JPH04280678A - Solid-state image pickly element - Google Patents

Solid-state image pickly element

Info

Publication number
JPH04280678A
JPH04280678A JP3068864A JP6886491A JPH04280678A JP H04280678 A JPH04280678 A JP H04280678A JP 3068864 A JP3068864 A JP 3068864A JP 6886491 A JP6886491 A JP 6886491A JP H04280678 A JPH04280678 A JP H04280678A
Authority
JP
Japan
Prior art keywords
photodiode
solid
light
gaas
photodiodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3068864A
Other languages
Japanese (ja)
Inventor
Hideji Yamazaki
山崎 秀二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3068864A priority Critical patent/JPH04280678A/en
Publication of JPH04280678A publication Critical patent/JPH04280678A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To dispense with color filters by a method wherein a substrate is formed of GaAs or the like, and a photodiode array is composed of photodiodes formed of three kinds of semiconductors of GaAs/AlGaInP. CONSTITUTION:A photodiode PRGB is formed of GaAs and photoelectrically converts light 0.87mum or below in wavelength or red, gree, and blue light. A photodiode PGB which photoelectrically converts light 0.58mum or below in wavelength or green and blue light is formed of (Al0.4Ga0.6)0.51In0.49P. A photodiode PB which photoelectrically convertsw light 0.53mum or below in wavelength or blue light is formed of (Al0.7Ga0.3)0.51In0.49P. Signals obtained through the photodiodes arranged in this manner are processed by an external image processing device to obtain luminance signals, color signals, and color difference signals as required.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、固体撮像素子に関し、
特に、カラーフィルタを用いることなくカラーフィルタ
リングが可能になされた固体撮像素子に関する。
[Industrial Application Field] The present invention relates to a solid-state image sensor,
In particular, the present invention relates to a solid-state image sensor that enables color filtering without using a color filter.

【0002】0002

【従来の技術】従来の固体撮像素子は、Siを用いて形
成されており、図4に示されるように、光電変換を行い
信号電荷の蓄積を行うフォトダイオード1と、信号電荷
を垂直方向へ転送する垂直レジスタ(垂直CCD)3と
、フォトダイオード1内に蓄積されている信号電荷を垂
直レジスタ3へ読み出す電荷読み出し部2と、信号電荷
を水平方向に転送する水平レジスタ(水平CCD)4と
、信号電荷を電圧信号に変換しこの電圧信号を増幅する
増幅部5と、を備えるものであった。
2. Description of the Related Art A conventional solid-state image sensor is formed using Si, and as shown in FIG. A vertical register (vertical CCD) 3 for transferring, a charge reading section 2 for reading signal charges accumulated in the photodiode 1 to the vertical register 3, and a horizontal register (horizontal CCD) 4 for transferring signal charges in the horizontal direction. , and an amplifying section 5 that converts the signal charge into a voltage signal and amplifies this voltage signal.

【0003】固体撮像素子の基礎吸収端の波長λ0 は
、半導体の禁制帯幅Egによって、 λ0 ≒hc/Eg (h:プランク定数、c:光速)で与えられる。h、c
の値を代入すると、 λ0 [μm]=1.2398/Eg[eV]となり、
Siでは、Eg=1.11eVであるからλ0 =1.
12μmとなる。
The fundamental absorption edge wavelength λ0 of a solid-state image sensor is given by the forbidden band width Eg of the semiconductor, as λ0≈hc/Eg (h: Planck's constant, c: speed of light). h, c
Substituting the value of λ0 [μm] = 1.2398/Eg [eV],
In Si, Eg = 1.11 eV, so λ0 = 1.
It becomes 12 μm.

【0004】従って、Siを用いた従来の固体撮像素子
では、近赤外線を含むそれ以下の波長の光に対して光電
変換が行われる。
[0004] Therefore, in conventional solid-state image sensors using Si, photoelectric conversion is performed on light of wavelengths shorter than near-infrared rays.

