JP2008091694A - Organic semiconductor photodetector - Google Patents

Organic semiconductor photodetector Download PDF

Info

Publication number
JP2008091694A
JP2008091694A JP2006271907A JP2006271907A JP2008091694A JP 2008091694 A JP2008091694 A JP 2008091694A JP 2006271907 A JP2006271907 A JP 2006271907A JP 2006271907 A JP2006271907 A JP 2006271907A JP 2008091694 A JP2008091694 A JP 2008091694A
Authority
JP
Japan
Prior art keywords
organic semiconductor
wavelength
photodetector
thin film
photoelectric signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006271907A
Other languages
Japanese (ja)
Inventor
Yuji Ko
雄司 興
Masanao Era
正直 江良
Masamitsu Tanaka
優光 田中
Seisaku Tamura
精作 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Saga University NUC
Seiko Electric Co Ltd
Original Assignee
Kyushu University NUC
Saga University NUC
Seiko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Saga University NUC, Seiko Electric Co Ltd filed Critical Kyushu University NUC
Priority to JP2006271907A priority Critical patent/JP2008091694A/en
Publication of JP2008091694A publication Critical patent/JP2008091694A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photodetector which achieves accurate wavelength identification capability and simple layer structure by utilizing a rapid change of the absorptivity at specific wavelength found in an organic semiconductor thin film without use of external wavelength selection element for wavelength detection and by steepening a change in the photoelectric signal. <P>SOLUTION: In the organic semiconductor photodetector where a bottom electrode, an organic semiconductor thin film and a top electrode are sequentially stacked on a substrate, the wavelength characteristics (solid line) of the photoelectric signal actually obtained from the photodetector have steeper rate of change against the wavelength than those (dotted line) of the photoelectric signal intensity which is calculated from the optical absorptivity of the organic semiconductor thin film. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、波長の変化に対する光電信号強度の変化が、使用している有機半導体光吸収薄膜の吸収率から計算される光電信号強度の波長特性の変化よりも鋭く変化する特性を備えた有機半導体光検出器に関する。   The present invention provides an organic semiconductor having a characteristic in which the change in photoelectric signal intensity with respect to the change in wavelength changes sharper than the change in wavelength characteristic of the photoelectric signal intensity calculated from the absorptance of the organic semiconductor light-absorbing thin film used. The present invention relates to a photodetector.

光検出に光検出器が用いられ、分光分析計や屈折率測定器等に光検出器が利用されている。光検出器として、例えば、特許文献1,2には、電極/有機物/電極構造において有機光半導体層を用いた有機半導体光検出器が記載されている。
特開2003−101060号公報 特表2002−502129号公報
A photodetector is used for light detection, and a photodetector is used for a spectroscopic analyzer, a refractive index measuring device, and the like. As a photodetector, for example, Patent Documents 1 and 2 describe an organic semiconductor photodetector using an organic photosemiconductor layer in an electrode / organic matter / electrode structure.
JP 2003-101060 A JP-T-2002-502129

従来の光検出器は、光を電気信号に変える光電変換を利用して光の強度を測定する元であり、分光応用などで重要となる波長の同定については十分な機能を有さない。そのため、検出器自体に波長検出機能を持たせず、分光器やプリズム、波長フィルターなどの波長選択性素子を組み合わせることで波長変化を光の強度に変換して、波長を検出させることを行ってきた。特に特定波長のピークをnmオーダーで精度良く検出するためには波長選択素子も大型化し、波長測定を行う装置は大型・高価になっていた。   A conventional photodetector is a source that measures the intensity of light using photoelectric conversion that converts light into an electrical signal, and does not have a sufficient function for identifying wavelengths that are important in spectroscopic applications. For this reason, the detector itself does not have a wavelength detection function, and a wavelength change element is converted into light intensity by combining a wavelength selective element such as a spectroscope, a prism, and a wavelength filter to detect the wavelength. It was. In particular, in order to detect the peak of a specific wavelength with accuracy in the order of nm, the wavelength selection element is also enlarged, and the apparatus for measuring the wavelength has become large and expensive.

