JPS59227171A - Color sensor - Google Patents

Color sensor

Info

Publication number
JPS59227171A
JPS59227171A JP58101001A JP10100183A JPS59227171A JP S59227171 A JPS59227171 A JP S59227171A JP 58101001 A JP58101001 A JP 58101001A JP 10100183 A JP10100183 A JP 10100183A JP S59227171 A JPS59227171 A JP S59227171A
Authority
JP
Japan
Prior art keywords
constituted
green
merocyanine
red
blue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58101001A
Other languages
Japanese (ja)
Other versions
JPH0433147B2 (en
Inventor
Kazutami Kawamura
川村 和民
Seigo Ono
大野 清伍
Masakazu Kato
雅一 加藤
Yoichi Nishioka
洋一 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP58101001A priority Critical patent/JPS59227171A/en
Publication of JPS59227171A publication Critical patent/JPS59227171A/en
Publication of JPH0433147B2 publication Critical patent/JPH0433147B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation

Abstract

PURPOSE:To realize a low-priced and easily integrable color sensor by a method wherein, when hereto P-N junction diodes are respectively constituted of an organic semiconductor film having a different spectrum of photo absorption at the visible region and semiconductor thin films having a different electric conductive type from that of the organic semiconductor film and the diodes are provided on the same substrate and are constituted into the color sensor for detection of three colors of blue, green and red, pigment material consisting of the three colors are specified. CONSTITUTION:A transparent electrode 46 is adhered on a transparent substrate 47 having a filter 48, which is transparent at the visible region and absorbs near infrared rays, provided on the back surface, and a blue sensitive element 401, a green sensitive element 402 and a red sensitive element 403 are respectively formed thereon at an interval. In this constitution, the element 401 is constituted of a laminated body of a merocyanine pigment 21, which is a P type semiconductor, an N type semiconductor 44 made of ZnO, and an electrode 45; the element 402 is constituted of a laminated body of the merocyanine pigment 21 and a merocyanine pigment 22, which have respectively a different spectrum of photo absorption, and the semiconductor 44 and the electrode 45, and the element 403 is constituted of the merocyanine pigments 21 and 22, a phthalocyanine layer 23, the semiconductor 44 and the electrode 45.

Description

【発明の詳細な説明】 (技術分野) 本発明は青色、緑色及び赤色の3色識別用のカラーセン
サに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a color sensor for three-color discrimination of blue, green, and red.

(従来技術) 従来のカラーセンサは一般に認識すべき対象物体からの
光をプリズムや光学フィルタを用いて青色、緑色、赤色
の3色帯に分光し、これらの3色帯に3ケの受光センサ
を対応させる構成として識別するものであった。
(Prior art) Conventional color sensors generally separate light from an object to be recognized into three color bands of blue, green, and red using a prism or optical filter, and three light receiving sensors are used for each of these three color bands. was identified as a corresponding configuration.

そして近年、所謂CCDセンサのような2次元受光セン
サが実用化され、これらに青色、緑色。
In recent years, two-dimensional light receiving sensors such as so-called CCD sensors have been put into practical use, and these include blue and green.

及び赤色の色素を集積化したカラーフィルタアレイを結
合し2次元カラーセンサを構成する方法が試みられてい
る。
Attempts have been made to construct a two-dimensional color sensor by combining color filter arrays with integrated red pigments.

かかるカラーセンサは、対象物体光を分光するカラーフ
ィルタと受光センサとを結合したものであるが、特に前
記カラーフィルタの作成工程が非常に複雑であシ、又該
受光センサとカラーフィルタとの光学的結合には著しく
高精度が要求される等量産性を妨げ更にコスト高を招く
等の欠点があった。
Such a color sensor combines a color filter that separates target object light and a light-receiving sensor, but the process of creating the color filter is particularly complicated, and the optical relationship between the light-receiving sensor and the color filter is This method has drawbacks such as hindering mass production, which requires extremely high precision, and increasing costs.