【0005】従来例におけるフォトダイオードは、色を
識別する機能を有していなかったので、色信号を含む映
像信号を得るには、フォトダイオードの上部に赤、緑、
青等の染色層が規則正しく配列されたカラーフィルタを
設ける必要があった。
[0005] Conventional photodiodes did not have the function of distinguishing colors, so in order to obtain a video signal including color signals, red, green, and
It was necessary to provide a color filter in which dyed layers such as blue are regularly arranged.

【0006】[0006]

【発明が解決しようとする課題】上述した従来の固体撮
像素子では、カラー撮像を可能ならしめるにはカラーフ
ィルタを設ける必要があったが、カラーフィルタは少な
くとも3層の染色層が必要であったので、これを作成す
るには各層ごとに染色層のパターニング、染色、保護層
の形成等を繰り返さなくてはならず、多大の工数を要し
た。また、各層毎に、各カラーフィルタ層とフォトダイ
オードとの正確な位置合わせが必要であった。
[Problems to be Solved by the Invention] In the conventional solid-state imaging device described above, it was necessary to provide a color filter to enable color imaging, but the color filter required at least three dyed layers. Therefore, in order to create this, it was necessary to repeat the patterning of the dyed layer, the dyeing, the formation of the protective layer, etc. for each layer, which required a large amount of man-hours. Furthermore, accurate alignment between each color filter layer and the photodiode was required for each layer.

【0007】さらに、カラーフィルタは有機材料を用い
て形成されるものであるため、耐熱性、耐湿性に問題が
あり、例えば組み立て工程における熱処理によって簡単
に変質してしまう欠点があった。
Furthermore, since color filters are formed using organic materials, they have problems with heat resistance and moisture resistance, and have the disadvantage that they are easily deteriorated by heat treatment during the assembly process, for example.

【0008】また、従来例は0.9〜1.1μmの近赤
外の光に対しても光電変換を行うため、従来例を用いる
固体撮像装置には赤外線カットフィルタを設けなければ
ならないという不都合があった。
Furthermore, since the conventional example performs photoelectric conversion on near-infrared light of 0.9 to 1.1 μm, the solid-state imaging device using the conventional example must be provided with an infrared cut filter, which is an inconvenience. was there.

【0009】[0009]

【課題を解決するための手段】本発明の固体撮像素子は
、GaAs等を基板として用い、フォトダイオードをG
aAs/AlGaInP系材料によって構成する。すな
わち、フォトダイオードを例えば、■GaAs、■(A
l0.4 Ga0.6 )0.51In0.49P、■
(Al0.7 Ga0.3 )0.51In0.49P
の三種類の半導体によって構成する。
[Means for Solving the Problems] The solid-state imaging device of the present invention uses GaAs or the like as a substrate, and the photodiode is
It is made of aAs/AlGaInP material. That is, the photodiode is made of, for example, ■GaAs, ■(A
l0.4 Ga0.6 )0.51In0.49P,■
(Al0.7 Ga0.3 )0.51In0.49P
It is composed of three types of semiconductors.

【0010】0010

【作用】GaAsの禁制帯幅は、Eg=1.43eVで
あるため、基礎吸収端の波長はλ0 =0.87μmと
なり可視光領域のすべての波長の光に対して光電変換を
行い、かつ近赤外線に対してはほとんど光電変換を行わ
ない。
[Operation] Since the forbidden band width of GaAs is Eg = 1.43 eV, the fundamental absorption edge wavelength is λ0 = 0.87 μm, and photoelectric conversion is performed for light of all wavelengths in the visible light region, and Almost no photoelectric conversion is performed on infrared rays.

【0011】(Al0.4 Ga0.6 )0.51I
n0.49Pの混晶半導体は、GaAsによく格子整合
し、その禁制帯幅は、Eg=2.15eVであるから、
基礎吸収端の波長はλ0=0.58μmとなり、緑色領
域および青色領域の波長の可視光に対して光電変換を行
う。
(Al0.4 Ga0.6 )0.51I
The n0.49P mixed crystal semiconductor is well lattice matched to GaAs, and its forbidden band width is Eg = 2.15 eV, so
The fundamental absorption edge wavelength is λ0 = 0.58 μm, and photoelectric conversion is performed for visible light with wavelengths in the green and blue regions.