そこで、本発明は、波長検出に外部の波長選択素子を使用せず、有機半導体薄膜のもつ特定波長での吸収率の急激な変化を利用し、さらに光電信号の変化を急峻にすることで、精度の良い波長の同定の機能を有し、且つ簡便な層構造の光検出器を提供するものである。   Therefore, the present invention does not use an external wavelength selection element for wavelength detection, utilizes a rapid change in the absorption rate at a specific wavelength of the organic semiconductor thin film, and further makes the photoelectric signal change sharp, It is an object of the present invention to provide a photodetector having a simple layer structure having a function of accurately identifying a wavelength.

本発明は、基板上に下部電極、有機半導体薄膜及び上部電極が順次積層された有機半導体光検出器において、前記光検出器から実際に得られる光電信号の対波長特性が、前記有機半導体薄膜が有する光吸収率から計算される光電信号強度の波長特性よりも波長に対する変化がより鋭いことを特徴とする。   The present invention relates to an organic semiconductor photodetector in which a lower electrode, an organic semiconductor thin film, and an upper electrode are sequentially laminated on a substrate, wherein the organic semiconductor thin film has a wavelength characteristic of a photoelectric signal actually obtained from the photodetector. It is characterized in that the change with respect to the wavelength is sharper than the wavelength characteristic of the photoelectric signal intensity calculated from the light absorption rate.

本発明において、有機半導体薄膜が有する光吸収率から公知の次式により光電信号強度V(λ)が計算される。
V(λ)=RE(1−(1−A(λ))
ただし、
A(λ):薄膜の単位厚さ当たりの吸収率を波長の関数
E:入射光エネルギー
T:薄膜厚さ
R:吸収された光エネルギーの電圧への変換効率
In the present invention, the photoelectric signal intensity V (λ) is calculated from the light absorptance of the organic semiconductor thin film by the following equation.
V (λ) = RE (1- (1-A (λ)) T )
However,
A (λ): Absorption rate per unit thickness of thin film as a function of wavelength E: Incident light energy T: Thin film thickness R: Conversion efficiency of absorbed light energy into voltage

一般的には、V(λ)はA(λ)にほぼ比例し、比例しない場合でも両者には正の相関関係がある。   In general, V (λ) is substantially proportional to A (λ), and there is a positive correlation between them even when they are not proportional.

前記有機半導体薄膜の波長に対する吸収率の変化は波長が10〜50nm変化する間に極大値を挟んで増減する様な鋭いピークを持つが、これを利用した前記光検出器の光電信号は光吸収率から計算される光電信号強度の波長特性よりさらに急峻に変化する。一部の素子については吸収率から計算される光電信号強度が一様に増加あるいは減少する波長域において、光電信号強度が増から減あるいは減から増に転じる。その結果、光吸収率から計算される光電信号強度対波長特性のカーブに対して、実際に光電信号の波長特性はより鋭く変化する。さらに、光吸収率から計算される光電信号強度の波長特性が零でない波長域であるにもかかわらず、前記の光電信号反転の結果、信号強度が0になり、波長の変化に対して非常に敏感な検出器として機能する。その波長の前後では光電信号が正負逆転する。また、前記有機半導体薄膜の材料として例えば、シアニン系色素を使用することができる。   The change in the absorptance with respect to the wavelength of the organic semiconductor thin film has a sharp peak that increases and decreases with the maximum value while the wavelength changes from 10 to 50 nm. The photoelectric signal of the photodetector using this has a light absorption. It changes more steeply than the wavelength characteristic of the photoelectric signal intensity calculated from the rate. For some elements, the photoelectric signal intensity changes from increasing to decreasing or decreasing to increasing in a wavelength region where the photoelectric signal intensity calculated from the absorption rate increases or decreases uniformly. As a result, the wavelength characteristic of the photoelectric signal actually changes more sharply than the curve of the photoelectric signal intensity vs. wavelength characteristic calculated from the light absorption rate. Furthermore, despite the fact that the wavelength characteristic of the photoelectric signal intensity calculated from the optical absorptance is a non-zero wavelength region, the signal intensity becomes 0 as a result of the photoelectric signal inversion, and the change in wavelength is extremely high. Acts as a sensitive detector. The photoelectric signal is reversed between positive and negative before and after the wavelength. Moreover, for example, a cyanine dye can be used as the material of the organic semiconductor thin film.