(発明の目的) ここに本発明者等はかかる欠点を解消すべく多数の試験
研究を重ねた結果、上記青色、緑色及び赤色の三原色フ
ィルタ機能が、受光ダイオードを構成する特定の色素に
よる有機半導体薄膜の積層組合わせによって実現され得
ること、そしてかかる受光ダイオードによシカラーフィ
ルタとの結合を不用とする等上記コスト上の問題を解決
し安価で且つ集積化の容易なカラーセンサを提供し得る
ことを見出しこの発明に到達したものである。
(Purpose of the Invention) As a result of numerous tests and studies aimed at solving these drawbacks, the inventors of the present invention have discovered that the three primary color filter functions of blue, green, and red can be achieved by using an organic semiconductor using a specific pigment that constitutes the light-receiving diode. The present invention can be realized by a combination of laminated thin films, and it is possible to solve the above-mentioned cost problem by eliminating the need for coupling a photodiode with a sicolor filter, and to provide a color sensor that is inexpensive and easy to integrate. This is what led us to discover this and arrive at this invention.

(発明の構成) 即ち本発明は、可視領域で異なる吸収スペクトルを有す
る有機半導体薄膜と、該有機半導体とは電気伝導形の異
なる半導体薄膜又は金属薄膜とによって形成されるヘテ
t’lpnダイオ−、ド又はショットキダイオードを同
一基板上に構成した青色。
(Structure of the Invention) That is, the present invention provides a hetero-t'lpn diode formed by an organic semiconductor thin film having different absorption spectra in the visible region, and a semiconductor thin film or metal thin film having a different electrical conductivity type from the organic semiconductor, Blue color with LED or Schottky diode configured on the same substrate.

緑色及び赤色の三色検出用カラーセンサであって。A color sensor for detecting three colors of green and red.

前記有機半導体薄膜としで、青色:メロシアニン系色素
I、緑色:メロシアニン系色累I及び■の積層、更に赤
色=7タロシアニン系M料及び上記色素1.IIの積層
によ多構成してなるカラーセンサである。
The organic semiconductor thin film is a layered layer of blue: merocyanine dye I, green: merocyanine color series I and 2, red=7 talocyanine M material, and the above dye 1. This is a color sensor composed of multiple laminated layers of II.

先ずここで後記詳述する色素(又は顔料)による半導体
薄膜の選択並びにこれらの積層構造化によって三原色即
ち青色、緑色及び赤色のフィルタ機能を付与し得ること
に関して説明する。
First, it will be explained that a filter function for the three primary colors, that is, blue, green, and red, can be imparted by selecting a semiconductor thin film using dyes (or pigments) and structuring them in layers, which will be described in detail later.

第1図には本発明で用いられる下記式(1)〜(3)で
示されるメロシアニン色素I及び■、及びフタロシアニ
ン顔料による有機半導体薄膜の可視領域での光吸収スペ
クトルを表わしたもので、図中1社前述のメロシアニン
色素夏、2は同色素1.3は具体的にマグネシウム7タ
買シアニンのそれである。
FIG. 1 shows the light absorption spectra in the visible region of organic semiconductor thin films made of merocyanine dyes I and II represented by the following formulas (1) to (3) used in the present invention and phthalocyanine pigments. The first company mentioned above is the merocyanine pigment, and the second one is that of the same pigment 1.3, which is specifically that of magnesium 7 and cyanine.

そしてこれらの有機半導体は金属とのショットキバリヤ
ダイオードを形成し、た場合、その光感度スペクトルは
光吸収スペクトルと一致することが知られている。
It is known that these organic semiconductors form Schottky barrier diodes with metals, and in this case, the photosensitivity spectrum matches the light absorption spectrum.

第1図からメロシアニン色素Iは青色の光吸収特性を持
っていることが明らかであシ、該色素I膜単独にて青色
のフィルタ機能を奏する。
It is clear from FIG. 1 that merocyanine dye I has blue light absorption characteristics, and the dye I film alone functions as a blue filter.