【0012】また、(Al0.7 Ga0.3 )0.
51In0.49Pの混晶半導体は、GaAsによく格
子整合し、その禁制帯幅は、Eg=2.33eVである
ので、基礎吸収端の波長は、λ0 =0.53μmとな
り、青色領域の可視光に対して光電変換を行うことにな
る。
[0012] Also, (Al0.7 Ga0.3)0.
The mixed crystal semiconductor of 51In0.49P is well lattice-matched to GaAs, and its forbidden band width is Eg = 2.33 eV, so the wavelength of the fundamental absorption edge is λ0 = 0.53 μm, which is visible light in the blue region. Photoelectric conversion will be performed on the

【0013】以上3種類の半導体によるフォトダイオー
ドアレイを構成することにより、カラーフィルタを用い
ることなしに、■赤、緑、青の領域を光電変換する部分
、■緑、青の領域の光のみを光電変換する部分、■青の
領域の光のみを光電変換する部分、の3種類の領域を有
する固体撮像素子を得ることができる。
By configuring a photodiode array using the three types of semiconductors mentioned above, without using color filters, it is possible to: (1) photoelectrically convert the red, green, and blue regions, and (2) convert only the light in the green and blue regions. It is possible to obtain a solid-state image sensor having three types of regions: a portion that photoelectrically converts light, and (1) a portion that photoelectrically converts only light in the blue region.

【0014】[0014]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。図1は本発明の一実施例を示す概略平面図
であり、図2は、そのフォトダイオードの配列を示す平
面図である。
Embodiments Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic plan view showing an embodiment of the present invention, and FIG. 2 is a plan view showing an arrangement of photodiodes thereof.

【0015】本実施例の固体撮像素子は、図1に示すよ
うに、光電変換を行い信号電荷の蓄積を行うフォトダイ
オード1と、信号電荷を垂直方向へ転送する垂直レジス
タ(垂直CCD)3と、フォトダイオード1内に蓄積さ
れている信号電荷を垂直レジスタ3へ読み出すための電
荷読み出し部2と、信号電荷を水平方向に転送する水平
レジスタ(水平CCD)4と、信号電荷を電圧信号に変
換しこの電圧信号を増幅する増幅部5と、を備えており
、この点では図4の従来例と変わるところはない。しか
し、本実施例は、GaAsを主体として構成されており
、そして、フォトダイオードはGaAs/AlGaIn
P系の材料を用いて形成されている。
As shown in FIG. 1, the solid-state imaging device of this embodiment includes a photodiode 1 that performs photoelectric conversion and accumulates signal charges, and a vertical register (vertical CCD) 3 that transfers signal charges in the vertical direction. , a charge readout section 2 for reading out the signal charge accumulated in the photodiode 1 to the vertical register 3, a horizontal register (horizontal CCD) 4 for transferring the signal charge in the horizontal direction, and converting the signal charge into a voltage signal. In this respect, there is no difference from the conventional example shown in FIG. 4. However, this embodiment is mainly composed of GaAs, and the photodiode is made of GaAs/AlGaIn.
It is formed using a P-based material.

【0016】図2において、PRGB と示されたフォ
トダイオードは、GaAsによって構成され、0.87
μm以下の波長の光、即ち赤、緑、青の領域の光につい
て光電変換を行う。
In FIG. 2, the photodiode designated PRGB is made of GaAs and has a diameter of 0.87
Photoelectric conversion is performed on light with a wavelength of μm or less, that is, light in the red, green, and blue regions.

【0017】波長0.58μm以短の緑、青の領域の光
に対して光電変換を行うフォトダイオードは、(Al0
.4 Ga0.6 )0.51In0.49Pにより構
成され、PGBと記号付けされている。
A photodiode that performs photoelectric conversion on light in the green and blue regions with a wavelength of 0.58 μm or shorter is made of (Al0
.. 4Ga0.6)0.51In0.49P, and is labeled PGB.

