*1291908 九、發明說明: 【發明所屬技術領域】 二本發明係有關對數位相機等所使用的光學球面透鏡進 仃研磨加工之透鏡研磨加工方&,更詳言《,係有關—種 藉由:精研磨工程設為單一的研磨工程而可縮短加工時間 且可簡單進行工程管理的研磨加工方法。 【先前技術】 • 在光學球面透鏡之研磨方法方面,利用杯狀型砂輪之 球面形成方法乃廣為人知。例如,經過粗研磨工程、精研 磨工程及拋光工程之三個工程來加工透鏡球面。如同非專 利文獻1所記載,各工程之必要切削裕度(machining ’ allowance)為,設定粗研磨是0.5〜2mm,精研磨是30〜 、 50#m,而拋光是10〜20/zm。又,表面粗糙度Rm a χ 係設定為’粗研磨是6〜1 〇 // m,精研磨是〇 · 5〜4 // m, 而拋光是〇·01〜0.02# m。表1係顯示著各工程之切削裕 度、磨粒及表面粗链度的一般範圍。 【表1】 工程 裕度(△ R) 磨粒(磨石# ) 表面粗糙:度 Rmax (//m) 粗研磨 0 · 5 〜2mm 150〜320 6 〜10 // m 精研磨 30〜50 // m 1200〜2000 0_5〜4 # m 抛光 10〜20 // m 0·01 〜0.02/zm 1291908 在此,必要切削裕度之算出基準係設為在前工程之最 大表面粗糙度的4倍加上R值誤差後的值,以在前工程之 表面粗糙度來決定該工程之必要切削裕度。又,因應各工 程之加工時間的配分而選擇最適當的金剛石工具之粒徑。 特別是,以屬最初研磨工程的粗研磨工程之表面粗糙度為 基準’以A定其後之工程的加工時間配 >、及金剛石工具 的粒徑。若以此為依據的話,則安全起見、精研磨工程之*1291908 IX. DESCRIPTION OF THE INVENTION: 1. Field of the Invention The present invention relates to a lens grinding process for an optical spherical lens used for a digital camera or the like, and more specifically, "related to By: The fine grinding process is a single grinding process, which can shorten the processing time and can be easily polished by engineering management. [Prior Art] • In the method of polishing an optical spherical lens, a spherical surface forming method using a cup-shaped grinding wheel is widely known. For example, the lens sphere is processed by three processes of rough grinding, fine grinding, and polishing. As described in Non-Patent Document 1, the necessary machining allowance for each project is 0.5 to 2 mm for rough grinding, 30 to 50 mm for fine polishing, and 10 to 20/zm for polishing. Further, the surface roughness Rm a χ is set to 'the rough grinding is 6 to 1 〇 // m, the fine grinding is 〇 · 5 to 4 // m, and the polishing is 〇·01 to 0.02 # m. Table 1 shows the general range of cutting allowance, abrasive grain and surface roughness of each project. [Table 1] Engineering margin (△ R) Abrasive grain (Millstone #) Surface roughness: Degree Rmax (//m) Rough grinding 0 · 5 ~ 2mm 150~320 6 ~ 10 // m Fine grinding 30~50 / / m 1200~2000 0_5~4 # m Polishing 10~20 // m 0·01 ~0.02/zm 1291908 Here, the calculation of the necessary cutting margin is set to 4 times the maximum surface roughness of the previous project plus The value after the R value error determines the necessary cutting margin for the project based on the surface roughness of the previous project. In addition, the optimum diameter of the diamond tool is selected in accordance with the division of the processing time of each project. In particular, the surface roughness of the rough grinding process which is the initial grinding process is based on the processing time of the project after A, and the particle size of the diamond tool. If this is the basis, it is safe, fine grinding engineering
切削裕度以設定為50"m者為宜,又,表面粗糙度以設定 成〇·5 // m為宜。 而為降低表面粗糙度、係有必要降低金剛石工具的粒 位;、、丨而旦降低粒徑當然就會造成加工時間變長。於是, 在以往,考里精研磨工程中的表面粗糙度、切削裕度及加 工時間而將精研磨工程設為二個工程。在第一工程令,在 金剛石工具方面是使用金屬結合砂輪來進行40// m之切削 裕度的研磨,而在第二工程中,作為金剛石工具、是使用 更j粒仁之膠合砂輪來進行剩餘的丨〇 #㈤的切削裕度之研 磨藉此,係貫現切削裕度為50 “ m且表面粗糙度為0.5 // m之精研磨。 在東面透鏡之研磨加工中,若犧牲精研磨工程中之表 ^ ^I度的* ’則能以單—工程進行精研磨,加工時間也 可變短。然而’如同上述,因為次一工程的切削裕度係以 在刚一工程的表面粗糙度為基準而決定,所以在此場合, 在屬夂工程的研磨工程之切削裕度變多,造成研磨加工 寺1大巾田、I:長。因而無法使整體的加工時間縮短。 6 Ϊ291908 此外,專利文獻1係揭示一種加工方法,其藉由將粗 研磨工程和精研磨工程設為單一工程、縮短球面透鏡的研 磨加工時間,而加工裝置也以使用粗研磨及精研磨用的、 及研磨用的2種類型者就可解決。在此所揭示的方法中, 為了將粗研磨工程和精研磨工程利用單一工程來進行,係 將砂輪的旋轉數提高成5000〜loooo r p m。 在採用該專利文獻1所揭示的方法時,因為能以單一 的加工裝置進行粗研磨及精研磨,所以可縮短加工時間使 工程管理也變簡單。然而,砂輪的旋轉數一般有必要設定 為球面透鏡加工中所採用的2000〜3〇〇〇r p m之倍數以上 的旋轉數。又,如同該專利文獻i所揭示般,可獲得之表 面粗糙度為2// m程度,而不可能獲得〇·5// m程度的表面 粗糙度,而有必要在下個研磨工程加大切削裕度。 【非專利文獻1】光學元件加工技術,9丨,社團法人 曰本光機電(Opt-mechatronics)協會,1991年9月5曰發 打,1 — 2光學元件的加工工程,丨一 4研磨、拋光 【專利文獻1】曰本專利實用新案登錄第26〇〇〇63號 公報 【發明内容】 【發明所欲解決之課題】 在球面透鏡之研磨加工是以利用粗研磨、精研磨及拋 光等之三個工程來進行為前提的場合,為圖謀縮短該研磨 加工之時間及工程管理的合理化,係以可降低粗研磨之表 面粗糙度且利用單一工程進行精研磨的方式降低精研磨的 1291908 切削裕度為宜。 本發明之課題係有鑒於此點,係提案一種球面透鏡之 研磨加工方法,其係以可將精研磨設定為單一工程的方式 進行粗研磨,依此而可達成縮短球面透鏡之研磨加工的時 間及工程管理之合理化。 【解決課題之手段】 為解決上述之課題,本發明係提供一種光學球面透鏡 • 之研磨加工方法,係包含有使用粗研磨工具盤將加工對象 的透鏡素材研磨以粗略形成透鏡球面的粗研磨工程;將所 形成的透鏡球面使用比前述粗研磨工具盤還細號數的金剛 _石工具進行精研磨的精研磨工程;以及對精研磨後的透鏡 球面進行拋光之拋光工程;該光學球面透鏡之研磨加工方 法的特徵在於、依如次的條件(1)〜(3)而進行前述粗研磨工 程、亦即 (1)使用球心揺動型研磨盤來進行前述透鏡素材的粗研磨, | 所要使用的該球心揺動研磨盤之構成為,使研磨面為 球面的丽述粗研磨工具盤以通過前述球面的球心之旋轉中 心線為中心進行旋轉,同時以該旋轉中心線描繪以前述球 心為頂點的圓錐面之方式進行球心揺動,使前述透鏡素材 在岫述粗研磨工具盤同一方向以同一速度旋轉,對旋轉及 球〜摇動中之丽述粗研磨工具盤的研磨面、朝通過前述粗 研磨工具盤的球心之方向按壓,以此狀態將該透鏡素材在 同方向邊送出’ 一邊對該透鏡素材施予球面研磨加 工,將丽述粗研磨工具盤利用球心摇動體支持成旋轉自如 8 •1291908 的狀態,將此球心摇動體的外周面作成球面,再將此外周 面載於以前述粗研磨工具盤的研磨面球心為中心的球面形 狀之支持面上,對此等外周面和支持面之間供給壓縮空氣 而使則述球心摇動體上浮,一邊維持上浮狀態一邊使前述 球心揺動體進行球心摇動。 (2)作為前述粗研磨工具盤,係使用#3〇〇〜#6〇〇粒號(平 均粒度6” m〜30# m)、集中度為5〇以上的金剛石工具。 (3)將該粗研磨工具盤的旋轉數設為25〇〇r pm 。The cutting margin is preferably set to 50 "m, and the surface roughness is set to 〇·5 // m. In order to reduce the surface roughness, it is necessary to reduce the grain position of the diamond tool; and, in turn, reducing the particle size will of course result in a longer processing time. Therefore, in the past, the finish grinding process was set to two projects in terms of surface roughness, cutting allowance, and processing time in the Cowley polishing process. In the first engineering order, in the case of diamond tools, a metal-bonded grinding wheel was used to grind the cutting margin of 40//m, and in the second project, as a diamond tool, a j-grain-bonded grinding wheel was used to carry out the remaining The grinding allowance of #丨〇五(五) is based on the fine grinding with a cutting allowance of 50" m and a surface roughness of 0.5 // m. In the grinding of the east lens, if the grinding is sacrificed The table in the project ^ ^I degree * ' can be finely ground in a single-engineering process, and the processing time can be shortened. However, as described above, the cutting margin of the next project is rough on the surface of the first project. Since the degree is determined based on the standard, in this case, the cutting allowance of the polishing project belonging to the engineering is increased, resulting in the polishing of the temple 1 large towel field and I: long. Therefore, the overall processing time cannot be shortened. 6 Ϊ291908 Patent Document 1 discloses a processing method in which a rough polishing process and a finish polishing process are used as a single project to shorten the polishing processing time of a spherical lens, and the processing apparatus also uses coarse grinding and fine polishing. In the method disclosed herein, in order to carry out the rough grinding process and the fine grinding process using a single project, the number of rotations of the grinding wheel is increased to 5000~loooo rpm. When the method disclosed in Patent Document 1 is employed, since rough grinding and finish grinding can be performed by a single processing apparatus, the processing time can be shortened and the engineering management can be simplified. However, the number of rotations of the grinding wheel is generally required to be set to a spherical surface. The number of rotations of the multiple of 2000 to 3 rpm used in the lens processing. Further, as disclosed in the patent document i, the surface roughness obtained is about 2/m, and it is impossible to obtain 〇· Surface roughness of 5//m, and it is necessary to increase the cutting margin in the next grinding process. [Non-Patent Document 1] Optical component processing technology, 9丨, association corporation Opto-mechatronics Association, September 5, 1991, issued, 1-2 optical components processing, 丨一4 grinding, polishing [Patent Document 1] 曰本 Patent utility new case registration No. 26〇〇〇63 Contents] [Problems to be Solved by the Invention] The grinding process of a spherical lens is based on the three processes of rough grinding, fine grinding, and polishing, and is intended to shorten the time and engineering management of the polishing process. Reasonable, it is preferable to reduce the surface roughness of the rough grinding and reduce the fineness of the 1291908 by the single-engineering. The subject of the present invention is to propose a grinding process of a spherical lens. In the method, rough polishing can be performed by setting the fine polishing to a single project, thereby shortening the time for polishing the spherical lens and rationalizing the project management. [Means for Solving the Problem] In order to solve the above problems, The present invention provides a polishing method for an optical spherical lens, which comprises a rough grinding process for grinding a lens material of a processing object by using a coarse grinding tool disk to roughly form a spherical surface of the lens; The tool plate also has a fine number of diamonds_stone tools for fine grinding of fine grinding And a polishing process for polishing the spherical surface of the lens after polishing; the method for polishing the optical spherical lens is characterized in that the rough grinding process is performed according to the following conditions (1) to (3), that is, (1) a rough grinding of the lens material using a ball-centered grinding disc, wherein the center of the grinding disc is configured such