次にメロシアニン色素■は、青色と緑色の両色帯に光吸
収特性を示すが、第2図(a)に示すように該色素■2
1と色素1122とを積層させ、白色光20を照射する
と色素i21のフィルタ作用により該色素…22による
光吸収スペクトルは第2図(b)に示す如く縁色帯のみ
の光吸収スペクトルに整形される。
Next, merocyanine dye 2 exhibits light absorption characteristics in both blue and green color bands, and as shown in Figure 2(a), merocyanine dye 2
1 and dye 1122 are laminated and irradiated with white light 20. Due to the filtering action of dye i21, the light absorption spectrum by the dye 22 is shaped into a light absorption spectrum with only a marginal color band as shown in FIG. 2(b). Ru.

更に一般に7タロシアニン系壱機半導体は、緑色、赤色
及び近赤外帯にわた勺巾広い光吸収スペクトルを示すこ
とが知られているがその一例の上記マグネシウムフタロ
シアニンの光吸収スペクトルは、第1図(3)eξ示さ
れている。そこで同様に第3図(b)の如く上記メロシ
アニン色素■212色素■22 、マグネシウムフタロ
シアニン33を積層させ、白色光30を照射させたとこ
ろ同図伽)のように緑色帯成分は除去され赤色帯と近赤
外帯とに整形される。この近赤外帯吸収特性は可視領域
で透明で近赤外にて吸収性を有するフィルタを使用して
除去すれば良い。
Furthermore, it is generally known that 7-thalocyanine-based Ichiki semiconductors exhibit a wide optical absorption spectrum spanning the green, red and near-infrared bands, and the optical absorption spectrum of the above-mentioned magnesium phthalocyanine, as an example, is shown in Figure 1. (3) eξ is shown. Similarly, as shown in FIG. 3(b), the above merocyanine dye (212) and magnesium phthalocyanine (33) were layered and irradiated with white light (30). As a result, the green band components were removed and the red band and near-infrared band. This near-infrared absorption characteristic can be removed using a filter that is transparent in the visible region and absorbs in the near-infrared.

以上詳述したようにメロシアニン色素Iによ勺青色帯光
を、同メロシアニン色素■と色素■との積層で緑色帯光
を、更にこれら色素■と■及びマグネシウムフタロシア
ニンの積層によシ赤色帯光を夫々吸収させるように、こ
れら色素等による有機半導体の層構造を作シ、色識別が
可能であることが明らかである。
As detailed above, the merocyanine dye I produces a blue band of light, the lamination of the same merocyanine dye (■) and the dye (■) produces a green band of light, and the lamination of these dyes (■, ■) and magnesium phthalocyanine produces a red band of light. It is clear that it is possible to create a layered structure of an organic semiconductor using these dyes so as to absorb each of the colors, thereby enabling color discrimination.

実施例 次に本発明を具体的に実施態様によシ説明する。Example Next, the present invention will be specifically explained based on embodiments.