本発明の半導体光検出器は、使用する有機半導体薄膜が、ある製膜条件について特に波長の変化に対する吸収率から計算される光電信号強度の波長特性が大きく変化する特性になることを利用し、さらにある条件で積層して光検出素子としてデバイスと成した場合に、吸収率から計算される光電信号強度の波長特性より、実際の光電信号強度の波長特性が吸収に変化する性能を得ることができる。この性能のため、より改善した波長選択性・変調変化の検出機能を有するので、特定波長の光の波長変化を精度良く検出することができる。   The semiconductor photodetector of the present invention utilizes the fact that the organic semiconductor thin film to be used has a characteristic in which the wavelength characteristic of the photoelectric signal intensity calculated from the absorptance with respect to the change in wavelength is greatly changed under certain film forming conditions, Furthermore, when a device is formed as a light detection element by stacking under certain conditions, it is possible to obtain the performance that the wavelength characteristic of the actual photoelectric signal intensity changes to absorption, rather than the wavelength characteristic of the photoelectric signal intensity calculated from the absorptance. it can. Because of this performance, it has a more improved wavelength selectivity / modulation change detection function, so that it is possible to accurately detect the wavelength change of light of a specific wavelength.

また、本発明の半導体光検出器では、受光面を1mm平方以下に局所化した有機光検出器をわずか3層の積層構造で作製することが可能であり、マイクロチップ型光検出器として光学機器に組み込めるので、組込型分光器、レーザー波長モニター、屈折率測定器、マイクロフローサイトメトリーなど各種検査、分析などの様々な分野での利用が可能となる。   Further, in the semiconductor photodetector of the present invention, an organic photodetector having a light receiving surface localized to 1 mm square or less can be manufactured with a laminated structure of only three layers, and an optical device as a microchip photodetector. Therefore, it can be used in various fields such as various types of inspection and analysis such as built-in spectroscope, laser wavelength monitor, refractive index measuring device, micro flow cytometry.

以下、本発明の実施例について図を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明による有機フォトダイオードの一例を示す概念図、図2は半導体薄膜材料分子構造の例を示す図である。   FIG. 1 is a conceptual diagram illustrating an example of an organic photodiode according to the present invention, and FIG. 2 is a diagram illustrating an example of a molecular structure of a semiconductor thin film material.

本実施例では、図1に示すように、透明電極1と金属電極2の間に有機半導体薄膜3を積層して有機フォトダイオード(OPD)が形成される。半導体薄膜材料3には、シアニン系の有機半導体色素分子、たとえば、図2(a)に示す赤系シアニン色素、あるいは図2(b)に示す黄色系シアニン色素を利用する。両色素分子は、水溶性であるため扱いやすく、また、使用する絶縁レジストや作製のプロセスで使用される有機溶媒には不溶であるという有利な性質を有する。   In this embodiment, an organic photodiode (OPD) is formed by laminating an organic semiconductor thin film 3 between a transparent electrode 1 and a metal electrode 2 as shown in FIG. For the semiconductor thin film material 3, a cyanine organic semiconductor dye molecule, for example, a red cyanine dye shown in FIG. 2 (a) or a yellow cyanine dye shown in FIG. 2 (b) is used. Both dye molecules have an advantageous property that they are water-soluble and easy to handle, and are insoluble in the insulating resist used and the organic solvent used in the production process.

図3は本発明によるOPDの作製プロセスの一例を示す図である。   FIG. 3 is a diagram showing an example of an OPD manufacturing process according to the present invention.

図3においてガラス基板又はフィルム状の基板4上に形成されたITO電極1の上に、絶縁層5をスピンコートした後、パターンニングにより受光面6を形成し、有機半導体薄膜3をスピンコートする。その後、アルミ電極2を蒸着する。こうしてパターニングにより絶縁層が存在しない受光面6の部分のみでITO電極1とアルミ電極2で有機半導体膜3を挟んでOPDを形成する。また、絶縁層をパターニングずる代わりに、インクジェットを利用して限定的に有機半導体薄膜を製膜する手法でもOPDを作製することが可能である。   In FIG. 3, the insulating layer 5 is spin-coated on the ITO electrode 1 formed on the glass substrate 4 or the film-like substrate 4, and then the light-receiving surface 6 is formed by patterning, and the organic semiconductor thin film 3 is spin-coated. . Thereafter, an aluminum electrode 2 is deposited. In this way, the OPD is formed by sandwiching the organic semiconductor film 3 between the ITO electrode 1 and the aluminum electrode 2 only at the portion of the light receiving surface 6 where the insulating layer does not exist by patterning. Further, instead of patterning the insulating layer, the OPD can also be manufactured by a method of forming a limited organic semiconductor thin film using ink jet.