that the grinding surface is a spherical surface of the rough grinding tool disc to pass the spherical surface The center line of the center of rotation of the center of the circle rotates, and the center of the circle is drawn with the conical surface of the center of the core as the apex of the center of the circle, so that the lens material is the same in the same direction as the rough grinding tool disk The speed is rotated, and the grinding surface of the coarse grinding tool disk is rotated in the direction of the rotation and the ball-shake, and is pressed in the direction of the center of the center of the rough grinding tool disk, and the lens material is sent out in the same direction in this state. The lens material is subjected to a spherical surface grinding process, and the core rough grinding tool disk is supported by the spherical core rocking body in a state of being rotatable freely 8 • 1291908, and the ball core is shaken. The outer peripheral surface is formed into a spherical surface, and the other peripheral surface is placed on a support surface of a spherical shape centering on the center of the polishing surface of the rough grinding tool disk, and compressed air is supplied between the outer peripheral surface and the support surface. The center of the ball swings upward, and the spherical body is swung by the center of the ball while maintaining the floating state. (2) As the rough grinding tool disc, a diamond tool of #3〇〇~#6 〇〇 grain number (average particle size 6" m~30# m) and a degree of concentration of 5 〇 or more is used. The number of rotations of the coarse grinding tool disc is set to 25 〇〇r pm .
pm 〜350〇r 若依據本發明之光學球面透鏡的研磨加工方法,可將 粗研磨工程中的球面精度(△ h)維持成對研磨工程的球面 精度為-0.0G3mm以内,可將精研磨工程的切削裕度設為 母單面心m以下。其結果係可將該精研磨工程設定為單 -研磨工程。藉此,可達成加工時間之縮短化及工程管理 的合理化。 【發明效果】 在本發明的光學球面透鏡之 „ _ , ,怨刀口工万去中,能以精 研磨工程中的切削裕度為約2〇 # m u下的方式改善粗研 加工的表面粗糙度。因此, 日 攸艨本發明,因為能以單_ 程進行精研磨’所以可縮 整體的研磨加工時間, 工程管理合理化。 丁』 又了使 【實施方式】 以下’茲參照圖面,針對適用本發明之光 的研磨加工方法進行說明。 予;透鏡Pm ~350〇r According to the polishing method of the optical spherical lens of the present invention, the spherical precision (Δh) in the rough grinding engineering can be maintained to be within -0.0G3 mm of the spherical precision of the grinding engineering, and the fine grinding engineering can be performed. The cutting margin is set to be less than m in the mother's face. As a result, the finish grinding process can be set to a single-grinding process. Thereby, the shortening of the processing time and the rationalization of the project management can be achieved. [Effect of the Invention] In the optical spherical lens of the present invention, the surface roughness of the rough grinding process can be improved by the cutting allowance in the finish grinding process of about 2 〇 # mu. Therefore, according to the present invention, since the polishing can be performed in a single process, the overall polishing processing time can be reduced, and the project management can be rationalized. Ding 』 使 实施 实施 以下 以下 以下 以下 以下 以下 以下 以下 以下 以下The polishing processing method of the light of the present invention will be described.
1291908 圖1係顯示本例的光學球面透鏡之研磨加工方法的工 程圖。如此圖所示,本例中的研磨加工方法係由粗研磨工 程S T1、精研磨工程s 丁2及拋光工程S 丁3等三個工程 而成。粗研磨工程(C G工程)S T 1係為使用金剛石工具 (粗研磨工具盤)來以研磨加工對象的透鏡素材而形成粗的 透鏡球面之工程。精研磨工程s τ 2係為使用比粗研磨工 具盤還細號數之金剛石工具以對既形成之透鏡球面進行精 研磨的工程,而作為單一的研磨工程所要使用的研磨加工 機並未受限為球心摇動型、也可使用利用一般的杯狀型砂 輪者。又,在金剛石工具方面、可以使用膠合砂輪。其次, 拋光工程S 丁 3係對精研磨後之透鏡球面作研磨的工程。 在此工程中,例如利用氨基甲酸乙酯薄片,使用既加入氧 化鈽(Cerium)等之研磨液來進行球面的研磨。 (粗研磨工程) 本例的粗研磨工程S T1中係以如次的條件(1)〜(3)而 在透鏡素材上形成球面。 (1)使用球心摇動型研磨盤來進行透鏡素材之粗研磨,且採 用圖2所示構成來作為球心揺動研磨裝置。 ⑺在粗研磨工具盤方®,是使用# 300〜# 600粒號(平均 粒度6〇em〜30//m)、集中度5〇以上的金剛石工具。 (3)粗研磨工具盤的旋轉數為 如設定為3000r pm。 (球心揺動型研磨盤) 2500 r p m 〜35〇〇 r p m,例 本例中的球心摇動型研磨盤 1之概略構成及動作係如 10 1291908 下所丁係、使研磨面呈球面的粗研磨工具盤以通過其球面 的球心之旋轉中心線為中心進行旋轉,同時以該旋轉中心 線描繪以球心'為頂點的圓錐面之方式進行球,⑳動。使透 鏡素材在與粗研磨工具盤同一方向上以同一速度旋轉,而 對旋轉及球心摇動中之粗研磨工具盤的研磨面,朝通過粗 研磨工具盤之球心的方向按壓,並以此狀態將該透鏡素材 在同-方向上-邊送出一邊對該透鏡素材施行球面研磨加 工在此,利用球心插動體以旋轉自如的狀態支持粗研磨 工具盤,將此球i動體的外周面作成球面,使此外周面 載於以粗研磨工具盤的研磨面之球心為中心的球面形狀之 支持φ胃此等外周面和支持面之間供給壓縮空氣而 述球心摇動體上津, 、A ^& 予一邊維持上浮狀態一邊使前述球心产 動體進行球心揺動。 兹參照圖2進行詳細說明,本例之球心摇動型研磨盤 Η系具有、用以保持加工對象的透鏡素材w之透鏡支架Z 及具備對保持在透鏡支架3上的透鏡 用的球面研磨面4a之工具盤4。 ” 仃研磨加工 透鏡支条3係以其保持面3a成為朝下般地保持 平的狀態被固定在垂直的透鏡主軸5之下端。透鏡主J 之中。係$成有在其軸線方向延伸的吸引通路$ a, 端係在透鏡支架3之保持面3a的中心開口,1上端:下 由旋轉接頭6及空氣過濾、器7而與真空產生器;的吸= 連通。猎由以真空產生器8對吸引通路h進行真: 而使透鏡素材界被吸附保持在透鏡支架3之保持面&。 11 1291908 鏡主軸5係以同轴狀態配置在上端被封鎖之圓筒狀 直保持筒9之内部’而透過上下成對的軸承U以 疋轉自如的狀態被該垂直保持筒9所支持。又,透鏡主轴 5係形成為依透鏡軸旋轉用電動機。而以屬垂直中心線的 透鏡旋轉中心線5A為中心被旋轉驅動。垂直保持筒9之 上端連結著汽壓缸丨3,此汽壓 飞&缸13係破固定在上端被封 鎖的支持圓筒14之内部。