第4図は本発明によるカラーセンサの構造を示す断面図
であ勺、透明電極46が形成された透明基板47上に、
後記する青色感光素子401.緑色感光素子402.及
び赤色感光素子403が夫々公知の蒸着法による薄膜形
成法、及び写真食刻−法更に選択エツチング法等を用い
て形成されている。図中21は色素I、22は色素■、
更に33はフタロシアニ”、44はZnOn型半導体(
又はA/)、45は電極、40は認識すべき物体光の入
射方向を示し、更に48は可視領域で透明で近赤外線を
吸収するフィルタであり、かかるフィルタの一例として
、第5図に示すような光透過特性を有する市販の色ガラ
スフィルタが利用可能である本発明の受光機構について
上記の赤色感光素子403を例にとシ説明する。メロシ
アニン色素I21、色素1122及び7タ目シアニン層
33はすべてp型半導体であル、44はZnOKよるn
型の半導体である。該ZnO半導体はA/等の金属であ
っても良いが公知の如く、光電流に寄与するのはpn接
合近傍又はショットバリヤ近傍での光吸収によって発生
したホールおよび電子のキャリヤである従って該44が
ZnO半導体の場合、ZnOは可視領域で透明であるこ
とから、光電流に寄与するのはフタ四シアニン層33側
で発生したキャリヤであシ、該7タ目シアニン43の膜
厚をpn接合のp領域の空乏層中と同程度に選んでおけ
ば、前記色素122および同色素1[42内で発生した
キャリヤは光電流にほとんど寄与せず光電流波長特性は
フタロシアニン内の光吸収特性図タ致する。
FIG. 4 is a cross-sectional view showing the structure of a color sensor according to the present invention. On a transparent substrate 47 on which a transparent electrode 46 is formed,
Blue photosensitive element 401 to be described later. Green photosensitive element 402. and a red photosensitive element 403 are formed using a known thin film forming method using vapor deposition, photolithography, selective etching, and the like. In the figure, 21 is dye I, 22 is dye ■,
Furthermore, 33 is a phthalocyanin, 44 is a ZnOn type semiconductor (
or A/), 45 is an electrode, 40 indicates the incident direction of the object light to be recognized, and 48 is a filter that is transparent in the visible region and absorbs near infrared rays; an example of such a filter is shown in FIG. The light-receiving mechanism of the present invention, in which a commercially available colored glass filter having such light transmission characteristics can be used, will be described using the red light-sensitive element 403 as an example. The merocyanine dye I21, the dye 1122 and the seventh cyanine layer 33 are all p-type semiconductors, and 44 is an n-type semiconductor made of ZnOK.
It is a type of semiconductor. The ZnO semiconductor may be a metal such as A/, but as is known, what contributes to the photocurrent are hole and electron carriers generated by light absorption near the pn junction or near the shot barrier. is a ZnO semiconductor, since ZnO is transparent in the visible region, it is the carriers generated on the side of the cyanine layer 33 that contributes to the photocurrent. If the carriers generated in the dye 122 and the dye 1[42 are selected to be similar to those in the p-region depletion layer, the carriers generated in the dye 122 and the dye 1[42] will hardly contribute to the photocurrent, and the photocurrent wavelength characteristic will be similar to the light absorption characteristic diagram in the phthalocyanine. I will do it.

従って色素121および色素■22はフィルタとしての
み作用することになる。
Therefore, the dye 121 and the dye 22 act only as filters.

又、上記44にて示す層をAI!等としたショットキバ
リヤを形成する場合も、光電流に寄与するのは有機半導
体33の空乏層内で発生したキャリヤであることは公知
であるから、この場合も光電流波長特性は7タ目シアニ
ン層33内の光吸収(光学密度)特性と一致する。
Also, the layer shown in 44 above is AI! Even when forming a Schottky barrier such as the like, it is known that carriers generated within the depletion layer of the organic semiconductor 33 contribute to the photocurrent. Consistent with the light absorption (optical density) characteristics within layer 33.

上記青色感光素子401および緑色感光素子402に関
しても、それぞれの光電流波長特性は同色素I21及び
色gl122内での光吸収(光学密度)と一致すること
が同様にして明らかである。
Regarding the blue light-sensitive element 401 and the green light-sensitive element 402, it is similarly clear that the respective photocurrent wavelength characteristics match the light absorption (optical density) within the same dye I21 and color gl122.

以上のことからこの実施態様によるカラーセンサの吸収
特性は第6図に示す通シであシ、図中61は青色感光素
子、62は緑色感光素子及び63は赤色感光素子の夫々
感度特性を表わしている。
From the above, the absorption characteristics of the color sensor according to this embodiment are shown in the diagram shown in FIG. 6, where 61 represents the sensitivity characteristics of the blue light-sensitive element, 62 represents the sensitivity characteristics of the green light-sensitive element, and 63 represents the sensitivity characteristics of the red light-sensitive element. ing.

このようにかかる実施態様の如く構成することによシ育
色、緑色及び赤色の3原色を分光するための光学フィル
タを用いることなく、同一基板上において上記三原色を
識別する各感光素子を構成することができる。
By configuring this embodiment as described above, each photosensitive element for identifying the three primary colors can be configured on the same substrate without using an optical filter for separating the three primary colors of green and red. be able to.

