TWI281509B - Metal vaporizing heating element and metal vaporizing method - Google Patents

Metal vaporizing heating element and metal vaporizing method Download PDF

Info

Publication number
TWI281509B
TWI281509B TW093135673A TW93135673A TWI281509B TW I281509 B TWI281509 B TW I281509B TW 093135673 A TW093135673 A TW 093135673A TW 93135673 A TW93135673 A TW 93135673A TW I281509 B TWI281509 B TW I281509B
Authority
TW
Taiwan
Prior art keywords
groove
metal
heating element
grooves
sintered body
Prior art date
Application number
TW093135673A
Other languages
Chinese (zh)
Other versions
TW200519221A (en
Inventor
Kouki Ikarashi
Akira Miyai
Shoujiro Watanabe
Junichi Susaki
Kentaro Iwamoto
Original Assignee
Denki Kagaku Kogyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004309053A external-priority patent/JP2006118017A/en
Application filed by Denki Kagaku Kogyo Kk filed Critical Denki Kagaku Kogyo Kk
Publication of TW200519221A publication Critical patent/TW200519221A/en
Application granted granted Critical
Publication of TWI281509B publication Critical patent/TWI281509B/en

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Ceramic Products (AREA)

Abstract

A metal vaporizing boat capable of improving wettability to molten metal to attain a long service life, and a metal vaporizing method using it. A metal vaporizing heating element characterized by comprising one or two or more grooves formed, in a direction not parallel to a conduction direction, in the upper surface of a ceramic sintered body containing titanium diboride (TiB2) and/or zirconium diboride (ZrB2) and boron nitride (BN). The groove(s) have a width of 0.1 to 1.5 mm, a depth of 0.03 to 1 mm, and a length above 1 mm. It is preferable, in this case, that a direction not parallel to a conduction direction crosses a conduction direction at 20 to 160 degrees the ceramic sintered body has a cavity in the bottom surface of which grooves are formed, and desired patterns are drawn on the upper surface of the ceramic sintered body and/or the upper surface of the cavity by a plurality of grooves. In addition, a metal vaporizing method characterized by heating this metal vaporizing heating element in vacuum with part or all of its grooves kept in contact with metal.