垂直伴拷 片 !直保持同9係形成為在下方被 A堅缸1 3以既定的力按壓。 透鏡主軸5係成為依工件進給機構2〇而被昇降。工件 進給機構20具備水平支架21,安裝在此水平支架Μ的前 知之垂直圓筒部22被以同軸狀態插入垂直保持筒9,支持 圓筒14係固;^在水平支架21上面。水平支架⑴系依具備 進給螺桿23、螺帽24及健馬達25的昇降㈣而沿著垂 直線性導引件26昇降。 在此,透過 >丄壓缸13支持著透鏡主轴5之支持圓筒 Μ上’係安裝有近接感測器27用以檢出裳設在其内側之 垂直保持筒9的上端9a。通常此近接感測器27係處於關 閉狀態’而當垂直保持筒9對支持圓筒14相對上昇時,盆 上端^被近接感測器27檢出,而該感測輸出係切換成開 啓。 其次’配置在透鏡支架3之下方的工具盤4係以其球 面研磨面43的球心〇會位在透鏡支架3側之透鏡旋轉中 心線5A的延長線的方式作配置。主軸朴係被一體形成於 此工具盤4之背面’此主轴4b係以旋轉自如的狀態由球 12 1291908 心摇動體3 1支持著。在此,主軸4 b係由球心摇動體3 1 所支持,而使得工具盤4之旋轉中心線4 A在球心〇與垂 直延伸的透鏡旋轉中心線5 A以銳角0形成交又。 球心摇動體3 1係具備半球狀之杯狀部份;3丨a、及由 此杯狀部份3 1 a之底中心的外周面部份朝半徑方向之外方 突出的圓筒部份3 1 b,且在圓筒部份3 1 b以同軸狀態安裝 有呈旋轉自如之狀態的主軸4 b。又,凸緣3 1 c係從圓筒 春 α卩伤3 1 b之下端部在橫方向延伸,在此,搭載著主轴驅動 用之電動機32。 球心摇動體3 1之杯狀部份3 1 a係依形成在支持板33 之圓環狀内周面3 3 a而以可進行球心摇動的狀態被支持。 圓壞狀内周面33 a係以球心〇為球心的球面,而載於此圓 環狀内周面33 a的外周面31 d為球面的杯狀部份31a , 係能以球心〇為中心進行摇動。在本例中,於圓環狀内周 面3 3 a形成有壓縮空氣吹出孔或溝3 3 ^,在此,形成為透 • 過壓縮空氣供給路3 3 c進行壓縮空氣之供給。因此,杯狀 部份31a係被保持成從圓環狀内周面33 a上浮的狀態。因 而,可使球心摇動體31以球心〇為中心順暢地摇動。 球心摇動體31之下端係透過連桿接頭34及摇動幅度 調整單元35而被連結至電動機36之輸出軸。球心摇動體 3 1和連桿接頭34之連結點34 a係位在工具盤旋轉中心線 4A之延長線上,電動機36之旋轉中心線36八係始終被保 持成朝向球心〇的狀態。當一操作揺動幅度調整單元35之 調整旋鈕35a時,連結點34a和電動機%之旋轉中心線 13 1291908 ΜΑ的間隔係產生變化。因而可調整球心摇動體3i之摇動 運動的插動幅度。 其次,電動機36係由揺動角調整單元37所支持。揺 動角調整單元37具備配置在既固定的位置之弓形的凸輪 38此凸輪38係呈以球心0為中心的圓弧形狀。以沿著此 凸輪38可滑動的狀態安裝有支持構件39,在此安裝有電 動私;36。支持構件39上固定著螺帽4〇,而螺帽4〇被螺入 _ 進給螺桿41。進給螺桿41之端部係連結至操縱輪42。 當操縱輪42 —轉動時、支持構件39係沿著凸輪38移 動。亦即,由球心揺動體31所支持之工具盤主轴4b係以 球心0為中心而僅摇動既定量。因此,利用摇動角調整單 元37可變更工具盤4之旋轉中心線4A與垂直的透鏡旋轉 中心線5A所形成之角度0,亦即,可變更摇動中心線之 角度。 在此’各部份之驅動控制係由數值控制用之控制器5〇 • 所執行。又,控制器50係連接著輸入裝置51。可透過手 動操作輸入裝置51以進行將透鏡素材送出的動作,且形成 可執行切削量之設定等。 兹參照圖3以針對利用此構成的球心揺動型研磨盤1 而在透鏡素材W形成透鏡球面的粗研磨動作進行說明。 首先,有關工具盤4方面、是準備# 3〇〇〜# 6〇〇粒號, 例如是# 400粒號且集中度為5〇以上的金剛石粒(peUet) 加工成與目標的球面形狀一致者,並將其安裝在工具盤主 轴4 b。此時’工具盤4之球面研磨面的中心係位在該工 14 •1291908 具盤4之旋轉中心線上,且調整成與球心摇動體3丨之摇動 中心一致。其次,使透鏡素材W在不與工具盤4接觸的位 置及附保持於透鏡支架3。其次,利用手動操作來驅動伺 服馬達25以將透鏡素材W朝向工具盤4進行微調進給 (jog-fed)。當透鏡素材W—與工具盤4接觸時,透鏡主軸5 係停止下降。之後,只有水平支架21(工件進給台)會依微 調進給而下降。其結果為,透鏡主軸5及將其予以旋轉自 φ 如地支持之垂直保持筒9係對水平支架21相對上昇,而近 接感測1§ 27係檢出垂直保持筒9之上端9 a而切換成開啓。 在既確認近接感測器27已切換成開啓之後,暫時中止 微調進給。之後,將伺服馬達25之進給速度設定為超低速 並使水平支架21上昇。而在水平支架21 一上昇時,停止 中之透鏡主轴5及垂直保持筒9係相對地對近接感測器27 下降。其結果為,垂直保持筒的上端9 a離開近接感測器 27的檢出位置,近接感測器27再度返回關閉狀態。控制 φ 器50係將此切換成關閉狀態之瞬間的位置當作加工開始 位置加以記憶。 控制器50係由此加工開始位置加算加工裕度以設定 加工結束位置。又,對加工開始位置加算第丨切削量的份 量以設定速度變更點。如此、在設定了各點之後,當加工 開始指令一被輸入時,即開始工具盤4及既吸附固定在透 鏡支架3上之透鏡素材w的旋轉。再開始球心摇動體3丨之 摇動運動。 本例中係使工具盤4和透鏡素材w朝向同一方向並 15 1291908 =30〇〇r㈣的同—速度旋轉。之後,以快速進給將透鏡 素材W送出到加工開始位置。 、在既到達加工開始位置之後,將速度切換為第i切削 T度,再以此速度將透鏡素材w一邊送出—邊進行研磨。 圖3 ( a )係顯示著研磨開始時的狀態。 透鏡素材W僅被切削第1切削量且在到逹第丨切削位 置之後,亦即,在既到達圖3( b )所示那樣的切削狀態之 鲁後,開始球心摇動體31之摇動,且以比第丨切削速度還慢 的精加工速度將透鏡素材W 一邊送出一邊進行切削。其结 果為,透鏡素材W受到研磨而形成如圖3(c )所示球狀透鏡 面W a 〇 在確認了既到達加工結束位置時,係在停止球心摇動 體3 1的揺動後,使水平支架21上昇到上端位置。之後, 再停止工具盤4及透鏡素材W的旋轉。 若依據本例的粗研磨工程S T1,則可提高粗研磨工程 • 中的研磨精度,可將該粗研磨工程中之球面精度(△ h )維 持在對研磨工程的球面精度為一 〇·〇〇 3 mm以内。其結果 為,在下一個精研磨工程S T 2之切削裕度只需為每單面 20 # m以下就好。因此,在該精研磨工程s 丁 2中,可設 為利用膠合砂輪之單一研磨工程。藉此,可達成加工時間 縮短化及工程管理合理化。 【實施例】 表2係表示適用本發明在對球面透鏡研磨加工的場合 時之條件及結果的一例子的圖表。本例中、係將粗研磨工 16 1291908 程之切削裕度設為1 mm。經確認、係可改善粗研磨工程的 表面粗縫度(Rm a X)及球面精度(△ h),且在次一精研磨 工程的切削裕度只要15 // m就好。又,經確認後、其結果 為可將精研磨工程僅設定為一次,且加工時間只要20秒就 好。 相對地,在以往的透鏡研磨方法中,亦即,精研磨之 切削裕度為3 0〜5 0 // m,在包含有金屬結合砂輪的研磨工 程和膠合砂輪的研磨工程之二個工程的方法之場合,如表 2的最後一列所揭示記載般,雖然粗研磨及拋光的加工時 間與本例相同,但是精研磨工程花費的40秒為本例中之加 工時間的2倍。又,因為精研磨工程是由二個工程所構成, 所以需要花費將透鏡素材從一側的研磨盤移往他側的研磨 盤等之作業時間。且,與一個工程的場合相較之下,工程 管理上也變得複雜。 【表2】 被加工透鏡R : 5R 材質:Lakl3 本例 往例 工程 裕度 (單面) 使用工具 工具旋 轉數 (rpm) 加工時間 (秒) 加工時間 (秒) 粗研磨 1mm #400粒號之 金屬結合的金 剛石盤 3000 30 15 精研磨 15 #1500粒號之 金屬結合金剛 石盤 3000 20 20(金屬結合 磨石) 抛光 10//m 氨基甲酸乙酯 薄片氧化鈽 2500 40 40(膠合磨石) 17 12919〇8 如同以上所說明那樣,若採用 本發明之研磨加 工 方 法, 則以精研磨工程之切削裕度為 約20// m以下就 可 解決 的方式,可改善粗研磨加工之 表面 粗褪度、球面精 度 〇 因 此, 能以單一工程進行精研磨 5戶斤 以可縮短整體的 研 磨 加 工時間,又可使工程管理合理 化。 【圖式簡單說明】 【圖1】顯示本發明之球〗 S玻 璃透鏡的研磨加 工 工 程 之工程圖。 【圖2】顯示運用在粗研〗 ®所 適合之球心摇動 型 研 磨 盤的概略構成圖。 【圖3】顯示圖2之研磨: 盤的 研磨動作之說明 圖 〇 【主要元件符號說明】 1 球心摇動型研磨盤 3 透鏡支架 3 a 保持面 4 工具盤 4 a 球面研磨面 4 A 工具盤之旋轉 中 心 線 4b 主轴 5 透鏡主軸 5 A 透鏡旋轉中心線 5 a 吸引通路 6 旋轉接頭 7 空氣過濾器 8 真空產生器 9 垂直保持筒 9 a 上端 10 ,11 轴承 12 透鏡軸旋轉用電動機 13 汽壓紅 14 支持圓筒 20 工件昇降機構 21 水平支架 22 垂直圓筒部 23 進給螺桿 24 螺帽 18 1291908 26 垂直 線 性 導引件 31 球心 摇 動 體 31 b 圓 筒 部 份 31 d 外 周 面 33 支持板 25 伺服馬達 27 近接感測器 31 a 杯狀部份 31c 凸緣 32 電動機 33 a 圓樣狀内周面 33 c 壓縮空氣供給路 34 a 連結點 35 a 調整旋鈕 36 A 旋轉中心線 38 凸輪 、 40 螺帽 42 操縱輪 51 輸入裝置 〇 球心 33b 壓縮空氣吹出孔或溝 34 連桿接頭 35 摇動幅度調整單元 36 電動機 37 摇動角調整單元 39 支持構件 41 進給螺桿 50 控制器 W 透鏡素材 Θ 銳角 191291908 Fig. 1 is a structural view showing a method of grinding an optical spherical lens of this example. As shown in the figure, the grinding processing method in this example is composed of three processes: rough grinding process S T1, fine grinding engineering