第7図は他の実施態様を示すものであシ、上記の各青色
、緑色及び赤色の受光素子を一組として、これらを同一
基板707に2次元的に配列したものである。
FIG. 7 shows another embodiment, in which the blue, green, and red light receiving elements described above are set as a set and are two-dimensionally arranged on the same substrate 707.

かかるカラーセンサは蒸着膜にて構成されることから大
面積カラーセンサが安価に得られるという利点がある。
Since such a color sensor is constructed of a vapor-deposited film, it has the advantage that a large-area color sensor can be obtained at low cost.

(発明の効果) 本発明は以上の如< pn接合又はショットキバリヤダ
イオードを構成する上記特性の有機半導体薄膜を選択し
て用い又これらを組合わせた抗層構造としたことによっ
て3原色に対する光学的フィルタ機能を具備させること
ができ、従来の如くカラーフィルタを併用することなく
物体光のカラー検出を可能ならしめたものでるり、しか
も本発明構成によれば特に蒸着膜にて形成されるので製
作上の問題が解消され特に大面積、高集積のライン又は
面センナが安価に得られる等その工業的効果は極めて高
い。
(Effects of the Invention) The present invention achieves optical properties for three primary colors by selecting and using organic semiconductor thin films having the above characteristics constituting a pn junction or a Schottky barrier diode, and by combining them to form a multi-layer structure. It can be equipped with a filter function, and it is possible to detect the color of object light without using a conventional color filter. Moreover, according to the structure of the present invention, it is formed of a vapor-deposited film, so it is easy to manufacture. The above problems are solved, and the industrial effect is extremely high, especially as a large-area, highly integrated line or surface sensor can be obtained at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はメロシアニン色素■、及び同色素■更にマグネ
シウムフタロシアニンの光吸収特性図、第2図(a)は
同色素1と色素■との積層構造断面図。 第2図(b)は同紹合せの光吸収特性図、第3図(a)
は同色素1.II及びマグネシウムフタロシアニン薄膜
積層構造断面図、第3図(b)は同党吸収特性図。 第4図は本発明の一実施態様品の構造断面図、第5図は
市販近赤外線カットフィルタの透過率特性図、第6図は
本発明のカラーフィルタの光感度特性図、第7図は本発
明におけるカラーセンサを2次元配列した他の態様を表
わす平面図である。 21・・・メロシアニン色素1.22・・・同色素■、
33・・・フタロシアニンfi料、20,30,40・
・・光1.44− ZnOn型半導体、45−・・電極
、47゜707・・・透明基板、401,402,40
3・・・宵色、緑色及び赤色各感光素子。 特許出願人 沖電気工業株式会社 第4図 40 第7図 第51;−□1 中6図 署長(nm) 手続補正書 昭和523年11月51日 特許庁長官若杉和夫 殿 1、事件の表示 昭和58年 特 許  願第 101001  !2、
発明の名称 カラーセンサ 3、補正をする者 事件との関係     特 許 出願人(029)沖電
気工業株式会社 4、代理人 5、補正命令の日刊゛  昭和  年  月  日(自
発的)6、補正の対象 発明の詳細な説明の栖 7、補正の内容 別紙の通り (1)明細書4頁の化学式(3)全下記の通υ訂正する
。 記
Figure 1 is a diagram of the light absorption characteristics of merocyanine dye 1, merocyanine dye 2, and magnesium phthalocyanine, and Figure 2 (a) is a cross-sectional view of the laminated structure of merocyanine dye 1 and dye 2. Figure 2 (b) is a light absorption characteristic diagram for the same introduction, Figure 3 (a)
is the same dye 1. II and a cross-sectional view of the magnesium phthalocyanine thin film laminated structure, and FIG. 3(b) is a diagram of the absorption characteristics of the same. FIG. 4 is a structural cross-sectional view of an embodiment of the present invention, FIG. 5 is a transmittance characteristic diagram of a commercially available near-infrared cut filter, FIG. 6 is a photosensitivity characteristic diagram of a color filter of the present invention, and FIG. FIG. 7 is a plan view showing another embodiment of the present invention in which color sensors are two-dimensionally arranged. 21... Merocyanine dye 1.22... Same dye ■,
33... Phthalocyanine fi material, 20, 30, 40.
...Light 1.44- ZnOn type semiconductor, 45-... Electrode, 47°707... Transparent substrate, 401,402,40
3... Evening color, green, and red photosensitive elements. Patent Applicant Oki Electric Industry Co., Ltd. Figure 4 40 Figure 7 51;-□1 Chief of Figure 6 (nm) Procedural Amendment November 51, 1973 Kazuo Wakasugi, Commissioner of the Patent Office 1, Indication of the Case Showa 1958 Patent Application No. 101001! 2,
Name of the invention Color sensor 3, Relationship with the case of the person making the amendment Patent Applicant (029) Oki Electric Industry Co., Ltd. 4, Agent 5, Daily publication of the amendment order ゛ Showa year, month, day (voluntary) 6, Amendment As shown in the appendix of Section 7 of the detailed explanation of the subject invention, contents of the amendment (1) Chemical formula (3) on page 4 of the specification, the following passages are all corrected. Record