OPDをガラス基板又はフィルム状の基板4上に作製する場合、ITO付ガラスあるいはPETフィルム上にITOをコートした基板(300Ω□,PET膜厚125μm)を利用し、これにまず絶縁層5として例えば有機フィルムレジストをスピンコートした後、プレアニール、紫外露光、現像、ポストアニールによって、ITOの表面に受光面6を有する絶縁膜パターンを形成する。   When an OPD is produced on a glass substrate or a film-like substrate 4, a glass with ITO or a substrate coated with ITO on a PET film (300Ω □, PET film thickness 125 μm) is used. After the organic film resist is spin-coated, an insulating film pattern having a light receiving surface 6 on the surface of ITO is formed by pre-annealing, ultraviolet exposure, development, and post-annealing.

次いで、シアニン系色素膜溶液をスピンコートして有機半導体薄膜3の成膜を行う。膜厚は200〜300nmである。   Next, the organic semiconductor thin film 3 is formed by spin coating a cyanine dye film solution. The film thickness is 200 to 300 nm.

最後に透過マスクを用いて有機半導体薄膜の上にアルミ電極2を蒸着してOPDを構成する。   Finally, an aluminum electrode 2 is vapor-deposited on the organic semiconductor thin film using a transmission mask to constitute an OPD.

図4はアルミをカソード、ITOをアノードとして有機半導体色素分子である赤系シアニン色素と黄系シアニン色素のV−I特性を測定した結果を示すグラフである。   FIG. 4 is a graph showing the results of measuring the VI characteristics of red cyanine dye and yellow cyanine dye, which are organic semiconductor dye molecules, using aluminum as a cathode and ITO as an anode.

図4(a)の赤系シアニン色素のグラフ、図4(b)の黄系シアニン色素のグラフに示されるとおり、いずれの有機半導体色素分子についても緩やかなダイオード特性を確認でき、ショットキーバリアが生成できていることがわかる。逆接続時のインピーダンスは23.3kΩであった。   As shown in the graph of red cyanine dye in FIG. 4 (a) and the graph of yellow cyanine dye in FIG. 4 (b), the gradual diode characteristics can be confirmed for any organic semiconductor dye molecule, and the Schottky barrier is It can be seen that it has been generated. The impedance at the time of reverse connection was 23.3 kΩ.

次に分光特性を、光源として開発した光パラメトリック発生器・増幅器(OPG+OPA)を使用してレーザーを入射することで、分光特性を測定することが可能である。   Next, the spectral characteristics can be measured by making the laser incident using an optical parametric generator / amplifier (OPG + OPA) developed as a light source.

図5は測定した光電信号と吸収率から計算される光電信号強度の波長応答ピーク値をプロットしたグラフで、(a)は赤系シアニン色素、(b)は黄系シアニン色素について示すものである。   FIG. 5 is a graph plotting the wavelength response peak value of the photoelectric signal intensity calculated from the measured photoelectric signal and the absorptance. FIG. 5A shows a red cyanine dye, and FIG. 5B shows a yellow cyanine dye. .

5(a)において、赤系シアニン色素を測定した結果、測定した光電信号は、実線で示すように、バイアスは0V、入力インピーダンスは10MΩで、波長440nm付近から信号が得られており、520−530nmで応答ピークは最大となる。入力波長が540nmより長くなると点線で示す吸収率から計算される光電信号強度V(λ)は若干ながら増大しているにもかかわらず、光電信号出力は急激に減衰し、より急峻な変化を示している。さらに、545nmで光電信号出力は0となり、その前後で信号の正負が逆転している。信号は550nmで負の最大となり、波長555nm以降では出力は0に減衰していくことが分かった。   In 5 (a), as a result of measuring the red cyanine dye, the measured photoelectric signal has a bias of 0 V, an input impedance of 10 MΩ, and a signal is obtained from around a wavelength of 440 nm as shown by the solid line. The response peak is maximum at 530 nm. When the input wavelength is longer than 540 nm, the photoelectric signal output V (λ) calculated from the absorptance indicated by the dotted line slightly increases, but the photoelectric signal output attenuates rapidly and shows a more steep change. ing. Further, the photoelectric signal output becomes 0 at 545 nm, and the sign of the signal is reversed before and after that. It was found that the signal had a negative maximum at 550 nm, and the output attenuated to 0 after the wavelength of 555 nm.