【0018】また、波長0.53μm以短の青の領域の
光に対して光電変換を行うフォトダイオードは、(Al
0.7 Ga0.3 )0.51In0.49Pにより
構成されPB と記号付けされている。
In addition, a photodiode that performs photoelectric conversion on light in the blue region with a wavelength of 0.53 μm or shorter is made of (Al
It is composed of 0.7Ga0.3)0.51In0.49P and is designated as PB.

【0019】図2に示された配列のフォトダイオードか
ら得られた信号について外部の画像処理装置により処理
を行い所望の輝度信号、色信号、色差信号を得る。
Signals obtained from the photodiodes arrayed as shown in FIG. 2 are processed by an external image processing device to obtain desired luminance signals, color signals, and color difference signals.

【0020】次に、図1、図2に示された実施例の製造
方法について簡単に説明する。p型GaAs基板上にn
型GaAs層を液相法を用いて成長させ、その上にSi
O2 層を堆積する。PGBと示されたフォトダイオー
ドを形成すべき個所のSiO2 層とn型GaAs層と
を選択的にエッチング除去した後、MBE(分子線結晶
成長)法により、n型の(Al0.4 Ga0.6 )
0.51In0.49Pを成長させ、続いて、SiO2
 層をエッチング除去することにより、n型(Al0.
4 Ga0.6 )0.51In0.49Pが埋め込ま
れた構造の基板を作成する。同様の手法を用いてPBと
示された個所にn型(Al0.7 Ga0.3 )0.
51In0.49Pを埋め込む。
Next, a method of manufacturing the embodiment shown in FIGS. 1 and 2 will be briefly described. n on a p-type GaAs substrate
A type GaAs layer is grown using a liquid phase method, and Si is deposited on top of it.
Deposit the O2 layer. After selectively etching away the SiO2 layer and the n-type GaAs layer at the location where the photodiode indicated as PGB is to be formed, an n-type (Al0.4 Ga0.6 )
0.51In0.49P was grown, followed by SiO2
By etching away the layer, the n-type (Al0.
4. A substrate having a structure in which Ga0.6)0.51In0.49P is embedded is created. Using a similar method, n-type (Al0.7 Ga0.3)0.
51In0.49P is embedded.

【0021】次に、電荷読み出し部2となる領域にZn
をイオン注入することによりこの領域をp型化し、続い
て、フォトダイオード1、電荷読み出し部2、垂直、水
平レジスタ部3、4および増幅部5を除く領域にプロト
ンをイオン注入して活性領域以外の領域を絶縁化する。 次に、転送電極および遮光膜を形成する。
Next, Zn is applied to the region that will become the charge readout section 2.
This region is made p-type by ion implantation, and then protons are ion-implanted into the region excluding the photodiode 1, the charge readout section 2, the vertical and horizontal register sections 3 and 4, and the amplification section 5, except for the active region. Insulate the area. Next, a transfer electrode and a light shielding film are formed.

【0022】図3は、本発明の他の実施例のフォトダイ
オード配列を示した平面図である。図2と同様にPRG
B 、PGB、PB は、それぞれ波長0.87μm以
短の赤、緑、青の領域の光、波長0.58μm以短の緑
、青の領域の光、波長0.53μm以短の青の光に対し
て光電変換を行うフォトダイオードを示しており、これ
らのフォトダイオードは先の実施例と同様の材料を用い
て形成されている。
FIG. 3 is a plan view showing a photodiode array according to another embodiment of the present invention. PRG as in Figure 2
B, PGB, and PB are light in red, green, and blue regions with wavelengths shorter than 0.87 μm, light in green and blue regions with wavelengths shorter than 0.58 μm, and blue light with wavelengths shorter than 0.53 μm, respectively. These photodiodes are shown to perform photoelectric conversion on the image, and these photodiodes are formed using the same materials as in the previous embodiment.