Claims (1)

【特許請求の範囲】[Claims] 可視領域で異なる吸収スペクトルを有する有機半導体薄
膜と、該有機半導体とは電気伝導形の異なる半導体薄膜
又は金属薄膜とによって形成されるペテロpnダイオー
ド又はショットキダイオードを同一基板上に構成した青
色、緑色及び赤色の三色検出用カラーセンサであって、
前記有機半導体薄膜として、青色:メ四シアニン系色素
■、緑色:メロシアニン系色素I及びHの積層、更に赤
色ニアタロシアニン系顔料及び上記色素I、IIの積層
によシ構成してなるカラーセンサ。
Blue, green and A color sensor for detecting three colors of red,
A color sensor comprising, as the organic semiconductor thin film, a laminated layer of blue: metecyanine dye (■), green: merocyanine dye I and H, and further a laminated layer of red niathalocyanine pigment and the above-mentioned dyes I and II. .
JP58101001A 1983-06-08 1983-06-08 Color sensor Granted JPS59227171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58101001A JPS59227171A (en) 1983-06-08 1983-06-08 Color sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58101001A JPS59227171A (en) 1983-06-08 1983-06-08 Color sensor

Publications (2)

Publication Number Publication Date
JPS59227171A true JPS59227171A (en) 1984-12-20
JPH0433147B2 JPH0433147B2 (en) 1992-06-02

Family

ID=14289028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58101001A Granted JPS59227171A (en) 1983-06-08 1983-06-08 Color sensor

Country Status (1)

Country Link
JP (1) JPS59227171A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0335566A (en) * 1989-06-30 1991-02-15 Konica Corp Photoelectric conversion element
JPH03110872A (en) * 1989-09-25 1991-05-10 Konica Corp Optoelectric transducer
JPH03110873A (en) * 1989-09-25 1991-05-10 Konica Corp Optoelectric transducer
US5140398A (en) * 1986-12-24 1992-08-18 Canon Kabushiki Kaisha Switching device
WO1999039372A2 (en) * 1998-02-02 1999-08-05 Uniax Corporation Image sensors made from organic semiconductors
WO2006128407A1 (en) * 2005-05-30 2006-12-07 Osram Opto Semiconductors Gmbh Detector array and method for identifying spectral portions in radiation incident upon a detector array
JP2008091694A (en) * 2006-10-03 2008-04-17 Seiko Electric Co Ltd Organic semiconductor photodetector
US8274657B2 (en) 2006-11-30 2012-09-25 Osram Opto Semiconductors Gmbh Radiation detector
JP2017026948A (en) * 2015-07-27 2017-02-02 パナソニックIpマネジメント株式会社 Light cut filter and luminaire
JP2019215559A (en) * 2015-03-09 2019-12-19 王子ホールディングス株式会社 Optical film adhesive layer, optical film, and glass shatterproof film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115093A (en) * 1975-03-14 1976-10-09 Eschmann Peter Rigid support dressing or rigid bandage
JPS5218089A (en) * 1975-07-29 1977-02-10 Yardney Co Orthopedic surgical material
JPS54100181A (en) * 1978-01-25 1979-08-07 Mitsubishi Rayon Co Orthopedic fixing material
JPS54155687A (en) * 1978-02-24 1979-12-07 Union Carbide Corp Equipment* material and method for orthopedics