図5(b)において、黄系シアニン色素を測定した結果、点線で示す吸収率から計算される光電信号強度V(λ)のピークが465nm付近にあるのに対し、実線で示す光電信号のピークは454nm付近にある。信号強度は、ピークからわずか10nm波長がずれるだけで負の値にまで急激に変化するという特性を示している。   In FIG. 5B, as a result of measuring the yellow cyanine dye, the peak of the photoelectric signal intensity V (λ) calculated from the absorptance indicated by the dotted line is in the vicinity of 465 nm, whereas the peak of the photoelectric signal indicated by the solid line is shown. Is in the vicinity of 454 nm. The signal intensity has a characteristic that it changes suddenly to a negative value when the wavelength is shifted by only 10 nm from the peak.

本発明のOPDは、受光面を1mm平方以下に局所化した有機光検出器が得られ、自在にチップに組み込めるので、屈折率測定デバイス、波長分光デバイスなど光検出器を備えた様々な分野でのデバイスに利用が可能となる。   The OPD of the present invention provides an organic photodetector having a light receiving surface localized to 1 mm square or less, and can be freely incorporated into a chip. Therefore, the OPD in various fields equipped with a photodetector such as a refractive index measuring device and a wavelength spectroscopic device. It can be used for other devices.

本発明によるOPDの一例を示す概念図である。It is a conceptual diagram which shows an example of OPD by this invention. 本発明の半導体薄膜材料の分子構造の例を示す図である。It is a figure which shows the example of the molecular structure of the semiconductor thin film material of this invention. 本発明によるOPDの作製プロセスの一例を示す図である。It is a figure which shows an example of the manufacturing process of OPD by this invention. 有機半導体色素分子赤系シアニン色素と黄系シアニン色素のV-I特性を測定した結果を示すグラフである。It is a graph which shows the result of having measured the VI characteristic of the organic-semiconductor pigment | dye molecule | numerator red-type cyanine pigment | dye, and yellow-type cyanine pigment | dye. 赤系シアニン色素と黄系シアニン色素の波長応筈ピーク値をプロットしたグラフである。It is the graph which plotted the wavelength response peak value of a red-type cyanine pigment | dye and a yellow-type cyanine pigment | dye.

符号の説明Explanation of symbols

1:透明電極(ITO)
2:金属電極(Al)
3:有機半導体薄膜
4:基板
5:絶縁層(有機フィルムレジスト)
6:受光面
1: Transparent electrode (ITO)
2: Metal electrode (Al)
3: Organic semiconductor thin film 4: Substrate 5: Insulating layer (organic film resist)
6: Light receiving surface

Claims (4)