Description

1281509 ⑴ 九、發明說明 【發明所屬之技術領域】 本發明是關於金屬蒸發發熱體及金屬的蒸發方法。 【先前技術】 傳統上所熟知的金屬蒸發發熱體(以下稱爲蒸發 皿),是在譬如以氮化硼(BN)、氮化銘(A1N)及二硼 化鈦(TiB2 )爲主成份的導電性陶瓷燒結體的上表面形成 凹窩(日本特公昭53-20256號公報)。其市售品譬如曰 本電氣化學工業社所製造的「BN〕&gt;米シ卜EC」(商 品名)° 蒸發皿的使用方法,是利用夾子使蒸發皿的兩端連接 於電極以施加電壓促其發熱,進而使放入凹窩內鋁線材之 類的金屬形成融熔·蒸發後獲得蒸鍍膜,再使其冷卻。這 樣的操作將重覆的進行,由於在執行的過程中承受冷熱循 環及融熔金屬的侵蝕而縮短其使用壽命。 蒸發皿的壽命,與融熔金屬對蒸發皿的可濕性 (wettability )大有關係,一旦可濕性不佳,將使融熔金 屬形成局部化,不僅無法獲得蒸發皿原本的蒸發效率,更 加速融熔金屬對蒸發皿的腐蝕速度,進而縮短蒸發皿的壽 命。因此,爲了確保蒸發皿的可濕性,乃就照射雷射(曰 本特開2 000-93 7 8 8C14公報)之類的各種方法進行硏究, 卻也無法達成充分的長壽命化。此外,照射雷射則需要大 量的裝置與設備。 (3) 1281509 蒸發發熱體,其中在凹窩的底面及/或陶瓷燒結體的上表 面,由上述的溝形成花紋。 (8) 如上述(7)所記載的金屬蒸發發熱體,其中花 紋的佔有面積率,具有凹窩者爲凹窩底面積的3 0%以上, 不具凹窩者爲陶瓷燒結體之上表面的3 0%以上。 (9) 如上述(8)所記載的金屬蒸發發熱體,其中花 紋的佔有面積率爲50%以上。 (10) 如上述(8)所記載的金屬蒸發發熱體,其中 花紋的佔有面積率爲8 〇 %以上。 (1 1 )如上述(1 )〜(1 〇 )之其中任一項所記載的金 屬蒸發發熱體,其中在一個溝內、或不同的溝之間,溝的 深度是設成明顯的差異。 (12)如上述(11)所記載的金屬蒸發發熱體,其中 溝之深度的明顯差異爲1 〇%以上。 (1 3 )如上述(1 1 )或(1 2 )所記載的金屬蒸發發熱 體,其中在複數個溝當中,具有最深部的溝,是設在陶瓷 燒結體之長軸方向的中心部或附近。 (1 4 )如上述(1 1 )〜(1 3 )之其中任一項所記載的 金屬蒸發發熱體’其中在複數個溝當中,具有最淺部的 溝,是設在陶瓷燒結體之長軸方向的一端或兩端。 (1 5 )如上述(1 1 )〜(1 4 )之其中任一項所記載的 金屬蒸發發熱體,其中(溝之最深部的尺寸一溝之最 淺部的尺寸)爲〇.〇〇5mm以上。 (16) —種金屬的蒸發方法,是採用上述(1)〜 (4) (4)1281509 (10)之其中任一項所記載的金屬蒸發發熱體,並在令金 屬接觸於該溝的局部或全部的狀態下,於真空中加熱。 【實施方式】 本發明所採用之陶瓷燒結體的成分,是至少具有二硼 化鈦及/或二硼化锆的導電物質、和氮化硼的絕緣物質作 爲必需成份。可含有適量之氮化鈦、碳化矽、碳化鉻之類 的導電物質及氮化鋁、氮化矽、氧化鋁、氧化矽、氧化鈦 之類的絕緣物質。雖然上述的陶瓷燒結體是以二硼化鈦及 /或二硼化銷、和氮化硼作爲主成分,但最好是以二硼化 鈦及/或二硼化鉻、和氮化硼、及氮化鋁作爲主成分。其 中又以含有二硼化鈦及/或二硼化鉻30〜60% (倘若沒有特 別的說明,以下的%係爲質量%之意)、和氮化硼70〜40 % ,或二硼化鈦及/或二硼化鉻35〜55% 、和氮化硼25〜40 % 、及氮化銘5〜40%最爲合適。一旦具有上述的組合成 份,可極輕易地執行陶瓷燒結體的加工。 此外,陶瓷燒結體的相對密度最好爲90%以上,特別 是9 3 %以上更合適。一旦相對密度不滿9 0 % ,融熔金屬 將侵入陶瓷燒結體的氣孔並促進侵蝕的產生。而實現90% 以上之相對密度的方法,在不超出上述組成之1 〇%的範圍 內可藉由添加後述的燒結添加劑輕易達成。此外’陶瓷燒 結體的相對密度,是藉由將燒結體加工成特定尺寸的長方 體,並將根據其外部尺寸及質量所求得的實際密度除以理 論密度的方式來獲得。 (5) 1281509 本發明所採用的陶瓷燒結體,可藉由當含有二硼化鈦 及/或二硼化鉻之導電物質、和氮化硼之絕緣物質的混合 原料粉末成形後利用燒結的方式製造。 原料中的二硼化鈦粉末,可藉由採取金屬鈦的直接反 應、或氧化鈦等氧化物之還原反應等任何一種製造方法所 製得。其平均粒子徑最好爲5〜25 // m。 而氮化硼粉末,最好爲六方晶體氮化硼或非晶質氮化 硼 '或者上述兩者的混合物。氮化硼粉末可藉由:在氨氣 的環境中將硼酸與尿素的混合物加熱到8 0 0 °C以上、或將 雙氰胺等含氮的化合物加熱到130(rc以上的方式製造。除 此之外在氮氣環境中將氮化硼粉末加熱至高溫以提高結晶 性的方式亦可。氮化硼粉末平均粒子徑爲1 0 μιη以下,其 中又以5μηι以下最佳。 氮化鋁粉末可採用直接氮化法、或鋁還原法等方式所 製造者,其平均粒子徑爲ΙΟμιη以下,其中又以7μιη以下 最佳。 燒結添加劑,是採用對鹼土類金屬氧化物、稀土類元 素氧化物加熱後,從上述氧化物所形成的化合物群中選出 一種或兩種以上的粉末。具體來說,譬如藉由對CaO、 MgO、SrO、BaO、Y2〇3、L a2 Ο 3、C e 2 Ο 3、P r 2 Ο 3、N d 2 Ο 3、 P m 2 〇 3 ' S m 2 〇 3 &quot; E112O3、G d2 〇 3 N T b 2 0 3 &quot; D y 2 0 3 &quot; H o 2 〇 3 &quot; Er203、Tm203、Yb2 03、Lu203 等;甚至 Ca(OH)2 之類的 水酸化合物;或MgC03之類的碳酸鹽加熱,而由上述氧 化物所形成的化合物。燒結添加劑的平均粒子徑爲5 // m (6) 1281509 以下,其中又以1 μ m以下最佳。 含有上述成份的混合原料粉末,最好是形成頼粒 形再施以燒結。列舉一個成形·燒結的條件如下:在 0·5〜200MPa的單軸加壓或冷間等向壓力加壓後 1 8 0 0〜2 2 0 0 °C的溫度中執行常壓燒結或1 μ P a以下的 燒結。而更佳條件,譬如在1 8 0 0〜2 2 0 0 t:的溫度內, 1〜lOOMPa的熱壓或熱間等向壓力加壓。 燒結最好是收納於石墨製容器、氮化硼製容器、 部襯有氮化硼的容器內執行。熱壓法最好是採用石墨 化硼製的襯套、或者內襯有氮化硼的襯套進行燒結。 在由陶瓷燒結體製造蒸發皿的過程中,譬如可利 械加工之類的方式來加工成適當的形狀。此外,本發 蒸發皿,可在陶瓷燒結體上表面的略中央部設置凹窩 一個蒸發皿形狀的範例,全體尺寸爲縱100〜2 00mm (橫)25〜35mm、厚8〜12mm的板狀體。當設有凹窩時 嵩的比例爲縱90〜120mm、寬(橫)20〜32mm、深 〇.5〜 的長方形。 本發明的蒸發皿,是在陶瓷燒結體的上表面,或 具有凹窩時在凹窩的底面及/或陶瓷燒結體的上表面 不平行於通電方向(也就是電極與電極連結的方向) 向上具有1或2條以上的溝,亦即如第1圖所示,具 等同於陶瓷燒結體長軸方向之通電方向形成特定角度 1或2條以上的溝。藉此可更進一步抑制平行於通電 之方向上的濕潤擴張性,並助長朝垂直於通電方向的 後成 利用 ,於 低壓 執行 或內 或氮 用機 明的 。舉 、寬 ,凹 2mm 著當 ,於 的方 有對 α的 方向 濕潤 (7) 1281509 擴張性,而大幅提升可濕性。 不平行於通電方向的最佳角度α如第1〜1 〇圖所 最好是對通電方向形成20〜160度,其中又以60〜120 佳。而溝最好是形成寬度〇·1〜1.5mm、深度〇.〇3〜li 長度1mm以上,其中又以剖面呈寬度0.3 〜1 mm ' 0 · 〇 5〜〇 · 2 m m、長度1 〇 m m以上之矩形的線形更佳。溝 量’雖然只有1個也能改善對融熔金屬的可濕性,但 爲2個以上,特別是1 〇個以上,3 0個以上更佳。當 2個以上的溝時,溝的間隔最好爲2mm以下,其中 〇·5〜1.5mm更佳。 在上述的狀態中,至少以一個交會點使溝彼此形 錯,但最好形成與溝數相同以上的交會點,或藉由溝 瓷燒結體的上表面及/或凹窩的底面描繪成譬如:圓 橢圓形、菱形、矩形、月形、格子、放射狀等各種 (平面花紋)。花紋的佔有面積率,當具有凹窩時相 凹窩的底面積,或不具凹窩時相對於陶瓷燒結體的上 面積,最好分別爲30% ,特別是50%以上其中又以 以上更佳。而上述的花紋佔有面積率,其定義爲將位 成花紋最外側的溝所包圍的面積除以陶瓷燒結體上表 積或凹窩底面積之値的百分率。當以溝的佔有面積率 代花紋的佔有面積率時,溝在陶瓷燒結體的上表面面 凹窩底面面積中的佔有面積率最好爲10%以上,特 3 0%以上其中又以50%以上更佳。 此外,本發明中設於陶瓷燒結體的溝,其中在一 示, 度更 am、 深度 的數 最好 具有 又以 成交 在陶 形、 花紋 對於 表面 8 0% 於形 面面 來取 積或 別是 個溝 (8) 1281509 內、或不同的溝之間’溝的涂度最好是設成明顯的差觀。 藉此可更進一步助長融熔金屬的可濕性。在本發明中,溝 。 深度的明顯差異(% )是以後述的數學式表示。此外,在 以下的數學式中,可採用同一個溝、或亦可採用不同的溝 來量測溝的最深部深度及最淺部深度。 (溝的最深部的深度一溝的最淺部深度)X1 〇〇 (溝的最深部深@ · 在本發明中由上述數學式所求得之溝深度的明顯差 異,最好爲10%以上、20%以上更好 '其中又以3〇%以 上最佳。此外,與上述數學式無關、或與上述數學式有關 之溝的深度,(溝的最深部深度-溝的最淺部深度)最好 爲0.00 5mm以上,其中又以〇. 1mm以上更佳。 在本發明中溝深度的明顯差異的設置方法,可藉由 (a )於複數的溝當中’至少於其中一個溝設置溝深度的 · 明顯差異、(b )在2個以上的溝之間,設置溝深度的明 顯差異、或(c )組合上述2種方法來執行。 在上述(a )方法的場合中,一個溝的最深部是位於 - 的長軸方向上,最好是位於長度1 〇〜8 〇 %的中央部分,其 … 中又以位於長度4 0〜6 0 %的中央部分更佳,而最淺部則是 設於長軸方向的末端部分較合適。 在上述(b )方法的場合中’用來重測「溝最深部」 的溝及「溝最淺部」的溝可爲同一個溝、或亦可爲不同的 -12- (9) 1281509 溝。此外,可具有複數條彼此深度不同但每一條溝 深度一致的溝、或如(a )所述於複數個溝中至少 個深度不一致的溝。而在上述(c )方法的場合中 具有一致深度的溝與深度不一致的溝所構成的樣態 此外,在上述(b )或(c )的場合中,深度 (包含具有最深部的溝)及深度小的溝(包含具有 的溝)’可自由地採用譬如依序錯開的設置、相隔 上的設置、亂序設置等方式來排列。但是,深度 (包含具有最深部的溝)最好是設在陶瓷燒結體之 向上的中心部、或設於該中心部的附近。所謂陶瓷 之長軸方向上的中心部或該中心部的附近,最好是 結體全長之 2 0〜8 0 %的中央領域,3 0〜7 0 %的中央 好,其中又以4 0〜6 0 %的中央領域最佳。在上述中 以外的末端領域,最好設有深度較前述深度大的溝 具有最淺部的溝)更淺的溝。特別是在陶瓷燒結體 方向的一端或兩端領域,最末端的溝最好爲溝的最; 在本發明中,最好是由複數個寬0.1〜1.5 mm、 以上、伸0·03〜1.0mm的溝所構成,溝深度的明顯 1 〇 %以上,且(溝的最深部深度一溝的最淺部深 0.005mm 以上。 本發明中位於陶瓷燒結體上之溝的加工,可 如:機械加工、噴砂、水刀等方式進行。 本發明的蒸發皿,可藉由溝的形成來抑制融熔 平行於通電方向之方向上的可濕性。據此,相較於 本身之 具有1 ,是由 〇 大的溝 最淺部 2個以 大的溝 長軸方 燒結體 陶瓷燒 領域更 央領域 (包含 之長軸 _部。 R 1mm 差異爲 度)爲 藉由譬 金屬在 傳統不 (10) 1281509 具溝的蒸發皿’可顯著地降低融熔金屬抵達電極的情形, 而可達成金屬蒸發的安定化及高效率化。 傳統的蒸發皿,雖然爲了防止鋁之類的融熔金屬從側 面灑落而形成凹窩,但在本發明中所實施的溝,其尺寸與 功能是不同於傳統的蒸發皿。據此,在本發明中凹寓並非 是必須的,當具有凹窩時,溝或由溝所形的花紋最好至少 形成於凹窩的底部。而本發明之其中一種蒸發皿的斜視圖 係如第1〜1 0圖所示。 第1圖的範例是根據實施例1所製造,第2圖的範例 是根據實施例3所製造,第3圖的範例是根據實施例4所 製造’第4圖的範例是根據實施例5所製造。根據上述的 任一種溝都將形成花紋,而花紋的佔有面積率,相對於第 1、2圖中凹窩的底面積分別爲64% 、76% ,相對於第3、 4圖中陶瓷燒結體的上表面面積則分別爲39% 、55% 。 第5圖所顯示的範例,是利用機械加工的方式將5 0 條最大長度爲 24mm、寬 1mm、深度 〇.15mm的溝,以 1 mm的間隔並變更其長度的方式,在凹窩的底面形成垂直 於通電方向的橢圓形花紋。花紋的佔有面積率爲凹窩底面 積的5 0 % 。 第6圖所顯示的範例,是利用機械加工的方式將44 條寬1mm、伸〇.15mm的溝,以1mm的間隔,在凹窩的底 面形成與通電方向呈45度或1 3 5度的〈字形。花紋的佔 有面積率,爲凹窩底面積的66% 。 第7圖所顯示的範例’是利用機械加工將5 0條寬 (11) (11)1281509 1 m m、深0 · 1 5 m m的溝,以1 m m的間隔,於凹萬的底面形 成與通電方向呈9 0度或1 8 0度的格子狀。花紋的佔有面 積率爲凹窩底面積的60% 。 第8圖所顯示的範例,是利用機械加工將2 0條寬 1mm、深〇. 1 5mm的溝,在凹窩底面形成從蒸發皿中心部 朝蒸發皿端部放射的花紋。花紋的佔有面積率爲凹窩底面 積的6 1 % 。 第9圖所顯示的範例,是利用機械加工將60條長 20mm、寬1mm、深0.15mm的溝,對通電方向形成90度 並以1 · 5 m m的間隔,在凹窩的底面及凹窩以外的蒸發皿上 表面形成花紋。花紋的佔有面積率,對凹窩底面積爲7 7 % ,對陶瓷燒結體的上表面面積爲6 7 % 。 第1 〇圖所顯示的範例,是對通電方向形成90度並以 1.5mm的間隔,在陶瓷燒結體的上表面形成 60條寬 1mm、深0.15mm的溝(於兩端部的長度爲27mm,於中間 部的長度爲23mm,於中央部的長度爲19mm),且在並行 於通電方向的方向上,分別在兩側緣部形成1條寬1 mm、 深 0 · 1 5 m m、長1 3 0 m m的溝,並在其內側中央部形成寬 1mm、深〇.15mm、長65mm的溝。花紋的佔有面積率爲陶 瓷燒結體上表面面積的8 9 % 。 本發明之金屬的黑發方法’是提供A1線材之類的金 屬使其接觸本發明中蒸發皿之溝的局部或全部(當溝的數 量爲1條時,包含該溝局部的場合)後加熱,並一邊使融 熔金屬與溝形成接觸一邊持續加熱。據此,可於對象物質 (12) 1281509 上形成金屬蒸鍍膜。真空加熱的其中一個條件’譬如真空 度最好爲lxl〇d〜lxl〇_3Pa,溫度最好爲1 400〜1 600°c。 實施例 實施例1 將由4 5質量%的二硼化鈦粉末(平均粒徑1 2 μ m ) 、30質量%的氮化硼粉末(平均粒徑0.7//m)、及1281509 (1) Description of the Invention [Technical Field] The present invention relates to a method for evaporating a metal evaporation heating element and a metal. [Prior Art] A metal evaporation heating element (hereinafter referred to as an evaporating dish) which is conventionally known is mainly composed of boron nitride (BN), nitriding (A1N) and titanium diboride (TiB2). The upper surface of the conductive ceramic sintered body is formed with a dimple (Japanese Patent Publication No. Sho 53-20256). The commercially available product is, for example, "BN] made by Sakamoto Electric Chemical Industry Co., Ltd., and the method of using the evaporating dish is to use a clip to connect both ends of the evaporating dish to the electrode to apply voltage. The heat is promoted, and the metal such as the aluminum wire placed in the dimple is melted and evaporated to obtain a vapor deposited film, which is then cooled. This operation will be repeated, shortening its service life due to the erosion of the hot and cold cycles and the molten metal during the execution. The life of the evaporating dish is greatly related to the wettability of the evaporating dish. Once the wettability is poor, the molten metal will be localized, and the original evaporation efficiency of the evaporating dish can not be obtained. Accelerate the corrosion rate of the molten metal on the evaporating dish, thereby shortening the life of the evaporating dish. Therefore, in order to ensure the wettability of the evaporating dish, various methods such as irradiation of a laser (曰本本2 000-93 7 8 8C14) have been studied, but sufficient longevity cannot be achieved. In addition, irradiating a laser requires a large number of devices and equipment. (3) 1281509 Evaporating heating element in which the bottom surface of the dimple and/or the upper surface of the ceramic sintered body is patterned by the above-mentioned groove. (8) The metal evaporation heating element according to the above (7), wherein the area ratio of the pattern is 30% or more of the area of the dimple bottom, and the surface of the ceramic sintered body is not provided with the concave surface. More than 30%. (9) The metal evaporation heating element according to the above (8), wherein the occupied area ratio of the pattern is 50% or more. (10) The metal evaporation heating element according to the above (8), wherein the pattern occupying area ratio is 8 % or more. (1) The metal evaporation heating element according to any one of the above (1) to (1), wherein the depth of the groove is set to be significantly different in one groove or between different grooves. (12) The metal evaporation heating element according to the above (11), wherein the difference in depth of the groove is 1% or more. (1) The metal evaporation heat generating body according to the above (1), wherein the groove having the deepest portion among the plurality of grooves is provided at the center of the long axis direction of the ceramic sintered body or nearby. (1) The metal evaporating heating element described in any one of the above (1) to (1), wherein the groove having the shallowest portion among the plurality of grooves is formed in the length of the ceramic sintered body One or both ends of the shaft. (1) The metal evaporating heating element according to any one of the above (1) to (1), wherein (the size of the deepest portion of the groove is the shallowest portion of the groove) is 〇.〇〇 5mm or more. (16) A metal evaporation heat generating body according to any one of the above (1) to (4), wherein the metal is in contact with the groove. In all or all of the conditions, it is heated in a vacuum. [Embodiment] The composition of the ceramic sintered body used in the present invention is an insulating material having at least a conductive material of titanium diboride and/or zirconium diboride and boron nitride as an essential component. It may contain an appropriate amount of a conductive material such as titanium nitride, tantalum carbide or chromium carbide, and an insulating material such as aluminum nitride, tantalum nitride, aluminum oxide, tantalum oxide or titanium oxide. Although the above-mentioned ceramic sintered body is based on titanium diboride and/or diboron pin, and boron nitride as a main component, it is preferably titanium diboride and/or chromium diboride, and boron nitride. And aluminum nitride as a main component. Further, it contains 30 to 60% of titanium diboride and/or chromium diboride (if not specifically stated, the following % is mass%), and boron nitride 70 to 40%, or diboronation. Titanium and / or chromium diboride 35 ~ 55%, and boron nitride 25 ~ 40%, and nitriding Ming 5 ~ 40% is most suitable. Once the above combined components are obtained, the processing of the ceramic sintered body can be performed extremely easily. Further, the ceramic sintered body preferably has a relative density of 90% or more, and particularly preferably 93% or more. Once the relative density is less than 90%, the molten metal will invade the pores of the ceramic sintered body and promote the generation of erosion. Further, a method of achieving a relative density of 90% or more can be easily achieved by adding a sintering additive to be described later within a range of not more than 1% by weight of the above composition. Further, the relative density of the ceramic sintered body is obtained by processing the sintered body into a rectangular parallelepiped of a specific size and dividing the actual density obtained from the outer dimensions and mass by the theoretical density. (5) 1281509 The ceramic sintered body used in the present invention can be formed by sintering a mixed raw material powder containing a conductive material of titanium diboride and/or chromium diboride and an insulating material of boron nitride. Manufacturing. The titanium diboride powder in the raw material can be obtained by any one of a production method such as a direct reaction of titanium metal or a reduction reaction of an oxide such as titanium oxide. The average particle diameter is preferably 5 to 25 // m. The boron nitride powder is preferably hexagonal crystal boron nitride or amorphous boron nitride 'or a mixture of the two. The boron nitride powder can be produced by heating a mixture of boric acid and urea to 80 ° C or higher in an ammonia atmosphere or heating a nitrogen-containing compound such as dicyandiamide to 130 (rc or more). In addition, in the nitrogen atmosphere, the boron nitride powder is heated to a high temperature to improve the crystallinity. The average particle diameter of the boron nitride powder is 10 μm or less, and the optimum is 5 μm or less. Those who are manufactured by direct nitridation or aluminum reduction have an average particle diameter of ΙΟμιη or less, and are preferably 7 μm or less. The sintering additive is heated by an alkaline earth metal oxide or a rare earth element oxide. Thereafter, one or two or more kinds of powders are selected from the group of compounds formed by the above oxides, specifically, for example, by CaO, MgO, SrO, BaO, Y2〇3, L a2 Ο 3, C e 2 Ο 3, P r 2 Ο 3, N d 2 Ο 3, P m 2 〇 3 ' S m 2 〇 3 &quot; E112O3, G d2 〇 3 NT b 2 0 3 &quot; D y 2 0 3 &quot; H o 2 〇3 &quot; Er203, Tm203, Yb2 