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115093A (en) * 1975-03-14 1976-10-09 Eschmann Peter Rigid support dressing or rigid bandage
JPS5218089A (en) * 1975-07-29 1977-02-10 Yardney Co Orthopedic surgical material
JPS54100181A (en) * 1978-01-25 1979-08-07 Mitsubishi Rayon Co Orthopedic fixing material
JPS54155687A (en) * 1978-02-24 1979-12-07 Union Carbide Corp Equipment* material and method for orthopedics

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5140398A (en) * 1986-12-24 1992-08-18 Canon Kabushiki Kaisha Switching device
JPH0335566A (en) * 1989-06-30 1991-02-15 Konica Corp Photoelectric conversion element
JPH03110872A (en) * 1989-09-25 1991-05-10 Konica Corp Optoelectric transducer
JPH03110873A (en) * 1989-09-25 1991-05-10 Konica Corp Optoelectric transducer
WO1999039372A2 (en) * 1998-02-02 1999-08-05 Uniax Corporation Image sensors made from organic semiconductors
WO1999039372A3 (en) * 1998-02-02 2000-03-02 Uniax Corp Image sensors made from organic semiconductors
US6300612B1 (en) 1998-02-02 2001-10-09 Uniax Corporation Image sensors made from organic semiconductors
WO2006128407A1 (en) * 2005-05-30 2006-12-07 Osram Opto Semiconductors Gmbh Detector array and method for identifying spectral portions in radiation incident upon a detector array
JP2008091694A (en) * 2006-10-03 2008-04-17 Seiko Electric Co Ltd Organic semiconductor photodetector
US8274657B2 (en) 2006-11-30 2012-09-25 Osram Opto Semiconductors Gmbh Radiation detector
JP2019215559A (en) * 2015-03-09 2019-12-19 王子ホールディングス株式会社 Optical film adhesive layer, optical film, and glass shatterproof film
JP2017026948A (en) * 2015-07-27 2017-02-02 パナソニックIpマネジメント株式会社 Light cut filter and luminaire

Also Published As

Publication number Publication date
JPH0433147B2 (en) 1992-06-02

Similar Documents

Publication Publication Date Title
US8803270B2 (en) Light sensor having IR cut and color pass interference filter integrated on-chip
EP2693242B1 (en) Optical filter structure in the visible and/or infrared
US7605354B2 (en) Color sensor, production method thereof, sensor, and electronics device
US7230226B2 (en) Photoelectric conversion layer stack type color solid-state image sensing device
US20080254565A1 (en) Method for fabricating semiconductor image sensor
CN103839952A (en) Image-sensing apparatus
JPS59227171A (en) Color sensor
TW202101781A (en) Optical sensor and sensing device
FR2929477A1 (en) Color camera for delivering still or animated image, has signal processing circuits simultaneously providing infrared image and color image established for each color from subtraction of signals from color and black pixels
JPH0671097B2 (en) Color sensor
JP7299980B2 (en) Multispectral image sensor with means for limiting crosstalk
JPS63300576A (en) Color sensor
FR2559619A1 (en) PHOTOSENSITIVE DEVICE WITH INTEGRATED FILTERS FOR COLOR SEPARATION AND METHOD OF MANUFACTURE
KR20110006651A (en) Optoelectronic radiation detector and method for producing a plurality of detector elements
KR102105054B1 (en) Organic photodiodes with wavelength selective electrodes
JPS59227172A (en) Color light-receiving sensor
JPS59229863A (en) Manufacture of color sensor
TWI742703B (en) Photoelectric display unit and display device including thereof
JPS58125867A (en) Color sensor
JPS6177375A (en) Color sensor
JPH01282875A (en) Color sensor
JPH0262922A (en) Optical sensor
JPH02271225A (en) Color sensing element and group of the same
JPS58125869A (en) Photo sensor
JPH0294670A (en) Photosensor