【0023】上記実施例では、GaAsによるフォトダ
イオード以外のフォトダイオードはヘテロ接合のもので
あったが、これを変更してすべてのフォトダイオードを
ホモ接合のものとしてもよい。さらに、基板としてSi
を用い、フォトダイオードのみを化合物半導体で構成し
てもよい。また、本発明は、エリア型のみならずリニア
型の固体撮像素子にも、さらにはCCD固体撮像素子ば
かりでなくCID固体撮像素子等他の方式の固体撮像素
子にも適用しうるものである。
In the above embodiment, the photodiodes other than the GaAs photodiode are of a heterojunction type, but this may be changed so that all of the photodiodes are of a homojunction type. Furthermore, Si as a substrate
may be used, and only the photodiode may be made of a compound semiconductor. Further, the present invention can be applied not only to area-type solid-state image sensors but also to linear-type solid-state image sensors, and not only to CCD solid-state image sensors but also to other types of solid-state image sensors such as CID solid-state image sensors.

【0024】[0024]

【発明の効果】以上説明したように、本発明による固体
撮像素子は、基礎吸収端波長の異なる種々の化合物半導
体によって構成されたフォトダイオードがアレイ状また
はマトリクス状に配列され、フォトダイオードそのもの
がカラーフィルタリング機能を有するように構成された
ものであるので、本発明によれば、カラーフィルタ層を
作成する必要がなくなり、繁雑な工程と正確な位置合わ
せを要する工程が不要となる。また、有機材料を使用し
なくてもよくなるので、耐熱性、耐湿性に優れた固体撮
像素子を提供しうるようになる。
As explained above, in the solid-state imaging device according to the present invention, photodiodes made of various compound semiconductors having different fundamental absorption edge wavelengths are arranged in an array or matrix, and the photodiodes themselves have color Since it is configured to have a filtering function, the present invention eliminates the need to create a color filter layer, and eliminates the need for complicated processes and processes that require accurate alignment. Furthermore, since it is no longer necessary to use organic materials, it becomes possible to provide a solid-state imaging device with excellent heat resistance and moisture resistance.

【0025】また、本発明によれば、赤外線に殆ど感応
しないフォトダイオードを用いるので、赤外線カットフ
ィルタを使用する必要もなくなる。
Furthermore, according to the present invention, since a photodiode that is hardly sensitive to infrared rays is used, there is no need to use an infrared cut filter.

【0026】さらに、基板としてGaAsを用いた場合
には、基板とフォトダイオードの格子定数がよく整合し
ているので、暗電流の発生を最小限に抑えることができ
る。
Furthermore, when GaAs is used as the substrate, the lattice constants of the substrate and photodiode are well matched, so that the generation of dark current can be minimized.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の概略平面図。FIG. 1 is a schematic plan view of an embodiment of the present invention.

【図2】図1の実施例のフォトダイオードの配置を示す
図。
FIG. 2 is a diagram showing the arrangement of photodiodes in the embodiment of FIG. 1;

【図3】本発明の他の実施例のフォトダイオードの配置
を示す図。
FIG. 3 is a diagram showing the arrangement of photodiodes in another embodiment of the present invention.

【図4】従来例の概略平面図。FIG. 4 is a schematic plan view of a conventional example.

【符号の説明】[Explanation of symbols]