03, Lu203, etc.; even water acid such as Ca(OH)2 a compound; or a compound formed by the above-mentioned oxide, which is heated by a carbonate such as MgC03. The average particle diameter of the sintering additive is 5 // m (6) 1281509 or less, and preferably 1 μm or less. The mixed raw material powder of the component is preferably formed into a bismuth shape and then sintered. The conditions for forming and sintering are as follows: after uniaxial pressurization of 0.5 to 200 MPa or isostatic pressure of cold, 1 800 Normal temperature sintering or sintering below 1 μP a is performed at a temperature of 0 to 2 2 0 0 ° C. More preferably, for example, at a temperature of 1 800 to 2 2 0 t: 1 to 100 MPa Pressurization is performed by hot pressing or hot pressing. Sintering is preferably carried out in a graphite container, a boron nitride container, or a container lined with boron nitride. The hot pressing method is preferably made of graphitized boron. The bushing or the bushing lined with boron nitride is sintered. In the process of manufacturing the evaporating dish from the ceramic sintered body, it can be processed into a suitable shape, for example, by mechanical processing. a recess can be provided in the slightly central portion of the upper surface of the ceramic sintered body for evaporation An example of the shape is a plate-shaped body having a total length of 100 to 200 mm (horizontal) of 25 to 35 mm and a thickness of 8 to 12 mm. When the dimple is provided, the ratio of the crucible is 90 to 120 mm in length and 20 to 32 mm in width (horizontal). The evaporating dish of the present invention is on the upper surface of the ceramic sintered body, or has a recess on the bottom surface of the dimple and/or the upper surface of the ceramic sintered body is not parallel to the energization direction (also In the direction in which the electrode is connected to the electrode, there are one or two or more grooves upward, that is, as shown in Fig. 1, a groove having a specific angle of one or two or more is formed in a direction equivalent to the direction in which the ceramic sintered body is in the longitudinal direction. Thereby, the wet expandability parallel to the direction of energization can be further suppressed, and the subsequent use in the direction perpendicular to the energization direction can be promoted, and the low pressure is performed or the inside or the nitrogen is used. Lifting, width, and concave 2mm are used, and the side is wet in the direction of α (7) 1281509, and greatly improves the wettability. The optimum angle α which is not parallel to the energization direction is preferably 20 to 160 degrees for the energization direction, and preferably 60 to 120, as in the first to the first. Preferably, the groove is formed to have a width of 〇·1 to 1.5 mm, a depth of 〇.〇3~li, a length of 1 mm or more, wherein the width is 0.3 to 1 mm '0 · 〇5~〇· 2 mm, and the length is 1 mm. The above rectangle has a better line shape. Although only one of the groove amounts can improve the wettability of the molten metal, it is two or more, particularly one or more, and more preferably 30 or more. When two or more grooves are used, the interval of the grooves is preferably 2 mm or less, and more preferably 〇·5 to 1.5 mm. In the above state, the grooves are misaligned with each other by at least one intersection point, but it is preferable to form an intersection point equal to or larger than the number of grooves, or by the upper surface of the drier porcelain sintered body and/or the bottom surface of the dimple, such as : Round ellipse, diamond, rectangle, moon, lattice, radial, etc. (flat pattern). The occupational area ratio of the pattern is preferably 30%, especially 50% or more, respectively, when the bottom area of the phase dimple has a dimple, or the upper area of the ceramic sintered body. . The above-mentioned pattern occupying area ratio is defined as the percentage of the area surrounded by the groove on the outermost side of the pattern divided by the area on the surface of the ceramic sintered body or the area of the bottom of the dimple. When the occupied area ratio of the groove is used as the area ratio of the pattern, the occupied area ratio of the groove in the bottom surface area of the upper surface of the ceramic sintered body is preferably 10% or more, and particularly 30% or more and 50%. The above is better. In addition, in the groove of the ceramic sintered body of the present invention, in the case of a degree, the number of depths is preferably the same as that of the surface of the ceramic surface, and the pattern is 80% on the surface. It is better to set the groove of the groove (8) 1281509 or between different grooves to be a significant difference. Thereby, the wettability of the molten metal can be further promoted. In the present invention, the groove. The apparent difference in depth (%) is a mathematical expression expressed later. Further, in the following mathematical formula, the same groove or the different grooves may be used to measure the deepest depth and the shallowest depth of the groove. (depth of the deepest part of the groove, the shallowest part depth of the groove) X1 〇〇 (the deepest part of the groove is deep @ · In the present invention, the difference in the depth of the groove obtained by the above mathematical formula is preferably 10% or more 20% or more is better, and more preferably 3% or more. Further, the depth of the groove irrelevant to the above mathematical formula or related to the above mathematical formula (the deepest depth of the groove - the shallowest depth of the groove) Preferably, it is 0.005 mm or more, and more preferably 〇. 1 mm or more. In the present invention, the method for setting the difference in the depth of the groove can be set by (a) in the plurality of grooves, at least one of the grooves is provided with a groove depth. · Significant difference, (b) Setting a significant difference in groove depth between two or more grooves, or (c) performing the above two methods in combination. In the case of the above method (a), the deepest part of a groove It is located in the long axis direction of -, preferably in the central part of length 1 〇~8 〇%, which is better in the central part of the length of 4 0~6 0 %, and the shallowest part is set The end portion in the long axis direction is suitable. In the case of the above method (b) The groove for re-measuring the "deepest part of the ditch" and the groove of "the shallowest part of the ditch" may be the same ditch or may be different -12-(9) 1281509 ditch. In addition, there may be a plurality of different depths from each other. However, each groove having a uniform groove depth or at least one groove having a different depth in the plurality of grooves is as described in (a), and in the case of the above method (c), the groove having a uniform depth and the groove having inconsistent depth are formed. Further, in the case of the above (b) or (c), the depth (including the groove having the deepest portion) and the groove having the small depth (including the groove having the same) can be freely adopted, for example, in a staggered arrangement, Arranged in such a manner as to be arranged in an out-of-sequence manner, but the depth (including the groove having the deepest portion) is preferably provided at a center portion of the ceramic sintered body or in the vicinity of the center portion. The center portion in the direction of the long axis or the vicinity of the center portion is preferably a central region of 2 0 to 80% of the total length of the body, and a center of 30 to 70% is good, of which 4 0 to 60% The best in the central field. In the end areas other than the above, the best Deep groove having the shallowest portion is larger than the depth of the groove) shallower groove. In particular, in the field of one end or both ends of the direction of the ceramic sintered body, the most end groove is preferably the most groove; in the present invention, it is preferable that the plurality of widths are 0.1 to 1.5 mm or more, and the extension is 0·03 to 1.0. The groove of mm is formed, and the depth of the groove is obviously 1% or more, and (the deepest part of the groove is more than 0.005 mm deep in the shallowest part of the groove. The processing of the groove on the ceramic sintered body in the present invention can be as follows: Processing, sand blasting, water jetting, etc. The evaporating dish of the present invention can suppress the wettability in the direction parallel to the energization direction by the formation of the groove. Accordingly, it has 1 compared with itself. Since the shallowest part of the large groove is 2, the large groove long axis square sintered body ceramics field is more central (including the long axis _ part. R 1mm difference is the degree) because the base metal is not traditional (10) The 1281509 grooved evaporating dish' can significantly reduce the arrival of molten metal to the electrode, and achieve the stability and high efficiency of metal evaporation. The traditional evaporating dish, although to prevent molten metal such as aluminum from spilling from the side Forming a dimple, but in the present invention The groove is implemented in a size and function different from that of a conventional evaporating dish. Accordingly, it is not essential in the present invention that when having a dimple, the groove or the pattern formed by the groove is preferably formed at least in The bottom of the dimple. The oblique view of one of the evaporating dishes of the present invention is shown in Figures 1 to 10. The example of Fig. 1 is manufactured according to Embodiment 1, and the example of Fig. 2 is according to Embodiment 3. The example of Fig. 3 is the example of Fig. 4 which is manufactured according to the fourth embodiment. The example of Fig. 4 is manufactured according to the embodiment 5. According to any of the above-mentioned grooves, a pattern will be formed, and the area ratio of the pattern is relative to the first The bottom areas of the dimples in Figures 1 and 2 are 64% and 76%, respectively, and the upper surface areas of the ceramic sintered bodies in Figures 3 and 4 are 39% and 55%, respectively. The example shown in Figure 5, By means of machining, 50 grooves having a maximum length of 24 mm, a width of 1 mm, and a depth of 1515 mm are formed at an interval of 1 mm and the length thereof is changed, and an ellipse perpendicular to the energizing direction is formed on the bottom surface of the dimple. Pattern. The area occupied by the pattern is 50% of the area of the bottom of the dimple. The example shown in Fig. 6 is a method of machining 44 grooves 1 mm wide and 15 mm wide at a distance of 1 mm at the bottom of the dimple to form 45 degrees or 135 degrees with the energization direction. <Glyph. The area ratio of the pattern is 66% of the area of the bottom of the dimple. The example shown in Figure 7 is made by machining 50 pieces of width (11) (11) 1281509 1 mm, depth 0 · 1 5 The groove of mm is formed in a lattice shape of 90 degrees or 180 degrees with respect to the energization direction at a space of 1 mm at intervals of 1 mm. The occupied area of the pattern is 60% of the area of the bottom of the dimple. In the example shown in Fig. 8, a groove having 20 widths of 1 mm and a depth of 1.5 mm is machined by machining, and a pattern radiating from the center of the evaporating dish toward the end of the evaporating dish is formed on the bottom surface of the dimple. The area occupied by the pattern is 61% of the bottom surface of the dimple. The example shown in Fig. 9 is to machine 60 grooves of 20 mm in length, 1 mm in width and 0.15 mm in depth, forming 90 degrees to the direction of energization and at intervals of 1 · 5 mm at the bottom surface and dimples of the dimples. A pattern is formed on the upper surface of the evaporating dish. The area ratio of the pattern is 7 7 % for the bottom area of the dimple and 67 % for the upper surface area of the ceramic sintered body. In the example shown in the first drawing, 60 grooves each having a width of 1 mm and a depth of 0.15 mm are formed on the upper surface of the ceramic sintered body at a distance of 1.5 mm from the energization direction (the length at both ends is 27 mm). The length of the intermediate portion is 23 mm, the length of the central portion is 19 mm, and in the direction parallel to the energizing direction, one width 1 mm, the depth 0 · 15 mm, and the length 1 are formed on both side edges, respectively. A groove of 30 mm is formed, and a groove having a width of 1 mm, a depth of .15 mm, and a length of 65 mm is formed in the central portion of the inner side. The area occupied by the pattern is 89% of the surface area of the ceramic sintered body. The black hair method of the metal of the present invention is to provide a metal such as an A1 wire to contact part or all of the groove of the evaporating dish of the present invention (when the number of grooves is one, where the groove is partially included) and then heat And heating is continued while bringing the molten metal into contact with the groove. According to this, a metal deposition film can be formed on the target substance (12) 1281509. One of the conditions for vacuum heating, such as a vacuum, is preferably lxl 〇d~lxl 〇 3 Pa, and the temperature is preferably 1 400 to 1 600 ° C. EXAMPLES Example 1 45 mass% of titanium diboride powder (average particle diameter of 12 μm), 30 mass% of boron nitride powder (average particle diameter 0.7 / / m), and