基板上に下部電極及び有機半導体薄膜・上部電極が順次積層された有機半導体光検出器において、
前記光検出器から実際に得られる光電信号の対波長特性が、前記有機半導体薄膜が有する光吸収率から計算される光電信号強度の波長特性よりも波長に対する変化がより鋭いことを特徴とする有機半導体光検出器。
In an organic semiconductor photodetector in which a lower electrode and an organic semiconductor thin film / upper electrode are sequentially laminated on a substrate,
The organic signal characterized in that the wavelength characteristic of the photoelectric signal actually obtained from the photodetector has a sharper change with respect to the wavelength than the wavelength characteristic of the photoelectric signal intensity calculated from the light absorption rate of the organic semiconductor thin film. Semiconductor photodetector.
前記有機半導体薄膜が有する光吸収率から計算される光電信号強度の波長特性が一様に増大あるいは減少している波長域において、前記光検出器から実際に得られる光電信号の対波長特性が増大から減少に、あるいは減少から増大に転じるような特性を有することを特徴とする請求項1記載の有機半導体光検出器。   In the wavelength region where the wavelength characteristic of the photoelectric signal intensity calculated from the light absorptance of the organic semiconductor thin film uniformly increases or decreases, the vs. wavelength characteristic of the photoelectric signal actually obtained from the photodetector increases. The organic semiconductor photodetector according to claim 1, wherein the organic semiconductor photodetector has a characteristic that changes from decreasing to increasing or decreasing to increasing. ある特定の波長において、前記有機半導体薄膜が有する光吸収率が零でないにも関わらず、前記光検出器から実際に得られる光電信号強度が零または零に相当する信号強度になることを特徴とする請求項1記載の有機半導体光検出器。   The photoelectric signal intensity actually obtained from the photodetector is a signal intensity corresponding to zero or zero at a specific wavelength, even though the light absorption rate of the organic semiconductor thin film is not zero. The organic semiconductor photodetector according to claim 1. 有機半導体薄膜がシアニン系色素分子を含むことを特徴とする請求項1、2又は3記載の有機半導体光検出器。   4. The organic semiconductor photodetector according to claim 1, wherein the organic semiconductor thin film contains cyanine dye molecules.
JP2006271907A 2006-10-03 2006-10-03 Organic semiconductor photodetector Pending JP2008091694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006271907A JP2008091694A (en) 2006-10-03 2006-10-03 Organic semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006271907A JP2008091694A (en) 2006-10-03 2006-10-03 Organic semiconductor photodetector

Publications (1)

Publication Number Publication Date
JP2008091694A true JP2008091694A (en) 2008-04-17

Family

ID=39375527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006271907A Pending JP2008091694A (en) 2006-10-03 2006-10-03 Organic semiconductor photodetector

Country Status (1)

Country Link
JP (1) JP2008091694A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227171A (en) * 1983-06-08 1984-12-20 Oki Electric Ind Co Ltd Color sensor
JPS6247169A (en) * 1985-08-26 1987-02-28 Oki Electric Ind Co Ltd Photosensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227171A (en) * 1983-06-08 1984-12-20 Oki Electric Ind Co Ltd Color sensor
JPS6247169A (en) * 1985-08-26 1987-02-28 Oki Electric Ind Co Ltd Photosensor

Similar Documents

Publication Publication Date Title
Stewart et al. Ultrafast pyroelectric photodetection with on-chip spectral filters
US7652767B2 (en) Optical sensor with chemically reactive surface
US20140319378A1 (en) Optical fluorescence-based chemical and biochemical sensors and methods for fabricating such sensors
US20130141794A1 (en) Three dimensional sub-wavelength structure with surface plasmon energy matching properties
Guyot et al. Integrated silicon-based nanoplasmonic sensor
Jiang et al. Metamaterial microbolometers for multi-spectral infrared polarization imaging
Junek et al. Random temporal laser speckles for the robust measurement of sub-microsecond photoluminescence decay
US10591410B2 (en) Flexible mid-infrared photonics for chemical sensing
KR102499392B1 (en) Sensor and sensor device
WO2009121271A1 (en) Method and apparatus for phase sensitive surface plasmon resonance
CN110346326B (en) Optical sensor
Yamamoto et al. Near-infrared spectroscopic gas detection using a surface plasmon resonance photodetector with 20 nm resolution
JP2008091694A (en) Organic semiconductor photodetector
Morioka et al. Development of a fluorescence microplate reader using an organic photodiode array with a large light receiving area
CN103884683A (en) Optical sensor based on cascade connection of F-P (Fabry-Parot) semiconductor laser device and thin film F-P optical filter
CN101504360A (en) Organic gas sensing method
CN113406017A (en) High-integration surface plasma resonance sensor system
Chaudhuri et al. Heterogeneously integrated optical detection platform for on-chip sensing applications
CN108139326A (en) With low background signal based on organic fluorescent optical sensor
CN103217526B (en) Grating type luciferase label analysis meter testing standard plate and processing technology thereof
JP2017198579A (en) Photodetector and lidar device
EP3657141A1 (en) Detector and method for measuring ultraviolet radiation
Parmar et al. Enhanced Broadband Photodetection with Geometry and Interface Engineered Nanocrystalline Graphite
Xuhui et al. An approach for fabrication of multi-directional polarizer array by picosecond laser micro-processing
Semasa et al. 2D LSPR gas sensor with Au/Ag core-shell structure coated by fluorescent dyes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110930