s 2 and polishing engineering S 3 . The rough grinding process (C G project) S T 1 is a process of forming a thick lens spherical surface by using a diamond tool (rough grinding tool disk) to polish the lens material of the object to be processed. The fine grinding engineering s τ 2 is a work that uses a diamond tool of a finer number than a rough grinding tool to finely grind the formed spherical surface of the lens, and the grinding machine to be used as a single grinding project is not limited. For the center of the ball, it is also possible to use a general cup-shaped grinding wheel. Also, in the case of a diamond tool, a gluing wheel can be used. Secondly, the polishing project S 3 is used to grind the spherical surface of the lens after polishing. In this process, for example, a urethane sheet is used, and a grinding liquid containing cerium oxide or the like is used for the spherical grinding. (Rough Grinding Process) In the rough grinding process S T1 of this example, spherical surfaces are formed on the lens material by the conditions (1) to (3). (1) The rough grinding of the lens material was carried out using a spherical rocking type grinding disc, and the configuration shown in Fig. 2 was employed as a spherical core grinding apparatus. (7) In the rough grinding tool, the diamond tool is a #300~# 600 grain (average particle size 6〇em~30//m) and a diamond tool with a concentration of 5〇 or more. (3) The number of rotations of the rough grinding tool disc is set to 3000 rpm. (Ball-heart-type grinding disc) 2500 rpm to 35 rpm, for example, the schematic configuration and operation of the spherical-wave-type grinding disc 1 in this example are as shown in 10 1291908, and the polished surface is spherical. The coarse grinding tool disk rotates around the center line of rotation of the spherical center of the spherical surface, and the ball is moved in such a manner that the spherical center is the conical surface with the center of the circle as the apex. The lens material is rotated at the same speed in the same direction as the rough grinding tool disk, and the grinding surface of the coarse grinding tool disk in the rotation and the center of the ball is pressed toward the center of the ball through the rough grinding tool disk, and In this state, the lens material is subjected to a spherical polishing process while the lens material is fed in the same direction, and the rough grinding tool disk is supported by the spherical core interposer in a rotatable state, and the ball is moved. The outer peripheral surface is formed into a spherical surface, and the outer peripheral surface is supported by a spherical shape centered on the center of the grinding surface of the rough grinding tool disk, and compressed air is supplied between the outer peripheral surface and the supporting surface. The upper core, the A ^ & while maintaining the floating state while the ball core body is moving the ball. Referring to FIG. 2 in detail, the ball-and-rock type grinding disc of this embodiment has a lens holder Z for holding a lens material w to be processed, and a spherical surface grinding for a lens held on the lens holder 3. Tool tray 4 of face 4a. The 仃grinding lens yoke 3 is fixed to the lower end of the vertical lens main shaft 5 in such a manner that the holding surface 3a thereof is kept flat downward. The lens main body J is formed to extend in the axial direction thereof. The suction passage $ a is connected to the center opening of the holding surface 3a of the lens holder 3, and the upper end is connected to the suction generator of the vacuum generator by the rotary joint 6 and the air filter 7. The vacuum generator is used for hunting. 8 is true for the suction path h: the lens material boundary is adsorbed and held by the holding surface of the lens holder 3. 