25質量%的鋁粉末所構成的混合原料粉末充塡入石墨製的 模內,以1 7 5 (TC的溫度執行熱壓而製造出陶瓷燒結體(相 對密度94.5% 、直徑200mmx高20mm)。從上述的陶瓷 燒結體切出長150mmx寬 30mmx厚 l〇mm的矩形角柱 體,在藉由機械加工在其上表面的中央部設置寬26mm X 深lmm X長120mm的凹窩。利用機械加工的方式將50條 寬1mm、深0.15mm、長20mm的溝,以imm的間隔並對 通電方向呈90度地形成於該凹窩的底面,而製成蒸發 皿。其槪略的斜視圖如第1圖所示。The mixed raw material powder composed of 25 mass% of aluminum powder was filled in a mold made of graphite, and a ceramic sintered body (relative density 94.5%, diameter 200 mm x height 20 mm) was produced by performing hot pressing at a temperature of 175 (TC). A rectangular angle cylinder having a length of 150 mm x a width of 30 mm x a thickness of 10 mm was cut out from the ceramic sintered body described above, and a recess having a width of 26 mm X a depth of 1 mm and a length of 120 mm was provided at a central portion of the upper surface thereof by machining. In a manner, 50 grooves having a width of 1 mm, a depth of 0.15 mm, and a length of 20 mm were formed at an interval of imm and a direction of energization of 90 degrees to the bottom surface of the dimple, thereby forming an evaporating dish. Figure 1 shows.