1  フォトダイオード 2  電荷読み出し部 3  垂直レジスタ 4  水平レジスタ 5  増幅部 1 Photodiode 2 Charge readout section 3 Vertical register 4 Horizontal register 5 Amplification section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  基礎吸収端の異なる複数種の材料群の
中のいずれかによって構成される複数のフォトダイオー
ドがアレイ状またはマトリックス状に配置されている固
体撮像素子において、前記複数種の材料群は、GaAs
/(Alx Ga1−x )y In1−y P(ただ
し、0<x、y<1)系の材料から選択されたものであ
ることを特徴とする固体撮像素子。
1. A solid-state imaging device in which a plurality of photodiodes each made of one of a plurality of material groups having different basic absorption edges are arranged in an array or a matrix, wherein the plurality of material groups have different fundamental absorption edges. is GaAs
A solid-state imaging device characterized in that it is selected from materials of the /(AlxGa1-x)yIn1-yP (where 0<x, y<1) system.
JP3068864A 1991-03-08 1991-03-08 Solid-state image pickly element Pending JPH04280678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3068864A JPH04280678A (en) 1991-03-08 1991-03-08 Solid-state image pickly element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3068864A JPH04280678A (en) 1991-03-08 1991-03-08 Solid-state image pickly element

Publications (1)

Publication Number Publication Date
JPH04280678A true JPH04280678A (en) 1992-10-06

Family

ID=13385955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3068864A Pending JPH04280678A (en) 1991-03-08 1991-03-08 Solid-state image pickly element

Country Status (1)

Country Link
JP (1) JPH04280678A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139355A (en) * 1994-11-08 1996-05-31 Nec Corp Semiconductor light sensitive element
JP2006245088A (en) * 2005-03-01 2006-09-14 Sony Corp Physical information acquisition apparatus
WO2006128407A1 (en) * 2005-05-30 2006-12-07 Osram Opto Semiconductors Gmbh Detector array and method for identifying spectral portions in radiation incident upon a detector array
WO2008065170A1 (en) * 2006-11-30 2008-06-05 Osram Opto Semiconductors Gmbh Radiation detector with an adjustable spectral sensitivity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139355A (en) * 1994-11-08 1996-05-31 Nec Corp Semiconductor light sensitive element
JP2006245088A (en) * 2005-03-01 2006-09-14 Sony Corp Physical information acquisition apparatus
WO2006128407A1 (en) * 2005-05-30 2006-12-07 Osram Opto Semiconductors Gmbh Detector array and method for identifying spectral portions in radiation incident upon a detector array
WO2008065170A1 (en) * 2006-11-30 2008-06-05 Osram Opto Semiconductors Gmbh Radiation detector with an adjustable spectral sensitivity
US8274657B2 (en) 2006-11-30 2012-09-25 Osram Opto Semiconductors Gmbh Radiation detector

Similar Documents

Publication Publication Date Title
EP0015711B1 (en) Colour image sensing
US8044435B2 (en) Sub-pixel nBn detector
US8003434B2 (en) Reduced dark current photodetector
US4613895A (en) Color responsive imaging device employing wavelength dependent semiconductor optical absorption
US5567975A (en) Group II-VI radiation detector for simultaneous visible and IR detection
US7872234B2 (en) Color image sensing apparatus and method of processing infrared-ray signal
US7763913B2 (en) Imaging method, apparatus, and system providing improved imager quantum efficiency
EP1026747B1 (en) Image sensor
US6707080B2 (en) Method for making spectrally efficient photodiode structures for CMOS color imagers
EP0820106A2 (en) Image conversion panel and associated methods
Reine et al. Simultaneous MW/LW Dual-Band MOVPE HgCdTe 64x64 FPAs
US10623710B2 (en) HD color imaging using monochromatic CMOS image sensors integrated in 3D package
US20060186363A1 (en) Enhanced spectral range imaging sensor
US9859318B2 (en) Color and infrared image sensor with depletion adjustment layer
WO2000038217A9 (en) Fabricating a hybrid imaging device
KR100572228B1 (en) Solid state imaging device
Tsaur et al. Heterojunction GexSi1-x/Si infrared detectors and focal plane arrays
JPH04280678A (en) Solid-state image pickly element
US7655493B2 (en) Multi spectral sensor
JP2001168312A (en) Solid-state image sensor and method of manufacturing the same
JP2005347599A (en) Color photo detector and imaging device
JP2006066456A (en) Solid state image sensor
US6965152B1 (en) Broad-band quantum well infrared photodetectors
JP2773930B2 (en) Light detection device
JPH04109671A (en) Solid state image sensor