11 1291908 The mirror main shaft 5 is disposed in a coaxial state at the upper end of the cylindrical straight holding cylinder 9 The inner portion is supported by the vertical holding cylinder 9 in a state in which the upper and lower pairs of bearings U are freely rotatable. Further, the lens main shaft 5 is formed as a motor for rotating the lens shaft, and the lens rotation center is a vertical center line. The line 5A is rotationally driven at the center. The upper end of the vertical holding cylinder 9 is connected to the steam cylinder 3, and the steam pressure & cylinder 13 is broken and fixed inside the support cylinder 14 whose upper end is blocked. Straight to keep the same as the 9 series The lower side is pressed by the A cylinder 13 by a predetermined force. The lens spindle 5 is lifted and lowered by the workpiece feeding mechanism 2A. The workpiece feeding mechanism 20 is provided with a horizontal bracket 21, and is mounted on the vertical circle of the horizontal bracket 前. The tubular portion 22 is inserted into the vertical holding cylinder 9 in a coaxial state, and the supporting cylinder 14 is secured; the horizontal bracket 21 is mounted on the horizontal bracket 21. The horizontal bracket (1) is provided along with the lifting screw (four) of the feed screw 23, the nut 24 and the motor 25 The vertical linear guide 26 is lifted and lowered. Here, the support cylinder of the lens main shaft 5 is supported by the > 丄 cylinder 13 and is attached with a proximity sensor 27 for detecting the verticality of the skirt on the inner side thereof. The upper end 9a of the cartridge 9 is held. Typically, the proximity sensor 27 is in a closed state. When the vertical holding cylinder 9 is relatively raised against the support cylinder 14, the upper end of the basin is detected by the proximity sensor 27, and the sensing is performed. The output system is switched to be turned on. Next, the tool tray 4 disposed under the lens holder 3 is configured such that the spherical core of the spherical grinding surface 43 is positioned on the extension line of the lens rotation center line 5A on the lens holder 3 side. The spindle is integrated into this tool tray. The back surface of 4 'this spindle 4b is supported by the ball 12 1291908 core body 3 1 in a rotatable state. Here, the spindle 4 b is supported by the spherical body 3 1 to make the tool disk 4 The center line of rotation 4 A is formed at an acute angle 0 between the center of the circle and the vertically extending lens center line 5 A. The ball core body 3 1 has a hemispherical cup-shaped portion; 3丨a, and thereby a cylindrical portion 3 1 b protruding outward in the radial direction from the outer peripheral surface portion of the center of the bottom portion of the cup portion 3 1 a, and the cylindrical portion 3 1 b is rotatably mounted in a coaxial state Further, the flange 3 1 c extends in the lateral direction from the lower end of the cylinder spring α 3 1 b. Here, the motor 32 for spindle drive is mounted. The cup-shaped portion 3 1 a of the spherical core body 3 1 is supported by the annular inner peripheral surface 3 3 a of the support plate 33 in a state in which the center of the ball can be shaken. The rounded inner peripheral surface 33a is a spherical surface having a spherical center as a spherical center, and the outer peripheral surface 31d of the annular inner peripheral surface 33a is a spherical cup-shaped portion 31a, which is a spherical core Shake for the center. In this example, a compressed air blowing hole or groove 3 3 ^ is formed in the annular inner peripheral surface 3 3 a. Here, the compressed air supply path 3 3 c is formed to supply compressed air. Therefore, the cup portion 31a is held in a state of being floated from the annular inner peripheral surface 33a. Therefore, the spherical body 37 can be smoothly shaken around the center of the ball. The lower end of the spherical rocking body 31 is coupled to the output shaft of the motor 36 through the link joint 34 and the rocking amplitude adjusting unit 35. The joint point 34a of the ball core 3 1 and the link joint 34 is positioned on the extension line of the tool center rotation center line 4A, and the rotation center line 36 of the motor 36 is always maintained in a state of being oriented toward the center of the ball. When the adjustment knob 35a of the sway amplitude adjustment unit 35 is operated, the interval between the joint point 34a and the rotation center line 13 1291908 of the motor % changes. Therefore, the interpolation range of the shaking motion of the spherical body 3i can be adjusted. Next, the motor 36 is supported by the yaw angle adjustment unit 37. The yaw angle adjusting unit 37 includes an arcuate cam 38 disposed at a fixed position. The cam 38 has an arc shape centered on the center 0 of the center. A support member 39 is mounted in a state slidable along the cam 38, and an electric motor 36 is mounted therein. A nut 4 is fixed to the support member 39, and the nut 4 is screwed into the feed screw 41. The end of the feed screw 41 is coupled to the steering wheel 42. When the steering