實施例2 除了溝的尺寸爲寬0.5mm、深〇.lrnm、長2〇mm以 外’其餘係製造成與實施例1相同的蒸發皿。 實施例3 利用機械加工的方式,使3 5條寬1 1Ώ ιη、深〇 1小 υ · i i m m、 長28 mm的溝在蒸發皿之凹窩的底面上對通電方向形成c -16- (13) (13)1281509 度,且利用機械加工使3 5條形狀相同的溝垂直於前述的 溝並對通電方向形成1 3 0度,除此之外,製造成與實施例 1相同的蒸發皿。其槪略的斜視圖如第2圖所示。 實施例4 在矩形角柱體上表面的中央部並未形成凹窩,而是藉 由直接加工1條寬1.0mm、深〇.i5mm、長25mm的連續 直線狀溝,而形成對通電方向呈90度的條紋狀花紋,除 此之外,是製造成與實施例1相同的蒸發皿。其槪略的斜 視圖如第3圖所示。 實施例5 在矩形角柱體上表面的中央部並未形成凹窩,而是利 用機械加工,直接以1 mm寬的間隔且對通電方向保持9 〇 度的方式,形成50條寬1.0mm、深〇.15mm、長25mm的 溝,除此之外,是製造成與實施例1相同的蒸發皿。其槪 略的斜視圖如第4圖所示。 實施例6 除了溝的加工是利用噴砂方式進行之外,是製造成與 實施例1相同的蒸發皿。 實施例7 除了溝的加工是利用水刀進行,且利用真空乾燥機對 蒸發皿進行乾燥之外’是製造成與實施例1相同的蒸發 -17- (14) 1281509 皿。 比較例1 除了未在矩形角柱體形成溝之外,是製造成與實施例 1相同的蒸發皿。 比較例2 除了溝的寬度爲2.0mm之外,是製造成與實施例1相 同的蒸發皿。 比較例3 除了溝的深度爲2.0mm之外,是製造成與實施例1相 同的蒸發皿。 比較例4 除了溝的間隔爲3.0mm之外,是製造成與實施例1相 同的蒸發皿。 爲了評比融熔金屬對上述實施例與比較例的可濕性, 則設定成利用夾子使蒸發皿的端部連接於電極,並對其施 加電壓而使蒸發皿中央部的溫度形成1 5 5 0 °C。接下來,對 蒸發皿施加電壓後加熱,並在真空度爲2 X 10- 2pa的真空 環境中’以每分鐘6.5 g的速度對溝部供給5分鐘的鋁線 且持續加熱。於開始供給鋁的5分鐘後對蒸發皿的上表面 拍照,並根據熾熱部與融熔金屬部的對比來求取可濕性面 -18- (15) 1281509 積。接下來,該可濕性面積,當具有凹窩時除以凹窩的底 面積,當不具凹窩時除以陶瓷燒結體的上表面面積後算出 可濕性面積率(% )。所獲得的結果如表1所示。 此外,評價蒸發皿的壽命。也就是使蒸發皿中央部的 溫度形成1500 °C,並於真空度爲2xl〇— 2Pa的真空環境 中,一邊以每分鐘6.5 g的速度供給鋁線一邊以4 〇分鐘爲 單位循環執行蒸發試驗,且重複執行上述操作。當蒸發皿 之錦蒸發面上的侵蝕丨朵度形成最大3 m m時,將該重複操 作的次數作爲蒸發皿的壽命。其結果如表Λ所示。 表1 可濕性面積(% ) 侵蝕深度形成3 I: —時货操作次數 例1 ^ 2 奮施例4 施例 奮施例6 ^ 7 比較例1 -------』2至例2 比較例3 一-— 比g例4 4 1 43 41 45 47 43 39 24 29 2 7 26 12 11 12 12 13 12 11 9Example 2 An evaporating dish identical to that of Example 1 was produced except that the groove was 0.5 mm in width, 1.7 nm in length, and 2 mm in length. Embodiment 3 By means of machining, 35 grooves of 1 1 Ώ η, 〇 1 υ iimm, and 28 mm long are formed on the bottom surface of the dimple of the evaporating dish to form a c -16- (13 (13) The same evaporating dish as in Example 1 was produced, except that the grooves having the same shape were machined perpendicularly to the above-mentioned grooves and formed at 130 degrees in the energization direction. Its schematic oblique view is shown in Figure 2. [Embodiment 4] A dimple is not formed in the central portion of the upper surface of the rectangular corner cylinder, but a direct linear groove having a width of 1.0 mm, a depth of .i5 mm, and a length of 25 mm is directly processed, and the direction of energization is 90. In addition to the stripe pattern of the degree, the same evaporating dish as that of the first embodiment was produced. Its oblique view is shown in Figure 3. [Embodiment 5] In the central portion of the upper surface of the rectangular corner cylinder, no dimples are formed, but by mechanical processing, 50 strips of 1.0 mm and deep are formed directly at intervals of 1 mm and maintained in the direction of energization by 9 〇. A ditch of 15 mm and a length of 25 mm was produced in the same manner as in Example 1. Its oblique view is shown in Figure 4. Example 6 An evaporating dish similar to that of Example 1 was produced except that the processing of the grooves was carried out by sand blasting. Example 7 The same evaporation as that of Example 1 was carried out except that the processing of the grooves was carried out by means of a water jet and the evaporating dish was dried by a vacuum dryer -17-(14) 1281509. Comparative Example 1 An evaporating dish similar to that of Example 1 was produced except that no groove was formed in the rectangular corner cylinder. Comparative Example 2 An evaporating dish manufactured in the same manner as in Example 1 was used except that the width of the groove was 2.0 mm. Comparative Example 3 An evaporating dish manufactured in the same manner as in Example 1 except that the depth of the groove was 2.0 mm. Comparative Example 4 An evaporating dish manufactured in the same manner as in Example 1 was used except that the groove interval was 3.0 mm. In order to evaluate the wettability of the molten metal to the above examples and comparative examples, it is set such that the end of the evaporating dish is connected to the electrode by a clip, and a voltage is applied thereto to form a temperature of the central portion of the evaporating dish to form 1 5 50. °C. Next, a voltage was applied to the evaporating dish and then heated, and the aluminum wire was supplied to the groove at a speed of 6.5 g per minute for 5 minutes at a vacuum of 2 x 10 - 2 Pa and heating was continued. The upper surface of the evaporating dish was photographed 5 minutes after the start of the supply of aluminum, and the wettable surface -18-(15) 1281509 product was obtained from the comparison of the hot portion and the molten metal portion. Next, the wettability area is divided by the bottom area of the dimple when having a dimple, and the wettability area ratio (%) is calculated by dividing the upper surface area of the ceramic sintered body when there is no dimple. The results obtained are shown in Table 1. In addition, the life of the evaporating dish was evaluated. That is, the temperature in the central portion of the evaporating dish was set to 1500 ° C, and in an evacuated vacuum environment of 2 x 1 〇 2 Pa, the aluminum wire was supplied at a rate of 6.5 g per minute while the evaporation test was performed in units of 4 〇 minutes. And repeat the above operation. When the erosion degree on the evaporation surface of the evaporating dish forms a maximum of 3 m m, the number of repetitions is taken as the life of the evaporating dish. The results are shown in Table 。. Table 1 Moisture area (%) Erosion depth formation 3 I: - Time-of-day operation example 1 ^ 2 Excitation example 4 Application example 6 ^ 7 Comparative example 1 ------- 2 to example 2 Comparative Example 3 One-- Ratio g Example 4 4 1 43 41 45 47 43 39 24 29 2 7 26 12 11 12 12 13 12 11 9

