-19 2002-06-18 Epitaxial Technologies, Llc Programmable multi-wavelength detector array
GB2381950A (en) * 2001-11-06 2003-05-14 Denselight Semiconductors Pte Field effect based photodetector array responsivity control

Also Published As

Publication number Publication date
DE102005043918B4 (en) 2014-12-04
DE102005043918A1 (en) 2006-12-07
TW200707777A (en) 2007-02-16
WO2006128407A1 (en) 2006-12-07

Similar Documents

Publication Publication Date Title
US7525083B2 (en) Radiation detector with an epitaxially grown semiconductor body
JP6091539B2 (en) Stack filter and image sensor including it
TWI313936B (en) Radiation detector
TWI357494B (en) Photodetector having dark current correction
US9406716B2 (en) Infrared reflection/absorption layer for reducing ghost image of infrared reflection noise and image sensor using the same
TWI396293B (en) Radiation receiver and method for the production of a radiation receiver
TWI303106B (en) Detector arrangement and method to determine spectral components in a radiation incident on a detector arrangement
JP5447756B2 (en) Radiation detector
US20090323060A1 (en) Spectral optical sensor and method for producing an optical spectral sensor
Chen et al. Two-color corrugated quantum-well infrared photodetector for remote temperature sensing
JP2007515132A (en) Method and system for wavelength dependent imaging and detection using hybrid filters
TW201734418A (en) Composite ultraviolet LED and phosphor based hyperspectral calibrator
TW200844412A (en) Radiation detector
CN106605130B (en) Stray light suppressed FCM ultraviolet light transducer and ultraviolet light detection method
US10559607B2 (en) Semiconductor device and manufacturing method of semiconductor device
TWI324397B (en) Radiation detector
KR101573559B1 (en) Optoelectronic radiation detector and method for producing a plurality of detector elements
US20060261273A1 (en) Absorptance enhancing coating for MWIR detectors
JP2016163125A (en) Solid-state imaging apparatus
KR102220277B1 (en) Shortwave infrared camera with bandwidth restriction
Martínez-Goyeneche et al. Multimodal photodetectors with vacuum deposited perovskite bilayers
JP2010040805A (en) Illuminance sensor and method of manufacturing the same
JPH03145763A (en) Photoetching device
JPS6226868A (en) Photo-semiconductor device
JP2003270042A (en) Fabry-perot filter apparatus, its manufacturing method, and operating method