wheel 42 is rotated, the support member 39 is moved along the cam 38. That is, the tool spindle main shaft 4b supported by the spherical core body 31 is shaken by only a predetermined amount centering on the center of the center 0. Therefore, the angle 0 formed by the rotation center line 4A of the tool tray 4 and the vertical lens rotation center line 5A can be changed by the swing angle adjusting unit 37, that is, the angle of the shaking center line can be changed. The drive control of each part is performed by the controller 5 for numerical control. Further, the controller 50 is connected to the input device 51. The input device 51 can be manually operated to perform the operation of sending the lens material, and the setting of the executable cutting amount can be formed. A rough polishing operation for forming a lens spherical surface on the lens material W with respect to the spherical core-type grinding disk 1 having such a configuration will be described with reference to FIG. First, regarding the tool tray 4, it is prepared to #3〇〇~#6〇〇,, for example, a #400 grain number and a diamond particle (peUet) having a concentration of 5 or more is processed to match the spherical shape of the target. And install it on the tool spindle 4 b. At this time, the center of the spherical grinding surface of the tool disk 4 is located on the center line of rotation of the disk 4 and is adjusted to coincide with the center of the shaking of the spherical body 3丨. Next, the lens material W is held and held by the lens holder 3 at a position where it does not come into contact with the tool tray 4. Next, the servo motor 25 is driven by manual operation to fine-tune the lens material W toward the tool tray 4. When the lens material W is in contact with the tool tray 4, the lens spindle 5 stops falling. After that, only the horizontal bracket 21 (workpiece feed table) will descend according to the fine feed. As a result, the lens main shaft 5 and the vertical holding cylinder 9 which is rotated from φ such as the ground support the horizontal bracket 21, and the proximity sensing 1 § 27 detects the upper end 9 a of the vertical holding cylinder 9 and switches. Opened. The trimming feed is temporarily suspended after both the proximity sensor 27 has been switched to be turned on. Thereafter, the feed speed of the servo motor 25 is set to an ultra-low speed and the horizontal bracket 21 is raised. When the horizontal bracket 21 is raised, the lens main shaft 5 and the vertical holding cylinder 9 which are stopped are relatively lowered toward the proximity sensor 27. As a result, the upper end 9a of the vertical holding cylinder is separated from the detected position of the proximity sensor 27, and the proximity sensor 27 is returned to the closed state again. The control φ 50 is used to memorize the position at which the switch is turned off as the machining start position. The controller 50 adds the machining margin to the machining start position to set the machining end position. Further, the weight of the third cutting amount is added to the machining start position to set the speed change point. Thus, after the respective points are set, when the machining start command is input, the tool disk 4 and the rotation of the lens material w fixed to the lens holder 3 are started. Then start the shaking motion of the ball. In this example, the tool disk 4 and the lens material w are rotated in the same direction and at the same speed of 15 1291908 = 30 〇〇 r (four). Thereafter, the lens material W is sent to the processing start position by rapid traverse. After the machining start position is reached, the speed is switched to the i-th cutting T degree, and the lens material w is sent out at the same speed. Fig. 3 (a) shows the state at the start of the polishing. The lens material W is only cut by the first cutting amount and after the cutting position to the second cutting position, that is, after the cutting state as shown in Fig. 3(b) is reached, the shaking of the spherical body shaking body 31 is started. The lens material W is sent out while being cut at a finishing speed slower than the second cutting speed. As a result, the lens material W is polished to form a spherical lens surface W a as shown in FIG. 3( c ), and when it is confirmed that the machining end position is reached, the movement of the spherical body 3 1 is stopped. The horizontal bracket 21 is raised to the upper end position. Thereafter, the rotation of the tool tray 4 and the lens material W is stopped. According to the rough grinding engineering S T1 of this example, the grinding precision in the rough grinding engineering can be improved, and the spherical precision (Δ h ) in the rough grinding engineering can be maintained at a spherical precision of the grinding engineering. 〇3 mm or less. As a result, the cutting margin of the next fine grinding engineering S T 2 is preferably less than 20 # m per side. Therefore, in the fine grinding process s 2, a single grinding process using a gluing wheel can be used. In this way, the processing time can be shortened and the project management can be rationalized. [Embodiment] Table 2 is a graph showing an example of the conditions and results when the present invention is applied to the polishing of a spherical lens. In this example, the cutting allowance of the rough grinder 16 1291908 is set to 1 mm. It has been confirmed that the rough surface roughness (Rm a X) and the spherical surface precision (Δ h) of the rough grinding engineering can be improved, and the cutting allowance of the next fine grinding engineering is as long as 15 // m. Further, after the confirmation, the result is that the finish polishing process can be set only once, and the processing time is preferably 20 seconds. In contrast, in the conventional lens polishing method, that is, the cutting allowance for fine grinding is 30 to 5 0 // m, in the two projects of the grinding process including the metal-bonded grinding wheel and the grinding process of the gluing wheel In the case of the method, as disclosed in the last column of Table 2, although the processing time for rough grinding and polishing is the same as in this example, the 40 seconds spent on the fine grinding process is twice the processing time in this example. Further, since the finish polishing process is composed of two engineering units, it takes a long time to move the lens material from the one side polishing disk to the other side of the polishing disk. Moreover, compared with the case of a project, engineering management has become complicated. [Table 2] Machined lens R: 5R Material: Lakl3 This example is used for project margin (single-sided). Tool tool rotation number (rpm) Processing time (seconds) Processing time (seconds) Rough grinding 1mm #400 grain number Metal bonded diamond disc 3000 30 15 Fine grinding 15 #1500 grain metal bonded diamond disc 3000 20 20 (metal bonded grindstone) Polished 10//m Urethane flakes ruthenium oxide 2500 40 40 (glued grindstone) 17 12919〇8 As described above, if the polishing method of the present invention is employed, the surface roughness of the rough grinding process can be improved by a method in which the cutting allowance of the finish polishing process is about 20//m or less. Sphere accuracy 〇 Therefore, it is possible to finely grind 5 jins in a single project to shorten the overall grinding processing time and rationalize engineering management. BRIEF DESCRIPTION OF THE DRAWINGS [Fig. 1] A drawing showing a grinding process of a spherical glass lens of the present invention. [Fig. 2] shows a schematic configuration diagram of a spherical rocking type grinding disc suitable for use in Rough Research. Fig. 3 shows the grinding of Fig. 2: Explanation of the grinding operation of the disk 〇 [Description of main components] 1 Ball-rocking type grinding disc 3 Lens holder 3 a Holding surface 4 Tool tray 4 a Spherical grinding surface 4 A Tool Rotating center line 4b Spindle 5 Lens main shaft 5 A Lens rotation center line 5 a Suction path 6 Rotary joint 7 Air filter 8 Vacuum generator 9 Vertical holding cylinder 9 a Upper end 10, 11 Bearing 12 Lens shaft rotating motor 13 Steam Pressing red 14 Supporting cylinder 20 Workpiece lifting mechanism 21 Horizontal bracket 22 Vertical cylindrical part 23 Feeding screw 24 Nut 18 1291908 26 Vertical linear guide 31 Centering body 31 b Cylinder part 31 d Outer peripheral surface 33 Support plate 25 Servo motor 27 Proximity sensor 31 a Cup portion 31c Flange 32 Motor 33 a Circular inner peripheral surface 33 c Compressed air supply path 34 a Connection point 35 a Adjustment knob 36 A Rotation center line 38 Cam , 40 nut 42 steering wheel 51 input device 〇 ball core 33b compressed air blowing hole or groove 34 connecting rod 35 swing amplitude adjustment unit 36 of the motor 37 swing angle adjusting unit 39 of the feed screw supporting member 41 controller 50 W lens material 19 at an acute angle Θ