-19- (16) (16)l28l5〇9 實施例8〜10 除了如表2示,以50條從蒸發皿之長度方向其中一 端朝另一端,且每固定數量的溝各自形成不同深度的溝, 取代實施例1中一致的溝(總數爲5.0條),且將中央區 域的溝設成最深之外,製造成與實施例1相同的蒸發皿。 實施例1 1〜1 3 除了未於蒸發皿表面形成凹窩之外,分別製造成與實 施例8、9和1 〇相統的蒸發皿。 實施例1 4 除了分別將實施例1中全部的5 0條溝,使位於溝長 軸方向中央1/3位置的部分形成0.1 5mm的深度,而其兩 側形成〇 . 1 〇nim深度之外,製造成與實施例1相同的蒸發 皿。 對實施例 8〜14的蒸發皿,執行與實施例 1〜7相同 「當蒸發皿之鋁蒸發面上的侵蝕深度形成最大3 mm時, 將該重複操作的次數作爲蒸發皿的壽命」方式來量測蒸^ 皿的壽命。此外,根據後數的方式測量融熔金屬的可濕个生 擴散。其結果如表2所示。 融熔金屬的可濕性擴散試驗 設定成利用夾子使蒸發皿的端部連接於電極,並對_ -20- (17) 1281509 施加電壓而使蒸發皿中央部的溫度形成1 60 0 °C。接下來, 對蒸發皿施加電壓後加熱,並在真空度爲1x10— 2Pa的真 空環境中,以每分鐘6.5g的速度對溝部供給5分鐘的鋁 線且持續加熱。於開始供給鋁的5分鐘後對蒸發皿的上表 面拍照,並針對融熔金屬部的擴大處,測量其中央部的寬 度(mm )與最大長度(mm )。其結果如表2所示。-19- (16) (16) l28l5〇9 Examples 8 to 10 Except as shown in Table 2, 50 strips from one end of the evaporating dish toward the other end, and each fixed number of grooves each form a groove of different depth The same evaporating dish as in Example 1 was produced instead of the groove (the total number of which was 5.0) in the first embodiment, and the groove in the central portion was set to the deepest. Example 1 1 to 1 3 Evaporating dishes which were in accordance with Examples 8, 9, and 1 were respectively manufactured except that pits were not formed on the surface of the evaporating dish. [Embodiment 1] In addition to the 50 grooves in all of the first embodiment, the portion located at the center 1/3 of the long axis direction of the groove is formed to have a depth of 0.15 mm, and both sides thereof are formed to be outside the depth of 1 〇nim. The same evaporating dish as in Example 1 was produced. The evaporating dishes of Examples 8 to 14 were carried out in the same manner as in Examples 1 to 7 "when the etching depth on the aluminum evaporation surface of the evaporating dish was formed to a maximum of 3 mm, the number of times of the repeated operation was taken as the life of the evaporating dish". Measure the life of the steaming dish. In addition, the wettable diffusion of the molten metal is measured in terms of the number of the latter. The results are shown in Table 2. The wettability diffusion test of the molten metal was set such that the end of the evaporating dish was connected to the electrode by a clip, and a voltage was applied to the _-20-(17) 1281509 to form a temperature of 1 60 ° C at the center of the evaporating dish. Next, a voltage was applied to the evaporating dish and then heated, and in a vacuum environment having a degree of vacuum of 1 x 10 - 2 Pa, the aluminum wire was supplied to the groove at a rate of 6.5 g per minute for 5 minutes and heating was continued. The upper surface of the evaporating dish was photographed 5 minutes after the start of the supply of aluminum, and the width (mm) and the maximum length (mm) of the central portion were measured for the enlarged portion of the molten metal portion. The results are shown in Table 2.

-21 - (18) 1281509 表2 凹 窩 溝的構成方式 融熔金屬的可 濕性擴散:最 大長X中央部 的寬(mm) 蒸發 皿壽命 (次) 從蒸發皿的長度方向 其中一端朝另一端之 溝的數量:溝深度 明顯 差異 (%) 實施例8 有 I 〜10 條:0.05mm II 〜20 條:0.13mm 21 〜30 條:0.20mm 31 〜40 條:0.13mm 41 〜50 條:0.05mm 75 120x26 14 實施例9 有 I 〜10 條:0.10mm II 〜20 條:0.15mm 21 〜30 條:0.20mm 31 〜40 條:0.15mm 41 〜50 條:0.10mm 50 110x26 13 實施例10 有 I 〜10 條·· 0.10mm II 〜20 條:0.13mm 21 〜30 條:0.15mm 31 〜40 條:0.13mm 41 〜50 條:0.10mm 33 100x26 12 實施例11 Μ I 〜10 條:0.05mm II 〜20 條:0.13mm 21 〜30 條:0.20mm 31 〜40 條:0.13mm 41 〜50 條:0.05mm 75 120x26 15 實施例12 Μ J \ w I 〜10 條:0.10mm II 〜20 條:0.15mm 21 〜30 條:0.20mm 31 〜40 條:0.15mm 41 〜50 條:0.10mm 50 110x26 13 -22- (19) 1281509 〔產業上的利用性〕 本發明的蒸發皿及金屬的蒸發方法,是用於將金屬蒸 鍍於譬如薄膜之類的場合中。-21 - (18) 1281509 Table 2 The configuration of the dimple groove The wettability diffusion of the molten metal: the maximum length X the width of the central portion (mm) The evaporating dish life (times) From the length of the evaporating dish, one end toward the other Number of grooves at one end: Significant difference in groove depth (%) Example 8 There are I to 10 bars: 0.05 mm II to 20 bars: 0.13 mm 21 to 30 bars: 0.20 mm 31 to 40 bars: 0.13 mm 41 to 50 bars: 0.05mm 75 120x26 14 Example 9 There are I ~ 10 strips: 0.10mm II ~ 20 strips: 0.15mm 21 ~ 30 strips: 0.20mm 31 ~ 40 strips: 0.15mm 41 ~ 50 strips: 0.10mm 50 110x26 13 Example 10 There are I ~ 10 strips · 0.10mm II ~ 20 strips: 0.13mm 21 ~ 30 strips: 0.15mm 31 ~ 40 strips: 0.13mm 41 ~ 50 strips: 0.10mm 33 100x26 12 Example 11 Μ I ~ 10 strips: 0.05 Mm II ~ 20 Articles: 0.13mm 21 ~ 30 Articles: 0.20mm 31 ~ 40 Articles: 0.13mm 41 ~ 50 Articles: 0.05mm 75 120x26 15 Example 12 Μ J \ w I ~ 10 Articles: 0.10mm II ~ 20 : 0.15 mm 21 to 30: 0.20 mm 31 to 40: 0.15 mm 41 to 50: 0.10 mm 50 110x26 13 -22- (19) 1281509 [Industrial Applicability] The present invention Boat evaporation method, and a metal, for example, to a metal vapor deposition film or the like occasions.

【圖式 簡 單說 明】 第 1 圖·· 本 發 明 蒸 發 皿 之 其 中一 例 的 斜 視 圖 第 2 圖: 本 發 明 蒸 發 皿 之 其 中一 例 的 斜 視 圖 第 3 圖: 本 發 明 蒸 發 皿 之 其 中一 例 的 斜 視 圖 第 4 圖: 本 發 明 蒸 發 皿 之 其 中一 例 的 斜 視 圖 第 5 圖: 本 發 明 蒸 發 皿 之 其 中一 例 的 斜 視 圖 第 6 圖: 本 發 明 蒸 發 皿 之 其 中一 例 的 斜 視 圖 第 7 圖: 本 發 明 蒸 發 皿 之 其 中一 例 的 斜 視 圖 第 8 圖: 本 發 明 菡 ^ w \ 發 皿 之 其 中一 例 的 斜 視 圖 第 9 圖: 本 發 明 1 » * 黑 發 Μ 之 其 中一 例 的 斜 視 圖 第 1 0圖: 本發明蒸發皿之其中- -例的斜視圖 -23-BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view showing an example of an evaporating dish of the present invention. Fig. 2 is a perspective view showing an example of an evaporating dish of the present invention. Fig. 3 is a perspective view showing an example of an evaporating dish of the present invention. 4 is a perspective view showing an example of the evaporating dish of the present invention. Fig. 5 is a perspective view showing an example of the evaporating dish of the present invention. Fig. 6 is a perspective view showing an example of the evaporating dish of the present invention. Fig. 7: An oblique view of one of the examples Fig. 8 is a perspective view of one example of the present invention. Fig. 9: The present invention 1 » * Black hair 斜 An oblique view of one of the examples 1 0: The evaporating dish of the present invention Among them - the oblique view of the example - 23-

Claims (1)

ί月^修(更)正本j 十、申請專利範圍 第93 1 3 5673號專利申請案 中文申請專利範圍修正本 民國96年1月26日修正 k 一種金屬蒸發發熱體,是在含有二硼化鈦(TiB2) 及/或二硼化鉻(ZrB2 )、和氮化硼(BN )所形成的陶瓷 燒結體的上表面,於未平行於通電方向的方向上具有1或 2個以上的溝,且該溝的寬度爲〇·ι〜,深度爲 〇·〇3〜1mm,長度爲imm以上。 2.如申請專利範圍第1項所述之金屬蒸發發熱體,其 中具有2個以上的溝,溝的間隔爲2mm以下。 3 ·如申請專利範圍第1或2項所述之金屬蒸發發熱 體,其中溝的數量爲1 〇個以上。 4.如申請專利範圍第1或2項所述之金屬蒸發發熱 體,其中未平行於通電方向的方向,是指對通電方向形成 20〜160度的方向。 5 ·如申請專利範圍第4項所述之金屬蒸發發熱體,其 中各溝之間是以至少一個交會點形成交錯。 6 ·如申請專利範圍第1或2項所述之金屬蒸發發熱 體,其中陶瓷燒結體具有凹窩,並於凹窩的底面及/或陶 瓷燒結體的上表面具有溝。 7 ·如申請專利範圍第1或2項所述之金屬蒸發發熱 體,其中在凹窩的底面及/或陶瓷燒結體的上表面,由複 數的溝形成花紋。 (2) 1281509 8·如申請專利範圍第7項所述之金屬蒸發發熱體,其 中花紋的佔有面積率,具有凹窩者爲凹窩底面積的3 0%以 上,不具凹窩者爲陶瓷燒結體之上表面面積的3 0 %以上。 9·如申請專利範圍第8項所述之金屬蒸發發熱體,其 中花紋的佔有面積率爲50%以上。 1 0 .如申請專利範圍第8項所述之金屬蒸發發熱體, 其中花紋的佔有面積率爲8 0%以上。 1 1 ·如申請專利範圍第〗或2項所述之金屬蒸發發熱 體’其中在一個溝內、或不同的溝之間,溝的深度是設成 明顯的差異。 1 2 ·如申請專利範圍第n項所述之金屬蒸發發熱體, 其中溝之深度的明顯差異爲1 0%以上。 1 3 ·如申請專利範圍第n項所述之金屬蒸發發熱體, 其中在複數個溝當中,具有最深部的溝,是設在陶瓷燒結 體之長軸方向的中心部或附近。 1 4 ·如申請專利範圍第1 1項所述之金屬蒸發發熱體, 其中在複數個溝當中,具有最淺部的溝,是設在陶瓷燒結 體之長軸方向的一端或兩端。 1 5 .如申請專利範圍第1 1項所述之金屬蒸發發熱體, 其中(溝之最深部的尺寸-溝之最淺部的尺寸)爲 0.005mm 以上。 16.—種金屬的蒸發方法,是採用上述申請專利範圍 第1〜15項之其中任一項所述之金屬蒸發發熱體,並在令 金屬接觸於該溝的局部或全部的狀態下,於真空中加熱。 -2 -ί月^修(更)正本 j X. Patent application No. 93 1 3 5673 Patent application Chinese patent application scope amendments. January 26, 1996, amendments k A metal evaporation heating element containing diboron The upper surface of the ceramic sintered body formed of titanium (TiB2) and/or chromium diboride (ZrB2) and boron nitride (BN) has one or two or more grooves in a direction not parallel to the energization direction, The width of the groove is 〇·ι~, the depth is 〇·〇3~1 mm, and the length is imm or more. 2. The metal evaporation heating element according to claim 1, wherein there are two or more grooves, and the interval between the grooves is 2 mm or less. 3. The metal evaporation heating body according to claim 1 or 2, wherein the number of grooves is 1 or more. 4. The metal evaporating heating element according to claim 1 or 2, wherein the direction not parallel to the energizing direction means a direction of 20 to 160 degrees with respect to the energizing direction. 5. The metal evaporation heating element according to claim 4, wherein each of the grooves is formed by at least one intersection. The metal evaporating heating body according to claim 1 or 2, wherein the ceramic sintered body has a dimple and has a groove on a bottom surface of the dimple and/or an upper surface of the ceramic sintered body. The metal evaporating heating element according to claim 1 or 2, wherein the bottom surface of the dimple and/or the upper surface of the ceramic sintered body is patterned by a plurality of grooves. (2) 1281509. The metal evaporating heating element according to claim 7, wherein the area ratio of the pattern has a recess of more than 30% of the area of the bottom of the dimple, and the ceramic is sintered without the dimple. More than 30% of the surface area above the body. 9. The metal evaporating heating element according to item 8 of the patent application, wherein the pattern occupying area ratio is 50% or more. 10. The metal evaporation heating element according to item 8 of the patent application, wherein the pattern occupying area ratio is 80% or more. 1 1 • The depth of the groove is set to be significantly different as in the case of the metal evaporating heating element described in the scope of claim 2 or 2, in a groove or between different grooves. 1 2 · The metal evaporation heating element according to item n of the patent application, wherein the difference in the depth of the groove is more than 10%. The metal evaporating heating element according to item n of the patent application, wherein the groove having the deepest portion among the plurality of grooves is provided at or near the center of the long axis direction of the ceramic sintered body. The metal evaporating heating element according to the above aspect of the invention, wherein the groove having the shallowest portion among the plurality of grooves is one end or both ends of the ceramic sintered body in the long axis direction. The metal evaporating heating element according to claim 1, wherein the dimension of the deepest portion of the groove - the shallowest portion of the groove is 0.005 mm or more. A metal evaporation heat-generating body according to any one of the above-mentioned claims, wherein the metal is in contact with a part or all of the groove, Heat in a vacuum. -2 -
TW093135673A 2003-11-20 2004-11-19 Metal vaporizing heating element and metal vaporizing method TWI281509B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003390344 2003-11-20
JP2004008217 2004-01-15
JP2004010568 2004-07-16
JP2004309053A JP2006118017A (en) 2004-10-25 2004-10-25 Metal-evaporating heater

Publications (2)

Publication Number Publication Date
TW200519221A TW200519221A (en) 2005-06-16
TWI281509B true TWI281509B (en) 2007-05-21

Family

ID=38751570

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093135673A TWI281509B (en) 2003-11-20 2004-11-19 Metal vaporizing heating element and metal vaporizing method

Country Status (1)

Country Link
TW (1) TWI281509B (en)

Also Published As

Publication number Publication date
TW200519221A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
TWI445682B (en) Alumina sintered body, and its manufacturing method and semiconductor manufacturing device parts
JP5562234B2 (en) Heat dissipation base and electronic device using the same
KR20070048562A (en) Container for evaporation of metal and method to manufacture thereof
JP4425860B2 (en) Metal evaporation heating element and metal evaporation method
US20080039312A1 (en) Ceramic base material
WO2011111746A1 (en) Ceramic sintered compact, circuit board using the same, electronic device and thermoelectric conversion module
WO2011087055A1 (en) Silicon nitride substrate, circuit substrate and electronic device using same
JP5473407B2 (en) Ceramic substrate, heat dissipation substrate, and electronic device
KR100445050B1 (en) Aluminum nitride sintered bodies and members for semiconductor producing apparatus
KR20060103141A (en) Ceramic member and method for producing the same
JP6891991B2 (en) Manufacturing method of silicon nitride sintered substrate
KR101178234B1 (en) Ceramic compositions containing yttrium nitrate and/or yttrium nitrate compounds for silicon carbide ceramics, silicon carbide ceramics, and its preparation method
TWI281509B (en) Metal vaporizing heating element and metal vaporizing method
JP7468769B2 (en) Manufacturing method of silicon nitride sintered substrate
JP7080422B1 (en) Aluminum nitride sintered body and its manufacturing method, circuit board, and bonded substrate
JP2006118017A (en) Metal-evaporating heater
JP2002029849A (en) Sintered silicon nitride compact and method for manufacturing the same as well as circuit board using the same
CN100487154C (en) Metal vaporizing heating element and metal vaporizing method
JP4593062B2 (en) Aluminum nitride sintered body and method for producing the same
JP2018020929A (en) Silicon nitride sintered substrate and production method thereof
JP5485127B2 (en) Manufacturing method of ceramic circuit board
JP2008169458A (en) Heating element for vaporizing metal
JP4795573B2 (en) Ceramic circuit board
JPH03275567A (en) Production of aluminum nitride sintered body
JP2005113171A (en) Metal evaporation vessel

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees